2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
43 int migrate_prep(void)
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
60 * returns the number of pages put back.
62 int putback_lru_pages(struct list_head
*l
)
68 list_for_each_entry_safe(page
, page2
, l
, lru
) {
70 putback_lru_page(page
);
77 * Restore a potential migration pte to a working pte entry
79 static void remove_migration_pte(struct vm_area_struct
*vma
,
80 struct page
*old
, struct page
*new)
82 struct mm_struct
*mm
= vma
->vm_mm
;
89 unsigned long addr
= page_address_in_vma(new, vma
);
94 pgd
= pgd_offset(mm
, addr
);
95 if (!pgd_present(*pgd
))
98 pud
= pud_offset(pgd
, addr
);
99 if (!pud_present(*pud
))
102 pmd
= pmd_offset(pud
, addr
);
103 if (!pmd_present(*pmd
))
106 ptep
= pte_offset_map(pmd
, addr
);
108 if (!is_swap_pte(*ptep
)) {
113 ptl
= pte_lockptr(mm
, pmd
);
116 if (!is_swap_pte(pte
))
119 entry
= pte_to_swp_entry(pte
);
121 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 * Failure is not an option here: we're now expected to remove every
127 * migration pte, and will cause crashes otherwise. Normally this
128 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 * page_cgroup count for safety, that's now attached to the new page,
130 * so this charge should just be another incrementation of the count,
131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
132 * there's been a force_empty, those reference counts may no longer
133 * be reliable, and this charge can actually fail: oh well, we don't
134 * make the situation any worse by proceeding as if it had succeeded.
136 mem_cgroup_charge(new, mm
, GFP_ATOMIC
);
139 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
140 if (is_write_migration_entry(entry
))
141 pte
= pte_mkwrite(pte
);
142 flush_cache_page(vma
, addr
, pte_pfn(pte
));
143 set_pte_at(mm
, addr
, ptep
, pte
);
146 page_add_anon_rmap(new, vma
, addr
);
148 page_add_file_rmap(new);
150 /* No need to invalidate - it was non-present before */
151 update_mmu_cache(vma
, addr
, pte
);
154 pte_unmap_unlock(ptep
, ptl
);
158 * Note that remove_file_migration_ptes will only work on regular mappings,
159 * Nonlinear mappings do not use migration entries.
161 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
163 struct vm_area_struct
*vma
;
164 struct address_space
*mapping
= page_mapping(new);
165 struct prio_tree_iter iter
;
166 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
171 spin_lock(&mapping
->i_mmap_lock
);
173 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
174 remove_migration_pte(vma
, old
, new);
176 spin_unlock(&mapping
->i_mmap_lock
);
180 * Must hold mmap_sem lock on at least one of the vmas containing
181 * the page so that the anon_vma cannot vanish.
183 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
185 struct anon_vma
*anon_vma
;
186 struct vm_area_struct
*vma
;
187 unsigned long mapping
;
189 mapping
= (unsigned long)new->mapping
;
191 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
197 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
198 spin_lock(&anon_vma
->lock
);
200 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
201 remove_migration_pte(vma
, old
, new);
203 spin_unlock(&anon_vma
->lock
);
207 * Get rid of all migration entries and replace them by
208 * references to the indicated page.
210 static void remove_migration_ptes(struct page
*old
, struct page
*new)
213 remove_anon_migration_ptes(old
, new);
215 remove_file_migration_ptes(old
, new);
219 * Something used the pte of a page under migration. We need to
220 * get to the page and wait until migration is finished.
221 * When we return from this function the fault will be retried.
223 * This function is called from do_swap_page().
225 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
226 unsigned long address
)
233 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
235 if (!is_swap_pte(pte
))
238 entry
= pte_to_swp_entry(pte
);
239 if (!is_migration_entry(entry
))
242 page
= migration_entry_to_page(entry
);
245 * Once radix-tree replacement of page migration started, page_count
246 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 * against a page without get_page().
