sparc: Detect and handle UltraSPARC-T3 cpu types.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / kernel / perf_event.c
blob6860d40253c38581f196abdf00296727e9e1bd53
1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
29 #include "kernel.h"
30 #include "kstack.h"
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33 * overflow interrupts generated on transition from 0xffffffff to 0.
34 * The counters are accessed in one go using a 64-bit register.
36 * Both counters are controlled using a single control register. The
37 * only way to stop all sampling is to clear all of the context (user,
38 * supervisor, hypervisor) sampling enable bits. But these bits apply
39 * to both counters, thus the two counters can't be enabled/disabled
40 * individually.
42 * The control register has two event fields, one for each of the two
43 * counters. It's thus nearly impossible to have one counter going
44 * while keeping the other one stopped. Therefore it is possible to
45 * get overflow interrupts for counters not currently "in use" and
46 * that condition must be checked in the overflow interrupt handler.
48 * So we use a hack, in that we program inactive counters with the
49 * "sw_count0" and "sw_count1" events. These count how many times
50 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
51 * unusual way to encode a NOP and therefore will not trigger in
52 * normal code.
55 #define MAX_HWEVENTS 2
56 #define MAX_PERIOD ((1UL << 32) - 1)
58 #define PIC_UPPER_INDEX 0
59 #define PIC_LOWER_INDEX 1
60 #define PIC_NO_INDEX -1
62 struct cpu_hw_events {
63 /* Number of events currently scheduled onto this cpu.
64 * This tells how many entries in the arrays below
65 * are valid.
67 int n_events;
69 /* Number of new events added since the last hw_perf_disable().
70 * This works because the perf event layer always adds new
71 * events inside of a perf_{disable,enable}() sequence.
73 int n_added;
75 /* Array of events current scheduled on this cpu. */
76 struct perf_event *event[MAX_HWEVENTS];
78 /* Array of encoded longs, specifying the %pcr register
79 * encoding and the mask of PIC counters this even can
80 * be scheduled on. See perf_event_encode() et al.
82 unsigned long events[MAX_HWEVENTS];
84 /* The current counter index assigned to an event. When the
85 * event hasn't been programmed into the cpu yet, this will
86 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
87 * we ought to schedule the event.
89 int current_idx[MAX_HWEVENTS];
91 /* Software copy of %pcr register on this cpu. */
92 u64 pcr;
94 /* Enabled/disable state. */
95 int enabled;
97 unsigned int group_flag;
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
101 /* An event map describes the characteristics of a performance
102 * counter event. In particular it gives the encoding as well as
103 * a mask telling which counters the event can be measured on.
105 struct perf_event_map {
106 u16 encoding;
107 u8 pic_mask;
108 #define PIC_NONE 0x00
109 #define PIC_UPPER 0x01
110 #define PIC_LOWER 0x02
113 /* Encode a perf_event_map entry into a long. */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
116 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
119 static u8 perf_event_get_msk(unsigned long val)
121 return val & 0xff;
124 static u64 perf_event_get_enc(unsigned long val)
126 return val >> 16;
129 #define C(x) PERF_COUNT_HW_CACHE_##x
131 #define CACHE_OP_UNSUPPORTED 0xfffe
132 #define CACHE_OP_NONSENSE 0xffff
134 typedef struct perf_event_map cache_map_t
135 [PERF_COUNT_HW_CACHE_MAX]
136 [PERF_COUNT_HW_CACHE_OP_MAX]
137 [PERF_COUNT_HW_CACHE_RESULT_MAX];
139 struct sparc_pmu {
140 const struct perf_event_map *(*event_map)(int);
141 const cache_map_t *cache_map;
142 int max_events;
143 int upper_shift;
144 int lower_shift;
145 int event_mask;
146 int hv_bit;
147 int irq_bit;
148 int upper_nop;
149 int lower_nop;
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
159 static const struct perf_event_map *ultra3_event_map(int event_id)
161 return &ultra3_perfmon_event_map[event_id];
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166 [C(OP_READ)] = {
167 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
170 [C(OP_WRITE)] = {
171 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
174 [C(OP_PREFETCH)] = {
175 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
179 [C(L1I)] = {
180 [C(OP_READ)] = {
181 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
184 [ C(OP_WRITE) ] = {
185 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
188 [ C(OP_PREFETCH) ] = {
189 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
193 [C(LL)] = {
194 [C(OP_READ)] = {
195 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
198 [C(OP_WRITE)] = {
199 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
202 [C(OP_PREFETCH)] = {
