x86, percpu: Use ASM_NOP4 instead of hardcoding P6_NOP4
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / nommu.c
blobc4c542c736a962774f0770eef0d50c419b19a2cb
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
68 atomic_long_t mmap_pages_allocated;
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
78 const struct vm_operations_struct generic_file_vm_ops = {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp)
89 struct page *page;
92 * If the object we have should not have ksize performed on it,
93 * return size of 0
95 if (!objp || !virt_addr_valid(objp))
96 return 0;
98 page = virt_to_head_page(objp);
101 * If the allocator sets PageSlab, we know the pointer came from
102 * kmalloc().
104 if (PageSlab(page))
105 return ksize(objp);
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page)) {
114 struct vm_area_struct *vma;
116 vma = find_vma(current->mm, (unsigned long)objp);
117 if (vma)
118 return vma->vm_end - vma->vm_start;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE << compound_order(page);
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 unsigned long start, int nr_pages, unsigned int foll_flags,
130 struct page **pages, struct vm_area_struct **vmas,
131 int *retry)
133 struct vm_area_struct *vma;
134 unsigned long vm_flags;
135 int i;
137 /* calculate required read or write permissions.
138 * If FOLL_FORCE is set, we only require the "MAY" flags.
140 vm_flags = (foll_flags & FOLL_WRITE) ?
141 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142 vm_flags &= (foll_flags & FOLL_FORCE) ?
143 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
145 for (i = 0; i < nr_pages; i++) {
146 vma = find_vma(mm, start);
147 if (!vma)
148 goto finish_or_fault;
150 /* protect what we can, including chardevs */
151 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152 !(vm_flags & vma->vm_flags))
153 goto finish_or_fault;
155 if (pages) {
156 pages[i] = virt_to_page(start);
157 if (pages[i])
158 page_cache_get(pages[i]);
160 if (vmas)
161 vmas[i] = vma;
162 start = (start + PAGE_SIZE) & PAGE_MASK;
165 return i;
167 finish_or_fault:
168 return i ? : -EFAULT;
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 * slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179 unsigned long start, int nr_pages, int write, int force,
180 struct page **pages, struct vm_area_struct **vmas)
182 int flags = 0;
184 if (write)
185 flags |= FOLL_WRITE;
186 if (force)
187 flags |= FOLL_FORCE;
189 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190 NULL);
192 EXPORT_SYMBOL(get_user_pages);
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
200 * Only IO mappings and raw PFN mappings are allowed.
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205 unsigned long *pfn)
207 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208 return -EINVAL;
210 *pfn = address >> PAGE_SHIFT;
211 return 0;
213 EXPORT_SYMBOL(follow_pfn);
215 DEFINE_RWLOCK(vmlist_lock);
216 struct vm_struct *vmlist;
218 void vfree(const void *addr)
220 kfree(addr);
222 EXPORT_SYMBOL(vfree);
224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 * returns only a logical address.
230 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
232 EXPORT_SYMBOL(__vmalloc);
234 void *vmalloc_user(unsigned long size)
236 void *ret;
238 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239 PAGE_KERNEL);
240 if (ret) {
241 struct vm_area_struct *vma;
243 down_write(&current->mm->mmap_sem);
244 vma = find_vma(current->mm, (unsigned long)ret);
245 if (vma)
246 vma->vm_flags |= VM_USERMAP;
247 up_write(&current->mm->mmap_sem);
250 return ret;
252 EXPORT_SYMBOL(vmalloc_user);
254 struct page *vmalloc_to_page(const void *addr)
256 return virt_to_page(addr);
258 EXPORT_SYMBOL(vmalloc_to_page);
260 unsigned long vmalloc_to_pfn(const void *addr)
262 return page_to_pfn(virt_to_page(addr));
264 EXPORT_SYMBOL(vmalloc_to_pfn);
266 long vread(char *buf, char *addr, unsigned long count)
268 memcpy(buf, addr, count);
269 return count;
272 long vwrite(char *buf, char *addr, unsigned long count)
274 /* Don't allow overflow */
275 if ((unsigned long) addr + count < count)
276 count = -(unsigned long) addr;
278 memcpy(addr, buf, count);
279 return(count);
283 * vmalloc - allocate virtually continguos memory
285 * @size: allocation size
287 * Allocate enough pages to cover @size from the page level
288 * allocator and map them into continguos kernel virtual space.
290 * For tight control over page level allocator and protection flags
291 * use __vmalloc() instead.
293 void *vmalloc(unsigned long size)
295 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
297 EXPORT_SYMBOL(vmalloc);
300 * vzalloc - allocate virtually continguos memory with zero fill
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into continguos kernel virtual space.
306 * The memory allocated is set to zero.
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
311 void *vzalloc(unsigned long size)
313 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314 PAGE_KERNEL);
316 EXPORT_SYMBOL(vzalloc);
319 * vmalloc_node - allocate memory on a specific node
320 * @size: allocation size
321 * @node: numa node
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
329 void *vmalloc_node(unsigned long size, int node)
331 return vmalloc(size);
333 EXPORT_SYMBOL(vmalloc_node);
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size: allocation size
338 * @node: numa node
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
347 void *vzalloc_node(unsigned long size, int node)
349 return vzalloc(size);
351 EXPORT_SYMBOL(vzalloc_node);
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
355 #endif
358 * vmalloc_exec - allocate virtually contiguous, executable memory
359 * @size: allocation size
361 * Kernel-internal function to allocate enough pages to cover @size
362 * the page level allocator and map them into contiguous and
363 * executable kernel virtual space.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
369 void *vmalloc_exec(unsigned long size)
371 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
376 * @size: allocation size
378 * Allocate enough 32bit PA addressable pages to cover @size from the
379 * page level allocator and map them into continguos kernel virtual space.
381 void *vmalloc_32(unsigned long size)
383 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
385 EXPORT_SYMBOL(vmalloc_32);
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 * @size: allocation size
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
397 void *vmalloc_32_user(unsigned long size)
400 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 * but for now this can simply use vmalloc_user() directly.
