2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
54 #include <asm/tlbflush.h>
58 struct kmem_cache
*anon_vma_cachep
;
61 * anon_vma_prepare - attach an anon_vma to a memory region
62 * @vma: the memory region in question
64 * This makes sure the memory mapping described by 'vma' has
65 * an 'anon_vma' attached to it, so that we can associate the
66 * anonymous pages mapped into it with that anon_vma.
68 * The common case will be that we already have one, but if
69 * if not we either need to find an adjacent mapping that we
70 * can re-use the anon_vma from (very common when the only
71 * reason for splitting a vma has been mprotect()), or we
74 * Anon-vma allocations are very subtle, because we may have
75 * optimistically looked up an anon_vma in page_lock_anon_vma()
76 * and that may actually touch the spinlock even in the newly
77 * allocated vma (it depends on RCU to make sure that the
78 * anon_vma isn't actually destroyed).
80 * As a result, we need to do proper anon_vma locking even
81 * for the new allocation. At the same time, we do not want
82 * to do any locking for the common case of already having
85 * This must be called with the mmap_sem held for reading.
87 int anon_vma_prepare(struct vm_area_struct
*vma
)
89 struct anon_vma
*anon_vma
= vma
->anon_vma
;
92 if (unlikely(!anon_vma
)) {
93 struct mm_struct
*mm
= vma
->vm_mm
;
94 struct anon_vma
*allocated
;
96 anon_vma
= find_mergeable_anon_vma(vma
);
99 anon_vma
= anon_vma_alloc();
100 if (unlikely(!anon_vma
))
102 allocated
= anon_vma
;
104 spin_lock(&anon_vma
->lock
);
106 /* page_table_lock to protect against threads */
107 spin_lock(&mm
->page_table_lock
);
108 if (likely(!vma
->anon_vma
)) {
109 vma
->anon_vma
= anon_vma
;
110 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
113 spin_unlock(&mm
->page_table_lock
);
115 spin_unlock(&anon_vma
->lock
);
116 if (unlikely(allocated
))
117 anon_vma_free(allocated
);
122 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
124 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
125 list_del(&next
->anon_vma_node
);
128 void __anon_vma_link(struct vm_area_struct
*vma
)
130 struct anon_vma
*anon_vma
= vma
->anon_vma
;
133 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
136 void anon_vma_link(struct vm_area_struct
*vma
)
138 struct anon_vma
*anon_vma
= vma
->anon_vma
;
141 spin_lock(&anon_vma
->lock
);
142 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
143 spin_unlock(&anon_vma
->lock
);
147 void anon_vma_unlink(struct vm_area_struct
*vma
)
149 struct anon_vma
*anon_vma
= vma
->anon_vma
;
155 spin_lock(&anon_vma
->lock
);
156 list_del(&vma
->anon_vma_node
);
158 /* We must garbage collect the anon_vma if it's empty */
159 empty
= list_empty(&anon_vma
->head
);
160 spin_unlock(&anon_vma
->lock
);
163 anon_vma_free(anon_vma
);
166 static void anon_vma_ctor(void *data
)
168 struct anon_vma
*anon_vma
= data
;
170 spin_lock_init(&anon_vma
->lock
);
171 INIT_LIST_HEAD(&anon_vma
->head
);
174 void __init
anon_vma_init(void)
176 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
177 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
184 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
186 struct anon_vma
*anon_vma
;
187 unsigned long anon_mapping
;
190 anon_mapping
= (unsigned long) page
->mapping
;
191 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
193 if (!page_mapped(page
))
196 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
197 spin_lock(&anon_vma
->lock
);
204 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
206 spin_unlock(&anon_vma
->lock
);
211 * At what user virtual address is page expected in @vma?
212 * Returns virtual address or -EFAULT if page's index/offset is not
213 * within the range mapped the @vma.
215 static inline unsigned long
216 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
218 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
219 unsigned long address
;
221 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
222 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
223 /* page should be within @vma mapping range */
230 * At what user virtual address is page expected in vma? checking that the
231 * page matches the vma: currently only used on anon pages, by unuse_vma;
233 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
235 if (PageAnon(page
)) {
236 if ((void *)vma
->anon_vma
!=
237 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
239 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
241 vma
->vm_file
->f_mapping
!= page
->mapping
)
245 return vma_address(page
, vma
);
249 * Check that @page is mapped at @address into @mm.