203 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
207 [C(DTLB)] = {
208 [C(OP_READ)] = {
209 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
212 [ C(OP_WRITE) ] = {
213 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
216 [ C(OP_PREFETCH) ] = {
217 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
221 [C(ITLB)] = {
222 [C(OP_READ)] = {
223 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
226 [ C(OP_WRITE) ] = {
227 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
230 [ C(OP_PREFETCH) ] = {
231 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
235 [C(BPU)] = {
236 [C(OP_READ)] = {
237 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
240 [ C(OP_WRITE) ] = {
241 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(OP_PREFETCH) ] = {
245 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
251 static const struct sparc_pmu ultra3_pmu = {
252 .event_map = ultra3_event_map,
253 .cache_map = &ultra3_cache_map,
254 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
255 .upper_shift = 11,
256 .lower_shift = 4,
257 .event_mask = 0x3f,
258 .upper_nop = 0x1c,
259 .lower_nop = 0x14,
262 /* Niagara1 is very limited. The upper PIC is hard-locked to count
263 * only instructions, so it is free running which creates all kinds of
264 * problems. Some hardware designs make one wonder if the creator
265 * even looked at how this stuff gets used by software.
267 static const struct perf_event_map niagara1_perfmon_event_map[] = {
268 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
269 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
270 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
271 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
274 static const struct perf_event_map *niagara1_event_map(int event_id)
276 return &niagara1_perfmon_event_map[event_id];
279 static const cache_map_t niagara1_cache_map = {
280 [C(L1D)] = {
281 [C(OP_READ)] = {
282 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
285 [C(OP_WRITE)] = {
286 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
289 [C(OP_PREFETCH)] = {
290 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
291 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
294 [C(L1I)] = {
295 [C(OP_READ)] = {
296 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
297 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
299 [ C(OP_WRITE) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
301 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
303 [ C(OP_PREFETCH) ] = {
304 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
305 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
308 [C(LL)] = {
309 [C(OP_READ)] = {
310 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
313 [C(OP_WRITE)] = {
314 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
317 [C(OP_PREFETCH)] = {
318 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
319 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
322 [C(DTLB)] = {
323 [C(OP_READ)] = {
324 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
327 [ C(OP_WRITE) ] = {
328 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
331 [ C(OP_PREFETCH) ] = {
332 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
333 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
336 [C(ITLB)] = {
337 [C(OP_READ)] = {
338 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
341 [ C(OP_WRITE) ] = {
342 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
345 [ C(OP_PREFETCH) ] = {
346 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
350 [C(BPU)] = {
351 [C(OP_READ)] = {
352 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
355 [ C(OP_WRITE) ] = {
356 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
359 [ C(OP_PREFETCH) ] = {
360 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
366 static const struct sparc_pmu niagara1_pmu = {
367 .event_map = niagara1_event_map,
368 .cache_map = &niagara1_cache_map,
369 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
370 .upper_shift = 0,
371 .lower_shift = 4,
372 .event_mask = 0x7,
373 .upper_nop = 0x0,
374 .lower_nop = 0x0,
377 static const struct perf_event_map niagara2_perfmon_event_map[] = {
378 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
380 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
381 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
382 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
383 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
386 static const struct perf_event_map *niagara2_event_map(int event_id)
388 return &niagara2_perfmon_event_map[event_id];
391 static const cache_map_t niagara2_cache_map = {
392 [C(L1D)] = {
393 [C(OP_READ)] = {
394 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
395 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
397 [C(OP_WRITE)] = {