403 return vmalloc_user(size);
405 EXPORT_SYMBOL(vmalloc_32_user);
407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
409 BUG();
410 return NULL;
412 EXPORT_SYMBOL(vmap);
414 void vunmap(const void *addr)
416 BUG();
418 EXPORT_SYMBOL(vunmap);
420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
422 BUG();
423 return NULL;
425 EXPORT_SYMBOL(vm_map_ram);
427 void vm_unmap_ram(const void *mem, unsigned int count)
429 BUG();
431 EXPORT_SYMBOL(vm_unmap_ram);
433 void vm_unmap_aliases(void)
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440 * have one.
442 void __attribute__((weak)) vmalloc_sync_all(void)
447 * alloc_vm_area - allocate a range of kernel address space
448 * @size: size of the area
450 * Returns: NULL on failure, vm_struct on success
452 * This function reserves a range of kernel address space, and
453 * allocates pagetables to map that range. No actual mappings
454 * are created. If the kernel address space is not shared
455 * between processes, it syncs the pagetable across all
456 * processes.
458 struct vm_struct *alloc_vm_area(size_t size)
460 BUG();
461 return NULL;
463 EXPORT_SYMBOL_GPL(alloc_vm_area);
465 void free_vm_area(struct vm_struct *area)
467 BUG();
469 EXPORT_SYMBOL_GPL(free_vm_area);
471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472 struct page *page)
474 return -EINVAL;
476 EXPORT_SYMBOL(vm_insert_page);
479 * sys_brk() for the most part doesn't need the global kernel
480 * lock, except when an application is doing something nasty
481 * like trying to un-brk an area that has already been mapped
482 * to a regular file. in this case, the unmapping will need
483 * to invoke file system routines that need the global lock.
485 SYSCALL_DEFINE1(brk, unsigned long, brk)
487 struct mm_struct *mm = current->mm;
489 if (brk < mm->start_brk || brk > mm->context.end_brk)
490 return mm->brk;
492 if (mm->brk == brk)
493 return mm->brk;
496 * Always allow shrinking brk
498 if (brk <= mm->brk) {
499 mm->brk = brk;
500 return brk;
504 * Ok, looks good - let it rip.
506 flush_icache_range(mm->brk, brk);
507 return mm->brk = brk;
511 * initialise the VMA and region record slabs
513 void __init mmap_init(void)
515 int ret;
517 ret = percpu_counter_init(&vm_committed_as, 0);
518 VM_BUG_ON(ret);
519 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
523 * validate the region tree
524 * - the caller must hold the region lock
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline void validate_nommu_regions(void)
529 struct vm_region *region, *last;
530 struct rb_node *p, *lastp;
532 lastp = rb_first(&nommu_region_tree);
533 if (!lastp)
534 return;
536 last = rb_entry(lastp, struct vm_region, vm_rb);
537 BUG_ON(unlikely(last->vm_end <= last->vm_start));
538 BUG_ON(unlikely(last->vm_top < last->vm_end));
540 while ((p = rb_next(lastp))) {
541 region = rb_entry(p, struct vm_region, vm_rb);
542 last = rb_entry(lastp, struct vm_region, vm_rb);
544 BUG_ON(unlikely(region->vm_end <= region->vm_start));
545 BUG_ON(unlikely(region->vm_top < region->vm_end));
546 BUG_ON(unlikely(region->vm_start < last->vm_top));
548 lastp = p;
551 #else
552 static void validate_nommu_regions(void)
555 #endif
558 * add a region into the global tree
560 static void add_nommu_region(struct vm_region *region)
562 struct vm_region *pregion;
563 struct rb_node **p, *parent;
565 validate_nommu_regions();
567 parent = NULL;
568 p = &nommu_region_tree.rb_node;
569 while (*p) {
570 parent = *p;
571 pregion = rb_entry(parent, struct vm_region, vm_rb);
572 if (region->vm_start < pregion->vm_start)
573 p = &(*p)->rb_left;
574 else if (region->vm_start > pregion->vm_start)
575 p = &(*p)->rb_right;
576 else if (pregion == region)
577 return;
578 else
579 BUG();
582 rb_link_node(&region->vm_rb, parent, p);
583 rb_insert_color(&region->vm_rb, &nommu_region_tree);
585 validate_nommu_regions();
589 * delete a region from the global tree
591 static void delete_nommu_region(struct vm_region *region)
593 BUG_ON(!nommu_region_tree.rb_node);
595 validate_nommu_regions();
596 rb_erase(&region->vm_rb, &nommu_region_tree);
597 validate_nommu_regions();
601 * free a contiguous series of pages
603 static void free_page_series(unsigned long from, unsigned long to)
605 for (; from < to; from += PAGE_SIZE) {
606 struct page *page = virt_to_page(from);
608 kdebug("- free %lx", from);
609 atomic_long_dec(&mmap_pages_allocated);
610 if (page_count(page) != 1)
611 kdebug("free page %p: refcount not one: %d",
612 page, page_count(page));
613 put_page(page);
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 * will equal vm_start
623 static void __put_nommu_region(struct vm_region *region)
624 __releases(nommu_region_sem)
626 kenter("%p{%d}", region, region->vm_usage);
628 BUG_ON(!nommu_region_tree.rb_node);
630 if (--region->vm_usage == 0) {
631 if (region->vm_top > region->vm_start)
632 delete_nommu_region(region);
633 up_write(&nommu_region_sem);
635 if (region->vm_file)
636 fput(region->vm_file);
638 /* IO memory and memory shared directly out of the pagecache
639 * from ramfs/tmpfs mustn't be released here */
640 if (region->vm_flags & VM_MAPPED_COPY) {
641 kdebug("free series");
642 free_page_series(region->vm_start, region->vm_top);
644 kmem_cache_free(vm_region_jar, region);
645 } else {
646 up_write(&nommu_region_sem);
651 * release a reference to a region
653 static void put_nommu_region(struct vm_region *region)
655 down_write(&nommu_region_sem);
656 __put_nommu_region(region);
660 * update protection on a vma
662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
664 #ifdef CONFIG_MPU
665 struct mm_struct *mm = vma->vm_mm;
666 long start = vma->vm_start & PAGE_MASK;
667 while (start < vma->vm_end) {
668 protect_page(mm, start, flags);
669 start += PAGE_SIZE;
671 update_protections(mm);
672 #endif
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
678 * page
679 * - should be called with mm->mmap_sem held writelocked
681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
683 struct vm_area_struct *pvma, **pp, *next;
684 struct address_space *mapping;
