2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103 static struct kmem_cache
*policy_cache
;
104 static struct kmem_cache
*sn_cache
;
106 /* Highest zone. An specific allocation for a zone below that is not
108 enum zone_type policy_zone
= 0;
111 * run-time system-wide default policy => local allocation
113 struct mempolicy default_policy
= {
114 .refcnt
= ATOMIC_INIT(1), /* never free it */
115 .mode
= MPOL_PREFERRED
,
116 .flags
= MPOL_F_LOCAL
,
119 static const struct mempolicy_operations
{
120 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
122 * If read-side task has no lock to protect task->mempolicy, write-side
123 * task will rebind the task->mempolicy by two step. The first step is
124 * setting all the newly nodes, and the second step is cleaning all the
125 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * If we have a lock to protect task->mempolicy in read-side, we do
131 * MPOL_REBIND_ONCE - do rebind work at once
132 * MPOL_REBIND_STEP1 - set all the newly nodes
133 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
136 enum mpol_rebind_step step
);
137 } mpol_ops
[MPOL_MAX
];
139 /* Check that the nodemask contains at least one populated zone */
140 static int is_valid_nodemask(const nodemask_t
*nodemask
)
144 for_each_node_mask(nd
, *nodemask
) {
147 for (k
= 0; k
<= policy_zone
; k
++) {
148 z
= &NODE_DATA(nd
)->node_zones
[k
];
149 if (z
->present_pages
> 0)
157 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
159 return pol
->flags
& MPOL_MODE_FLAGS
;
162 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
163 const nodemask_t
*rel
)
166 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
167 nodes_onto(*ret
, tmp
, *rel
);
170 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
172 if (nodes_empty(*nodes
))
174 pol
->v
.nodes
= *nodes
;
178 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
181 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
182 else if (nodes_empty(*nodes
))
183 return -EINVAL
; /* no allowed nodes */
185 pol
->v
.preferred_node
= first_node(*nodes
);
189 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
191 if (!is_valid_nodemask(nodes
))
193 pol
->v
.nodes
= *nodes
;
198 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
199 * any, for the new policy. mpol_new() has already validated the nodes
200 * parameter with respect to the policy mode and flags. But, we need to
201 * handle an empty nodemask with MPOL_PREFERRED here.
203 * Must be called holding task's alloc_lock to protect task's mems_allowed
204 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 static int mpol_set_nodemask(struct mempolicy
*pol
,
207 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
211 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
214 /* Check N_HIGH_MEMORY */
215 nodes_and(nsc
->mask1
,
216 cpuset_current_mems_allowed
, node_states
[N_HIGH_MEMORY
]);
219 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
220 nodes
= NULL
; /* explicit local allocation */
222 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
223 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
225 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
227 if (mpol_store_user_nodemask(pol
))
228 pol
->w
.user_nodemask
= *nodes
;
230 pol
->w
.cpuset_mems_allowed
=
231 cpuset_current_mems_allowed
;
235 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
237 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
242 * This function just creates a new policy, does some check and simple
243 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
248 struct mempolicy
*policy
;
250 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
251 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : -1);
253 if (mode
== MPOL_DEFAULT
) {
254 if (nodes
&& !nodes_empty(*nodes
))
255 return ERR_PTR(-EINVAL
);
256 return NULL
; /* simply delete any existing policy */
261 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
262 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
263 * All other modes require a valid pointer to a non-empty nodemask.
265 if (mode
== MPOL_PREFERRED
) {
266 if (nodes_empty(*nodes
)) {
267 if (((flags
& MPOL_F_STATIC_NODES
) ||
268 (flags
& MPOL_F_RELATIVE_NODES
)))
269 return ERR_PTR(-EINVAL
);
271 } else if (nodes_empty(*nodes
))
272 return ERR_PTR(-EINVAL
);
273 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
275 return ERR_PTR(-ENOMEM
);
276 atomic_set(&policy
->refcnt
, 1);
278 policy
->flags
= flags
;
283 /* Slow path of a mpol destructor. */
284 void __mpol_put(struct mempolicy
*p
)
286 if (!atomic_dec_and_test(&p
->refcnt
))
288 kmem_cache_free(policy_cache
, p
);
291 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
292 enum mpol_rebind_step step
)
298 * MPOL_REBIND_ONCE - do rebind work at once
299 * MPOL_REBIND_STEP1 - set all the newly nodes
300 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
303 enum mpol_rebind_step step
)
307 if (pol
->flags
& MPOL_F_STATIC_NODES
)
308 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
309 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
310 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
313 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
316 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
317 nodes_remap(tmp
, pol
->v
.nodes
,
318 pol
->w
.cpuset_mems_allowed
, *nodes
);
319 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
320 } else if (step
== MPOL_REBIND_STEP2
) {
321 tmp
= pol
->w
.cpuset_mems_allowed
;
322 pol
->w
.cpuset_mems_allowed
= *nodes
;
327 if (nodes_empty(tmp
))
330 if (step
== MPOL_REBIND_STEP1
)
331 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
332 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
337 if (!node_isset(current
->il_next
, tmp
)) {
338 current
->il_next
= next_node(current
->il_next
, tmp
);
339 if (current
->il_next
>= MAX_NUMNODES
)
340 current
->il_next
= first_node(tmp
);
341 if (current
->il_next
>= MAX_NUMNODES
)
342 current
->il_next
= numa_node_id();
346 static void mpol_rebind_preferred(struct mempolicy
*pol
,
347 const nodemask_t
*nodes
,
348 enum mpol_rebind_step step
)
352 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
353 int node
= first_node(pol
->w
.user_nodemask
);
355 if (node_isset(node
, *nodes
)) {
356 pol
->v
.preferred_node
= node
;
357 pol
->flags
&= ~MPOL_F_LOCAL
;
359 pol
->flags
|= MPOL_F_LOCAL
;
360 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
361 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
362 pol
->v
.preferred_node
= first_node(tmp
);
363 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
364 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
365 pol
->w
.cpuset_mems_allowed
,
367 pol
->w
.cpuset_mems_allowed
= *nodes
;
372 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 * If read-side task has no lock to protect task->mempolicy, write-side
375 * task will rebind the task->mempolicy by two step. The first step is
376 * setting all the newly nodes, and the second step is cleaning all the
377 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * If we have a lock to protect task->mempolicy in read-side, we do
383 * MPOL_REBIND_ONCE - do rebind work at once
384 * MPOL_REBIND_STEP1 - set all the newly nodes
385 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
388 enum mpol_rebind_step step
)
392 if (!mpol_store_user_nodemask(pol
) && step
== 0 &&
393 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
396 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
399 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
402 if (step
== MPOL_REBIND_STEP1
)
403 pol
->flags
|= MPOL_F_REBINDING
;
404 else if (step
== MPOL_REBIND_STEP2
)
405 pol
->flags
&= ~MPOL_F_REBINDING
;
406 else if (step
>= MPOL_REBIND_NSTEP
)
409 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
413 * Wrapper for mpol_rebind_policy() that just requires task
414 * pointer, and updates task mempolicy.