398 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
399 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
401 [C(OP_PREFETCH)] = {
402 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
406 [C(L1I)] = {
407 [C(OP_READ)] = {
408 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
409 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
413 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
417 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
420 [C(LL)] = {
421 [C(OP_READ)] = {
422 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
425 [C(OP_WRITE)] = {
426 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
429 [C(OP_PREFETCH)] = {
430 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
434 [C(DTLB)] = {
435 [C(OP_READ)] = {
436 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
437 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
439 [ C(OP_WRITE) ] = {
440 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
443 [ C(OP_PREFETCH) ] = {
444 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
448 [C(ITLB)] = {
449 [C(OP_READ)] = {
450 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
451 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
453 [ C(OP_WRITE) ] = {
454 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
457 [ C(OP_PREFETCH) ] = {
458 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
459 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
462 [C(BPU)] = {
463 [C(OP_READ)] = {
464 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
467 [ C(OP_WRITE) ] = {
468 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
471 [ C(OP_PREFETCH) ] = {
472 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
478 static const struct sparc_pmu niagara2_pmu = {
479 .event_map = niagara2_event_map,
480 .cache_map = &niagara2_cache_map,
481 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
482 .upper_shift = 19,
483 .lower_shift = 6,
484 .event_mask = 0xfff,
485 .hv_bit = 0x8,
486 .irq_bit = 0x30,
487 .upper_nop = 0x220,
488 .lower_nop = 0x220,
491 static const struct sparc_pmu *sparc_pmu __read_mostly;
493 static u64 event_encoding(u64 event_id, int idx)
495 if (idx == PIC_UPPER_INDEX)
496 event_id <<= sparc_pmu->upper_shift;
497 else
498 event_id <<= sparc_pmu->lower_shift;
499 return event_id;
502 static u64 mask_for_index(int idx)
504 return event_encoding(sparc_pmu->event_mask, idx);
507 static u64 nop_for_index(int idx)
509 return event_encoding(idx == PIC_UPPER_INDEX ?
510 sparc_pmu->upper_nop :
511 sparc_pmu->lower_nop, idx);
514 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
516 u64 val, mask = mask_for_index(idx);
518 val = cpuc->pcr;
519 val &= ~mask;
520 val |= hwc->config;
521 cpuc->pcr = val;
523 pcr_ops->write(cpuc->pcr);
526 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
528 u64 mask = mask_for_index(idx);
529 u64 nop = nop_for_index(idx);
530 u64 val;
532 val = cpuc->pcr;
533 val &= ~mask;
534 val |= nop;
535 cpuc->pcr = val;
537 pcr_ops->write(cpuc->pcr);
540 static u32 read_pmc(int idx)
542 u64 val;
544 read_pic(val);
545 if (idx == PIC_UPPER_INDEX)
546 val >>= 32;
548 return val & 0xffffffff;
551 static void write_pmc(int idx, u64 val)
553 u64 shift, mask, pic;
555 shift = 0;
556 if (idx == PIC_UPPER_INDEX)
557 shift = 32;
559 mask = ((u64) 0xffffffff) << shift;
560 val <<= shift;
562 read_pic(pic);
563 pic &= ~mask;
564 pic |= val;
565 write_pic(pic);
568 static u64 sparc_perf_event_update(struct perf_event *event,
569 struct hw_perf_event *hwc, int idx)
571 int shift = 64 - 32;
572 u64 prev_raw_count, new_raw_count;
573 s64 delta;
575 again:
576 prev_raw_count = local64_read(&hwc->prev_count);
577 new_raw_count = read_pmc(idx);
579 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
580 new_raw_count) != prev_raw_count)
581 goto again;
583 delta = (new_raw_count << shift) - (prev_raw_count << shift);
584 delta >>= shift;
586 local64_add(delta, &event->count);
587 local64_sub(delta, &hwc->period_left);
589 return new_raw_count;
592 static int sparc_perf_event_set_period(struct perf_event *event,
593 struct hw_perf_event *hwc, int idx)
595 s64 left = local64_read(&hwc->period_left);
596 s64 period = hwc->sample_period;
597 int ret = 0;
599 if (unlikely(left <= -period)) {
600 left = period;
601 local64_set(&hwc->period_left, left);
602 hwc->last_period = period;
603 ret = 1;
606 if (unlikely(left <= 0)) {
607 left += period;
608 local64_set(&hwc->period_left, left);
609 hwc->last_period = period;
610 ret = 1;
612 if (left > MAX_PERIOD)
613 left = MAX_PERIOD;
615 local64_set(&hwc->prev_count, (u64)-left);
617 write_pmc(idx, (u64)(-left) & 0xffffffff);
619 perf_event_update_userpage(event);
621 return ret;
624 /* If performance event entries have been added, move existing
625 * events around (if necessary) and then assign new entries to
626 * counters.