685 struct rb_node **p, *parent;
687 kenter(",%p", vma);
689 BUG_ON(!vma->vm_region);
691 mm->map_count++;
692 vma->vm_mm = mm;
694 protect_vma(vma, vma->vm_flags);
696 /* add the VMA to the mapping */
697 if (vma->vm_file) {
698 mapping = vma->vm_file->f_mapping;
700 flush_dcache_mmap_lock(mapping);
701 vma_prio_tree_insert(vma, &mapping->i_mmap);
702 flush_dcache_mmap_unlock(mapping);
705 /* add the VMA to the tree */
706 parent = NULL;
707 p = &mm->mm_rb.rb_node;
708 while (*p) {
709 parent = *p;
710 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712 /* sort by: start addr, end addr, VMA struct addr in that order
713 * (the latter is necessary as we may get identical VMAs) */
714 if (vma->vm_start < pvma->vm_start)
715 p = &(*p)->rb_left;
716 else if (vma->vm_start > pvma->vm_start)
717 p = &(*p)->rb_right;
718 else if (vma->vm_end < pvma->vm_end)
719 p = &(*p)->rb_left;
720 else if (vma->vm_end > pvma->vm_end)
721 p = &(*p)->rb_right;
722 else if (vma < pvma)
723 p = &(*p)->rb_left;
724 else if (vma > pvma)
725 p = &(*p)->rb_right;
726 else
727 BUG();
730 rb_link_node(&vma->vm_rb, parent, p);
731 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
733 /* add VMA to the VMA list also */
734 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
735 if (pvma->vm_start > vma->vm_start)
736 break;
737 if (pvma->vm_start < vma->vm_start)
738 continue;
739 if (pvma->vm_end < vma->vm_end)
740 break;
743 next = *pp;
744 *pp = vma;
745 vma->vm_next = next;
746 if (next)
747 next->vm_prev = vma;
751 * delete a VMA from its owning mm_struct and address space
753 static void delete_vma_from_mm(struct vm_area_struct *vma)
755 struct vm_area_struct **pp;
756 struct address_space *mapping;
757 struct mm_struct *mm = vma->vm_mm;
759 kenter("%p", vma);
761 protect_vma(vma, 0);
763 mm->map_count--;
764 if (mm->mmap_cache == vma)
765 mm->mmap_cache = NULL;
767 /* remove the VMA from the mapping */
768 if (vma->vm_file) {
769 mapping = vma->vm_file->f_mapping;
771 flush_dcache_mmap_lock(mapping);
772 vma_prio_tree_remove(vma, &mapping->i_mmap);
773 flush_dcache_mmap_unlock(mapping);
776 /* remove from the MM's tree and list */
777 rb_erase(&vma->vm_rb, &mm->mm_rb);
778 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
779 if (*pp == vma) {
780 *pp = vma->vm_next;
781 break;
785 vma->vm_mm = NULL;
789 * destroy a VMA record
791 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
793 kenter("%p", vma);
794 if (vma->vm_ops && vma->vm_ops->close)
795 vma->vm_ops->close(vma);
796 if (vma->vm_file) {
797 fput(vma->vm_file);
798 if (vma->vm_flags & VM_EXECUTABLE)
799 removed_exe_file_vma(mm);
801 put_nommu_region(vma->vm_region);
802 kmem_cache_free(vm_area_cachep, vma);
806 * look up the first VMA in which addr resides, NULL if none
807 * - should be called with mm->mmap_sem at least held readlocked
809 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
811 struct vm_area_struct *vma;
812 struct rb_node *n = mm->mm_rb.rb_node;
814 /* check the cache first */
815 vma = mm->mmap_cache;
816 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
817 return vma;
819 /* trawl the tree (there may be multiple mappings in which addr
820 * resides) */
821 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
822 vma = rb_entry(n, struct vm_area_struct, vm_rb);
823 if (vma->vm_start > addr)
824 return NULL;
825 if (vma->vm_end > addr) {
826 mm->mmap_cache = vma;
827 return vma;
831 return NULL;
833 EXPORT_SYMBOL(find_vma);
836 * find a VMA
837 * - we don't extend stack VMAs under NOMMU conditions
839 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
841 return find_vma(mm, addr);
845 * expand a stack to a given address
846 * - not supported under NOMMU conditions
848 int expand_stack(struct vm_area_struct *vma, unsigned long address)
850 return -ENOMEM;
854 * look up the first VMA exactly that exactly matches addr
855 * - should be called with mm->mmap_sem at least held readlocked
857 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
858 unsigned long addr,
859 unsigned long len)
861 struct vm_area_struct *vma;
862 struct rb_node *n = mm->mm_rb.rb_node;
863 unsigned long end = addr + len;
865 /* check the cache first */
866 vma = mm->mmap_cache;
867 if (vma && vma->vm_start == addr && vma->vm_end == end)
868 return vma;
870 /* trawl the tree (there may be multiple mappings in which addr
871 * resides) */
872 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
873 vma = rb_entry(n, struct vm_area_struct, vm_rb);
874 if (vma->vm_start < addr)
875 continue;
876 if (vma->vm_start > addr)
877 return NULL;
878 if (vma->vm_end == end) {
879 mm->mmap_cache = vma;
880 return vma;
884 return NULL;
888 * determine whether a mapping should be permitted and, if so, what sort of
889 * mapping we're capable of supporting
891 static int validate_mmap_request(struct file *file,
892 unsigned long addr,
893 unsigned long len,
894 unsigned long prot,
895 unsigned long flags,
896 unsigned long pgoff,
897 unsigned long *_capabilities)
899 unsigned long capabilities, rlen;
900 unsigned long reqprot = prot;
901 int ret;
903 /* do the simple checks first */
904 if (flags & MAP_FIXED) {
905 printk(KERN_DEBUG
906 "%d: Can't do fixed-address/overlay mmap of RAM\n",
907 current->pid);
908 return -EINVAL;
911 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
912 (flags & MAP_TYPE) != MAP_SHARED)
913 return -EINVAL;
915 if (!len)
916 return -EINVAL;
918 /* Careful about overflows.. */
919 rlen = PAGE_ALIGN(len);
920 if (!rlen || rlen > TASK_SIZE)
921 return -ENOMEM;
923 /* offset overflow? */
924 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
925 return -EOVERFLOW;
927 if (file) {
928 /* validate file mapping requests */
929 struct address_space *mapping;
931 /* files must support mmap */
932 if (!file->f_op || !file->f_op->mmap)
933 return -ENODEV;
935 /* work out if what we've got could possibly be shared
936 * - we support chardevs that provide their own "memory"
937 * - we support files/blockdevs that are memory backed
939 mapping = file->f_mapping;
940 if (!mapping)