248 * So, we use get_page_unless_zero(), here. Even failed, page fault
251 if (!get_page_unless_zero(page
))
253 pte_unmap_unlock(ptep
, ptl
);
254 wait_on_page_locked(page
);
258 pte_unmap_unlock(ptep
, ptl
);
262 * Replace the page in the mapping.
264 * The number of remaining references must be:
265 * 1 for anonymous pages without a mapping
266 * 2 for pages with a mapping
267 * 3 for pages with a mapping and PagePrivate set.
269 static int migrate_page_move_mapping(struct address_space
*mapping
,
270 struct page
*newpage
, struct page
*page
)
276 /* Anonymous page without mapping */
277 if (page_count(page
) != 1)
282 spin_lock_irq(&mapping
->tree_lock
);
284 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
287 expected_count
= 2 + !!PagePrivate(page
);
288 if (page_count(page
) != expected_count
||
289 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
290 spin_unlock_irq(&mapping
->tree_lock
);
294 if (!page_freeze_refs(page
, expected_count
)) {
295 spin_unlock_irq(&mapping
->tree_lock
);
300 * Now we know that no one else is looking at the page.
302 get_page(newpage
); /* add cache reference */
304 if (PageSwapCache(page
)) {
305 SetPageSwapCache(newpage
);
306 set_page_private(newpage
, page_private(page
));
310 radix_tree_replace_slot(pslot
, newpage
);
312 page_unfreeze_refs(page
, expected_count
);
314 * Drop cache reference from old page.
315 * We know this isn't the last reference.
320 * If moved to a different zone then also account
321 * the page for that zone. Other VM counters will be
322 * taken care of when we establish references to the
323 * new page and drop references to the old page.
325 * Note that anonymous pages are accounted for
326 * via NR_FILE_PAGES and NR_ANON_PAGES if they
327 * are mapped to swap space.
329 __dec_zone_page_state(page
, NR_FILE_PAGES
);
330 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
332 spin_unlock_irq(&mapping
->tree_lock
);
333 if (!PageSwapCache(newpage
))
334 mem_cgroup_uncharge_cache_page(page
);
340 * Copy the page to its new location
342 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
344 copy_highpage(newpage
, page
);
347 SetPageError(newpage
);
348 if (PageReferenced(page
))
349 SetPageReferenced(newpage
);
350 if (PageUptodate(page
))
351 SetPageUptodate(newpage
);
352 if (TestClearPageActive(page
)) {
353 VM_BUG_ON(PageUnevictable(page
));
354 SetPageActive(newpage
);
356 unevictable_migrate_page(newpage
, page
);
357 if (PageChecked(page
))
358 SetPageChecked(newpage
);
359 if (PageMappedToDisk(page
))
360 SetPageMappedToDisk(newpage
);
362 if (PageDirty(page
)) {
363 clear_page_dirty_for_io(page
);
365 * Want to mark the page and the radix tree as dirty, and
366 * redo the accounting that clear_page_dirty_for_io undid,
367 * but we can't use set_page_dirty because that function
368 * is actually a signal that all of the page has become dirty.
369 * Wheras only part of our page may be dirty.
371 __set_page_dirty_nobuffers(newpage
);
374 mlock_migrate_page(newpage
, page
);
377 ClearPageSwapCache(page
);
379 ClearPagePrivate(page
);
380 set_page_private(page
, 0);
381 page
->mapping
= NULL
;
384 * If any waiters have accumulated on the new page then
387 if (PageWriteback(newpage
))
388 end_page_writeback(newpage
);
391 /************************************************************
392 * Migration functions
393 ***********************************************************/
395 /* Always fail migration. Used for mappings that are not movable */
396 int fail_migrate_page(struct address_space
*mapping
,
397 struct page
*newpage
, struct page
*page
)
401 EXPORT_SYMBOL(fail_migrate_page
);
404 * Common logic to directly migrate a single page suitable for
405 * pages that do not use PagePrivate.