628 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
630 int i;
632 if (!cpuc->n_added)
633 goto out;
635 /* Read in the counters which are moving. */
636 for (i = 0; i < cpuc->n_events; i++) {
637 struct perf_event *cp = cpuc->event[i];
639 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
640 cpuc->current_idx[i] != cp->hw.idx) {
641 sparc_perf_event_update(cp, &cp->hw,
642 cpuc->current_idx[i]);
643 cpuc->current_idx[i] = PIC_NO_INDEX;
647 /* Assign to counters all unassigned events. */
648 for (i = 0; i < cpuc->n_events; i++) {
649 struct perf_event *cp = cpuc->event[i];
650 struct hw_perf_event *hwc = &cp->hw;
651 int idx = hwc->idx;
652 u64 enc;
654 if (cpuc->current_idx[i] != PIC_NO_INDEX)
655 continue;
657 sparc_perf_event_set_period(cp, hwc, idx);
658 cpuc->current_idx[i] = idx;
660 enc = perf_event_get_enc(cpuc->events[i]);
661 pcr &= ~mask_for_index(idx);
662 if (hwc->state & PERF_HES_STOPPED)
663 pcr |= nop_for_index(idx);
664 else
665 pcr |= event_encoding(enc, idx);
667 out:
668 return pcr;
671 static void sparc_pmu_enable(struct pmu *pmu)
673 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
674 u64 pcr;
676 if (cpuc->enabled)
677 return;
679 cpuc->enabled = 1;
680 barrier();
682 pcr = cpuc->pcr;
683 if (!cpuc->n_events) {
684 pcr = 0;
685 } else {
686 pcr = maybe_change_configuration(cpuc, pcr);
688 /* We require that all of the events have the same
689 * configuration, so just fetch the settings from the
690 * first entry.
692 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
695 pcr_ops->write(cpuc->pcr);
698 static void sparc_pmu_disable(struct pmu *pmu)
700 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
701 u64 val;
703 if (!cpuc->enabled)
704 return;
706 cpuc->enabled = 0;
707 cpuc->n_added = 0;
709 val = cpuc->pcr;
710 val &= ~(PCR_UTRACE | PCR_STRACE |
711 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
712 cpuc->pcr = val;
714 pcr_ops->write(cpuc->pcr);
717 static int active_event_index(struct cpu_hw_events *cpuc,
718 struct perf_event *event)
720 int i;
722 for (i = 0; i < cpuc->n_events; i++) {
723 if (cpuc->event[i] == event)
724 break;
726 BUG_ON(i == cpuc->n_events);
727 return cpuc->current_idx[i];
730 static void sparc_pmu_start(struct perf_event *event, int flags)
732 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
733 int idx = active_event_index(cpuc, event);
735 if (flags & PERF_EF_RELOAD) {
736 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
737 sparc_perf_event_set_period(event, &event->hw, idx);
740 event->hw.state = 0;
742 sparc_pmu_enable_event(cpuc, &event->hw, idx);
745 static void sparc_pmu_stop(struct perf_event *event, int flags)
747 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
748 int idx = active_event_index(cpuc, event);
750 if (!(event->hw.state & PERF_HES_STOPPED)) {
751 sparc_pmu_disable_event(cpuc, &event->hw, idx);
752 event->hw.state |= PERF_HES_STOPPED;
755 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
756 sparc_perf_event_update(event, &event->hw, idx);
757 event->hw.state |= PERF_HES_UPTODATE;
761 static void sparc_pmu_del(struct perf_event *event, int _flags)
763 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
764 unsigned long flags;
765 int i;
767 local_irq_save(flags);
768 perf_pmu_disable(event->pmu);
770 for (i = 0; i < cpuc->n_events; i++) {
771 if (event == cpuc->event[i]) {
772 /* Absorb the final count and turn off the
773 * event.
775 sparc_pmu_stop(event, PERF_EF_UPDATE);
777 /* Shift remaining entries down into
778 * the existing slot.
