icside: use ide_init_port_hw()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / keyboard.c
blobd9a0a53c842d2f35632a069591d148bfc843c2d9
1 /*
2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/sysrq.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
47 extern void ctrl_alt_del(void);
50 * Exported functions/variables
53 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
57 * This seems a good reason to start with NumLock off. On HIL keyboards
58 * of PARISC machines however there is no NumLock key and everyone expects the keypad
59 * to be used for numbers.
62 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
63 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
64 #else
65 #define KBD_DEFLEDS 0
66 #endif
68 #define KBD_DEFLOCK 0
70 void compute_shiftstate(void);
73 * Handler Tables.
76 #define K_HANDLERS\
77 k_self, k_fn, k_spec, k_pad,\
78 k_dead, k_cons, k_cur, k_shift,\
79 k_meta, k_ascii, k_lock, k_lowercase,\
80 k_slock, k_dead2, k_brl, k_ignore
82 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
83 char up_flag);
84 static k_handler_fn K_HANDLERS;
85 k_handler_fn *k_handler[16] = { K_HANDLERS };
86 EXPORT_SYMBOL_GPL(k_handler);
88 #define FN_HANDLERS\
89 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
90 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
91 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
92 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
93 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
95 typedef void (fn_handler_fn)(struct vc_data *vc);
96 static fn_handler_fn FN_HANDLERS;
97 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
100 * Variables exported for vt_ioctl.c
103 /* maximum values each key_handler can handle */
104 const int max_vals[] = {
105 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
106 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
107 255, NR_LOCK - 1, 255, NR_BRL - 1
110 const int NR_TYPES = ARRAY_SIZE(max_vals);
112 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 EXPORT_SYMBOL_GPL(kbd_table);
114 static struct kbd_struct *kbd = kbd_table;
116 struct vt_spawn_console vt_spawn_con = {
117 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
118 .pid = NULL,
119 .sig = 0,
123 * Variables exported for vt.c
126 int shift_state = 0;
129 * Internal Data.
132 static struct input_handler kbd_handler;
133 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
134 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
135 static int dead_key_next;
136 static int npadch = -1; /* -1 or number assembled on pad */
137 static unsigned int diacr;
138 static char rep; /* flag telling character repeat */
140 static unsigned char ledstate = 0xff; /* undefined */
141 static unsigned char ledioctl;
143 static struct ledptr {
144 unsigned int *addr;
145 unsigned int mask;
146 unsigned char valid:1;
147 } ledptrs[3];
149 /* Simple translation table for the SysRq keys */
151 #ifdef CONFIG_MAGIC_SYSRQ
152 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
153 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
154 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
155 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
156 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
157 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
158 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
159 "\r\000/"; /* 0x60 - 0x6f */
160 static int sysrq_down;
161 static int sysrq_alt_use;
162 #endif
163 static int sysrq_alt;
166 * Notifier list for console keyboard events
168 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
170 int register_keyboard_notifier(struct notifier_block *nb)
172 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
174 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
176 int unregister_keyboard_notifier(struct notifier_block *nb)
178 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
180 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
183 * Translation of scancodes to keycodes. We set them on only the first
184 * keyboard in the list that accepts the scancode and keycode.
185 * Explanation for not choosing the first attached keyboard anymore:
186 * USB keyboards for example have two event devices: one for all "normal"
187 * keys and one for extra function keys (like "volume up", "make coffee",
188 * etc.). So this means that scancodes for the extra function keys won't
189 * be valid for the first event device, but will be for the second.
191 int getkeycode(unsigned int scancode)
193 struct input_handle *handle;
194 int keycode;
195 int error = -ENODEV;
197 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
198 error = input_get_keycode(handle->dev, scancode, &keycode);
199 if (!error)
200 return keycode;
203 return error;
206 int setkeycode(unsigned int scancode, unsigned int keycode)
208 struct input_handle *handle;
209 int error = -ENODEV;
211 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
212 error = input_set_keycode(handle->dev, scancode, keycode);
213 if (!error)
214 break;
217 return error;
221 * Making beeps and bells.