416 * Called with task's alloc_lock held.
419 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
420 enum mpol_rebind_step step
)
422 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
426 * Rebind each vma in mm to new nodemask.
428 * Call holding a reference to mm. Takes mm->mmap_sem during call.
431 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
433 struct vm_area_struct
*vma
;
435 down_write(&mm
->mmap_sem
);
436 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
437 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
438 up_write(&mm
->mmap_sem
);
441 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
443 .rebind
= mpol_rebind_default
,
445 [MPOL_INTERLEAVE
] = {
446 .create
= mpol_new_interleave
,
447 .rebind
= mpol_rebind_nodemask
,
450 .create
= mpol_new_preferred
,
451 .rebind
= mpol_rebind_preferred
,
454 .create
= mpol_new_bind
,
455 .rebind
= mpol_rebind_nodemask
,
459 static void gather_stats(struct page
*, void *, int pte_dirty
);
460 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
461 unsigned long flags
);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
465 unsigned long addr
, unsigned long end
,
466 const nodemask_t
*nodes
, unsigned long flags
,
473 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
478 if (!pte_present(*pte
))
480 page
= vm_normal_page(vma
, addr
, *pte
);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page
) || PageKsm(page
))
490 nid
= page_to_nid(page
);
491 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
494 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
495 migrate_page_add(page
, private, flags
);
498 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
499 pte_unmap_unlock(orig_pte
, ptl
);
503 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
504 unsigned long addr
, unsigned long end
,
505 const nodemask_t
*nodes
, unsigned long flags
,
511 pmd
= pmd_offset(pud
, addr
);
513 next
= pmd_addr_end(addr
, end
);
514 split_huge_page_pmd(vma
->vm_mm
, pmd
);
515 if (pmd_none_or_clear_bad(pmd
))
517 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
520 } while (pmd
++, addr
= next
, addr
!= end
);
524 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
525 unsigned long addr
, unsigned long end
,
526 const nodemask_t
*nodes
, unsigned long flags
,
532 pud
= pud_offset(pgd
, addr
);
534 next
= pud_addr_end(addr
, end
);
535 if (pud_none_or_clear_bad(pud
))
537 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
540 } while (pud
++, addr
= next
, addr
!= end
);
544 static inline int check_pgd_range(struct vm_area_struct
*vma
,
545 unsigned long addr
, unsigned long end
,
546 const nodemask_t
*nodes
, unsigned long flags
,
552 pgd
= pgd_offset(vma
->vm_mm
, addr
);
554 next
= pgd_addr_end(addr
, end
);
555 if (pgd_none_or_clear_bad(pgd
))
557 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
560 } while (pgd
++, addr
= next
, addr
!= end
);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct
*
570 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
571 const nodemask_t
*nodes
, unsigned long flags
, void *private)
574 struct vm_area_struct
*first
, *vma
, *prev
;
577 first
= find_vma(mm
, start
);
579 return ERR_PTR(-EFAULT
);
581 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
582 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
583 if (!vma
->vm_next
&& vma
->vm_end
< end
)
584 return ERR_PTR(-EFAULT
);
585 if (prev
&& prev
->vm_end
< vma
->vm_start
)
586 return ERR_PTR(-EFAULT
);
588 if (!is_vm_hugetlb_page(vma
) &&
589 ((flags
& MPOL_MF_STRICT
) ||
590 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
591 vma_migratable(vma
)))) {
592 unsigned long endvma
= vma
->vm_end
;
596 if (vma
->vm_start
> start
)
597 start
= vma
->vm_start
;
598 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
601 first
= ERR_PTR(err
);
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct
*vma
, struct mempolicy
*new)
614 struct mempolicy
*old
= vma
->vm_policy
;
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
618 vma
->vm_ops
, vma
->vm_file
,
619 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
621 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
)
622 err
= vma
->vm_ops
->set_policy(vma
, new);
625 vma
->vm_policy
= new;
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
633 unsigned long end
, struct mempolicy
*new_pol
)
635 struct vm_area_struct
*next
;
636 struct vm_area_struct
*prev
;
637 struct vm_area_struct
*vma
;
640 unsigned long vmstart
;
643 vma
= find_vma_prev(mm
, start
, &prev
);
644 if (!vma
|| vma
->vm_start
> start
)
647 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
649 vmstart
= max(start
, vma
->vm_start
);
650 vmend
= min(end
, vma
->vm_end
);
652 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
653 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
654 vma
->anon_vma
, vma
->vm_file
, pgoff
, new_pol
);
660 if (vma
->vm_start
!= vmstart
) {
661 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
665 if (vma
->vm_end
!= vmend
) {
666 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
670 err
= policy_vma(vma
, new_pol
);
680 * Update task->flags PF_MEMPOLICY bit: set iff non-default
681 * mempolicy. Allows more rapid checking of this (combined perhaps
682 * with other PF_* flag bits) on memory allocation hot code paths.
684 * If called from outside this file, the task 'p' should -only- be
685 * a newly forked child not yet visible on the task list, because
686 * manipulating the task flags of a visible task is not safe.
688 * The above limitation is why this routine has the funny name
689 * mpol_fix_fork_child_flag().
691 * It is also safe to call this with a task pointer of current,
692 * which the static wrapper mpol_set_task_struct_flag() does,
693 * for use within this file.