780 while (++i < cpuc->n_events) {
781 cpuc->event[i - 1] = cpuc->event[i];
782 cpuc->events[i - 1] = cpuc->events[i];
783 cpuc->current_idx[i - 1] =
784 cpuc->current_idx[i];
787 perf_event_update_userpage(event);
789 cpuc->n_events--;
790 break;
794 perf_pmu_enable(event->pmu);
795 local_irq_restore(flags);
798 static void sparc_pmu_read(struct perf_event *event)
800 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
801 int idx = active_event_index(cpuc, event);
802 struct hw_perf_event *hwc = &event->hw;
804 sparc_perf_event_update(event, hwc, idx);
807 static atomic_t active_events = ATOMIC_INIT(0);
808 static DEFINE_MUTEX(pmc_grab_mutex);
810 static void perf_stop_nmi_watchdog(void *unused)
812 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
814 stop_nmi_watchdog(NULL);
815 cpuc->pcr = pcr_ops->read();
818 void perf_event_grab_pmc(void)
820 if (atomic_inc_not_zero(&active_events))
821 return;
823 mutex_lock(&pmc_grab_mutex);
824 if (atomic_read(&active_events) == 0) {
825 if (atomic_read(&nmi_active) > 0) {
826 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
827 BUG_ON(atomic_read(&nmi_active) != 0);
829 atomic_inc(&active_events);
831 mutex_unlock(&pmc_grab_mutex);
834 void perf_event_release_pmc(void)
836 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
837 if (atomic_read(&nmi_active) == 0)
838 on_each_cpu(start_nmi_watchdog, NULL, 1);
839 mutex_unlock(&pmc_grab_mutex);
843 static const struct perf_event_map *sparc_map_cache_event(u64 config)
845 unsigned int cache_type, cache_op, cache_result;
846 const struct perf_event_map *pmap;
848 if (!sparc_pmu->cache_map)
849 return ERR_PTR(-ENOENT);
851 cache_type = (config >> 0) & 0xff;
852 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
853 return ERR_PTR(-EINVAL);
855 cache_op = (config >> 8) & 0xff;
856 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
857 return ERR_PTR(-EINVAL);
859 cache_result = (config >> 16) & 0xff;
860 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
861 return ERR_PTR(-EINVAL);
863 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
865 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
866 return ERR_PTR(-ENOENT);
868 if (pmap->encoding == CACHE_OP_NONSENSE)
869 return ERR_PTR(-EINVAL);
871 return pmap;
874 static void hw_perf_event_destroy(struct perf_event *event)
876 perf_event_release_pmc();
879 /* Make sure all events can be scheduled into the hardware at
880 * the same time. This is simplified by the fact that we only
881 * need to support 2 simultaneous HW events.
883 * As a side effect, the evts[]->hw.idx values will be assigned
884 * on success. These are pending indexes. When the events are
885 * actually programmed into the chip, these values will propagate
886 * to the per-cpu cpuc->current_idx[] slots, see the code in
887 * maybe_change_configuration() for details.
889 static int sparc_check_constraints(struct perf_event **evts,
890 unsigned long *events, int n_ev)
892 u8 msk0 = 0, msk1 = 0;
893 int idx0 = 0;
895 /* This case is possible when we are invoked from
896 * hw_perf_group_sched_in().
898 if (!n_ev)
899 return 0;
901 if (n_ev > MAX_HWEVENTS)
902 return -1;
904 msk0 = perf_event_get_msk(events[0]);
905 if (n_ev == 1) {
906 if (msk0 & PIC_LOWER)
907 idx0 = 1;
908 goto success;
910 BUG_ON(n_ev != 2);
911 msk1 = perf_event_get_msk(events[1]);
913 /* If both events can go on any counter, OK. */
914 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
915 msk1 == (PIC_UPPER | PIC_LOWER))
916 goto success;
918 /* If one event is limited to a specific counter,
919 * and the other can go on both, OK.