223 static void kd_nosound(unsigned long ignored)
225 struct input_handle *handle;
227 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
228 if (test_bit(EV_SND, handle->dev->evbit)) {
229 if (test_bit(SND_TONE, handle->dev->sndbit))
230 input_inject_event(handle, EV_SND, SND_TONE, 0);
231 if (test_bit(SND_BELL, handle->dev->sndbit))
232 input_inject_event(handle, EV_SND, SND_BELL, 0);
237 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
239 void kd_mksound(unsigned int hz, unsigned int ticks)
241 struct list_head *node;
243 del_timer(&kd_mksound_timer);
245 if (hz) {
246 list_for_each_prev(node, &kbd_handler.h_list) {
247 struct input_handle *handle = to_handle_h(node);
248 if (test_bit(EV_SND, handle->dev->evbit)) {
249 if (test_bit(SND_TONE, handle->dev->sndbit)) {
250 input_inject_event(handle, EV_SND, SND_TONE, hz);
251 break;
253 if (test_bit(SND_BELL, handle->dev->sndbit)) {
254 input_inject_event(handle, EV_SND, SND_BELL, 1);
255 break;
259 if (ticks)
260 mod_timer(&kd_mksound_timer, jiffies + ticks);
261 } else
262 kd_nosound(0);
264 EXPORT_SYMBOL(kd_mksound);
267 * Setting the keyboard rate.
270 int kbd_rate(struct kbd_repeat *rep)
272 struct list_head *node;
273 unsigned int d = 0;
274 unsigned int p = 0;
276 list_for_each(node, &kbd_handler.h_list) {
277 struct input_handle *handle = to_handle_h(node);
278 struct input_dev *dev = handle->dev;
280 if (test_bit(EV_REP, dev->evbit)) {
281 if (rep->delay > 0)
282 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
283 if (rep->period > 0)
284 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
285 d = dev->rep[REP_DELAY];
286 p = dev->rep[REP_PERIOD];
289 rep->delay = d;
290 rep->period = p;
291 return 0;
295 * Helper Functions.
297 static void put_queue(struct vc_data *vc, int ch)
299 struct tty_struct *tty = vc->vc_tty;
301 if (tty) {
302 tty_insert_flip_char(tty, ch, 0);
303 con_schedule_flip(tty);
307 static void puts_queue(struct vc_data *vc, char *cp)
309 struct tty_struct *tty = vc->vc_tty;
311 if (!tty)
312 return;
314 while (*cp) {
315 tty_insert_flip_char(tty, *cp, 0);
316 cp++;
318 con_schedule_flip(tty);
321 static void applkey(struct vc_data *vc, int key, char mode)
323 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
325 buf[1] = (mode ? 'O' : '[');
326 buf[2] = key;
327 puts_queue(vc, buf);
331 * Many other routines do put_queue, but I think either
332 * they produce ASCII, or they produce some user-assigned
333 * string, and in both cases we might assume that it is
334 * in utf-8 already.
336 static void to_utf8(struct vc_data *vc, uint c)
338 if (c < 0x80)
339 /* 0******* */
340 put_queue(vc, c);
341 else if (c < 0x800) {
342 /* 110***** 10****** */
343 put_queue(vc, 0xc0 | (c >> 6));
344 put_queue(vc, 0x80 | (c & 0x3f));
345 } else if (c < 0x10000) {
346 if (c >= 0xD800 && c < 0xE000)
347 return;
348 if (c == 0xFFFF)
349 return;
350 /* 1110**** 10****** 10****** */
351 put_queue(vc, 0xe0 | (c >> 12));
352 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
353 put_queue(vc, 0x80 | (c & 0x3f));
354 } else if (c < 0x110000) {
355 /* 11110*** 10****** 10****** 10****** */
356 put_queue(vc, 0xf0 | (c >> 18));
357 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
358 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
359 put_queue(vc, 0x80 | (c & 0x3f));
364 * Called after returning from RAW mode or when changing consoles - recompute
365 * shift_down[] and shift_state from key_down[] maybe called when keymap is
366 * undefined, so that shiftkey release is seen
368 void compute_shiftstate(void)
370 unsigned int i, j, k, sym, val;
372 shift_state = 0;
373 memset(shift_down, 0, sizeof(shift_down));
375 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
377 if (!key_down[i])
378 continue;
380 k = i * BITS_PER_LONG;
382 for (j = 0; j < BITS_PER_LONG; j++, k++) {
384 if (!test_bit(k, key_down))
385 continue;
387 sym = U(key_maps[0][k]);
388 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
389 continue;
391 val = KVAL(sym);
392 if (val == KVAL(K_CAPSSHIFT))
393 val = KVAL(K_SHIFT);
395 shift_down[val]++;
396 shift_state |= (1 << val);
402 * We have a combining character DIACR here, followed by the character CH.
