2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap
);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
40 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
43 * For the allocated request tables
45 static struct kmem_cache
*request_cachep
;
48 * For queue allocation
50 struct kmem_cache
*blk_requestq_cachep
;
53 * Controlling structure to kblockd
55 static struct workqueue_struct
*kblockd_workqueue
;
57 static void drive_stat_acct(struct request
*rq
, int new_io
)
59 struct hd_struct
*part
;
60 int rw
= rq_data_dir(rq
);
63 if (!blk_do_io_stat(rq
))
66 cpu
= part_stat_lock();
67 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
70 part_stat_inc(cpu
, part
, merges
[rw
]);
72 part_round_stats(cpu
, part
);
73 part_inc_in_flight(part
, rw
);
79 void blk_queue_congestion_threshold(struct request_queue
*q
)
83 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
84 if (nr
> q
->nr_requests
)
86 q
->nr_congestion_on
= nr
;
88 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
91 q
->nr_congestion_off
= nr
;
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * Locates the passed device's request queue and returns the address of its
101 * Will return NULL if the request queue cannot be located.
103 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
105 struct backing_dev_info
*ret
= NULL
;
106 struct request_queue
*q
= bdev_get_queue(bdev
);
109 ret
= &q
->backing_dev_info
;
112 EXPORT_SYMBOL(blk_get_backing_dev_info
);
114 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
116 memset(rq
, 0, sizeof(*rq
));
118 INIT_LIST_HEAD(&rq
->queuelist
);
119 INIT_LIST_HEAD(&rq
->timeout_list
);
122 rq
->__sector
= (sector_t
) -1;
123 INIT_HLIST_NODE(&rq
->hash
);
124 RB_CLEAR_NODE(&rq
->rb_node
);
126 rq
->cmd_len
= BLK_MAX_CDB
;
129 rq
->start_time
= jiffies
;
130 set_start_time_ns(rq
);
132 EXPORT_SYMBOL(blk_rq_init
);
134 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
135 unsigned int nbytes
, int error
)
137 struct request_queue
*q
= rq
->q
;
139 if (&q
->bar_rq
!= rq
) {
141 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
142 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
145 if (unlikely(nbytes
> bio
->bi_size
)) {
146 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
147 __func__
, nbytes
, bio
->bi_size
);
148 nbytes
= bio
->bi_size
;
151 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
152 set_bit(BIO_QUIET
, &bio
->bi_flags
);
154 bio
->bi_size
-= nbytes
;
155 bio
->bi_sector
+= (nbytes
>> 9);
157 if (bio_integrity(bio
))
158 bio_integrity_advance(bio
, nbytes
);
160 if (bio
->bi_size
== 0)
161 bio_endio(bio
, error
);
165 * Okay, this is the barrier request in progress, just
168 if (error
&& !q
->orderr
)
173 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
177 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
178 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
181 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq
),
183 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
184 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
185 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
187 if (blk_pc_request(rq
)) {
188 printk(KERN_INFO
" cdb: ");
189 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
190 printk("%02x ", rq
->cmd
[bit
]);
194 EXPORT_SYMBOL(blk_dump_rq_flags
);
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
204 void blk_plug_device(struct request_queue
*q
)
206 WARN_ON(!irqs_disabled());
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
212 if (blk_queue_stopped(q
))
215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED
, q
)) {
216 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
220 EXPORT_SYMBOL(blk_plug_device
);
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
227 * Like @blk_plug_device(), but grabs the queue lock and disables
230 void blk_plug_device_unlocked(struct request_queue
*q
)
234 spin_lock_irqsave(q
->queue_lock
, flags
);
236 spin_unlock_irqrestore(q
->queue_lock
, flags
);
238 EXPORT_SYMBOL(blk_plug_device_unlocked
);
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
244 int blk_remove_plug(struct request_queue
*q
)
246 WARN_ON(!irqs_disabled());
248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED
, q
))
251 del_timer(&q
->unplug_timer
);
254 EXPORT_SYMBOL(blk_remove_plug
);
257 * remove the plug and let it rip..