407 * Pages are locked upon entry and exit.
409 int migrate_page(struct address_space
*mapping
,
410 struct page
*newpage
, struct page
*page
)
414 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
416 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
421 migrate_page_copy(newpage
, page
);
424 EXPORT_SYMBOL(migrate_page
);
428 * Migration function for pages with buffers. This function can only be used
429 * if the underlying filesystem guarantees that no other references to "page"
432 int buffer_migrate_page(struct address_space
*mapping
,
433 struct page
*newpage
, struct page
*page
)
435 struct buffer_head
*bh
, *head
;
438 if (!page_has_buffers(page
))
439 return migrate_page(mapping
, newpage
, page
);
441 head
= page_buffers(page
);
443 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
452 bh
= bh
->b_this_page
;
454 } while (bh
!= head
);
456 ClearPagePrivate(page
);
457 set_page_private(newpage
, page_private(page
));
458 set_page_private(page
, 0);
464 set_bh_page(bh
, newpage
, bh_offset(bh
));
465 bh
= bh
->b_this_page
;
467 } while (bh
!= head
);
469 SetPagePrivate(newpage
);
471 migrate_page_copy(newpage
, page
);
477 bh
= bh
->b_this_page
;
479 } while (bh
!= head
);
483 EXPORT_SYMBOL(buffer_migrate_page
);
487 * Writeback a page to clean the dirty state
489 static int writeout(struct address_space
*mapping
, struct page
*page
)
491 struct writeback_control wbc
= {
492 .sync_mode
= WB_SYNC_NONE
,
495 .range_end
= LLONG_MAX
,
501 if (!mapping
->a_ops
->writepage
)
502 /* No write method for the address space */
505 if (!clear_page_dirty_for_io(page
))
506 /* Someone else already triggered a write */
510 * A dirty page may imply that the underlying filesystem has
511 * the page on some queue. So the page must be clean for
512 * migration. Writeout may mean we loose the lock and the
513 * page state is no longer what we checked for earlier.
514 * At this point we know that the migration attempt cannot
517 remove_migration_ptes(page
, page
);
519 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
521 /* I/O Error writing */
524 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
525 /* unlocked. Relock */
532 * Default handling if a filesystem does not provide a migration function.
534 static int fallback_migrate_page(struct address_space
*mapping
,
535 struct page
*newpage
, struct page
*page
)
538 return writeout(mapping
, page
);
541 * Buffers may be managed in a filesystem specific way.
542 * We must have no buffers or drop them.
544 if (PagePrivate(page
) &&
545 !try_to_release_page(page
, GFP_KERNEL
))
548 return migrate_page(mapping
, newpage
, page
);
552 * Move a page to a newly allocated page
553 * The page is locked and all ptes have been successfully removed.
555 * The new page will have replaced the old page if this function
562 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
564 struct address_space
*mapping
;
568 * Block others from accessing the page when we get around to
569 * establishing additional references. We are the only one
570 * holding a reference to the new page at this point.
572 if (!trylock_page(newpage
))
575 /* Prepare mapping for the new page.*/
576 newpage
->index
= page
->index
;
577 newpage
->mapping
= page
->mapping
;
578 if (PageSwapBacked(page
))
579 SetPageSwapBacked(newpage
);
581 mapping
= page_mapping(page
);
583 rc
= migrate_page(mapping
, newpage
, page
);
584 else if (mapping
->a_ops
->migratepage
)
586 * Most pages have a mapping and most filesystems
587 * should provide a migration function. Anonymous
588 * pages are part of swap space which also has its
589 * own migration function. This is the most common
590 * path for page migration.
592 rc
= mapping
->a_ops
->migratepage(mapping
,
595 rc
= fallback_migrate_page(mapping
, newpage
, page
);
598 remove_migration_ptes(page
, newpage
);
600 newpage
->mapping
= NULL
;
602 unlock_page(newpage
);
608 * Obtain the lock on page, remove all ptes and migrate the page
609 * to the newly allocated page in newpage.