696 void mpol_fix_fork_child_flag(struct task_struct
*p
)
699 p
->flags
|= PF_MEMPOLICY
;
701 p
->flags
&= ~PF_MEMPOLICY
;
704 static void mpol_set_task_struct_flag(void)
706 mpol_fix_fork_child_flag(current
);
709 /* Set the process memory policy */
710 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
713 struct mempolicy
*new, *old
;
714 struct mm_struct
*mm
= current
->mm
;
715 NODEMASK_SCRATCH(scratch
);
721 new = mpol_new(mode
, flags
, nodes
);
727 * prevent changing our mempolicy while show_numa_maps()
729 * Note: do_set_mempolicy() can be called at init time
733 down_write(&mm
->mmap_sem
);
735 ret
= mpol_set_nodemask(new, nodes
, scratch
);
737 task_unlock(current
);
739 up_write(&mm
->mmap_sem
);
743 old
= current
->mempolicy
;
744 current
->mempolicy
= new;
745 mpol_set_task_struct_flag();
746 if (new && new->mode
== MPOL_INTERLEAVE
&&
747 nodes_weight(new->v
.nodes
))
748 current
->il_next
= first_node(new->v
.nodes
);
749 task_unlock(current
);
751 up_write(&mm
->mmap_sem
);
756 NODEMASK_SCRATCH_FREE(scratch
);
761 * Return nodemask for policy for get_mempolicy() query
763 * Called with task's alloc_lock held
765 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
768 if (p
== &default_policy
)
774 case MPOL_INTERLEAVE
:
778 if (!(p
->flags
& MPOL_F_LOCAL
))
779 node_set(p
->v
.preferred_node
, *nodes
);
780 /* else return empty node mask for local allocation */
787 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
792 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
794 err
= page_to_nid(p
);
800 /* Retrieve NUMA policy */
801 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
802 unsigned long addr
, unsigned long flags
)
805 struct mm_struct
*mm
= current
->mm
;
806 struct vm_area_struct
*vma
= NULL
;
807 struct mempolicy
*pol
= current
->mempolicy
;
810 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
813 if (flags
& MPOL_F_MEMS_ALLOWED
) {
814 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
816 *policy
= 0; /* just so it's initialized */
818 *nmask
= cpuset_current_mems_allowed
;
819 task_unlock(current
);
823 if (flags
& MPOL_F_ADDR
) {
825 * Do NOT fall back to task policy if the
826 * vma/shared policy at addr is NULL. We
827 * want to return MPOL_DEFAULT in this case.
829 down_read(&mm
->mmap_sem
);
830 vma
= find_vma_intersection(mm
, addr
, addr
+1);
832 up_read(&mm
->mmap_sem
);
835 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
836 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
838 pol
= vma
->vm_policy
;
843 pol
= &default_policy
; /* indicates default behavior */
845 if (flags
& MPOL_F_NODE
) {
846 if (flags
& MPOL_F_ADDR
) {
847 err
= lookup_node(mm
, addr
);
851 } else if (pol
== current
->mempolicy
&&
852 pol
->mode
== MPOL_INTERLEAVE
) {
853 *policy
= current
->il_next
;
859 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
862 * Internal mempolicy flags must be masked off before exposing
863 * the policy to userspace.
865 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
869 up_read(¤t
->mm
->mmap_sem
);
875 if (mpol_store_user_nodemask(pol
)) {
876 *nmask
= pol
->w
.user_nodemask
;
879 get_policy_nodemask(pol
, nmask
);
880 task_unlock(current
);
887 up_read(¤t
->mm
->mmap_sem
);
891 #ifdef CONFIG_MIGRATION
895 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
899 * Avoid migrating a page that is shared with others.
901 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
902 if (!isolate_lru_page(page
)) {
903 list_add_tail(&page
->lru
, pagelist
);
904 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
905 page_is_file_cache(page
));
910 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
912 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
916 * Migrate pages from one node to a target node.
917 * Returns error or the number of pages not migrated.
919 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
925 struct vm_area_struct
*vma
;
928 node_set(source
, nmask
);
930 vma
= check_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
931 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
935 if (!list_empty(&pagelist
)) {
936 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
939 putback_lru_pages(&pagelist
);
946 * Move pages between the two nodesets so as to preserve the physical
947 * layout as much as possible.
949 * Returns the number of page that could not be moved.
951 int do_migrate_pages(struct mm_struct
*mm
,
952 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
958 err
= migrate_prep();
962 down_read(&mm
->mmap_sem
);
964 err
= migrate_vmas(mm
, from_nodes
, to_nodes
, flags
);
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
1000 while (!nodes_empty(tmp
)) {
1005 for_each_node_mask(s
, tmp
) {
1006 d
= node_remap(s
, *from_nodes
, *to_nodes
);
1010 source
= s
; /* Node moved. Memorize */
1013 /* dest not in remaining from nodes? */
1014 if (!node_isset(dest
, tmp
))
1020 node_clear(source
, tmp
);
1021 err
= migrate_to_node(mm
, source
, dest
, flags
);
1028 up_read(&mm
->mmap_sem
);
1036 * Allocate a new page for page migration based on vma policy.
1037 * Start assuming that page is mapped by vma pointed to by @private.
1038 * Search forward from there, if not. N.B., this assumes that the
1039 * list of pages handed to migrate_pages()--which is how we get here--
1040 * is in virtual address order.
1042 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1044 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
1045 unsigned long uninitialized_var(address
);
1048 address
= page_address_in_vma(page
, vma
);
1049 if (address
!= -EFAULT
)
1055 * if !vma, alloc_page_vma() will use task or system default policy
1057 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1061 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1062 unsigned long flags
)
1066 int do_migrate_pages(struct mm_struct
*mm
,
1067 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
1072 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1078 static long do_mbind(unsigned long start
, unsigned long len
,
1079 unsigned short mode
, unsigned short mode_flags
,
1080 nodemask_t
*nmask
, unsigned long flags
)
1082 struct vm_area_struct
*vma
;
1083 struct mm_struct
*mm
= current
->mm
;
1084 struct mempolicy
*new;
1087 LIST_HEAD(pagelist
);
1089 if (flags
& ~(unsigned long)(MPOL_MF_STRICT
|
1090 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
1092 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1095 if (start
& ~PAGE_MASK
)
1098 if (mode
== MPOL_DEFAULT
)
1099 flags
&= ~MPOL_MF_STRICT
;
1101 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1109 new = mpol_new(mode
, mode_flags
, nmask
);
1111 return PTR_ERR(new);
1114 * If we are using the default policy then operation
1115 * on discontinuous address spaces is okay after all
1118 flags
|= MPOL_MF_DISCONTIG_OK
;
1120 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1121 start
, start
+ len
, mode
, mode_flags
,
1122 nmask
? nodes_addr(*nmask
)[0] : -1);
1124 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1126 err
= migrate_prep();
1131 NODEMASK_SCRATCH(scratch
);
1133 down_write(&mm
->mmap_sem
);
1135 err
= mpol_set_nodemask(new, nmask
, scratch
);
1136 task_unlock(current
);
1138 up_write(&mm
->mmap_sem
);
1141 NODEMASK_SCRATCH_FREE(scratch
);
1146 vma
= check_range(mm
, start
, end
, nmask
,
1147 flags
| MPOL_MF_INVERT
, &pagelist
);
1153 err
= mbind_range(mm
, start
, end
, new);
1155 if (!list_empty(&pagelist
)) {
1156 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
1160 putback_lru_pages(&pagelist
);
1163 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
1166 putback_lru_pages(&pagelist
);
1168 up_write(&mm
->mmap_sem
);
1175 * User space interface with variable sized bitmaps for nodelists.