259 void __generic_unplug_device(struct request_queue
*q
)
261 if (unlikely(blk_queue_stopped(q
)))
263 if (!blk_remove_plug(q
) && !blk_queue_nonrot(q
))
270 * generic_unplug_device - fire a request queue
271 * @q: The &struct request_queue in question
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
280 void generic_unplug_device(struct request_queue
*q
)
282 if (blk_queue_plugged(q
)) {
283 spin_lock_irq(q
->queue_lock
);
284 __generic_unplug_device(q
);
285 spin_unlock_irq(q
->queue_lock
);
288 EXPORT_SYMBOL(generic_unplug_device
);
290 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
293 struct request_queue
*q
= bdi
->unplug_io_data
;
298 void blk_unplug_work(struct work_struct
*work
)
300 struct request_queue
*q
=
301 container_of(work
, struct request_queue
, unplug_work
);
303 trace_block_unplug_io(q
);
307 void blk_unplug_timeout(unsigned long data
)
309 struct request_queue
*q
= (struct request_queue
*)data
;
311 trace_block_unplug_timer(q
);
312 kblockd_schedule_work(q
, &q
->unplug_work
);
315 void blk_unplug(struct request_queue
*q
)
318 * devices don't necessarily have an ->unplug_fn defined
321 trace_block_unplug_io(q
);
325 EXPORT_SYMBOL(blk_unplug
);
328 * blk_start_queue - restart a previously stopped queue
329 * @q: The &struct request_queue in question
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 void blk_start_queue(struct request_queue
*q
)
338 WARN_ON(!irqs_disabled());
340 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
343 EXPORT_SYMBOL(blk_start_queue
);
346 * blk_stop_queue - stop a queue
347 * @q: The &struct request_queue in question
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
359 void blk_stop_queue(struct request_queue
*q
)
362 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
364 EXPORT_SYMBOL(blk_stop_queue
);
367 * blk_sync_queue - cancel any pending callbacks on a queue
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
375 * that the callbacks might use. The caller must already have made sure
376 * that its ->make_request_fn will not re-add plugging prior to calling
380 void blk_sync_queue(struct request_queue
*q
)
382 del_timer_sync(&q
->unplug_timer
);
383 del_timer_sync(&q
->timeout
);
384 cancel_work_sync(&q
->unplug_work
);
386 EXPORT_SYMBOL(blk_sync_queue
);
389 * __blk_run_queue - run a single device queue
390 * @q: The queue to run
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
397 void __blk_run_queue(struct request_queue
*q
)
401 if (unlikely(blk_queue_stopped(q
)))
404 if (elv_queue_empty(q
))
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER
, q
)) {
413 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
415 queue_flag_set(QUEUE_FLAG_PLUGGED
, q
);
416 kblockd_schedule_work(q
, &q
->unplug_work
);
419 EXPORT_SYMBOL(__blk_run_queue
);
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
426 * Invoke request handling on this queue, if it has pending work to do.
427 * May be used to restart queueing when a request has completed.
429 void blk_run_queue(struct request_queue
*q
)
433 spin_lock_irqsave(q
->queue_lock
, flags
);
435 spin_unlock_irqrestore(q
->queue_lock
, flags
);
437 EXPORT_SYMBOL(blk_run_queue
);
439 void blk_put_queue(struct request_queue
*q
)
441 kobject_put(&q
->kobj
);
444 void blk_cleanup_queue(struct request_queue
*q
)
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
454 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
455 mutex_lock(&q
->sysfs_lock
);
456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
457 mutex_unlock(&q
->sysfs_lock
);
460 elevator_exit(q
->elevator
);
464 EXPORT_SYMBOL(blk_cleanup_queue
);
466 static int blk_init_free_list(struct request_queue
*q
)
468 struct request_list
*rl
= &q
->rq
;
470 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
471 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
473 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
474 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
476 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
477 mempool_free_slab
, request_cachep
, q
->node
);
485 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
487 return blk_alloc_queue_node(gfp_mask
, -1);
489 EXPORT_SYMBOL(blk_alloc_queue
);
491 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
493 struct request_queue
*q
;
496 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
497 gfp_mask
| __GFP_ZERO
, node_id
);
501 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
502 q
->backing_dev_info
.unplug_io_data
= q
;
503 q
->backing_dev_info
.ra_pages
=
504 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
505 q
->backing_dev_info
.state
= 0;
506 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
507 q
->backing_dev_info
.name
= "block";
509 err
= bdi_init(&q
->backing_dev_info
);
511 kmem_cache_free(blk_requestq_cachep
, q
);
515 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
516 laptop_mode_timer_fn
, (unsigned long) q
);
517 init_timer(&q
->unplug_timer
);
518 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
519 INIT_LIST_HEAD(&q
->timeout_list
);
520 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
522 kobject_init(&q
->kobj
, &blk_queue_ktype
);
524 mutex_init(&q
->sysfs_lock
);
525 spin_lock_init(&q
->__queue_lock
);
529 EXPORT_SYMBOL(blk_alloc_queue_node
);
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
556 * Function returns a pointer to the initialized request queue, or %NULL if
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
564 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
566 return blk_init_queue_node(rfn
, lock
, -1);
568 EXPORT_SYMBOL(blk_init_queue
);
570 struct request_queue
*
571 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
573 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
575 return blk_init_allocated_queue_node(q
, rfn
, lock
, node_id
);
577 EXPORT_SYMBOL(blk_init_queue_node
);
579 struct request_queue
*
580 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
583 return blk_init_allocated_queue_node(q
, rfn
, lock
, -1);
585 EXPORT_SYMBOL(blk_init_allocated_queue
);
587 struct request_queue
*
588 blk_init_allocated_queue_node(struct request_queue
*q
, request_fn_proc
*rfn
,
589 spinlock_t
*lock
, int node_id
)
595 if (blk_init_free_list(q
)) {
596 kmem_cache_free(blk_requestq_cachep
, q
);
601 q
->prep_rq_fn
= NULL
;
602 q
->unplug_fn
= generic_unplug_device
;
603 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
604 q
->queue_lock
= lock
;
607 * This also sets hw/phys segments, boundary and size
609 blk_queue_make_request(q
, __make_request
);
611 q
->sg_reserved_size
= INT_MAX
;
616 if (!elevator_init(q
, NULL
)) {
617 blk_queue_congestion_threshold(q
);
624 EXPORT_SYMBOL(blk_init_allocated_queue_node
);
626 int blk_get_queue(struct request_queue
*q
)
628 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
629 kobject_get(&q
->kobj
);
636 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
638 if (rq
->cmd_flags
& REQ_ELVPRIV
)
639 elv_put_request(q
, rq
);
640 mempool_free(rq
, q
->rq
.rq_pool
);
643 static struct request
*
644 blk_alloc_request(struct request_queue
*q
, int flags
, int priv
, gfp_t gfp_mask
)
646 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
653 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
656 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
657 mempool_free(rq
, q
->rq
.rq_pool
);
660 rq
->cmd_flags
|= REQ_ELVPRIV
;
667 * ioc_batching returns true if the ioc is a valid batching request and
668 * should be given priority access to a request.