251 * If @sync is false, page_check_address may perform a racy check to avoid
252 * the page table lock when the pte is not present (helpful when reclaiming
253 * highly shared pages).
255 * On success returns with pte mapped and locked.
257 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
258 unsigned long address
, spinlock_t
**ptlp
, int sync
)
266 pgd
= pgd_offset(mm
, address
);
267 if (!pgd_present(*pgd
))
270 pud
= pud_offset(pgd
, address
);
271 if (!pud_present(*pud
))
274 pmd
= pmd_offset(pud
, address
);
275 if (!pmd_present(*pmd
))
278 pte
= pte_offset_map(pmd
, address
);
279 /* Make a quick check before getting the lock */
280 if (!sync
&& !pte_present(*pte
)) {
285 ptl
= pte_lockptr(mm
, pmd
);
287 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
291 pte_unmap_unlock(pte
, ptl
);
296 * page_mapped_in_vma - check whether a page is really mapped in a VMA
297 * @page: the page to test
298 * @vma: the VMA to test
300 * Returns 1 if the page is mapped into the page tables of the VMA, 0
301 * if the page is not mapped into the page tables of this VMA. Only
302 * valid for normal file or anonymous VMAs.
304 static int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
306 unsigned long address
;
310 address
= vma_address(page
, vma
);
311 if (address
== -EFAULT
) /* out of vma range */
313 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
314 if (!pte
) /* the page is not in this mm */
316 pte_unmap_unlock(pte
, ptl
);
322 * Subfunctions of page_referenced: page_referenced_one called
323 * repeatedly from either page_referenced_anon or page_referenced_file.
325 static int page_referenced_one(struct page
*page
,
326 struct vm_area_struct
*vma
, unsigned int *mapcount
)
328 struct mm_struct
*mm
= vma
->vm_mm
;
329 unsigned long address
;
334 address
= vma_address(page
, vma
);
335 if (address
== -EFAULT
)
338 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
343 * Don't want to elevate referenced for mlocked page that gets this far,
344 * in order that it progresses to try_to_unmap and is moved to the
347 if (vma
->vm_flags
& VM_LOCKED
) {
348 *mapcount
= 1; /* break early from loop */
352 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
355 /* Pretend the page is referenced if the task has the
356 swap token and is in the middle of a page fault. */
357 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
358 rwsem_is_locked(&mm
->mmap_sem
))
363 pte_unmap_unlock(pte
, ptl
);
368 static int page_referenced_anon(struct page
*page
,
369 struct mem_cgroup
*mem_cont
)
371 unsigned int mapcount
;
372 struct anon_vma
*anon_vma
;
373 struct vm_area_struct
*vma
;
376 anon_vma
= page_lock_anon_vma(page
);
380 mapcount
= page_mapcount(page
);
381 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
383 * If we are reclaiming on behalf of a cgroup, skip
384 * counting on behalf of references from different
387 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
389 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
394 page_unlock_anon_vma(anon_vma
);
399 * page_referenced_file - referenced check for object-based rmap
400 * @page: the page we're checking references on.
401 * @mem_cont: target memory controller
403 * For an object-based mapped page, find all the places it is mapped and
404 * check/clear the referenced flag. This is done by following the page->mapping
405 * pointer, then walking the chain of vmas it holds. It returns the number
406 * of references it found.
408 * This function is only called from page_referenced for object-based pages.
410 static int page_referenced_file(struct page
*page
,
411 struct mem_cgroup
*mem_cont
)
413 unsigned int mapcount
;
414 struct address_space
*mapping
= page
->mapping
;
415 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
416 struct vm_area_struct
*vma
;
417 struct prio_tree_iter iter
;
421 * The caller's checks on page->mapping and !PageAnon have made
422 * sure that this is a file page: the check for page->mapping
423 * excludes the case just before it gets set on an anon page.
425 BUG_ON(PageAnon(page
));
428 * The page lock not only makes sure that page->mapping cannot
429 * suddenly be NULLified by truncation, it makes sure that the
430 * structure at mapping cannot be freed and reused yet,
431 * so we can safely take mapping->i_mmap_lock.