403 * If the combination occurs in the table, return the corresponding value.
404 * Otherwise, if CH is a space or equals DIACR, return DIACR.
405 * Otherwise, conclude that DIACR was not combining after all,
406 * queue it and return CH.
408 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
410 unsigned int d = diacr;
411 unsigned int i;
413 diacr = 0;
415 if ((d & ~0xff) == BRL_UC_ROW) {
416 if ((ch & ~0xff) == BRL_UC_ROW)
417 return d | ch;
418 } else {
419 for (i = 0; i < accent_table_size; i++)
420 if (accent_table[i].diacr == d && accent_table[i].base == ch)
421 return accent_table[i].result;
424 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
425 return d;
427 if (kbd->kbdmode == VC_UNICODE)
428 to_utf8(vc, d);
429 else {
430 int c = conv_uni_to_8bit(d);
431 if (c != -1)
432 put_queue(vc, c);
435 return ch;
439 * Special function handlers
441 static void fn_enter(struct vc_data *vc)
443 if (diacr) {
444 if (kbd->kbdmode == VC_UNICODE)
445 to_utf8(vc, diacr);
446 else {
447 int c = conv_uni_to_8bit(diacr);
448 if (c != -1)
449 put_queue(vc, c);
451 diacr = 0;
453 put_queue(vc, 13);
454 if (vc_kbd_mode(kbd, VC_CRLF))
455 put_queue(vc, 10);
458 static void fn_caps_toggle(struct vc_data *vc)
460 if (rep)
461 return;
462 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
465 static void fn_caps_on(struct vc_data *vc)
467 if (rep)
468 return;
469 set_vc_kbd_led(kbd, VC_CAPSLOCK);
472 static void fn_show_ptregs(struct vc_data *vc)
474 struct pt_regs *regs = get_irq_regs();
475 if (regs)
476 show_regs(regs);
479 static void fn_hold(struct vc_data *vc)
481 struct tty_struct *tty = vc->vc_tty;
483 if (rep || !tty)
484 return;
487 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
488 * these routines are also activated by ^S/^Q.
489 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
491 if (tty->stopped)
492 start_tty(tty);
493 else
494 stop_tty(tty);
497 static void fn_num(struct vc_data *vc)
499 if (vc_kbd_mode(kbd,VC_APPLIC))
500 applkey(vc, 'P', 1);
501 else
502 fn_bare_num(vc);
506 * Bind this to Shift-NumLock if you work in application keypad mode
507 * but want to be able to change the NumLock flag.
508 * Bind this to NumLock if you prefer that the NumLock key always
509 * changes the NumLock flag.