1178 /* Copy a node mask from user space. */
1179 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1180 unsigned long maxnode
)
1183 unsigned long nlongs
;
1184 unsigned long endmask
;
1187 nodes_clear(*nodes
);
1188 if (maxnode
== 0 || !nmask
)
1190 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1193 nlongs
= BITS_TO_LONGS(maxnode
);
1194 if ((maxnode
% BITS_PER_LONG
) == 0)
1197 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1199 /* When the user specified more nodes than supported just check
1200 if the non supported part is all zero. */
1201 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1202 if (nlongs
> PAGE_SIZE
/sizeof(long))
1204 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1206 if (get_user(t
, nmask
+ k
))
1208 if (k
== nlongs
- 1) {
1214 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1218 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1220 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1224 /* Copy a kernel node mask to user space */
1225 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1228 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1229 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1231 if (copy
> nbytes
) {
1232 if (copy
> PAGE_SIZE
)
1234 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1238 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1241 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1242 unsigned long, mode
, unsigned long __user
*, nmask
,
1243 unsigned long, maxnode
, unsigned, flags
)
1247 unsigned short mode_flags
;
1249 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1250 mode
&= ~MPOL_MODE_FLAGS
;
1251 if (mode
>= MPOL_MAX
)
1253 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1254 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1256 err
= get_nodes(&nodes
, nmask
, maxnode
);
1259 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1262 /* Set the process memory policy */
1263 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1264 unsigned long, maxnode
)
1268 unsigned short flags
;
1270 flags
= mode
& MPOL_MODE_FLAGS
;
1271 mode
&= ~MPOL_MODE_FLAGS
;
1272 if ((unsigned int)mode
>= MPOL_MAX
)
1274 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1276 err
= get_nodes(&nodes
, nmask
, maxnode
);
1279 return do_set_mempolicy(mode
, flags
, &nodes
);
1282 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1283 const unsigned long __user
*, old_nodes
,
1284 const unsigned long __user
*, new_nodes
)
1286 const struct cred
*cred
= current_cred(), *tcred
;
1287 struct mm_struct
*mm
= NULL
;
1288 struct task_struct
*task
;
1289 nodemask_t task_nodes
;
1293 NODEMASK_SCRATCH(scratch
);
1298 old
= &scratch
->mask1
;
1299 new = &scratch
->mask2
;
1301 err
= get_nodes(old
, old_nodes
, maxnode
);
1305 err
= get_nodes(new, new_nodes
, maxnode
);
1309 /* Find the mm_struct */
1311 task
= pid
? find_task_by_vpid(pid
) : current
;
1317 mm
= get_task_mm(task
);
1325 * Check if this process has the right to modify the specified
1326 * process. The right exists if the process has administrative
1327 * capabilities, superuser privileges or the same
1328 * userid as the target process.
1331 tcred
= __task_cred(task
);
1332 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1333 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1334 !capable(CAP_SYS_NICE
)) {
1341 task_nodes
= cpuset_mems_allowed(task
);
1342 /* Is the user allowed to access the target nodes? */
1343 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1348 if (!nodes_subset(*new, node_states
[N_HIGH_MEMORY
])) {
1353 err
= security_task_movememory(task
);
1357 err
= do_migrate_pages(mm
, old
, new,
1358 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1362 NODEMASK_SCRATCH_FREE(scratch
);
1368 /* Retrieve NUMA policy */
1369 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1370 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1371 unsigned long, addr
, unsigned long, flags
)
1374 int uninitialized_var(pval
);
1377 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1380 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1385 if (policy
&& put_user(pval
, policy
))
1389 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1394 #ifdef CONFIG_COMPAT
1396 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
1397 compat_ulong_t __user
*nmask
,
1398 compat_ulong_t maxnode
,
1399 compat_ulong_t addr
, compat_ulong_t flags
)
1402 unsigned long __user
*nm
= NULL
;
1403 unsigned long nr_bits
, alloc_size
;
1404 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1406 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1407 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1410 nm
= compat_alloc_user_space(alloc_size
);
1412 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1414 if (!err
&& nmask
) {
1415 err
= copy_from_user(bm
, nm
, alloc_size
);
1416 /* ensure entire bitmap is zeroed */
1417 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1418 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1424 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1425 compat_ulong_t maxnode
)
1428 unsigned long __user
*nm
= NULL
;
1429 unsigned long nr_bits
, alloc_size
;
1430 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1432 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1433 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1436 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1437 nm
= compat_alloc_user_space(alloc_size
);
1438 err
|= copy_to_user(nm
, bm
, alloc_size
);
1444 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1447 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1448 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1449 compat_ulong_t maxnode
, compat_ulong_t flags
)
1452 unsigned long __user
*nm
= NULL
;
1453 unsigned long nr_bits
, alloc_size
;
1456 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1457 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1460 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1461 nm
= compat_alloc_user_space(alloc_size
);
1462 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1468 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1474 * get_vma_policy(@task, @vma, @addr)
1475 * @task - task for fallback if vma policy == default
1476 * @vma - virtual memory area whose policy is sought
1477 * @addr - address in @vma for shared policy lookup
1479 * Returns effective policy for a VMA at specified address.
1480 * Falls back to @task or system default policy, as necessary.
1481 * Current or other task's task mempolicy and non-shared vma policies
1482 * are protected by the task's mmap_sem, which must be held for read by
1484 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1485 * count--added by the get_policy() vm_op, as appropriate--to protect against
1486 * freeing by another task. It is the caller's responsibility to free the
1487 * extra reference for shared policies.
1489 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1490 struct vm_area_struct
*vma
, unsigned long addr
)
1492 struct mempolicy
*pol
= task
->mempolicy
;
1495 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1496 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1500 } else if (vma
->vm_policy
)
1501 pol
= vma
->vm_policy
;
1504 pol
= &default_policy
;
1509 * Return a nodemask representing a mempolicy for filtering nodes for
1512 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1514 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1515 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1516 gfp_zone(gfp
) >= policy_zone
&&
1517 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1518 return &policy
->v
.nodes
;
1523 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1524 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1527 switch (policy
->mode
) {
1528 case MPOL_PREFERRED
:
1529 if (!(policy
->flags
& MPOL_F_LOCAL
))
1530 nd
= policy
->v
.preferred_node
;
1534 * Normally, MPOL_BIND allocations are node-local within the
1535 * allowed nodemask. However, if __GFP_THISNODE is set and the
1536 * current node isn't part of the mask, we use the zonelist for
1537 * the first node in the mask instead.