611 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
612 struct page
*page
, int force
)
616 struct page
*newpage
= get_new_page(page
, private, &result
);
623 if (page_count(page
) == 1) {
624 /* page was freed from under us. So we are done. */
628 charge
= mem_cgroup_prepare_migration(page
, newpage
);
629 if (charge
== -ENOMEM
) {
633 /* prepare cgroup just returns 0 or -ENOMEM */
637 if (!trylock_page(page
)) {
643 if (PageWriteback(page
)) {
646 wait_on_page_writeback(page
);
649 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
650 * we cannot notice that anon_vma is freed while we migrates a page.
651 * This rcu_read_lock() delays freeing anon_vma pointer until the end
652 * of migration. File cache pages are no problem because of page_lock()
653 * File Caches may use write_page() or lock_page() in migration, then,
654 * just care Anon page here.
656 if (PageAnon(page
)) {
662 * Corner case handling:
663 * 1. When a new swap-cache page is read into, it is added to the LRU
664 * and treated as swapcache but it has no rmap yet.
665 * Calling try_to_unmap() against a page->mapping==NULL page will
666 * trigger a BUG. So handle it here.
667 * 2. An orphaned page (see truncate_complete_page) might have
668 * fs-private metadata. The page can be picked up due to memory
669 * offlining. Everywhere else except page reclaim, the page is
670 * invisible to the vm, so the page can not be migrated. So try to
671 * free the metadata, so the page can be freed.
673 if (!page
->mapping
) {
674 if (!PageAnon(page
) && PagePrivate(page
)) {
676 * Go direct to try_to_free_buffers() here because
677 * a) that's what try_to_release_page() would do anyway
678 * b) we may be under rcu_read_lock() here, so we can't
679 * use GFP_KERNEL which is what try_to_release_page()
680 * needs to be effective.
682 try_to_free_buffers(page
);
687 /* Establish migration ptes or remove ptes */
688 try_to_unmap(page
, 1);
690 if (!page_mapped(page
))
691 rc
= move_to_new_page(newpage
, page
);
694 remove_migration_ptes(page
, page
);
704 * A page that has been migrated has all references
705 * removed and will be freed. A page that has not been
706 * migrated will have kepts its references and be
709 list_del(&page
->lru
);
710 putback_lru_page(page
);
715 mem_cgroup_end_migration(newpage
);
718 * Move the new page to the LRU. If migration was not successful
719 * then this will free the page.
721 putback_lru_page(newpage
);
727 *result
= page_to_nid(newpage
);
735 * The function takes one list of pages to migrate and a function
736 * that determines from the page to be migrated and the private data
737 * the target of the move and allocates the page.
739 * The function returns after 10 attempts or if no pages
740 * are movable anymore because to has become empty
741 * or no retryable pages exist anymore. All pages will be
742 * returned to the LRU or freed.
744 * Return: Number of pages not migrated or error code.
746 int migrate_pages(struct list_head
*from
,
747 new_page_t get_new_page
, unsigned long private)
754 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
758 current
->flags
|= PF_SWAPWRITE
;
760 for(pass
= 0; pass
< 10 && retry
; pass
++) {
763 list_for_each_entry_safe(page
, page2
, from
, lru
) {
766 rc
= unmap_and_move(get_new_page
, private,
778 /* Permanent failure */
787 current
->flags
&= ~PF_SWAPWRITE
;
789 putback_lru_pages(from
);
794 return nr_failed
+ retry
;
799 * Move a list of individual pages
801 struct page_to_node
{
808 static struct page
*new_page_node(struct page
*p
, unsigned long private,
811 struct page_to_node
*pm
= (struct page_to_node
*)private;
813 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
816 if (pm
->node
== MAX_NUMNODES
)
819 *result
= &pm
->status
;
821 return alloc_pages_node(pm
->node
,
822 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
826 * Move a set of pages as indicated in the pm array. The addr
827 * field must be set to the virtual address of the page to be moved
828 * and the node number must contain a valid target node.