941 mapping = file->f_path.dentry->d_inode->i_mapping;
943 capabilities = 0;
944 if (mapping && mapping->backing_dev_info)
945 capabilities = mapping->backing_dev_info->capabilities;
947 if (!capabilities) {
948 /* no explicit capabilities set, so assume some
949 * defaults */
950 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
951 case S_IFREG:
952 case S_IFBLK:
953 capabilities = BDI_CAP_MAP_COPY;
954 break;
956 case S_IFCHR:
957 capabilities =
958 BDI_CAP_MAP_DIRECT |
959 BDI_CAP_READ_MAP |
960 BDI_CAP_WRITE_MAP;
961 break;
963 default:
964 return -EINVAL;
968 /* eliminate any capabilities that we can't support on this
969 * device */
970 if (!file->f_op->get_unmapped_area)
971 capabilities &= ~BDI_CAP_MAP_DIRECT;
972 if (!file->f_op->read)
973 capabilities &= ~BDI_CAP_MAP_COPY;
975 /* The file shall have been opened with read permission. */
976 if (!(file->f_mode & FMODE_READ))
977 return -EACCES;
979 if (flags & MAP_SHARED) {
980 /* do checks for writing, appending and locking */
981 if ((prot & PROT_WRITE) &&
982 !(file->f_mode & FMODE_WRITE))
983 return -EACCES;
985 if (IS_APPEND(file->f_path.dentry->d_inode) &&
986 (file->f_mode & FMODE_WRITE))
987 return -EACCES;
989 if (locks_verify_locked(file->f_path.dentry->d_inode))
990 return -EAGAIN;
992 if (!(capabilities & BDI_CAP_MAP_DIRECT))
993 return -ENODEV;
995 /* we mustn't privatise shared mappings */
996 capabilities &= ~BDI_CAP_MAP_COPY;
998 else {
999 /* we're going to read the file into private memory we
1000 * allocate */
1001 if (!(capabilities & BDI_CAP_MAP_COPY))
1002 return -ENODEV;
1004 /* we don't permit a private writable mapping to be
1005 * shared with the backing device */
1006 if (prot & PROT_WRITE)
1007 capabilities &= ~BDI_CAP_MAP_DIRECT;
1010 if (capabilities & BDI_CAP_MAP_DIRECT) {
1011 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1012 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1013 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1015 capabilities &= ~BDI_CAP_MAP_DIRECT;
1016 if (flags & MAP_SHARED) {
1017 printk(KERN_WARNING
1018 "MAP_SHARED not completely supported on !MMU\n");
1019 return -EINVAL;
1024 /* handle executable mappings and implied executable
1025 * mappings */
1026 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1027 if (prot & PROT_EXEC)
1028 return -EPERM;
1030 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1031 /* handle implication of PROT_EXEC by PROT_READ */
1032 if (current->personality & READ_IMPLIES_EXEC) {
1033 if (capabilities & BDI_CAP_EXEC_MAP)
1034 prot |= PROT_EXEC;
1037 else if ((prot & PROT_READ) &&
1038 (prot & PROT_EXEC) &&
1039 !(capabilities & BDI_CAP_EXEC_MAP)
1041 /* backing file is not executable, try to copy */
1042 capabilities &= ~BDI_CAP_MAP_DIRECT;
1045 else {
1046 /* anonymous mappings are always memory backed and can be
1047 * privately mapped
1049 capabilities = BDI_CAP_MAP_COPY;
1051 /* handle PROT_EXEC implication by PROT_READ */
1052 if ((prot & PROT_READ) &&
1053 (current->personality & READ_IMPLIES_EXEC))
1054 prot |= PROT_EXEC;
1057 /* allow the security API to have its say */
1058 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1059 if (ret < 0)
1060 return ret;
1062 /* looks okay */
1063 *_capabilities = capabilities;
1064 return 0;
1068 * we've determined that we can make the mapping, now translate what we
1069 * now know into VMA flags
1071 static unsigned long determine_vm_flags(struct file *file,
1072 unsigned long prot,
1073 unsigned long flags,
1074 unsigned long capabilities)
1076 unsigned long vm_flags;
1078 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1079 /* vm_flags |= mm->def_flags; */
1081 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1082 /* attempt to share read-only copies of mapped file chunks */
1083 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1084 if (file && !(prot & PROT_WRITE))
1085 vm_flags |= VM_MAYSHARE;
1086 } else {
1087 /* overlay a shareable mapping on the backing device or inode
1088 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1089 * romfs/cramfs */
1090 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1091 if (flags & MAP_SHARED)
1092 vm_flags |= VM_SHARED;
1095 /* refuse to let anyone share private mappings with this process if
1096 * it's being traced - otherwise breakpoints set in it may interfere
1097 * with another untraced process
1099 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1100 vm_flags &= ~VM_MAYSHARE;
1102 return vm_flags;
1106 * set up a shared mapping on a file (the driver or filesystem provides and
1107 * pins the storage)
1109 static int do_mmap_shared_file(struct vm_area_struct *vma)
1111 int ret;
1113 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1114 if (ret == 0) {
1115 vma->vm_region->vm_top = vma->vm_region->vm_end;
1116 return 0;
1118 if (ret != -ENOSYS)
1119 return ret;
1121 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1122 * opposed to tried but failed) so we can only give a suitable error as
1123 * it's not possible to make a private copy if MAP_SHARED was given */
1124 return -ENODEV;
1128 * set up a private mapping or an anonymous shared mapping
1130 static int do_mmap_private(struct vm_area_struct *vma,
1131 struct vm_region *region,
1132 unsigned long len,
1133 unsigned long capabilities)
1135 struct page *pages;
1136 unsigned long total, point, n, rlen;
1137 void *base;
1138 int ret, order;
1140 /* invoke the file's mapping function so that it can keep track of
1141 * shared mappings on devices or memory
1142 * - VM_MAYSHARE will be set if it may attempt to share
1144 if (capabilities & BDI_CAP_MAP_DIRECT) {
1145 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1146 if (ret == 0) {
1147 /* shouldn't return success if we're not sharing */
1148 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1149 vma->vm_region->vm_top = vma->vm_region->vm_end;
1150 return 0;
1152 if (ret != -ENOSYS)
1153 return ret;
1155 /* getting an ENOSYS error indicates that direct mmap isn't
1156 * possible (as opposed to tried but failed) so we'll try to