1539 if (unlikely(gfp
& __GFP_THISNODE
) &&
1540 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1541 nd
= first_node(policy
->v
.nodes
);
1546 return node_zonelist(nd
, gfp
);
1549 /* Do dynamic interleaving for a process */
1550 static unsigned interleave_nodes(struct mempolicy
*policy
)
1553 struct task_struct
*me
= current
;
1556 next
= next_node(nid
, policy
->v
.nodes
);
1557 if (next
>= MAX_NUMNODES
)
1558 next
= first_node(policy
->v
.nodes
);
1559 if (next
< MAX_NUMNODES
)
1565 * Depending on the memory policy provide a node from which to allocate the
1567 * @policy must be protected by freeing by the caller. If @policy is
1568 * the current task's mempolicy, this protection is implicit, as only the
1569 * task can change it's policy. The system default policy requires no
1572 unsigned slab_node(struct mempolicy
*policy
)
1574 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1575 return numa_node_id();
1577 switch (policy
->mode
) {
1578 case MPOL_PREFERRED
:
1580 * handled MPOL_F_LOCAL above
1582 return policy
->v
.preferred_node
;
1584 case MPOL_INTERLEAVE
:
1585 return interleave_nodes(policy
);
1589 * Follow bind policy behavior and start allocation at the
1592 struct zonelist
*zonelist
;
1594 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1595 zonelist
= &NODE_DATA(numa_node_id())->node_zonelists
[0];
1596 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1599 return zone
? zone
->node
: numa_node_id();
1607 /* Do static interleaving for a VMA with known offset. */
1608 static unsigned offset_il_node(struct mempolicy
*pol
,
1609 struct vm_area_struct
*vma
, unsigned long off
)
1611 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1617 return numa_node_id();
1618 target
= (unsigned int)off
% nnodes
;
1621 nid
= next_node(nid
, pol
->v
.nodes
);
1623 } while (c
<= target
);
1627 /* Determine a node number for interleave */
1628 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1629 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1635 * for small pages, there is no difference between
1636 * shift and PAGE_SHIFT, so the bit-shift is safe.
1637 * for huge pages, since vm_pgoff is in units of small
1638 * pages, we need to shift off the always 0 bits to get
1641 BUG_ON(shift
< PAGE_SHIFT
);
1642 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1643 off
+= (addr
- vma
->vm_start
) >> shift
;
1644 return offset_il_node(pol
, vma
, off
);
1646 return interleave_nodes(pol
);
1649 #ifdef CONFIG_HUGETLBFS
1651 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1652 * @vma = virtual memory area whose policy is sought
1653 * @addr = address in @vma for shared policy lookup and interleave policy
1654 * @gfp_flags = for requested zone
1655 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1656 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1658 * Returns a zonelist suitable for a huge page allocation and a pointer
1659 * to the struct mempolicy for conditional unref after allocation.
1660 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1661 * @nodemask for filtering the zonelist.
1663 * Must be protected by get_mems_allowed()
1665 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1666 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1667 nodemask_t
**nodemask
)
1669 struct zonelist
*zl
;
1671 *mpol
= get_vma_policy(current
, vma
, addr
);
1672 *nodemask
= NULL
; /* assume !MPOL_BIND */
1674 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1675 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1676 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1678 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1679 if ((*mpol
)->mode
== MPOL_BIND
)
1680 *nodemask
= &(*mpol
)->v
.nodes
;
1686 * init_nodemask_of_mempolicy
1688 * If the current task's mempolicy is "default" [NULL], return 'false'
1689 * to indicate default policy. Otherwise, extract the policy nodemask
1690 * for 'bind' or 'interleave' policy into the argument nodemask, or
1691 * initialize the argument nodemask to contain the single node for
1692 * 'preferred' or 'local' policy and return 'true' to indicate presence
1693 * of non-default mempolicy.
1695 * We don't bother with reference counting the mempolicy [mpol_get/put]
1696 * because the current task is examining it's own mempolicy and a task's
1697 * mempolicy is only ever changed by the task itself.
1699 * N.B., it is the caller's responsibility to free a returned nodemask.
1701 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1703 struct mempolicy
*mempolicy
;
1706 if (!(mask
&& current
->mempolicy
))
1710 mempolicy
= current
->mempolicy
;
1711 switch (mempolicy
->mode
) {
1712 case MPOL_PREFERRED
:
1713 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1714 nid
= numa_node_id();
1716 nid
= mempolicy
->v
.preferred_node
;
1717 init_nodemask_of_node(mask
, nid
);
1722 case MPOL_INTERLEAVE
:
1723 *mask
= mempolicy
->v
.nodes
;
1729 task_unlock(current
);
1736 * mempolicy_nodemask_intersects
1738 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1739 * policy. Otherwise, check for intersection between mask and the policy
1740 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1741 * policy, always return true since it may allocate elsewhere on fallback.
1743 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1745 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1746 const nodemask_t
*mask
)
1748 struct mempolicy
*mempolicy
;
1754 mempolicy
= tsk
->mempolicy
;
1758 switch (mempolicy
->mode
) {
1759 case MPOL_PREFERRED
:
1761 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1762 * allocate from, they may fallback to other nodes when oom.
1763 * Thus, it's possible for tsk to have allocated memory from
1768 case MPOL_INTERLEAVE
:
1769 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1779 /* Allocate a page in interleaved policy.
1780 Own path because it needs to do special accounting. */
1781 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1784 struct zonelist
*zl
;
1787 zl
= node_zonelist(nid
, gfp
);
1788 page
= __alloc_pages(gfp
, order
, zl
);
1789 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1790 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1795 * alloc_pages_vma - Allocate a page for a VMA.
1798 * %GFP_USER user allocation.
1799 * %GFP_KERNEL kernel allocations,
1800 * %GFP_HIGHMEM highmem/user allocations,
1801 * %GFP_FS allocation should not call back into a file system.
1802 * %GFP_ATOMIC don't sleep.
1804 * @order:Order of the GFP allocation.
1805 * @vma: Pointer to VMA or NULL if not available.
1806 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1808 * This function allocates a page from the kernel page pool and applies
1809 * a NUMA policy associated with the VMA or the current process.
1810 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1811 * mm_struct of the VMA to prevent it from going away. Should be used for
1812 * all allocations for pages that will be mapped into
1813 * user space. Returns NULL when no page can be allocated.
1815 * Should be called with the mm_sem of the vma hold.