830 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
834 struct page_to_node
*pp
;
837 down_read(&mm
->mmap_sem
);
840 * Build a list of pages to migrate
843 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
844 struct vm_area_struct
*vma
;
848 * A valid page pointer that will not match any of the
849 * pages that will be moved.
851 pp
->page
= ZERO_PAGE(0);
854 vma
= find_vma(mm
, pp
->addr
);
855 if (!vma
|| !vma_migratable(vma
))
858 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
868 if (PageReserved(page
)) /* Check for zero page */
872 err
= page_to_nid(page
);
876 * Node already in the right place
881 if (page_mapcount(page
) > 1 &&
885 err
= isolate_lru_page(page
);
887 list_add_tail(&page
->lru
, &pagelist
);
890 * Either remove the duplicate refcount from
891 * isolate_lru_page() or drop the page ref if it was
899 if (!list_empty(&pagelist
))
900 err
= migrate_pages(&pagelist
, new_page_node
,
905 up_read(&mm
->mmap_sem
);
910 * Determine the nodes of a list of pages. The addr in the pm array
911 * must have been set to the virtual address of which we want to determine
914 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
916 down_read(&mm
->mmap_sem
);
918 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
919 struct vm_area_struct
*vma
;
924 vma
= find_vma(mm
, pm
->addr
);
928 page
= follow_page(vma
, pm
->addr
, 0);
935 /* Use PageReserved to check for zero page */
936 if (!page
|| PageReserved(page
))
939 err
= page_to_nid(page
);
944 up_read(&mm
->mmap_sem
);
949 * Move a list of pages in the address space of the currently executing
952 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
953 const void __user
* __user
*pages
,
954 const int __user
*nodes
,
955 int __user
*status
, int flags
)
959 struct task_struct
*task
;
960 nodemask_t task_nodes
;
961 struct mm_struct
*mm
;
962 struct page_to_node
*pm
= NULL
;
965 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
968 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
971 /* Find the mm_struct */
972 read_lock(&tasklist_lock
);
973 task
= pid
? find_task_by_vpid(pid
) : current
;
975 read_unlock(&tasklist_lock
);
978 mm
= get_task_mm(task
);
979 read_unlock(&tasklist_lock
);
985 * Check if this process has the right to modify the specified
986 * process. The right exists if the process has administrative
987 * capabilities, superuser privileges or the same
988 * userid as the target process.
990 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
991 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
992 !capable(CAP_SYS_NICE
)) {
997 err
= security_task_movememory(task
);
1002 task_nodes
= cpuset_mems_allowed(task
);
1004 /* Limit nr_pages so that the multiplication may not overflow */
1005 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
1010 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
1017 * Get parameters from user space and initialize the pm
1018 * array. Return various errors if the user did something wrong.
1020 for (i
= 0; i
< nr_pages
; i
++) {
1021 const void __user
*p
;
1024 if (get_user(p
, pages
+ i
))
1027 pm
[i
].addr
= (unsigned long)p
;
1031 if (get_user(node
, nodes
+ i
))
1035 if (!node_state(node
, N_HIGH_MEMORY
))
1039 if (!node_isset(node
, task_nodes
))
1044 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1047 pm
[nr_pages
].node
= MAX_NUMNODES
;
1050 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1052 err
= do_pages_stat(mm
, pm
);
1055 /* Return status information */
1056 for (i
= 0; i
< nr_pages
; i
++)
1057 if (put_user(pm
[i
].status
, status
+ i
))
1068 * Call migration functions in the vma_ops that may prepare
1069 * memory in a vm for migration. migration functions may perform
1070 * the migration for vmas that do not have an underlying page struct.
1072 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1073 const nodemask_t
*from
, unsigned long flags
)
1075 struct vm_area_struct
*vma
;
1078 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1079 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1080 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);