433 BUG_ON(!PageLocked(page
));
435 spin_lock(&mapping
->i_mmap_lock
);
438 * i_mmap_lock does not stabilize mapcount at all, but mapcount
439 * is more likely to be accurate if we note it after spinning.
441 mapcount
= page_mapcount(page
);
443 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
445 * If we are reclaiming on behalf of a cgroup, skip
446 * counting on behalf of references from different
449 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
451 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
456 spin_unlock(&mapping
->i_mmap_lock
);
461 * page_referenced - test if the page was referenced
462 * @page: the page to test
463 * @is_locked: caller holds lock on the page
464 * @mem_cont: target memory controller
466 * Quick test_and_clear_referenced for all mappings to a page,
467 * returns the number of ptes which referenced the page.
469 int page_referenced(struct page
*page
, int is_locked
,
470 struct mem_cgroup
*mem_cont
)
474 if (TestClearPageReferenced(page
))
477 if (page_mapped(page
) && page
->mapping
) {
479 referenced
+= page_referenced_anon(page
, mem_cont
);
481 referenced
+= page_referenced_file(page
, mem_cont
);
482 else if (!trylock_page(page
))
487 page_referenced_file(page
, mem_cont
);
492 if (page_test_and_clear_young(page
))
498 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
500 struct mm_struct
*mm
= vma
->vm_mm
;
501 unsigned long address
;
506 address
= vma_address(page
, vma
);
507 if (address
== -EFAULT
)
510 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
514 if (pte_dirty(*pte
) || pte_write(*pte
)) {
517 flush_cache_page(vma
, address
, pte_pfn(*pte
));
518 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
519 entry
= pte_wrprotect(entry
);
520 entry
= pte_mkclean(entry
);
521 set_pte_at(mm
, address
, pte
, entry
);
525 pte_unmap_unlock(pte
, ptl
);
530 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
532 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
533 struct vm_area_struct
*vma
;
534 struct prio_tree_iter iter
;
537 BUG_ON(PageAnon(page
));
539 spin_lock(&mapping
->i_mmap_lock
);
540 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
541 if (vma
->vm_flags
& VM_SHARED
)
542 ret
+= page_mkclean_one(page
, vma
);
544 spin_unlock(&mapping
->i_mmap_lock
);
548 int page_mkclean(struct page
*page
)
552 BUG_ON(!PageLocked(page
));
554 if (page_mapped(page
)) {
555 struct address_space
*mapping
= page_mapping(page
);
557 ret
= page_mkclean_file(mapping
, page
);
558 if (page_test_dirty(page
)) {
559 page_clear_dirty(page
);
567 EXPORT_SYMBOL_GPL(page_mkclean
);
570 * __page_set_anon_rmap - setup new anonymous rmap
571 * @page: the page to add the mapping to
572 * @vma: the vm area in which the mapping is added
573 * @address: the user virtual address mapped
575 static void __page_set_anon_rmap(struct page
*page
,
576 struct vm_area_struct
*vma
, unsigned long address
)
578 struct anon_vma
*anon_vma
= vma
->anon_vma
;
581 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
582 page
->mapping
= (struct address_space
*) anon_vma
;
584 page
->index
= linear_page_index(vma
, address
);
587 * nr_mapped state can be updated without turning off
588 * interrupts because it is not modified via interrupt.
590 __inc_zone_page_state(page
, NR_ANON_PAGES
);
594 * __page_check_anon_rmap - sanity check anonymous rmap addition
595 * @page: the page to add the mapping to
596 * @vma: the vm area in which the mapping is added
597 * @address: the user virtual address mapped
599 static void __page_check_anon_rmap(struct page
*page
,
600 struct vm_area_struct
*vma
, unsigned long address
)
602 #ifdef CONFIG_DEBUG_VM
604 * The page's anon-rmap details (mapping and index) are guaranteed to
605 * be set up correctly at this point.
607 * We have exclusion against page_add_anon_rmap because the caller
608 * always holds the page locked, except if called from page_dup_rmap,
609 * in which case the page is already known to be setup.
611 * We have exclusion against page_add_new_anon_rmap because those pages
612 * are initially only visible via the pagetables, and the pte is locked
613 * over the call to page_add_new_anon_rmap.