1818 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1819 unsigned long addr
, int node
)
1821 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1822 struct zonelist
*zl
;
1826 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
1829 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1831 page
= alloc_page_interleave(gfp
, order
, nid
);
1835 zl
= policy_zonelist(gfp
, pol
, node
);
1836 if (unlikely(mpol_needs_cond_ref(pol
))) {
1838 * slow path: ref counted shared policy
1840 struct page
*page
= __alloc_pages_nodemask(gfp
, order
,
1841 zl
, policy_nodemask(gfp
, pol
));
1847 * fast path: default or task policy
1849 page
= __alloc_pages_nodemask(gfp
, order
, zl
,
1850 policy_nodemask(gfp
, pol
));
1856 * alloc_pages_current - Allocate pages.
1859 * %GFP_USER user allocation,
1860 * %GFP_KERNEL kernel allocation,
1861 * %GFP_HIGHMEM highmem allocation,
1862 * %GFP_FS don't call back into a file system.
1863 * %GFP_ATOMIC don't sleep.
1864 * @order: Power of two of allocation size in pages. 0 is a single page.
1866 * Allocate a page from the kernel page pool. When not in
1867 * interrupt context and apply the current process NUMA policy.
1868 * Returns NULL when no page can be allocated.
1870 * Don't call cpuset_update_task_memory_state() unless
1871 * 1) it's ok to take cpuset_sem (can WAIT), and
1872 * 2) allocating for current task (not interrupt).
1874 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1876 struct mempolicy
*pol
= current
->mempolicy
;
1879 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1880 pol
= &default_policy
;
1884 * No reference counting needed for current->mempolicy
1885 * nor system default_policy
1887 if (pol
->mode
== MPOL_INTERLEAVE
)
1888 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1890 page
= __alloc_pages_nodemask(gfp
, order
,
1891 policy_zonelist(gfp
, pol
, numa_node_id()),
1892 policy_nodemask(gfp
, pol
));
1896 EXPORT_SYMBOL(alloc_pages_current
);
1899 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1900 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1901 * with the mems_allowed returned by cpuset_mems_allowed(). This
1902 * keeps mempolicies cpuset relative after its cpuset moves. See
1903 * further kernel/cpuset.c update_nodemask().
1905 * current's mempolicy may be rebinded by the other task(the task that changes
1906 * cpuset's mems), so we needn't do rebind work for current task.
1909 /* Slow path of a mempolicy duplicate */
1910 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
1912 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1915 return ERR_PTR(-ENOMEM
);
1917 /* task's mempolicy is protected by alloc_lock */
1918 if (old
== current
->mempolicy
) {
1921 task_unlock(current
);
1926 if (current_cpuset_is_being_rebound()) {
1927 nodemask_t mems
= cpuset_mems_allowed(current
);
1928 if (new->flags
& MPOL_F_REBINDING
)
1929 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
1931 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
1934 atomic_set(&new->refcnt
, 1);
1939 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1940 * eliminate the * MPOL_F_* flags that require conditional ref and
1941 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1942 * after return. Use the returned value.
1944 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1945 * policy lookup, even if the policy needs/has extra ref on lookup.
1946 * shmem_readahead needs this.
1948 struct mempolicy
*__mpol_cond_copy(struct mempolicy
*tompol
,
1949 struct mempolicy
*frompol
)
1951 if (!mpol_needs_cond_ref(frompol
))
1955 tompol
->flags
&= ~MPOL_F_SHARED
; /* copy doesn't need unref */
1956 __mpol_put(frompol
);
1960 /* Slow path of a mempolicy comparison */
1961 int __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
1965 if (a
->mode
!= b
->mode
)
1967 if (a
->flags
!= b
->flags
)
1969 if (mpol_store_user_nodemask(a
))
1970 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
1976 case MPOL_INTERLEAVE
:
1977 return nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
1978 case MPOL_PREFERRED
:
1979 return a
->v
.preferred_node
== b
->v
.preferred_node
;
1987 * Shared memory backing store policy support.
1989 * Remember policies even when nobody has shared memory mapped.
1990 * The policies are kept in Red-Black tree linked from the inode.
1991 * They are protected by the sp->lock spinlock, which should be held
1992 * for any accesses to the tree.
1995 /* lookup first element intersecting start-end */
1996 /* Caller holds sp->lock */
1997 static struct sp_node
*
1998 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2000 struct rb_node
*n
= sp
->root
.rb_node
;
2003 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2005 if (start
>= p
->end
)
2007 else if (end
<= p
->start
)
2015 struct sp_node
*w
= NULL
;
2016 struct rb_node
*prev
= rb_prev(n
);
2019 w
= rb_entry(prev
, struct sp_node
, nd
);
2020 if (w
->end
<= start
)
2024 return rb_entry(n
, struct sp_node
, nd
);
2027 /* Insert a new shared policy into the list. */
2028 /* Caller holds sp->lock */
2029 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2031 struct rb_node
**p
= &sp
->root
.rb_node
;
2032 struct rb_node
*parent
= NULL
;
2037 nd
= rb_entry(parent
, struct sp_node
, nd
);
2038 if (new->start
< nd
->start
)
2040 else if (new->end
> nd
->end
)
2041 p
= &(*p
)->rb_right
;
2045 rb_link_node(&new->nd
, parent
, p
);
2046 rb_insert_color(&new->nd
, &sp
->root
);
2047 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2048 new->policy
? new->policy
->mode
: 0);
2051 /* Find shared policy intersecting idx */
2053 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2055 struct mempolicy
*pol
= NULL
;
2058 if (!sp
->root
.rb_node
)
2060 spin_lock(&sp
->lock
);
2061 sn
= sp_lookup(sp
, idx
, idx
+1);
2063 mpol_get(sn
->policy
);
2066 spin_unlock(&sp
->lock
);
2070 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2072 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2073 rb_erase(&n
->nd
, &sp
->root
);
2074 mpol_put(n
->policy
);
2075 kmem_cache_free(sn_cache
, n
);
2078 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2079 struct mempolicy
*pol
)
2081 struct sp_node
*n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2088 pol
->flags
|= MPOL_F_SHARED
; /* for unref */
2093 /* Replace a policy range. */
2094 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2095 unsigned long end
, struct sp_node
*new)
2097 struct sp_node
*n
, *new2
= NULL
;
2100 spin_lock(&sp
->lock
);
2101 n
= sp_lookup(sp
, start
, end
);
2102 /* Take care of old policies in the same range. */
2103 while (n
&& n
->start
< end
) {
2104 struct rb_node
*next
= rb_next(&n
->nd
);
2105 if (n
->start
>= start
) {
2111 /* Old policy spanning whole new range. */
2114 spin_unlock(&sp
->lock
);
2115 new2
= sp_alloc(end
, n
->end
, n
->policy
);
2121 sp_insert(sp
, new2
);
2129 n
= rb_entry(next
, struct sp_node
, nd
);
2133 spin_unlock(&sp
->lock
);
2135 mpol_put(new2
->policy
);
2136 kmem_cache_free(sn_cache
, new2
);
2142 * mpol_shared_policy_init - initialize shared policy for inode
2143 * @sp: pointer to inode shared policy
2144 * @mpol: struct mempolicy to install
2146 * Install non-NULL @mpol in inode's shared policy rb-tree.
