KVM: MMU: Code cleanup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / paging_tmpl.h
blob6e013015f0a80b0516a4126b463ec24cc1d7b386
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_LEVEL_BITS PT32_LEVEL_BITS
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t pte;
63 pt_element_t inherited_ar;
64 gfn_t gfn;
65 u32 error_code;
69 * Fetch a guest pte for a guest virtual address
71 static int FNAME(walk_addr)(struct guest_walker *walker,
72 struct kvm_vcpu *vcpu, gva_t addr,
73 int write_fault, int user_fault, int fetch_fault)
75 pt_element_t pte;
76 gfn_t table_gfn;
77 unsigned index;
78 gpa_t pte_gpa;
80 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
81 walker->level = vcpu->mmu.root_level;
82 pte = vcpu->cr3;
83 #if PTTYPE == 64
84 if (!is_long_mode(vcpu)) {
85 pte = vcpu->pdptrs[(addr >> 30) & 3];
86 if (!is_present_pte(pte))
87 goto not_present;
88 --walker->level;
90 #endif
91 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
92 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
94 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
96 for (;;) {
97 index = PT_INDEX(addr, walker->level);
99 table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
100 pte_gpa = table_gfn << PAGE_SHIFT;
101 pte_gpa += index * sizeof(pt_element_t);
102 walker->table_gfn[walker->level - 1] = table_gfn;
103 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
104 walker->level - 1, table_gfn);
106 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
108 if (!is_present_pte(pte))
109 goto not_present;
111 if (write_fault && !is_writeble_pte(pte))
112 if (user_fault || is_write_protection(vcpu))
113 goto access_error;
115 if (user_fault && !(pte & PT_USER_MASK))
116 goto access_error;
118 #if PTTYPE == 64
119 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
120 goto access_error;
121 #endif
123 if (!(pte & PT_ACCESSED_MASK)) {
124 mark_page_dirty(vcpu->kvm, table_gfn);
125 pte |= PT_ACCESSED_MASK;
126 kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
129 if (walker->level == PT_PAGE_TABLE_LEVEL) {
130 walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
131 break;
134 if (walker->level == PT_DIRECTORY_LEVEL
135 && (pte & PT_PAGE_SIZE_MASK)
136 && (PTTYPE == 64 || is_pse(vcpu))) {
137 walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
138 >> PAGE_SHIFT;
139 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
140 break;
143 walker->inherited_ar &= pte;
144 --walker->level;
147 if (write_fault && !is_dirty_pte(pte)) {
148 mark_page_dirty(vcpu->kvm, table_gfn);
149 pte |= PT_DIRTY_MASK;
150 kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
151 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
154 walker->pte = pte;
155 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
156 return 1;
158 not_present:
159 walker->error_code = 0;
160 goto err;
162 access_error:
163 walker->error_code = PFERR_PRESENT_MASK;
165 err:
166 if (write_fault)
167 walker->error_code |= PFERR_WRITE_MASK;
168 if (user_fault)
169 walker->error_code |= PFERR_USER_MASK;
170 if (fetch_fault)
171 walker->error_code |= PFERR_FETCH_MASK;
172 return 0;
175 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
176 u64 *shadow_pte,
177 gpa_t gaddr,
178 pt_element_t gpte,
179 u64 access_bits,
180 int user_fault,
181 int write_fault,
182 int *ptwrite,
183 struct guest_walker *walker,
184 gfn_t gfn)
186 hpa_t paddr;
187 int dirty = gpte & PT_DIRTY_MASK;
188 u64 spte;
189 int was_rmapped = is_rmap_pte(*shadow_pte);
190 struct page *page;
192 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
193 " user_fault %d gfn %lx\n",
194 __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
195 write_fault, user_fault, gfn);
198 * We don't set the accessed bit, since we sometimes want to see
199 * whether the guest actually used the pte (in order to detect
200 * demand paging).