615 struct anon_vma
*anon_vma
= vma
->anon_vma
;
616 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
617 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
618 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
623 * page_add_anon_rmap - add pte mapping to an anonymous page
624 * @page: the page to add the mapping to
625 * @vma: the vm area in which the mapping is added
626 * @address: the user virtual address mapped
628 * The caller needs to hold the pte lock and the page must be locked.
630 void page_add_anon_rmap(struct page
*page
,
631 struct vm_area_struct
*vma
, unsigned long address
)
633 VM_BUG_ON(!PageLocked(page
));
634 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
635 if (atomic_inc_and_test(&page
->_mapcount
))
636 __page_set_anon_rmap(page
, vma
, address
);
638 __page_check_anon_rmap(page
, vma
, address
);
642 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
643 * @page: the page to add the mapping to
644 * @vma: the vm area in which the mapping is added
645 * @address: the user virtual address mapped
647 * Same as page_add_anon_rmap but must only be called on *new* pages.
648 * This means the inc-and-test can be bypassed.
649 * Page does not have to be locked.
651 void page_add_new_anon_rmap(struct page
*page
,
652 struct vm_area_struct
*vma
, unsigned long address
)
654 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
655 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
656 __page_set_anon_rmap(page
, vma
, address
);
660 * page_add_file_rmap - add pte mapping to a file page
661 * @page: the page to add the mapping to
663 * The caller needs to hold the pte lock.
665 void page_add_file_rmap(struct page
*page
)
667 if (atomic_inc_and_test(&page
->_mapcount
))
668 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
671 #ifdef CONFIG_DEBUG_VM
673 * page_dup_rmap - duplicate pte mapping to a page
674 * @page: the page to add the mapping to
675 * @vma: the vm area being duplicated
676 * @address: the user virtual address mapped
678 * For copy_page_range only: minimal extract from page_add_file_rmap /
679 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
682 * The caller needs to hold the pte lock.
684 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
686 BUG_ON(page_mapcount(page
) == 0);
688 __page_check_anon_rmap(page
, vma
, address
);
689 atomic_inc(&page
->_mapcount
);
694 * page_remove_rmap - take down pte mapping from a page
695 * @page: page to remove mapping from
696 * @vma: the vm area in which the mapping is removed
698 * The caller needs to hold the pte lock.
700 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
702 if (atomic_add_negative(-1, &page
->_mapcount
)) {
703 if (unlikely(page_mapcount(page
) < 0)) {
704 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
705 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
706 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
707 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
708 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
709 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
711 print_symbol (KERN_EMERG
" vma->vm_ops->fault = %s\n", (unsigned long)vma
->vm_ops
->fault
);
713 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
714 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
719 * Now that the last pte has gone, s390 must transfer dirty
720 * flag from storage key to struct page. We can usually skip
721 * this if the page is anon, so about to be freed; but perhaps
722 * not if it's in swapcache - there might be another pte slot
723 * containing the swap entry, but page not yet written to swap.
725 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
726 page_test_dirty(page
)) {
727 page_clear_dirty(page
);
728 set_page_dirty(page
);
731 mem_cgroup_uncharge_page(page
);
732 __dec_zone_page_state(page
,
733 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
735 * It would be tidy to reset the PageAnon mapping here,
736 * but that might overwrite a racing page_add_anon_rmap
737 * which increments mapcount after us but sets mapping
738 * before us: so leave the reset to free_hot_cold_page,
739 * and remember that it's only reliable while mapped.
740 * Leaving it set also helps swapoff to reinstate ptes
741 * faster for those pages still in swapcache.
747 * Subfunctions of try_to_unmap: try_to_unmap_one called
748 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
750 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
753 struct mm_struct
*mm
= vma
->vm_mm
;
754 unsigned long address
;
758 int ret
= SWAP_AGAIN
;
760 address
= vma_address(page
, vma
);
761 if (address
== -EFAULT
)
764 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
769 * If the page is mlock()d, we cannot swap it out.
770 * If it's recently referenced (perhaps page_referenced
771 * skipped over this mm) then we should reactivate it.