921 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
922 msk1 == (PIC_UPPER | PIC_LOWER)) {
923 if (msk0 & PIC_LOWER)
924 idx0 = 1;
925 goto success;
928 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
929 msk0 == (PIC_UPPER | PIC_LOWER)) {
930 if (msk1 & PIC_UPPER)
931 idx0 = 1;
932 goto success;
935 /* If the events are fixed to different counters, OK. */
936 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
937 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
938 if (msk0 & PIC_LOWER)
939 idx0 = 1;
940 goto success;
943 /* Otherwise, there is a conflict. */
944 return -1;
946 success:
947 evts[0]->hw.idx = idx0;
948 if (n_ev == 2)
949 evts[1]->hw.idx = idx0 ^ 1;
950 return 0;
953 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
955 int eu = 0, ek = 0, eh = 0;
956 struct perf_event *event;
957 int i, n, first;
959 n = n_prev + n_new;
960 if (n <= 1)
961 return 0;
963 first = 1;
964 for (i = 0; i < n; i++) {
965 event = evts[i];
966 if (first) {
967 eu = event->attr.exclude_user;
968 ek = event->attr.exclude_kernel;
969 eh = event->attr.exclude_hv;
970 first = 0;
971 } else if (event->attr.exclude_user != eu ||
972 event->attr.exclude_kernel != ek ||
973 event->attr.exclude_hv != eh) {
974 return -EAGAIN;
978 return 0;
981 static int collect_events(struct perf_event *group, int max_count,
982 struct perf_event *evts[], unsigned long *events,
983 int *current_idx)
985 struct perf_event *event;
986 int n = 0;
988 if (!is_software_event(group)) {
989 if (n >= max_count)
990 return -1;
991 evts[n] = group;
992 events[n] = group->hw.event_base;
993 current_idx[n++] = PIC_NO_INDEX;
995 list_for_each_entry(event, &group->sibling_list, group_entry) {
996 if (!is_software_event(event) &&
997 event->state != PERF_EVENT_STATE_OFF) {
998 if (n >= max_count)
999 return -1;
1000 evts[n] = event;
1001 events[n] = event->hw.event_base;
1002 current_idx[n++] = PIC_NO_INDEX;
1005 return n;
1008 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1010 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1011 int n0, ret = -EAGAIN;
1012 unsigned long flags;
1014 local_irq_save(flags);
1015 perf_pmu_disable(event->pmu);
1017 n0 = cpuc->n_events;
1018 if (n0 >= MAX_HWEVENTS)
1019 goto out;
1021 cpuc->event[n0] = event;
1022 cpuc->events[n0] = event->hw.event_base;
1023 cpuc->current_idx[n0] = PIC_NO_INDEX;
1025 event->hw.state = PERF_HES_UPTODATE;
1026 if (!(ef_flags & PERF_EF_START))
1027 event->hw.state |= PERF_HES_STOPPED;
1030 * If group events scheduling transaction was started,
1031 * skip the schedulability test here, it will be performed
1032 * at commit time(->commit_txn) as a whole
1034 if (cpuc->group_flag & PERF_EVENT_TXN)
1035 goto nocheck;
1037 if (check_excludes(cpuc->event, n0, 1))
1038 goto out;
1039 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1040 goto out;
1042 nocheck:
1043 cpuc->n_events++;
1044 cpuc->n_added++;
1046 ret = 0;
1047 out:
1048 perf_pmu_enable(event->pmu);
1049 local_irq_restore(flags);
1050 return ret;
1053 static int sparc_pmu_event_init(struct perf_event *event)
1055 struct perf_event_attr *attr = &event->attr;
1056 struct perf_event *evts[MAX_HWEVENTS];
1057 struct hw_perf_event *hwc = &event->hw;
1058 unsigned long events[MAX_HWEVENTS];
1059 int current_idx_dmy[MAX_HWEVENTS];
1060 const struct perf_event_map *pmap;
1061 int n;
1063 if (atomic_read(&nmi_active) < 0)
1064 return -ENODEV;
1066 switch (attr->type) {
1067 case PERF_TYPE_HARDWARE:
1068 if (attr->config >= sparc_pmu->max_events)
1069 return -EINVAL;
1070 pmap = sparc_pmu->event_map(attr->config);
1071 break;
1073 case PERF_TYPE_HW_CACHE:
1074 pmap = sparc_map_cache_event(attr->config);
1075 if (IS_ERR(pmap))
1076 return PTR_ERR(pmap);
1077 break;
1079 case PERF_TYPE_RAW:
1080 pmap = NULL;
1081 break;
1083 default:
1084 return -ENOENT;
1088 if (pmap) {
1089 hwc->event_base = perf_event_encode(pmap);
1090 } else {
1092 * User gives us "(encoding << 16) | pic_mask" for
1093 * PERF_TYPE_RAW events.