1157 * make a private copy of the data and map that instead */
1160 rlen = PAGE_ALIGN(len);
1162 /* allocate some memory to hold the mapping
1163 * - note that this may not return a page-aligned address if the object
1164 * we're allocating is smaller than a page
1166 order = get_order(rlen);
1167 kdebug("alloc order %d for %lx", order, len);
1169 pages = alloc_pages(GFP_KERNEL, order);
1170 if (!pages)
1171 goto enomem;
1173 total = 1 << order;
1174 atomic_long_add(total, &mmap_pages_allocated);
1176 point = rlen >> PAGE_SHIFT;
1178 /* we allocated a power-of-2 sized page set, so we may want to trim off
1179 * the excess */
1180 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1181 while (total > point) {
1182 order = ilog2(total - point);
1183 n = 1 << order;
1184 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1185 atomic_long_sub(n, &mmap_pages_allocated);
1186 total -= n;
1187 set_page_refcounted(pages + total);
1188 __free_pages(pages + total, order);
1192 for (point = 1; point < total; point++)
1193 set_page_refcounted(&pages[point]);
1195 base = page_address(pages);
1196 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1197 region->vm_start = (unsigned long) base;
1198 region->vm_end = region->vm_start + rlen;
1199 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1201 vma->vm_start = region->vm_start;
1202 vma->vm_end = region->vm_start + len;
1204 if (vma->vm_file) {
1205 /* read the contents of a file into the copy */
1206 mm_segment_t old_fs;
1207 loff_t fpos;
1209 fpos = vma->vm_pgoff;
1210 fpos <<= PAGE_SHIFT;
1212 old_fs = get_fs();
1213 set_fs(KERNEL_DS);
1214 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1215 set_fs(old_fs);
1217 if (ret < 0)
1218 goto error_free;
1220 /* clear the last little bit */
1221 if (ret < rlen)
1222 memset(base + ret, 0, rlen - ret);
1226 return 0;
1228 error_free:
1229 free_page_series(region->vm_start, region->vm_end);
1230 region->vm_start = vma->vm_start = 0;
1231 region->vm_end = vma->vm_end = 0;
1232 region->vm_top = 0;
1233 return ret;
1235 enomem:
1236 printk("Allocation of length %lu from process %d (%s) failed\n",
1237 len, current->pid, current->comm);
1238 show_free_areas();
1239 return -ENOMEM;
1243 * handle mapping creation for uClinux
1245 unsigned long do_mmap_pgoff(struct file *file,
1246 unsigned long addr,
1247 unsigned long len,
1248 unsigned long prot,
1249 unsigned long flags,
1250 unsigned long pgoff)
1252 struct vm_area_struct *vma;
1253 struct vm_region *region;
1254 struct rb_node *rb;
1255 unsigned long capabilities, vm_flags, result;
1256 int ret;
1258 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1260 /* decide whether we should attempt the mapping, and if so what sort of
1261 * mapping */
1262 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1263 &capabilities);
1264 if (ret < 0) {
1265 kleave(" = %d [val]", ret);
1266 return ret;
1269 /* we ignore the address hint */
1270 addr = 0;
1272 /* we've determined that we can make the mapping, now translate what we
1273 * now know into VMA flags */
1274 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1276 /* we're going to need to record the mapping */
1277 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1278 if (!region)
1279 goto error_getting_region;
1281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1282 if (!vma)
1283 goto error_getting_vma;
1285 region->vm_usage = 1;
1286 region->vm_flags = vm_flags;
1287 region->vm_pgoff = pgoff;
1289 INIT_LIST_HEAD(&vma->anon_vma_chain);
1290 vma->vm_flags = vm_flags;
1291 vma->vm_pgoff = pgoff;
1293 if (file) {
1294 region->vm_file = file;
1295 get_file(file);
1296 vma->vm_file = file;
1297 get_file(file);
1298 if (vm_flags & VM_EXECUTABLE) {
1299 added_exe_file_vma(current->mm);
1300 vma->vm_mm = current->mm;
1304 down_write(&nommu_region_sem);
1306 /* if we want to share, we need to check for regions created by other
1307 * mmap() calls that overlap with our proposed mapping
1308 * - we can only share with a superset match on most regular files
1309 * - shared mappings on character devices and memory backed files are
1310 * permitted to overlap inexactly as far as we are concerned for in
1311 * these cases, sharing is handled in the driver or filesystem rather
1312 * than here
1314 if (vm_flags & VM_MAYSHARE) {
1315 struct vm_region *pregion;
1316 unsigned long pglen, rpglen, pgend, rpgend, start;
1318 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319 pgend = pgoff + pglen;
1321 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1322 pregion = rb_entry(rb, struct vm_region, vm_rb);
1324 if (!(pregion->vm_flags & VM_MAYSHARE))
1325 continue;
1327 /* search for overlapping mappings on the same file */
1328 if (pregion->vm_file->f_path.dentry->d_inode !=
1329 file->f_path.dentry->d_inode)
1330 continue;
1332 if (pregion->vm_pgoff >= pgend)
1333 continue;
1335 rpglen = pregion->vm_end - pregion->vm_start;
1336 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1337 rpgend = pregion->vm_pgoff + rpglen;
1338 if (pgoff >= rpgend)
1339 continue;
1341 /* handle inexactly overlapping matches between
1342 * mappings */
1343 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1344 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1345 /* new mapping is not a subset of the region */
1346 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1347 goto sharing_violation;
1348 continue;
1351 /* we've found a region we can share */
1352 pregion->vm_usage++;
1353 vma->vm_region = pregion;
1354 start = pregion->vm_start;
1355 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1356 vma->vm_start = start;
1357 vma->vm_end = start + len;
1359 if (pregion->vm_flags & VM_MAPPED_COPY) {
1360 kdebug("share copy");
1361 vma->vm_flags |= VM_MAPPED_COPY;
1362 } else {
1363 kdebug("share mmap");
1364 ret = do_mmap_shared_file(vma);
1365 if (ret < 0) {
1366 vma->vm_region = NULL;
1367 vma->vm_start = 0;
1368 vma->vm_end = 0;
1369 pregion->vm_usage--;
1370 pregion = NULL;
1371 goto error_just_free;
1374 fput(region->vm_file);
1375 kmem_cache_free(vm_region_jar, region);
1376 region = pregion;