774 if (vma
->vm_flags
& VM_LOCKED
) {
778 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
784 /* Nuke the page table entry. */
785 flush_cache_page(vma
, address
, page_to_pfn(page
));
786 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
788 /* Move the dirty bit to the physical page now the pte is gone. */
789 if (pte_dirty(pteval
))
790 set_page_dirty(page
);
792 /* Update high watermark before we lower rss */
793 update_hiwater_rss(mm
);
795 if (PageAnon(page
)) {
796 swp_entry_t entry
= { .val
= page_private(page
) };
798 if (PageSwapCache(page
)) {
800 * Store the swap location in the pte.
801 * See handle_pte_fault() ...
803 swap_duplicate(entry
);
804 if (list_empty(&mm
->mmlist
)) {
805 spin_lock(&mmlist_lock
);
806 if (list_empty(&mm
->mmlist
))
807 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
808 spin_unlock(&mmlist_lock
);
810 dec_mm_counter(mm
, anon_rss
);
811 #ifdef CONFIG_MIGRATION
814 * Store the pfn of the page in a special migration
815 * pte. do_swap_page() will wait until the migration
816 * pte is removed and then restart fault handling.
819 entry
= make_migration_entry(page
, pte_write(pteval
));
822 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
823 BUG_ON(pte_file(*pte
));
825 #ifdef CONFIG_MIGRATION
827 /* Establish migration entry for a file page */
829 entry
= make_migration_entry(page
, pte_write(pteval
));
830 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
833 dec_mm_counter(mm
, file_rss
);
836 page_remove_rmap(page
, vma
);
837 page_cache_release(page
);
840 pte_unmap_unlock(pte
, ptl
);
846 * objrmap doesn't work for nonlinear VMAs because the assumption that
847 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
848 * Consequently, given a particular page and its ->index, we cannot locate the
849 * ptes which are mapping that page without an exhaustive linear search.
851 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
852 * maps the file to which the target page belongs. The ->vm_private_data field
853 * holds the current cursor into that scan. Successive searches will circulate
854 * around the vma's virtual address space.
856 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
857 * more scanning pressure is placed against them as well. Eventually pages
858 * will become fully unmapped and are eligible for eviction.
860 * For very sparsely populated VMAs this is a little inefficient - chances are
861 * there there won't be many ptes located within the scan cluster. In this case
862 * maybe we could scan further - to the end of the pte page, perhaps.
864 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
865 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
866 * rather than unmapping them. If we encounter the "check_page" that vmscan is
867 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
869 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
870 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
872 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
873 struct vm_area_struct
*vma
, struct page
*check_page
)
875 struct mm_struct
*mm
= vma
->vm_mm
;
883 unsigned long address
;
885 int ret
= SWAP_AGAIN
;
888 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
889 end
= address
+ CLUSTER_SIZE
;
890 if (address
< vma
->vm_start
)
891 address
= vma
->vm_start
;
892 if (end
> vma
->vm_end
)
895 pgd
= pgd_offset(mm
, address
);
896 if (!pgd_present(*pgd
))
899 pud
= pud_offset(pgd
, address
);
900 if (!pud_present(*pud
))
903 pmd
= pmd_offset(pud
, address
);
904 if (!pmd_present(*pmd
))
908 * MLOCK_PAGES => feature is configured.
909 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
910 * keep the sem while scanning the cluster for mlocking pages.
912 if (MLOCK_PAGES
&& down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
913 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
915 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
918 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
920 /* Update high watermark before we lower rss */
921 update_hiwater_rss(mm
);
923 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
924 if (!pte_present(*pte
))
926 page
= vm_normal_page(vma
, address
, *pte
);
927 BUG_ON(!page
|| PageAnon(page
));
930 mlock_vma_page(page
); /* no-op if already mlocked */
931 if (page
== check_page
)
933 continue; /* don't unmap */
936 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
939 /* Nuke the page table entry. */
940 flush_cache_page(vma
, address
, pte_pfn(*pte
));
941 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
943 /* If nonlinear, store the file page offset in the pte. */
944 if (page
->index
!= linear_page_index(vma
, address
))
945 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
947 /* Move the dirty bit to the physical page now the pte is gone. */
948 if (pte_dirty(pteval
))
949 set_page_dirty(page
);
951 page_remove_rmap(page
, vma
);
952 page_cache_release(page
);
953 dec_mm_counter(mm
, file_rss
);
956 pte_unmap_unlock(pte
- 1, ptl
);
958 up_read(&vma
->vm_mm
->mmap_sem
);
963 * common handling for pages mapped in VM_LOCKED vmas
965 static int try_to_mlock_page(struct page
*page
, struct vm_area_struct
*vma
)
969 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
970 if (vma
->vm_flags
& VM_LOCKED
) {
971 mlock_vma_page(page
);
972 mlocked
++; /* really mlocked the page */
974 up_read(&vma
->vm_mm
->mmap_sem
);
980 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
982 * @page: the page to unmap/unlock
983 * @unlock: request for unlock rather than unmap [unlikely]
984 * @migration: unmapping for migration - ignored if @unlock
986 * Find all the mappings of a page using the mapping pointer and the vma chains
987 * contained in the anon_vma struct it points to.