1095 hwc->event_base = attr->config;
1098 /* We save the enable bits in the config_base. */
1099 hwc->config_base = sparc_pmu->irq_bit;
1100 if (!attr->exclude_user)
1101 hwc->config_base |= PCR_UTRACE;
1102 if (!attr->exclude_kernel)
1103 hwc->config_base |= PCR_STRACE;
1104 if (!attr->exclude_hv)
1105 hwc->config_base |= sparc_pmu->hv_bit;
1107 n = 0;
1108 if (event->group_leader != event) {
1109 n = collect_events(event->group_leader,
1110 MAX_HWEVENTS - 1,
1111 evts, events, current_idx_dmy);
1112 if (n < 0)
1113 return -EINVAL;
1115 events[n] = hwc->event_base;
1116 evts[n] = event;
1118 if (check_excludes(evts, n, 1))
1119 return -EINVAL;
1121 if (sparc_check_constraints(evts, events, n + 1))
1122 return -EINVAL;
1124 hwc->idx = PIC_NO_INDEX;
1126 /* Try to do all error checking before this point, as unwinding
1127 * state after grabbing the PMC is difficult.
1129 perf_event_grab_pmc();
1130 event->destroy = hw_perf_event_destroy;
1132 if (!hwc->sample_period) {
1133 hwc->sample_period = MAX_PERIOD;
1134 hwc->last_period = hwc->sample_period;
1135 local64_set(&hwc->period_left, hwc->sample_period);
1138 return 0;
1142 * Start group events scheduling transaction
1143 * Set the flag to make pmu::enable() not perform the
1144 * schedulability test, it will be performed at commit time
1146 static void sparc_pmu_start_txn(struct pmu *pmu)
1148 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1150 perf_pmu_disable(pmu);
1151 cpuhw->group_flag |= PERF_EVENT_TXN;
1155 * Stop group events scheduling transaction
1156 * Clear the flag and pmu::enable() will perform the
1157 * schedulability test.
1159 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1161 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1163 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1164 perf_pmu_enable(pmu);
1168 * Commit group events scheduling transaction
1169 * Perform the group schedulability test as a whole
1170 * Return 0 if success
1172 static int sparc_pmu_commit_txn(struct pmu *pmu)
1174 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1175 int n;
1177 if (!sparc_pmu)
1178 return -EINVAL;
1180 cpuc = &__get_cpu_var(cpu_hw_events);
1181 n = cpuc->n_events;
1182 if (check_excludes(cpuc->event, 0, n))
1183 return -EINVAL;
1184 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1185 return -EAGAIN;
1187 cpuc->group_flag &= ~PERF_EVENT_TXN;
1188 perf_pmu_enable(pmu);
1189 return 0;
1192 static struct pmu pmu = {
1193 .pmu_enable = sparc_pmu_enable,
1194 .pmu_disable = sparc_pmu_disable,
1195 .event_init = sparc_pmu_event_init,
1196 .add = sparc_pmu_add,
1197 .del = sparc_pmu_del,
1198 .start = sparc_pmu_start,
1199 .stop = sparc_pmu_stop,
1200 .read = sparc_pmu_read,
1201 .start_txn = sparc_pmu_start_txn,
1202 .cancel_txn = sparc_pmu_cancel_txn,
1203 .commit_txn = sparc_pmu_commit_txn,
1206 void perf_event_print_debug(void)
1208 unsigned long flags;
1209 u64 pcr, pic;
1210 int cpu;
1212 if (!sparc_pmu)
1213 return;
1215 local_irq_save(flags);
1217 cpu = smp_processor_id();
1219 pcr = pcr_ops->read();
1220 read_pic(pic);
1222 pr_info("\n");
1223 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1224 cpu, pcr, pic);
1226 local_irq_restore(flags);
1229 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1230 unsigned long cmd, void *__args)
1232 struct die_args *args = __args;
1233 struct perf_sample_data data;
1234 struct cpu_hw_events *cpuc;
1235 struct pt_regs *regs;
1236 int i;
1238 if (!atomic_read(&active_events))
1239 return NOTIFY_DONE;
1241 switch (cmd) {
1242 case DIE_NMI:
1243 break;
1245 default:
1246 return NOTIFY_DONE;
1249 regs = args->regs;
1251 perf_sample_data_init(&data, 0);
1253 cpuc = &__get_cpu_var(cpu_hw_events);
1255 /* If the PMU has the TOE IRQ enable bits, we need to do a
1256 * dummy write to the %pcr to clear the overflow bits and thus
1257 * the interrupt.
1259 * Do this before we peek at the counters to determine
1260 * overflow so we don't lose any events.