511 static void fn_bare_num(struct vc_data *vc)
513 if (!rep)
514 chg_vc_kbd_led(kbd, VC_NUMLOCK);
517 static void fn_lastcons(struct vc_data *vc)
519 /* switch to the last used console, ChN */
520 set_console(last_console);
523 static void fn_dec_console(struct vc_data *vc)
525 int i, cur = fg_console;
527 /* Currently switching? Queue this next switch relative to that. */
528 if (want_console != -1)
529 cur = want_console;
531 for (i = cur - 1; i != cur; i--) {
532 if (i == -1)
533 i = MAX_NR_CONSOLES - 1;
534 if (vc_cons_allocated(i))
535 break;
537 set_console(i);
540 static void fn_inc_console(struct vc_data *vc)
542 int i, cur = fg_console;
544 /* Currently switching? Queue this next switch relative to that. */
545 if (want_console != -1)
546 cur = want_console;
548 for (i = cur+1; i != cur; i++) {
549 if (i == MAX_NR_CONSOLES)
550 i = 0;
551 if (vc_cons_allocated(i))
552 break;
554 set_console(i);
557 static void fn_send_intr(struct vc_data *vc)
559 struct tty_struct *tty = vc->vc_tty;
561 if (!tty)
562 return;
563 tty_insert_flip_char(tty, 0, TTY_BREAK);
564 con_schedule_flip(tty);
567 static void fn_scroll_forw(struct vc_data *vc)
569 scrollfront(vc, 0);
572 static void fn_scroll_back(struct vc_data *vc)
574 scrollback(vc, 0);
577 static void fn_show_mem(struct vc_data *vc)
579 show_mem();
582 static void fn_show_state(struct vc_data *vc)
584 show_state();
587 static void fn_boot_it(struct vc_data *vc)
589 ctrl_alt_del();
592 static void fn_compose(struct vc_data *vc)
594 dead_key_next = 1;
597 static void fn_spawn_con(struct vc_data *vc)
599 spin_lock(&vt_spawn_con.lock);
600 if (vt_spawn_con.pid)
601 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
602 put_pid(vt_spawn_con.pid);
603 vt_spawn_con.pid = NULL;
605 spin_unlock(&vt_spawn_con.lock);
608 static void fn_SAK(struct vc_data *vc)
610 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
611 schedule_work(SAK_work);
614 static void fn_null(struct vc_data *vc)
616 compute_shiftstate();
620 * Special key handlers
622 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
626 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
628 if (up_flag)
629 return;
630 if (value >= ARRAY_SIZE(fn_handler))
631 return;
632 if ((kbd->kbdmode == VC_RAW ||
633 kbd->kbdmode == VC_MEDIUMRAW) &&
634 value != KVAL(K_SAK))
635 return; /* SAK is allowed even in raw mode */
636 fn_handler[value](vc);
639 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
641 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
644 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
646 if (up_flag)
647 return; /* no action, if this is a key release */
649 if (diacr)
650 value = handle_diacr(vc, value);
652 if (dead_key_next) {
653 dead_key_next = 0;
654 diacr = value;
655 return;
657 if (kbd->kbdmode == VC_UNICODE)
658 to_utf8(vc, value);
659 else {
660 int c = conv_uni_to_8bit(value);
661 if (c != -1)
662 put_queue(vc, c);
667 * Handle dead key. Note that we now may have several
668 * dead keys modifying the same character. Very useful
669 * for Vietnamese.