2147 * On entry, the current task has a reference on a non-NULL @mpol.
2148 * This must be released on exit.
2149 * This is called at get_inode() calls and we can use GFP_KERNEL.
2151 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2155 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2156 spin_lock_init(&sp
->lock
);
2159 struct vm_area_struct pvma
;
2160 struct mempolicy
*new;
2161 NODEMASK_SCRATCH(scratch
);
2165 /* contextualize the tmpfs mount point mempolicy */
2166 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2168 goto free_scratch
; /* no valid nodemask intersection */
2171 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2172 task_unlock(current
);
2176 /* Create pseudo-vma that contains just the policy */
2177 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2178 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2179 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2182 mpol_put(new); /* drop initial ref */
2184 NODEMASK_SCRATCH_FREE(scratch
);
2186 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2190 int mpol_set_shared_policy(struct shared_policy
*info
,
2191 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2194 struct sp_node
*new = NULL
;
2195 unsigned long sz
= vma_pages(vma
);
2197 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2199 sz
, npol
? npol
->mode
: -1,
2200 npol
? npol
->flags
: -1,
2201 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
2204 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2208 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2210 kmem_cache_free(sn_cache
, new);
2214 /* Free a backing policy store on inode delete. */
2215 void mpol_free_shared_policy(struct shared_policy
*p
)
2218 struct rb_node
*next
;
2220 if (!p
->root
.rb_node
)
2222 spin_lock(&p
->lock
);
2223 next
= rb_first(&p
->root
);
2225 n
= rb_entry(next
, struct sp_node
, nd
);
2226 next
= rb_next(&n
->nd
);
2227 rb_erase(&n
->nd
, &p
->root
);
2228 mpol_put(n
->policy
);
2229 kmem_cache_free(sn_cache
, n
);
2231 spin_unlock(&p
->lock
);
2234 /* assumes fs == KERNEL_DS */
2235 void __init
numa_policy_init(void)
2237 nodemask_t interleave_nodes
;
2238 unsigned long largest
= 0;
2239 int nid
, prefer
= 0;
2241 policy_cache
= kmem_cache_create("numa_policy",
2242 sizeof(struct mempolicy
),
2243 0, SLAB_PANIC
, NULL
);
2245 sn_cache
= kmem_cache_create("shared_policy_node",
2246 sizeof(struct sp_node
),
2247 0, SLAB_PANIC
, NULL
);
2250 * Set interleaving policy for system init. Interleaving is only
2251 * enabled across suitably sized nodes (default is >= 16MB), or
2252 * fall back to the largest node if they're all smaller.
2254 nodes_clear(interleave_nodes
);
2255 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2256 unsigned long total_pages
= node_present_pages(nid
);
2258 /* Preserve the largest node */
2259 if (largest
< total_pages
) {
2260 largest
= total_pages
;
2264 /* Interleave this node? */
2265 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2266 node_set(nid
, interleave_nodes
);
2269 /* All too small, use the largest */
2270 if (unlikely(nodes_empty(interleave_nodes
)))
2271 node_set(prefer
, interleave_nodes
);
2273 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2274 printk("numa_policy_init: interleaving failed\n");
2277 /* Reset policy of current process to default */
2278 void numa_default_policy(void)
2280 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2284 * Parse and format mempolicy from/to strings
2288 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2289 * Used only for mpol_parse_str() and mpol_to_str()
2291 #define MPOL_LOCAL MPOL_MAX
2292 static const char * const policy_modes
[] =
2294 [MPOL_DEFAULT
] = "default",
2295 [MPOL_PREFERRED
] = "prefer",
2296 [MPOL_BIND
] = "bind",
2297 [MPOL_INTERLEAVE
] = "interleave",
2298 [MPOL_LOCAL
] = "local"
2304 * mpol_parse_str - parse string to mempolicy
2305 * @str: string containing mempolicy to parse
2306 * @mpol: pointer to struct mempolicy pointer, returned on success.
2307 * @no_context: flag whether to "contextualize" the mempolicy
2310 * <mode>[=<flags>][:<nodelist>]
2312 * if @no_context is true, save the input nodemask in w.user_nodemask in
2313 * the returned mempolicy. This will be used to "clone" the mempolicy in
2314 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2315 * mount option. Note that if 'static' or 'relative' mode flags were
2316 * specified, the input nodemask will already have been saved. Saving
2317 * it again is redundant, but safe.
2319 * On success, returns 0, else 1
2321 int mpol_parse_str(char *str
, struct mempolicy
**mpol
, int no_context
)
2323 struct mempolicy
*new = NULL
;
2324 unsigned short mode
;
2325 unsigned short uninitialized_var(mode_flags
);
2327 char *nodelist
= strchr(str
, ':');
2328 char *flags
= strchr(str
, '=');
2332 /* NUL-terminate mode or flags string */
2334 if (nodelist_parse(nodelist
, nodes
))
2336 if (!nodes_subset(nodes
, node_states
[N_HIGH_MEMORY
]))
2342 *flags
++ = '\0'; /* terminate mode string */
2344 for (mode
= 0; mode
<= MPOL_LOCAL
; mode
++) {
2345 if (!strcmp(str
, policy_modes
[mode
])) {
2349 if (mode
> MPOL_LOCAL
)
2353 case MPOL_PREFERRED
:
2355 * Insist on a nodelist of one node only
2358 char *rest
= nodelist
;
2359 while (isdigit(*rest
))
2365 case MPOL_INTERLEAVE
:
2367 * Default to online nodes with memory if no nodelist
2370 nodes
= node_states
[N_HIGH_MEMORY
];
2374 * Don't allow a nodelist; mpol_new() checks flags
2378 mode
= MPOL_PREFERRED
;
2382 * Insist on a empty nodelist
2389 * Insist on a nodelist
2398 * Currently, we only support two mutually exclusive
2401 if (!strcmp(flags
, "static"))
2402 mode_flags
|= MPOL_F_STATIC_NODES
;
2403 else if (!strcmp(flags
, "relative"))
2404 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2409 new = mpol_new(mode
, mode_flags
, &nodes
);
2414 /* save for contextualization */
2415 new->w
.user_nodemask
= nodes
;
2418 NODEMASK_SCRATCH(scratch
);
2421 ret
= mpol_set_nodemask(new, &nodes
, scratch
);
2422 task_unlock(current
);
2425 NODEMASK_SCRATCH_FREE(scratch
);
2434 /* Restore string for error message */
2443 #endif /* CONFIG_TMPFS */
2446 * mpol_to_str - format a mempolicy structure for printing
2447 * @buffer: to contain formatted mempolicy string
2448 * @maxlen: length of @buffer
2449 * @pol: pointer to mempolicy to be formatted
2450 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2452 * Convert a mempolicy into a string.