1262 if (sparc_pmu->irq_bit)
1263 pcr_ops->write(cpuc->pcr);
1265 for (i = 0; i < cpuc->n_events; i++) {
1266 struct perf_event *event = cpuc->event[i];
1267 int idx = cpuc->current_idx[i];
1268 struct hw_perf_event *hwc;
1269 u64 val;
1271 hwc = &event->hw;
1272 val = sparc_perf_event_update(event, hwc, idx);
1273 if (val & (1ULL << 31))
1274 continue;
1276 data.period = event->hw.last_period;
1277 if (!sparc_perf_event_set_period(event, hwc, idx))
1278 continue;
1280 if (perf_event_overflow(event, 1, &data, regs))
1281 sparc_pmu_stop(event, 0);
1284 return NOTIFY_STOP;
1287 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1288 .notifier_call = perf_event_nmi_handler,
1291 static bool __init supported_pmu(void)
1293 if (!strcmp(sparc_pmu_type, "ultra3") ||
1294 !strcmp(sparc_pmu_type, "ultra3+") ||
1295 !strcmp(sparc_pmu_type, "ultra3i") ||
1296 !strcmp(sparc_pmu_type, "ultra4+")) {
1297 sparc_pmu = &ultra3_pmu;
1298 return true;
1300 if (!strcmp(sparc_pmu_type, "niagara")) {
1301 sparc_pmu = &niagara1_pmu;
1302 return true;
1304 if (!strcmp(sparc_pmu_type, "niagara2") ||
1305 !strcmp(sparc_pmu_type, "niagara3")) {
1306 sparc_pmu = &niagara2_pmu;
1307 return true;
1309 return false;
1312 int __init init_hw_perf_events(void)
1314 pr_info("Performance events: ");
1316 if (!supported_pmu()) {
1317 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1318 return 0;
1321 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1323 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1324 register_die_notifier(&perf_event_nmi_notifier);
1326 return 0;
1328 early_initcall(init_hw_perf_events);
1330 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1331 struct pt_regs *regs)
1333 unsigned long ksp, fp;
1334 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1335 int graph = 0;
1336 #endif
1338 stack_trace_flush();
1340 perf_callchain_store(entry, regs->tpc);
1342 ksp = regs->u_regs[UREG_I6];
1343 fp = ksp + STACK_BIAS;
1344 do {
1345 struct sparc_stackf *sf;
1346 struct pt_regs *regs;
1347 unsigned long pc;
1349 if (!kstack_valid(current_thread_info(), fp))
1350 break;
1352 sf = (struct sparc_stackf *) fp;
1353 regs = (struct pt_regs *) (sf + 1);
1355 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1356 if (user_mode(regs))
1357 break;
1358 pc = regs->tpc;
1359 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1360 } else {
1361 pc = sf->callers_pc;
1362 fp = (unsigned long)sf->fp + STACK_BIAS;
1364 perf_callchain_store(entry, pc);
1365 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1366 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1367 int index = current->curr_ret_stack;
1368 if (current->ret_stack && index >= graph) {
1369 pc = current->ret_stack[index - graph].ret;
1370 perf_callchain_store(entry, pc);
1371 graph++;
1374 #endif
1375 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1378 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1379 struct pt_regs *regs)
1381 unsigned long ufp;
1383 perf_callchain_store(entry, regs->tpc);
1385 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1386 do {
1387 struct sparc_stackf *usf, sf;
1388 unsigned long pc;
1390 usf = (struct sparc_stackf *) ufp;
1391 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1392 break;
1394 pc = sf.callers_pc;
1395 ufp = (unsigned long)sf.fp + STACK_BIAS;
1396 perf_callchain_store(entry, pc);
1397 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1400 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1401 struct pt_regs *regs)
1403 unsigned long ufp;
1405 perf_callchain_store(entry, regs->tpc);
1407 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1408 do {
1409 struct sparc_stackf32 *usf, sf;
1410 unsigned long pc;
1412 usf = (struct sparc_stackf32 *) ufp;
1413 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1414 break;
1416 pc = sf.callers_pc;
1417 ufp = (unsigned long)sf.fp;
1418 perf_callchain_store(entry, pc);
1419 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1422 void
1423 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1425 flushw_user();
1426 if (test_thread_flag(TIF_32BIT))
1427 perf_callchain_user_32(entry, regs);
1428 else
1429 perf_callchain_user_64(entry, regs);