1377 result = start;
1378 goto share;
1381 /* obtain the address at which to make a shared mapping
1382 * - this is the hook for quasi-memory character devices to
1383 * tell us the location of a shared mapping
1385 if (capabilities & BDI_CAP_MAP_DIRECT) {
1386 addr = file->f_op->get_unmapped_area(file, addr, len,
1387 pgoff, flags);
1388 if (IS_ERR((void *) addr)) {
1389 ret = addr;
1390 if (ret != (unsigned long) -ENOSYS)
1391 goto error_just_free;
1393 /* the driver refused to tell us where to site
1394 * the mapping so we'll have to attempt to copy
1395 * it */
1396 ret = (unsigned long) -ENODEV;
1397 if (!(capabilities & BDI_CAP_MAP_COPY))
1398 goto error_just_free;
1400 capabilities &= ~BDI_CAP_MAP_DIRECT;
1401 } else {
1402 vma->vm_start = region->vm_start = addr;
1403 vma->vm_end = region->vm_end = addr + len;
1408 vma->vm_region = region;
1410 /* set up the mapping
1411 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1413 if (file && vma->vm_flags & VM_SHARED)
1414 ret = do_mmap_shared_file(vma);
1415 else
1416 ret = do_mmap_private(vma, region, len, capabilities);
1417 if (ret < 0)
1418 goto error_just_free;
1419 add_nommu_region(region);
1421 /* clear anonymous mappings that don't ask for uninitialized data */
1422 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1423 memset((void *)region->vm_start, 0,
1424 region->vm_end - region->vm_start);
1426 /* okay... we have a mapping; now we have to register it */
1427 result = vma->vm_start;
1429 current->mm->total_vm += len >> PAGE_SHIFT;
1431 share:
1432 add_vma_to_mm(current->mm, vma);
1434 /* we flush the region from the icache only when the first executable
1435 * mapping of it is made */
1436 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1437 flush_icache_range(region->vm_start, region->vm_end);
1438 region->vm_icache_flushed = true;
1441 up_write(&nommu_region_sem);
1443 kleave(" = %lx", result);
1444 return result;
1446 error_just_free:
1447 up_write(&nommu_region_sem);
1448 error:
1449 if (region->vm_file)
1450 fput(region->vm_file);
1451 kmem_cache_free(vm_region_jar, region);
1452 if (vma->vm_file)
1453 fput(vma->vm_file);
1454 if (vma->vm_flags & VM_EXECUTABLE)
1455 removed_exe_file_vma(vma->vm_mm);
1456 kmem_cache_free(vm_area_cachep, vma);
1457 kleave(" = %d", ret);
1458 return ret;
1460 sharing_violation:
1461 up_write(&nommu_region_sem);
1462 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1463 ret = -EINVAL;
1464 goto error;
1466 error_getting_vma:
1467 kmem_cache_free(vm_region_jar, region);
1468 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1469 " from process %d failed\n",
1470 len, current->pid);
1471 show_free_areas();
1472 return -ENOMEM;
1474 error_getting_region:
1475 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1476 " from process %d failed\n",
1477 len, current->pid);
1478 show_free_areas();
1479 return -ENOMEM;
1481 EXPORT_SYMBOL(do_mmap_pgoff);
1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484 unsigned long, prot, unsigned long, flags,
1485 unsigned long, fd, unsigned long, pgoff)
1487 struct file *file = NULL;
1488 unsigned long retval = -EBADF;
1490 audit_mmap_fd(fd, flags);
1491 if (!(flags & MAP_ANONYMOUS)) {
1492 file = fget(fd);
1493 if (!file)
1494 goto out;
1497 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499 down_write(&current->mm->mmap_sem);
1500 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501 up_write(&current->mm->mmap_sem);
1503 if (file)
1504 fput(file);
1505 out:
1506 return retval;
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct {
1511 unsigned long addr;
1512 unsigned long len;
1513 unsigned long prot;
1514 unsigned long flags;
1515 unsigned long fd;
1516 unsigned long offset;
1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 struct mmap_arg_struct a;
1523 if (copy_from_user(&a, arg, sizeof(a)))
1524 return -EFAULT;
1525 if (a.offset & ~PAGE_MASK)
1526 return -EINVAL;
1528 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529 a.offset >> PAGE_SHIFT);
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538 unsigned long addr, int new_below)
1540 struct vm_area_struct *new;
1541 struct vm_region *region;
1542 unsigned long npages;
1544 kenter("");
1546 /* we're only permitted to split anonymous regions (these should have
1547 * only a single usage on the region) */
1548 if (vma->vm_file)
1549 return -ENOMEM;
1551 if (mm->map_count >= sysctl_max_map_count)
1552 return -ENOMEM;
1554 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555 if (!region)
1556 return -ENOMEM;
1558 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559 if (!new) {
1560 kmem_cache_free(vm_region_jar, region);
1561 return -ENOMEM;
1564 /* most fields are the same, copy all, and then fixup */
1565 *new = *vma;
1566 *region = *vma->vm_region;
1567 new->vm_region = region;
1569 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1571 if (new_below) {
1572 region->vm_top = region->vm_end = new->vm_end = addr;
1573 } else {
1574 region->vm_start = new->vm_start = addr;
1575 region->vm_pgoff = new->vm_pgoff += npages;
1578 if (new->vm_ops && new->vm_ops->open)
1579 new->vm_ops->open(new);
1581 delete_vma_from_mm(vma);
1582 down_write(&nommu_region_sem);
1583 delete_nommu_region(vma->vm_region);
1584 if (new_below) {
1585 vma->vm_region->vm_start = vma->vm_start = addr;
1586 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587 } else {
1588 vma->vm_region->vm_end = vma->vm_end = addr;
1589 vma->vm_region->vm_top = addr;
1591 add_nommu_region(vma->vm_region);
1592 add_nommu_region(new->vm_region);
1593 up_write(&nommu_region_sem);
1594 add_vma_to_mm(mm, vma);
1595 add_vma_to_mm(mm, new);
1596 return 0;
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1601 * the end
1603 static int shrink_vma(struct mm_struct *mm,
1604 struct vm_area_struct *vma,
1605 unsigned long from, unsigned long to)
1607 struct vm_region *region;
1609 kenter("");
1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1612 * and list */
1613 delete_vma_from_mm(vma);
1614 if (from > vma->vm_start)
1615 vma->vm_end = from;