2453 * Returns the number of characters in buffer (if positive)
2454 * or an error (negative)
2456 int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
, int no_context
)
2461 unsigned short mode
;
2462 unsigned short flags
= pol
? pol
->flags
: 0;
2465 * Sanity check: room for longest mode, flag and some nodes
2467 VM_BUG_ON(maxlen
< strlen("interleave") + strlen("relative") + 16);
2469 if (!pol
|| pol
== &default_policy
)
2470 mode
= MPOL_DEFAULT
;
2479 case MPOL_PREFERRED
:
2481 if (flags
& MPOL_F_LOCAL
)
2482 mode
= MPOL_LOCAL
; /* pseudo-policy */
2484 node_set(pol
->v
.preferred_node
, nodes
);
2489 case MPOL_INTERLEAVE
:
2491 nodes
= pol
->w
.user_nodemask
;
2493 nodes
= pol
->v
.nodes
;
2500 l
= strlen(policy_modes
[mode
]);
2501 if (buffer
+ maxlen
< p
+ l
+ 1)
2504 strcpy(p
, policy_modes
[mode
]);
2507 if (flags
& MPOL_MODE_FLAGS
) {
2508 if (buffer
+ maxlen
< p
+ 2)
2513 * Currently, the only defined flags are mutually exclusive
2515 if (flags
& MPOL_F_STATIC_NODES
)
2516 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2517 else if (flags
& MPOL_F_RELATIVE_NODES
)
2518 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2521 if (!nodes_empty(nodes
)) {
2522 if (buffer
+ maxlen
< p
+ 2)
2525 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);
2531 struct vm_area_struct
*vma
;
2532 unsigned long pages
;
2534 unsigned long active
;
2535 unsigned long writeback
;
2536 unsigned long mapcount_max
;
2537 unsigned long dirty
;
2538 unsigned long swapcache
;
2539 unsigned long node
[MAX_NUMNODES
];
2542 static void gather_stats(struct page
*page
, void *private, int pte_dirty
)
2544 struct numa_maps
*md
= private;
2545 int count
= page_mapcount(page
);
2548 if (pte_dirty
|| PageDirty(page
))
2551 if (PageSwapCache(page
))
2554 if (PageActive(page
) || PageUnevictable(page
))
2557 if (PageWriteback(page
))
2563 if (count
> md
->mapcount_max
)
2564 md
->mapcount_max
= count
;
2566 md
->node
[page_to_nid(page
)]++;
2569 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
2570 unsigned long end
, struct mm_walk
*walk
)
2572 struct numa_maps
*md
;
2578 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
2583 if (!pte_present(*pte
))
2586 page
= vm_normal_page(md
->vma
, addr
, *pte
);
2590 if (PageReserved(page
))
2593 nid
= page_to_nid(page
);
2594 if (!node_isset(nid
, node_states
[N_HIGH_MEMORY
]))
2597 gather_stats(page
, md
, pte_dirty(*pte
));
2599 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2600 pte_unmap_unlock(orig_pte
, ptl
);
2604 #ifdef CONFIG_HUGETLB_PAGE
2605 static void check_huge_range(struct vm_area_struct
*vma
,
2606 unsigned long start
, unsigned long end
,
2607 struct numa_maps
*md
)
2611 struct hstate
*h
= hstate_vma(vma
);
2612 unsigned long sz
= huge_page_size(h
);
2614 for (addr
= start
; addr
< end
; addr
+= sz
) {
2615 pte_t
*ptep
= huge_pte_offset(vma
->vm_mm
,
2616 addr
& huge_page_mask(h
));
2626 page
= pte_page(pte
);
2630 gather_stats(page
, md
, pte_dirty(*ptep
));
2634 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
2635 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
2642 page
= pte_page(*pte
);
2646 gather_stats(page
, walk
->private, pte_dirty(*pte
));
2651 static inline void check_huge_range(struct vm_area_struct
*vma
,
2652 unsigned long start
, unsigned long end
,
2653 struct numa_maps
*md
)
2657 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
2658 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
2665 * Display pages allocated per node and memory policy via /proc.
2667 int show_numa_map(struct seq_file
*m
, void *v
)
2669 struct proc_maps_private
*priv
= m
->private;
2670 struct vm_area_struct
*vma
= v
;
2671 struct numa_maps
*md
;
2672 struct file
*file
= vma
->vm_file
;
2673 struct mm_struct
*mm
= vma
->vm_mm
;
2674 struct mm_walk walk
= {};
2675 struct mempolicy
*pol
;
2682 md
= kzalloc(sizeof(struct numa_maps
), GFP_KERNEL
);
2688 walk
.hugetlb_entry
= gather_hugetbl_stats
;
2689 walk
.pmd_entry
= gather_pte_stats
;
2693 pol
= get_vma_policy(priv
->task
, vma
, vma
->vm_start
);
2694 mpol_to_str(buffer
, sizeof(buffer
), pol
, 0);
2697 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
2700 seq_printf(m
, " file=");
2701 seq_path(m
, &file
->f_path
, "\n\t= ");
2702 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
2703 seq_printf(m
, " heap");
2704 } else if (vma
->vm_start
<= mm
->start_stack
&&
2705 vma
->vm_end
>= mm
->start_stack
) {
2706 seq_printf(m
, " stack");
2709 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
2715 seq_printf(m
," anon=%lu",md
->anon
);
2718 seq_printf(m
," dirty=%lu",md
->dirty
);
2720 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
2721 seq_printf(m
, " mapped=%lu", md
->pages
);
2723 if (md
->mapcount_max
> 1)
2724 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
2727 seq_printf(m
," swapcache=%lu", md
->swapcache
);
2729 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
2730 seq_printf(m
," active=%lu", md
->active
);
2733 seq_printf(m
," writeback=%lu", md
->writeback
);
2735 for_each_node_state(n
, N_HIGH_MEMORY
)
2737 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
2742 if (m
->count
< m
->size
)
2743 m
->version
= (vma
!= priv
->tail_vma
) ? vma
->vm_start
: 0;