202 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
203 spte |= gpte & PT64_NX_MASK;
204 if (!dirty)
205 access_bits &= ~PT_WRITABLE_MASK;
207 paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
210 * the reason paddr get mask even that it isnt pte is beacuse the
211 * HPA_ERR_MASK bit might be used to signal error
213 page = pfn_to_page((paddr & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
215 spte |= PT_PRESENT_MASK;
216 if (access_bits & PT_USER_MASK)
217 spte |= PT_USER_MASK;
219 if (is_error_hpa(paddr)) {
220 set_shadow_pte(shadow_pte,
221 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
222 kvm_release_page_clean(page);
223 return;
226 spte |= paddr;
228 if ((access_bits & PT_WRITABLE_MASK)
229 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
230 struct kvm_mmu_page *shadow;
232 spte |= PT_WRITABLE_MASK;
233 if (user_fault) {
234 mmu_unshadow(vcpu->kvm, gfn);
235 goto unshadowed;
238 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
239 if (shadow) {
240 pgprintk("%s: found shadow page for %lx, marking ro\n",
241 __FUNCTION__, gfn);
242 access_bits &= ~PT_WRITABLE_MASK;
243 if (is_writeble_pte(spte)) {
244 spte &= ~PT_WRITABLE_MASK;
245 kvm_x86_ops->tlb_flush(vcpu);
247 if (write_fault)
248 *ptwrite = 1;
252 unshadowed:
254 if (access_bits & PT_WRITABLE_MASK)
255 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
257 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
258 set_shadow_pte(shadow_pte, spte);
259 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
260 if (!was_rmapped) {
261 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
262 >> PAGE_SHIFT);
263 if (!is_rmap_pte(*shadow_pte))
264 kvm_release_page_clean(page);
266 else
267 kvm_release_page_clean(page);
268 if (!ptwrite || !*ptwrite)
269 vcpu->last_pte_updated = shadow_pte;
272 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
273 u64 *shadow_pte, u64 access_bits,
274 int user_fault, int write_fault, int *ptwrite,
275 struct guest_walker *walker, gfn_t gfn)
277 access_bits &= gpte;
278 FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
279 gpte, access_bits, user_fault, write_fault,
280 ptwrite, walker, gfn);
283 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
284 u64 *spte, const void *pte, int bytes,
285 int offset_in_pte)
287 pt_element_t gpte;
289 gpte = *(const pt_element_t *)pte;
290 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
291 if (!offset_in_pte && !is_present_pte(gpte))
292 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
293 return;
295 if (bytes < sizeof(pt_element_t))
296 return;
297 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
298 FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
299 0, NULL, NULL,
300 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
303 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
304 u64 *shadow_pte, u64 access_bits,
305 int user_fault, int write_fault, int *ptwrite,
306 struct guest_walker *walker, gfn_t gfn)
308 gpa_t gaddr;
310 access_bits &= gpde;
311 gaddr = (gpa_t)gfn << PAGE_SHIFT;
312 if (PTTYPE == 32 && is_cpuid_PSE36())
313 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
314 (32 - PT32_DIR_PSE36_SHIFT);
315 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
316 gpde, access_bits, user_fault, write_fault,
317 ptwrite, walker, gfn);
321 * Fetch a shadow pte for a specific level in the paging hierarchy.
323 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
324 struct guest_walker *walker,
325 int user_fault, int write_fault, int *ptwrite)
327 hpa_t shadow_addr;
328 int level;
329 u64 *shadow_ent;
330 u64 *prev_shadow_ent = NULL;
332 if (!is_present_pte(walker->pte))
333 return NULL;
335 shadow_addr = vcpu->mmu.root_hpa;
336 level = vcpu->mmu.shadow_root_level;
337 if (level == PT32E_ROOT_LEVEL) {
338 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
339 shadow_addr &= PT64_BASE_ADDR_MASK;
340 --level;
343 for (; ; level--) {
344 u32 index = SHADOW_PT_INDEX(addr, level);
345 struct kvm_mmu_page *shadow_page;
346 u64 shadow_pte;
347 int metaphysical;
348 gfn_t table_gfn;
349 unsigned hugepage_access = 0;
351 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
352 if (is_shadow_present_pte(*shadow_ent)) {
353 if (level == PT_PAGE_TABLE_LEVEL)
354 break;
355 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
356 prev_shadow_ent = shadow_ent;
357 continue;
360 if (level == PT_PAGE_TABLE_LEVEL)
361 break;
363 if (level - 1 == PT_PAGE_TABLE_LEVEL
364 && walker->level == PT_DIRECTORY_LEVEL) {