1616 else
1617 vma->vm_start = to;
1618 add_vma_to_mm(mm, vma);
1620 /* cut the backing region down to size */
1621 region = vma->vm_region;
1622 BUG_ON(region->vm_usage != 1);
1624 down_write(&nommu_region_sem);
1625 delete_nommu_region(region);
1626 if (from > region->vm_start) {
1627 to = region->vm_top;
1628 region->vm_top = region->vm_end = from;
1629 } else {
1630 region->vm_start = to;
1632 add_nommu_region(region);
1633 up_write(&nommu_region_sem);
1635 free_page_series(from, to);
1636 return 0;
1640 * release a mapping
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 * VMA, though it need not cover the whole VMA
1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1646 struct vm_area_struct *vma;
1647 struct rb_node *rb;
1648 unsigned long end = start + len;
1649 int ret;
1651 kenter(",%lx,%zx", start, len);
1653 if (len == 0)
1654 return -EINVAL;
1656 /* find the first potentially overlapping VMA */
1657 vma = find_vma(mm, start);
1658 if (!vma) {
1659 static int limit = 0;
1660 if (limit < 5) {
1661 printk(KERN_WARNING
1662 "munmap of memory not mmapped by process %d"
1663 " (%s): 0x%lx-0x%lx\n",
1664 current->pid, current->comm,
1665 start, start + len - 1);
1666 limit++;
1668 return -EINVAL;
1671 /* we're allowed to split an anonymous VMA but not a file-backed one */
1672 if (vma->vm_file) {
1673 do {
1674 if (start > vma->vm_start) {
1675 kleave(" = -EINVAL [miss]");
1676 return -EINVAL;
1678 if (end == vma->vm_end)
1679 goto erase_whole_vma;
1680 rb = rb_next(&vma->vm_rb);
1681 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1682 } while (rb);
1683 kleave(" = -EINVAL [split file]");
1684 return -EINVAL;
1685 } else {
1686 /* the chunk must be a subset of the VMA found */
1687 if (start == vma->vm_start && end == vma->vm_end)
1688 goto erase_whole_vma;
1689 if (start < vma->vm_start || end > vma->vm_end) {
1690 kleave(" = -EINVAL [superset]");
1691 return -EINVAL;
1693 if (start & ~PAGE_MASK) {
1694 kleave(" = -EINVAL [unaligned start]");
1695 return -EINVAL;
1697 if (end != vma->vm_end && end & ~PAGE_MASK) {
1698 kleave(" = -EINVAL [unaligned split]");
1699 return -EINVAL;
1701 if (start != vma->vm_start && end != vma->vm_end) {
1702 ret = split_vma(mm, vma, start, 1);
1703 if (ret < 0) {
1704 kleave(" = %d [split]", ret);
1705 return ret;
1708 return shrink_vma(mm, vma, start, end);
1711 erase_whole_vma:
1712 delete_vma_from_mm(vma);
1713 delete_vma(mm, vma);
1714 kleave(" = 0");
1715 return 0;
1717 EXPORT_SYMBOL(do_munmap);
1719 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1721 int ret;
1722 struct mm_struct *mm = current->mm;
1724 down_write(&mm->mmap_sem);
1725 ret = do_munmap(mm, addr, len);
1726 up_write(&mm->mmap_sem);
1727 return ret;
1731 * release all the mappings made in a process's VM space
1733 void exit_mmap(struct mm_struct *mm)
1735 struct vm_area_struct *vma;
1737 if (!mm)
1738 return;
1740 kenter("");
1742 mm->total_vm = 0;
1744 while ((vma = mm->mmap)) {
1745 mm->mmap = vma->vm_next;
1746 delete_vma_from_mm(vma);
1747 delete_vma(mm, vma);
1748 cond_resched();
1751 kleave("");
1754 unsigned long do_brk(unsigned long addr, unsigned long len)
1756 return -ENOMEM;
1760 * expand (or shrink) an existing mapping, potentially moving it at the same
1761 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1763 * under NOMMU conditions, we only permit changing a mapping's size, and only
1764 * as long as it stays within the region allocated by do_mmap_private() and the
1765 * block is not shareable
1767 * MREMAP_FIXED is not supported under NOMMU conditions
1769 unsigned long do_mremap(unsigned long addr,
1770 unsigned long old_len, unsigned long new_len,
1771 unsigned long flags, unsigned long new_addr)
1773 struct vm_area_struct *vma;
1775 /* insanity checks first */
1776 if (old_len == 0 || new_len == 0)
1777 return (unsigned long) -EINVAL;
1779 if (addr & ~PAGE_MASK)
1780 return -EINVAL;
1782 if (flags & MREMAP_FIXED && new_addr != addr)
1783 return (unsigned long) -EINVAL;
1785 vma = find_vma_exact(current->mm, addr, old_len);
1786 if (!vma)
1787 return (unsigned long) -EINVAL;
1789 if (vma->vm_end != vma->vm_start + old_len)
1790 return (unsigned long) -EFAULT;
1792 if (vma->vm_flags & VM_MAYSHARE)
1793 return (unsigned long) -EPERM;
1795 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1796 return (unsigned long) -ENOMEM;
1798 /* all checks complete - do it */
1799 vma->vm_end = vma->vm_start + new_len;
1800 return vma->vm_start;
1802 EXPORT_SYMBOL(do_mremap);
1804 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1805 unsigned long, new_len, unsigned long, flags,
1806 unsigned long, new_addr)
1808 unsigned long ret;
1810 down_write(&current->mm->mmap_sem);
1811 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1812 up_write(&current->mm->mmap_sem);
1813 return ret;
1816 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1817 unsigned int foll_flags)
1819 return NULL;
1822 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1823 unsigned long to, unsigned long size, pgprot_t prot)
1825 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1826 return 0;
1828 EXPORT_SYMBOL(remap_pfn_range);
1830 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1831 unsigned long pgoff)
1833 unsigned int size = vma->vm_end - vma->vm_start;
1835 if (!(vma->vm_flags & VM_USERMAP))
1836 return -EINVAL;
1838 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1839 vma->vm_end = vma->vm_start + size;
1841 return 0;
1843 EXPORT_SYMBOL(remap_vmalloc_range);
1845 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1846 unsigned long len, unsigned long pgoff, unsigned long flags)
1848 return -ENOMEM;
1851 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1855 void unmap_mapping_range(struct address_space *mapping,
1856 loff_t const holebegin, loff_t const holelen,
1857 int even_cows)
1860 EXPORT_SYMBOL(unmap_mapping_range);
1863 * Check that a process has enough memory to allocate a new virtual
1864 * mapping. 0 means there is enough memory for the allocation to
1865 * succeed and -ENOMEM implies there is not.