671 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
673 if (up_flag)
674 return;
675 diacr = (diacr ? handle_diacr(vc, value) : value);
678 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
680 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
683 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
685 k_deadunicode(vc, value, up_flag);
689 * Obsolete - for backwards compatibility only
691 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
693 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
694 value = ret_diacr[value];
695 k_deadunicode(vc, value, up_flag);
698 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
700 if (up_flag)
701 return;
702 set_console(value);
705 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
707 unsigned v;
709 if (up_flag)
710 return;
711 v = value;
712 if (v < ARRAY_SIZE(func_table)) {
713 if (func_table[value])
714 puts_queue(vc, func_table[value]);
715 } else
716 printk(KERN_ERR "k_fn called with value=%d\n", value);
719 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
721 static const char cur_chars[] = "BDCA";
723 if (up_flag)
724 return;
725 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
728 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
730 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
731 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
733 if (up_flag)
734 return; /* no action, if this is a key release */
736 /* kludge... shift forces cursor/number keys */
737 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
738 applkey(vc, app_map[value], 1);
739 return;
742 if (!vc_kbd_led(kbd, VC_NUMLOCK))
743 switch (value) {
744 case KVAL(K_PCOMMA):
745 case KVAL(K_PDOT):
746 k_fn(vc, KVAL(K_REMOVE), 0);
747 return;
748 case KVAL(K_P0):
749 k_fn(vc, KVAL(K_INSERT), 0);
750 return;
751 case KVAL(K_P1):
752 k_fn(vc, KVAL(K_SELECT), 0);
753 return;
754 case KVAL(K_P2):
755 k_cur(vc, KVAL(K_DOWN), 0);
756 return;
757 case KVAL(K_P3):
758 k_fn(vc, KVAL(K_PGDN), 0);
759 return;
760 case KVAL(K_P4):
761 k_cur(vc, KVAL(K_LEFT), 0);
762 return;
763 case KVAL(K_P6):
764 k_cur(vc, KVAL(K_RIGHT), 0);
765 return;
766 case KVAL(K_P7):
767 k_fn(vc, KVAL(K_FIND), 0);
768 return;
769 case KVAL(K_P8):
770 k_cur(vc, KVAL(K_UP), 0);
771 return;
772 case KVAL(K_P9):
773 k_fn(vc, KVAL(K_PGUP), 0);
774 return;
775 case KVAL(K_P5):
776 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
777 return;
780 put_queue(vc, pad_chars[value]);
781 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
782 put_queue(vc, 10);
785 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
787 int old_state = shift_state;
789 if (rep)
790 return;
792 * Mimic typewriter:
793 * a CapsShift key acts like Shift but undoes CapsLock
795 if (value == KVAL(K_CAPSSHIFT)) {
796 value = KVAL(K_SHIFT);
797 if (!up_flag)
798 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
801 if (up_flag) {
803 * handle the case that two shift or control
804 * keys are depressed simultaneously
806 if (shift_down[value])
807 shift_down[value]--;
808 } else
809 shift_down[value]++;
811 if (shift_down[value])
812 shift_state |= (1 << value);
813 else
814 shift_state &= ~(1 << value);
816 /* kludge */
817 if (up_flag && shift_state != old_state && npadch != -1) {
818 if (kbd->kbdmode == VC_UNICODE)
819 to_utf8(vc, npadch);
820 else
821 put_queue(vc, npadch & 0xff);
822 npadch = -1;
826 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
828 if (up_flag)
829 return;
831 if (vc_kbd_mode(kbd, VC_META)) {
832 put_queue(vc, '\033');
833 put_queue(vc, value);
834 } else
835 put_queue(vc, value | 0x80);
838 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
840 int base;
842 if (up_flag)
843 return;
845 if (value < 10) {
846 /* decimal input of code, while Alt depressed */
847 base = 10;
848 } else {
849 /* hexadecimal input of code, while AltGr depressed */
850 value -= 10;
851 base = 16;
854 if (npadch == -1)
855 npadch = value;
856 else
857 npadch = npadch * base + value;
860 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
862 if (up_flag || rep)
863 return;
864 chg_vc_kbd_lock(kbd, value);
867 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
869 k_shift(vc, value, up_flag);
870 if (up_flag || rep)
871 return;
872 chg_vc_kbd_slock(kbd, value);
873 /* try to make Alt, oops, AltGr and such work */
874 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
875 kbd->slockstate = 0;
876 chg_vc_kbd_slock(kbd, value);
880 /* by default, 300ms interval for combination release */
881 static unsigned brl_timeout = 300;
882 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
883 module_param(brl_timeout, uint, 0644);
885 static unsigned brl_nbchords = 1;
886 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
887 module_param(brl_nbchords, uint, 0644);
889 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
891 static unsigned long chords;
892 static unsigned committed;
894 if (!brl_nbchords)
895 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
896 else {
897 committed |= pattern;
898 chords++;
899 if (chords == brl_nbchords) {
900 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
901 chords = 0;
902 committed = 0;
907 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
909 static unsigned pressed,committing;
910 static unsigned long releasestart;
912 if (kbd->kbdmode != VC_UNICODE) {
913 if (!up_flag)
914 printk("keyboard mode must be unicode for braille patterns\n");
915 return;
918 if (!value) {
919 k_unicode(vc, BRL_UC_ROW, up_flag);
920 return;
923 if (value > 8)
924 return;
926 if (up_flag) {
927 if (brl_timeout) {
928 if (!committing ||
929 time_after(jiffies,
930 releasestart + msecs_to_jiffies(brl_timeout))) {
931 committing = pressed;
932 releasestart = jiffies;
934 pressed &= ~(1 << (value - 1));
935 if (!pressed) {
936 if (committing) {
937 k_brlcommit(vc, committing, 0);
938 committing = 0;
941 } else {
942 if (committing) {
943 k_brlcommit(vc, committing, 0);
944 committing = 0;
946 pressed &= ~(1 << (value - 1));
948 } else {
949 pressed |= 1 << (value - 1);
950 if (!brl_timeout)
951 committing = pressed;
956 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
957 * or (ii) whatever pattern of lights people want to show using KDSETLED,
958 * or (iii) specified bits of specified words in kernel memory.