989 * This function is only called from try_to_unmap/try_to_munlock for
991 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
992 * where the page was found will be held for write. So, we won't recheck
993 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
996 static int try_to_unmap_anon(struct page
*page
, int unlock
, int migration
)
998 struct anon_vma
*anon_vma
;
999 struct vm_area_struct
*vma
;
1000 unsigned int mlocked
= 0;
1001 int ret
= SWAP_AGAIN
;
1003 if (MLOCK_PAGES
&& unlikely(unlock
))
1004 ret
= SWAP_SUCCESS
; /* default for try_to_munlock() */
1006 anon_vma
= page_lock_anon_vma(page
);
1010 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
1011 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1012 if (!((vma
->vm_flags
& VM_LOCKED
) &&
1013 page_mapped_in_vma(page
, vma
)))
1014 continue; /* must visit all unlocked vmas */
1015 ret
= SWAP_MLOCK
; /* saw at least one mlocked vma */
1017 ret
= try_to_unmap_one(page
, vma
, migration
);
1018 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
1021 if (ret
== SWAP_MLOCK
) {
1022 mlocked
= try_to_mlock_page(page
, vma
);
1024 break; /* stop if actually mlocked page */
1028 page_unlock_anon_vma(anon_vma
);
1031 ret
= SWAP_MLOCK
; /* actually mlocked the page */
1032 else if (ret
== SWAP_MLOCK
)
1033 ret
= SWAP_AGAIN
; /* saw VM_LOCKED vma */
1039 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1040 * @page: the page to unmap/unlock
1041 * @unlock: request for unlock rather than unmap [unlikely]
1042 * @migration: unmapping for migration - ignored if @unlock
1044 * Find all the mappings of a page using the mapping pointer and the vma chains
1045 * contained in the address_space struct it points to.
1047 * This function is only called from try_to_unmap/try_to_munlock for
1048 * object-based pages.
1049 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1050 * where the page was found will be held for write. So, we won't recheck
1051 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1054 static int try_to_unmap_file(struct page
*page
, int unlock
, int migration
)
1056 struct address_space
*mapping
= page
->mapping
;
1057 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1058 struct vm_area_struct
*vma
;
1059 struct prio_tree_iter iter
;
1060 int ret
= SWAP_AGAIN
;
1061 unsigned long cursor
;
1062 unsigned long max_nl_cursor
= 0;
1063 unsigned long max_nl_size
= 0;
1064 unsigned int mapcount
;
1065 unsigned int mlocked
= 0;
1067 if (MLOCK_PAGES
&& unlikely(unlock
))
1068 ret
= SWAP_SUCCESS
; /* default for try_to_munlock() */
1070 spin_lock(&mapping
->i_mmap_lock
);
1071 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1072 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1073 if (!(vma
->vm_flags
& VM_LOCKED
))
1074 continue; /* must visit all vmas */
1077 ret
= try_to_unmap_one(page
, vma
, migration
);
1078 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
1081 if (ret
== SWAP_MLOCK
) {
1082 mlocked
= try_to_mlock_page(page
, vma
);
1084 break; /* stop if actually mlocked page */
1091 if (list_empty(&mapping
->i_mmap_nonlinear
))
1094 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1095 shared
.vm_set
.list
) {
1096 if (MLOCK_PAGES
&& unlikely(unlock
)) {
1097 if (!(vma
->vm_flags
& VM_LOCKED
))
1098 continue; /* must visit all vmas */
1099 ret
= SWAP_MLOCK
; /* leave mlocked == 0 */
1100 goto out
; /* no need to look further */
1102 if (!MLOCK_PAGES
&& !migration
&& (vma
->vm_flags
& VM_LOCKED
))
1104 cursor
= (unsigned long) vma
->vm_private_data
;
1105 if (cursor
> max_nl_cursor
)
1106 max_nl_cursor
= cursor
;
1107 cursor
= vma
->vm_end
- vma
->vm_start
;
1108 if (cursor
> max_nl_size
)
1109 max_nl_size
= cursor
;
1112 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1118 * We don't try to search for this page in the nonlinear vmas,
1119 * and page_referenced wouldn't have found it anyway. Instead
1120 * just walk the nonlinear vmas trying to age and unmap some.