1867 * We currently support three overcommit policies, which are set via the
1868 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1870 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1871 * Additional code 2002 Jul 20 by Robert Love.
1873 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1875 * Note this is a helper function intended to be used by LSMs which
1876 * wish to use this logic.
1878 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1880 unsigned long free, allowed;
1882 vm_acct_memory(pages);
1885 * Sometimes we want to use more memory than we have
1887 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1888 return 0;
1890 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1891 unsigned long n;
1893 free = global_page_state(NR_FILE_PAGES);
1894 free += nr_swap_pages;
1897 * Any slabs which are created with the
1898 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1899 * which are reclaimable, under pressure. The dentry
1900 * cache and most inode caches should fall into this
1902 free += global_page_state(NR_SLAB_RECLAIMABLE);
1905 * Leave the last 3% for root
1907 if (!cap_sys_admin)
1908 free -= free / 32;
1910 if (free > pages)
1911 return 0;
1914 * nr_free_pages() is very expensive on large systems,
1915 * only call if we're about to fail.
1917 n = nr_free_pages();
1920 * Leave reserved pages. The pages are not for anonymous pages.
1922 if (n <= totalreserve_pages)
1923 goto error;
1924 else
1925 n -= totalreserve_pages;
1928 * Leave the last 3% for root
1930 if (!cap_sys_admin)
1931 n -= n / 32;
1932 free += n;
1934 if (free > pages)
1935 return 0;
1937 goto error;
1940 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1942 * Leave the last 3% for root
1944 if (!cap_sys_admin)
1945 allowed -= allowed / 32;
1946 allowed += total_swap_pages;
1948 /* Don't let a single process grow too big:
1949 leave 3% of the size of this process for other processes */
1950 if (mm)
1951 allowed -= mm->total_vm / 32;
1953 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1954 return 0;
1956 error:
1957 vm_unacct_memory(pages);
1959 return -ENOMEM;
1962 int in_gate_area_no_mm(unsigned long addr)
1964 return 0;
1967 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1969 BUG();
1970 return 0;
1972 EXPORT_SYMBOL(filemap_fault);
1974 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1975 unsigned long addr, void *buf, int len, int write)
1977 struct vm_area_struct *vma;
1979 down_read(&mm->mmap_sem);
1981 /* the access must start within one of the target process's mappings */
1982 vma = find_vma(mm, addr);
1983 if (vma) {
1984 /* don't overrun this mapping */
1985 if (addr + len >= vma->vm_end)
1986 len = vma->vm_end - addr;
1988 /* only read or write mappings where it is permitted */
1989 if (write && vma->vm_flags & VM_MAYWRITE)
1990 copy_to_user_page(vma, NULL, addr,
1991 (void *) addr, buf, len);
1992 else if (!write && vma->vm_flags & VM_MAYREAD)
1993 copy_from_user_page(vma, NULL, addr,
1994 buf, (void *) addr, len);
1995 else
1996 len = 0;
1997 } else {
1998 len = 0;
2001 up_read(&mm->mmap_sem);
2003 return len;
2007 * @access_remote_vm - access another process' address space
2008 * @mm: the mm_struct of the target address space
2009 * @addr: start address to access
2010 * @buf: source or destination buffer
2011 * @len: number of bytes to transfer
2012 * @write: whether the access is a write
2014 * The caller must hold a reference on @mm.
2016 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2017 void *buf, int len, int write)
2019 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2023 * Access another process' address space.
2024 * - source/target buffer must be kernel space
2026 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2028 struct mm_struct *mm;
2030 if (addr + len < addr)
2031 return 0;
2033 mm = get_task_mm(tsk);
2034 if (!mm)
2035 return 0;
2037 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2039 mmput(mm);
2040 return len;
2044 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2045 * @inode: The inode to check
2046 * @size: The current filesize of the inode
2047 * @newsize: The proposed filesize of the inode
2049 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2050 * make sure that that any outstanding VMAs aren't broken and then shrink the
2051 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2052 * automatically grant mappings that are too large.
2054 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2055 size_t newsize)
2057 struct vm_area_struct *vma;
2058 struct prio_tree_iter iter;
2059 struct vm_region *region;
2060 pgoff_t low, high;
2061 size_t r_size, r_top;
2063 low = newsize >> PAGE_SHIFT;
2064 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2066 down_write(&nommu_region_sem);
2068 /* search for VMAs that fall within the dead zone */
2069 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2070 low, high) {
2071 /* found one - only interested if it's shared out of the page
2072 * cache */
2073 if (vma->vm_flags & VM_SHARED) {
2074 up_write(&nommu_region_sem);
2075 return -ETXTBSY; /* not quite true, but near enough */
2079 /* reduce any regions that overlap the dead zone - if in existence,
2080 * these will be pointed to by VMAs that don't overlap the dead zone
2082 * we don't check for any regions that start beyond the EOF as there
2083 * shouldn't be any
2085 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2086 0, ULONG_MAX) {
2087 if (!(vma->vm_flags & VM_SHARED))
2088 continue;
2090 region = vma->vm_region;
2091 r_size = region->vm_top - region->vm_start;
2092 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2094 if (r_top > newsize) {
2095 region->vm_top -= r_top - newsize;
2096 if (region->vm_end > region->vm_top)
2097 region->vm_end = region->vm_top;
2101 up_write(&nommu_region_sem);
2102 return 0;