960 unsigned char getledstate(void)
962 return ledstate;
965 void setledstate(struct kbd_struct *kbd, unsigned int led)
967 if (!(led & ~7)) {
968 ledioctl = led;
969 kbd->ledmode = LED_SHOW_IOCTL;
970 } else
971 kbd->ledmode = LED_SHOW_FLAGS;
972 set_leds();
975 static inline unsigned char getleds(void)
977 struct kbd_struct *kbd = kbd_table + fg_console;
978 unsigned char leds;
979 int i;
981 if (kbd->ledmode == LED_SHOW_IOCTL)
982 return ledioctl;
984 leds = kbd->ledflagstate;
986 if (kbd->ledmode == LED_SHOW_MEM) {
987 for (i = 0; i < 3; i++)
988 if (ledptrs[i].valid) {
989 if (*ledptrs[i].addr & ledptrs[i].mask)
990 leds |= (1 << i);
991 else
992 leds &= ~(1 << i);
995 return leds;
999 * This routine is the bottom half of the keyboard interrupt
1000 * routine, and runs with all interrupts enabled. It does
1001 * console changing, led setting and copy_to_cooked, which can
1002 * take a reasonably long time.
1004 * Aside from timing (which isn't really that important for
1005 * keyboard interrupts as they happen often), using the software
1006 * interrupt routines for this thing allows us to easily mask
1007 * this when we don't want any of the above to happen.
1008 * This allows for easy and efficient race-condition prevention
1009 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
1012 static void kbd_bh(unsigned long dummy)
1014 struct list_head *node;
1015 unsigned char leds = getleds();
1017 if (leds != ledstate) {
1018 list_for_each(node, &kbd_handler.h_list) {
1019 struct input_handle *handle = to_handle_h(node);
1020 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1021 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1022 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1023 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1027 ledstate = leds;
1030 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1032 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1033 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1034 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1035 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1036 defined(CONFIG_AVR32)
1038 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1039 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1041 static const unsigned short x86_keycodes[256] =
1042 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1043 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1044 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1045 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1046 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1047 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1048 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1049 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1050 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1051 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1052 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1053 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1054 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1055 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1056 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1058 #ifdef CONFIG_SPARC
1059 static int sparc_l1_a_state = 0;
1060 extern void sun_do_break(void);
1061 #endif
1063 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1064 unsigned char up_flag)
1066 int code;
1068 switch (keycode) {
1069 case KEY_PAUSE:
1070 put_queue(vc, 0xe1);
1071 put_queue(vc, 0x1d | up_flag);
1072 put_queue(vc, 0x45 | up_flag);
1073 break;
1075 case KEY_HANGEUL:
1076 if (!up_flag)
1077 put_queue(vc, 0xf2);
1078 break;
1080 case KEY_HANJA:
1081 if (!up_flag)
1082 put_queue(vc, 0xf1);
1083 break;
1085 case KEY_SYSRQ:
1087 * Real AT keyboards (that's what we're trying
1088 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1089 * pressing PrtSc/SysRq alone, but simply 0x54
1090 * when pressing Alt+PrtSc/SysRq.