1121 * The mapcount of the page we came in with is irrelevant,
1122 * but even so use it as a guide to how hard we should try?
1124 mapcount
= page_mapcount(page
);
1127 cond_resched_lock(&mapping
->i_mmap_lock
);
1129 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1130 if (max_nl_cursor
== 0)
1131 max_nl_cursor
= CLUSTER_SIZE
;
1134 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1135 shared
.vm_set
.list
) {
1136 if (!MLOCK_PAGES
&& !migration
&&
1137 (vma
->vm_flags
& VM_LOCKED
))
1139 cursor
= (unsigned long) vma
->vm_private_data
;
1140 while ( cursor
< max_nl_cursor
&&
1141 cursor
< vma
->vm_end
- vma
->vm_start
) {
1142 ret
= try_to_unmap_cluster(cursor
, &mapcount
,
1144 if (ret
== SWAP_MLOCK
)
1145 mlocked
= 2; /* to return below */
1146 cursor
+= CLUSTER_SIZE
;
1147 vma
->vm_private_data
= (void *) cursor
;
1148 if ((int)mapcount
<= 0)
1151 vma
->vm_private_data
= (void *) max_nl_cursor
;
1153 cond_resched_lock(&mapping
->i_mmap_lock
);
1154 max_nl_cursor
+= CLUSTER_SIZE
;
1155 } while (max_nl_cursor
<= max_nl_size
);
1158 * Don't loop forever (perhaps all the remaining pages are
1159 * in locked vmas). Reset cursor on all unreserved nonlinear
1160 * vmas, now forgetting on which ones it had fallen behind.
1162 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1163 vma
->vm_private_data
= NULL
;
1165 spin_unlock(&mapping
->i_mmap_lock
);
1167 ret
= SWAP_MLOCK
; /* actually mlocked the page */
1168 else if (ret
== SWAP_MLOCK
)
1169 ret
= SWAP_AGAIN
; /* saw VM_LOCKED vma */
1174 * try_to_unmap - try to remove all page table mappings to a page
1175 * @page: the page to get unmapped
1176 * @migration: migration flag
1178 * Tries to remove all the page table entries which are mapping this
1179 * page, used in the pageout path. Caller must hold the page lock.
1180 * Return values are:
1182 * SWAP_SUCCESS - we succeeded in removing all mappings
1183 * SWAP_AGAIN - we missed a mapping, try again later
1184 * SWAP_FAIL - the page is unswappable
1185 * SWAP_MLOCK - page is mlocked.
1187 int try_to_unmap(struct page
*page
, int migration
)
1191 BUG_ON(!PageLocked(page
));
1194 ret
= try_to_unmap_anon(page
, 0, migration
);
1196 ret
= try_to_unmap_file(page
, 0, migration
);
1197 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1202 #ifdef CONFIG_UNEVICTABLE_LRU
1204 * try_to_munlock - try to munlock a page
1205 * @page: the page to be munlocked
1207 * Called from munlock code. Checks all of the VMAs mapping the page
1208 * to make sure nobody else has this page mlocked. The page will be
1209 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1211 * Return values are:
1213 * SWAP_SUCCESS - no vma's holding page mlocked.
1214 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1215 * SWAP_MLOCK - page is now mlocked.
1217 int try_to_munlock(struct page
*page
)
1219 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1222 return try_to_unmap_anon(page
, 1, 0);
1224 return try_to_unmap_file(page
, 1, 0);