365 metaphysical = 1;
366 hugepage_access = walker->pte;
367 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
368 if (!is_dirty_pte(walker->pte))
369 hugepage_access &= ~PT_WRITABLE_MASK;
370 hugepage_access >>= PT_WRITABLE_SHIFT;
371 if (walker->pte & PT64_NX_MASK)
372 hugepage_access |= (1 << 2);
373 table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
374 >> PAGE_SHIFT;
375 } else {
376 metaphysical = 0;
377 table_gfn = walker->table_gfn[level - 2];
379 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
380 metaphysical, hugepage_access,
381 shadow_ent);
382 shadow_addr = __pa(shadow_page->spt);
383 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
384 | PT_WRITABLE_MASK | PT_USER_MASK;
385 *shadow_ent = shadow_pte;
386 prev_shadow_ent = shadow_ent;
389 if (walker->level == PT_DIRECTORY_LEVEL) {
390 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
391 walker->inherited_ar, user_fault, write_fault,
392 ptwrite, walker, walker->gfn);
393 } else {
394 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
395 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
396 walker->inherited_ar, user_fault, write_fault,
397 ptwrite, walker, walker->gfn);
399 return shadow_ent;
403 * Page fault handler. There are several causes for a page fault:
404 * - there is no shadow pte for the guest pte
405 * - write access through a shadow pte marked read only so that we can set
406 * the dirty bit
407 * - write access to a shadow pte marked read only so we can update the page
408 * dirty bitmap, when userspace requests it
409 * - mmio access; in this case we will never install a present shadow pte
410 * - normal guest page fault due to the guest pte marked not present, not
411 * writable, or not executable
413 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
414 * a negative value on error.
416 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
417 u32 error_code)
419 int write_fault = error_code & PFERR_WRITE_MASK;
420 int user_fault = error_code & PFERR_USER_MASK;
421 int fetch_fault = error_code & PFERR_FETCH_MASK;
422 struct guest_walker walker;
423 u64 *shadow_pte;
424 int write_pt = 0;
425 int r;
427 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
428 kvm_mmu_audit(vcpu, "pre page fault");
430 r = mmu_topup_memory_caches(vcpu);
431 if (r)
432 return r;
435 * Look up the shadow pte for the faulting address.
437 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
438 fetch_fault);
441 * The page is not mapped by the guest. Let the guest handle it.
443 if (!r) {
444 pgprintk("%s: guest page fault\n", __FUNCTION__);
445 inject_page_fault(vcpu, addr, walker.error_code);
446 vcpu->last_pt_write_count = 0; /* reset fork detector */
447 return 0;
450 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
451 &write_pt);
452 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
453 shadow_pte, *shadow_pte, write_pt);
455 if (!write_pt)
456 vcpu->last_pt_write_count = 0; /* reset fork detector */
459 * mmio: emulate if accessible, otherwise its a guest fault.
461 if (is_io_pte(*shadow_pte))
462 return 1;
464 ++vcpu->stat.pf_fixed;
465 kvm_mmu_audit(vcpu, "post page fault (fixed)");
467 return write_pt;
470 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
472 struct guest_walker walker;
473 gpa_t gpa = UNMAPPED_GVA;
474 int r;
476 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
478 if (r) {
479 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
480 gpa |= vaddr & ~PAGE_MASK;
483 return gpa;
486 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
487 struct kvm_mmu_page *sp)
489 int i, offset = 0;
490 pt_element_t *gpt;
491 struct page *page;
493 if (sp->role.metaphysical
494 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
495 nonpaging_prefetch_page(vcpu, sp);
496 return;
499 if (PTTYPE == 32)
500 offset = sp->role.quadrant << PT64_LEVEL_BITS;
501 page = gfn_to_page(vcpu->kvm, sp->gfn);
502 gpt = kmap_atomic(page, KM_USER0);
503 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
504 if (is_present_pte(gpt[offset + i]))
505 sp->spt[i] = shadow_trap_nonpresent_pte;
506 else
507 sp->spt[i] = shadow_notrap_nonpresent_pte;
508 kunmap_atomic(gpt, KM_USER0);
509 kvm_release_page_clean(page);
512 #undef pt_element_t
513 #undef guest_walker
514 #undef FNAME
515 #undef PT_BASE_ADDR_MASK
516 #undef PT_INDEX
517 #undef SHADOW_PT_INDEX
518 #undef PT_LEVEL_MASK
519 #undef PT_DIR_BASE_ADDR_MASK
520 #undef PT_LEVEL_BITS
521 #undef PT_MAX_FULL_LEVELS