1092 if (sysrq_alt) {
1093 put_queue(vc, 0x54 | up_flag);
1094 } else {
1095 put_queue(vc, 0xe0);
1096 put_queue(vc, 0x2a | up_flag);
1097 put_queue(vc, 0xe0);
1098 put_queue(vc, 0x37 | up_flag);
1100 break;
1102 default:
1103 if (keycode > 255)
1104 return -1;
1106 code = x86_keycodes[keycode];
1107 if (!code)
1108 return -1;
1110 if (code & 0x100)
1111 put_queue(vc, 0xe0);
1112 put_queue(vc, (code & 0x7f) | up_flag);
1114 break;
1117 return 0;
1120 #else
1122 #define HW_RAW(dev) 0
1124 #warning "Cannot generate rawmode keyboard for your architecture yet."
1126 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1128 if (keycode > 127)
1129 return -1;
1131 put_queue(vc, keycode | up_flag);
1132 return 0;
1134 #endif
1136 static void kbd_rawcode(unsigned char data)
1138 struct vc_data *vc = vc_cons[fg_console].d;
1139 kbd = kbd_table + fg_console;
1140 if (kbd->kbdmode == VC_RAW)
1141 put_queue(vc, data);
1144 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1146 struct vc_data *vc = vc_cons[fg_console].d;
1147 unsigned short keysym, *key_map;
1148 unsigned char type, raw_mode;
1149 struct tty_struct *tty;
1150 int shift_final;
1151 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1153 tty = vc->vc_tty;
1155 if (tty && (!tty->driver_data)) {
1156 /* No driver data? Strange. Okay we fix it then. */
1157 tty->driver_data = vc;
1160 kbd = kbd_table + fg_console;
1162 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1163 sysrq_alt = down ? keycode : 0;
1164 #ifdef CONFIG_SPARC
1165 if (keycode == KEY_STOP)
1166 sparc_l1_a_state = down;
1167 #endif
1169 rep = (down == 2);
1171 #ifdef CONFIG_MAC_EMUMOUSEBTN
1172 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1173 return;
1174 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1176 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1177 if (emulate_raw(vc, keycode, !down << 7))
1178 if (keycode < BTN_MISC && printk_ratelimit())
1179 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1181 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1182 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1183 if (!sysrq_down) {
1184 sysrq_down = down;
1185 sysrq_alt_use = sysrq_alt;
1187 return;
1189 if (sysrq_down && !down && keycode == sysrq_alt_use)
1190 sysrq_down = 0;
1191 if (sysrq_down && down && !rep) {
1192 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1193 return;
1195 #endif
1196 #ifdef CONFIG_SPARC
1197 if (keycode == KEY_A && sparc_l1_a_state) {
1198 sparc_l1_a_state = 0;
1199 sun_do_break();
1201 #endif
1203 if (kbd->kbdmode == VC_MEDIUMRAW) {
1205 * This is extended medium raw mode, with keys above 127
1206 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1207 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1208 * interfere with anything else. The two bytes after 0 will
1209 * always have the up flag set not to interfere with older
1210 * applications. This allows for 16384 different keycodes,
1211 * which should be enough.
1213 if (keycode < 128) {
1214 put_queue(vc, keycode | (!down << 7));
1215 } else {
1216 put_queue(vc, !down << 7);
1217 put_queue(vc, (keycode >> 7) | 0x80);
1218 put_queue(vc, keycode | 0x80);
1220 raw_mode = 1;
1223 if (down)
1224 set_bit(keycode, key_down);
1225 else
1226 clear_bit(keycode, key_down);
1228 if (rep &&
1229 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1230 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1232 * Don't repeat a key if the input buffers are not empty and the
1233 * characters get aren't echoed locally. This makes key repeat
1234 * usable with slow applications and under heavy loads.
1236 return;
1239 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1240 param.ledstate = kbd->ledflagstate;
1241 key_map = key_maps[shift_final];
1243 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
1244 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
1245 compute_shiftstate();
1246 kbd->slockstate = 0;
1247 return;
1250 if (keycode > NR_KEYS)
1251 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1252 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1253 else
1254 return;
1255 else
1256 keysym = key_map[keycode];
1258 type = KTYP(keysym);
1260 if (type < 0xf0) {
1261 param.value = keysym;
1262 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
1263 return;
1264 if (down && !raw_mode)
1265 to_utf8(vc, keysym);
1266 return;
1269 type -= 0xf0;
1271 if (type == KT_LETTER) {
1272 type = KT_LATIN;
1273 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1274 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1275 if (key_map)
1276 keysym = key_map[keycode];
1279 param.value = keysym;
1281 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
1282 return;
1284 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1285 return;
1287 (*k_handler[type])(vc, keysym & 0xff, !down);
1289 param.ledstate = kbd->ledflagstate;
1290 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1292 if (type != KT_SLOCK)
1293 kbd->slockstate = 0;
1296 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1297 unsigned int event_code, int value)
1299 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1300 kbd_rawcode(value);
1301 if (event_type == EV_KEY)
1302 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1303 tasklet_schedule(&keyboard_tasklet);
1304 do_poke_blanked_console = 1;
1305 schedule_console_callback();
1309 * When a keyboard (or other input device) is found, the kbd_connect
1310 * function is called. The function then looks at the device, and if it
1311 * likes it, it can open it and get events from it. In this (kbd_connect)
1312 * function, we should decide which VT to bind that keyboard to initially.
1314 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1315 const struct input_device_id *id)
1317 struct input_handle *handle;
1318 int error;
1319 int i;
1321 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1322 if (test_bit(i, dev->keybit))
1323 break;
1325 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1326 return -ENODEV;
1328 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1329 if (!handle)
1330 return -ENOMEM;
1332 handle->dev = dev;
1333 handle->handler = handler;
1334 handle->name = "kbd";
1336 error = input_register_handle(handle);
1337 if (error)
1338 goto err_free_handle;
1340 error = input_open_device(handle);
1341 if (error)
1342 goto err_unregister_handle;
1344 return 0;
1346 err_unregister_handle:
1347 input_unregister_handle(handle);
1348 err_free_handle:
1349 kfree(handle);
1350 return error;
1353 static void kbd_disconnect(struct input_handle *handle)
1355 input_close_device(handle);
1356 input_unregister_handle(handle);
1357 kfree(handle);
1361 * Start keyboard handler on the new keyboard by refreshing LED state to
1362 * match the rest of the system.
1364 static void kbd_start(struct input_handle *handle)
1366 unsigned char leds = ledstate;
1368 tasklet_disable(&keyboard_tasklet);
1369 if (leds != 0xff) {
1370 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1371 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1372 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1373 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1375 tasklet_enable(&keyboard_tasklet);
1378 static const struct input_device_id kbd_ids[] = {
1380 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1381 .evbit = { BIT_MASK(EV_KEY) },
1385 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1386 .evbit = { BIT_MASK(EV_SND) },
1389 { }, /* Terminating entry */
1392 MODULE_DEVICE_TABLE(input, kbd_ids);
1394 static struct input_handler kbd_handler = {
1395 .event = kbd_event,
1396 .connect = kbd_connect,
1397 .disconnect = kbd_disconnect,
1398 .start = kbd_start,
1399 .name = "kbd",
1400 .id_table = kbd_ids,
1403 int __init kbd_init(void)
1405 int i;
1406 int error;
1408 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1409 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1410 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1411 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1412 kbd_table[i].lockstate = KBD_DEFLOCK;
1413 kbd_table[i].slockstate = 0;
1414 kbd_table[i].modeflags = KBD_DEFMODE;
1415 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1418 error = input_register_handler(&kbd_handler);
1419 if (error)
1420 return error;
1422 tasklet_enable(&keyboard_tasklet);
1423 tasklet_schedule(&keyboard_tasklet);
1425 return 0;