670 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
676 * Make sure the process is able to allocate at least 1 request
677 * even if the batch times out, otherwise we could theoretically
680 return ioc
->nr_batch_requests
== q
->nr_batching
||
681 (ioc
->nr_batch_requests
> 0
682 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
686 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
687 * will cause the process to be a "batcher" on all queues in the system. This
688 * is the behaviour we want though - once it gets a wakeup it should be given
691 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
693 if (!ioc
|| ioc_batching(q
, ioc
))
696 ioc
->nr_batch_requests
= q
->nr_batching
;
697 ioc
->last_waited
= jiffies
;
700 static void __freed_request(struct request_queue
*q
, int sync
)
702 struct request_list
*rl
= &q
->rq
;
704 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
705 blk_clear_queue_congested(q
, sync
);
707 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
708 if (waitqueue_active(&rl
->wait
[sync
]))
709 wake_up(&rl
->wait
[sync
]);
711 blk_clear_queue_full(q
, sync
);
716 * A request has just been released. Account for it, update the full and
717 * congestion status, wake up any waiters. Called under q->queue_lock.
719 static void freed_request(struct request_queue
*q
, int sync
, int priv
)
721 struct request_list
*rl
= &q
->rq
;
727 __freed_request(q
, sync
);
729 if (unlikely(rl
->starved
[sync
^ 1]))
730 __freed_request(q
, sync
^ 1);
734 * Get a free request, queue_lock must be held.
735 * Returns NULL on failure, with queue_lock held.
736 * Returns !NULL on success, with queue_lock *not held*.
738 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
739 struct bio
*bio
, gfp_t gfp_mask
)
741 struct request
*rq
= NULL
;
742 struct request_list
*rl
= &q
->rq
;
743 struct io_context
*ioc
= NULL
;
744 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
747 may_queue
= elv_may_queue(q
, rw_flags
);
748 if (may_queue
== ELV_MQUEUE_NO
)
751 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
752 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
753 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
755 * The queue will fill after this allocation, so set
756 * it as full, and mark this process as "batching".
757 * This process will be allowed to complete a batch of
758 * requests, others will be blocked.
760 if (!blk_queue_full(q
, is_sync
)) {
761 ioc_set_batching(q
, ioc
);
762 blk_set_queue_full(q
, is_sync
);
764 if (may_queue
!= ELV_MQUEUE_MUST
765 && !ioc_batching(q
, ioc
)) {
767 * The queue is full and the allocating
768 * process is not a "batcher", and not
769 * exempted by the IO scheduler
775 blk_set_queue_congested(q
, is_sync
);
779 * Only allow batching queuers to allocate up to 50% over the defined
780 * limit of requests, otherwise we could have thousands of requests
781 * allocated with any setting of ->nr_requests
783 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
786 rl
->count
[is_sync
]++;
787 rl
->starved
[is_sync
] = 0;
789 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
793 if (blk_queue_io_stat(q
))
794 rw_flags
|= REQ_IO_STAT
;
795 spin_unlock_irq(q
->queue_lock
);
797 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
800 * Allocation failed presumably due to memory. Undo anything
801 * we might have messed up.
803 * Allocating task should really be put onto the front of the
804 * wait queue, but this is pretty rare.
806 spin_lock_irq(q
->queue_lock
);
807 freed_request(q
, is_sync
, priv
);
810 * in the very unlikely event that allocation failed and no
811 * requests for this direction was pending, mark us starved
812 * so that freeing of a request in the other direction will
813 * notice us. another possible fix would be to split the
814 * rq mempool into READ and WRITE
817 if (unlikely(rl
->count
[is_sync
] == 0))
818 rl
->starved
[is_sync
] = 1;
824 * ioc may be NULL here, and ioc_batching will be false. That's
825 * OK, if the queue is under the request limit then requests need
826 * not count toward the nr_batch_requests limit. There will always
827 * be some limit enforced by BLK_BATCH_TIME.
829 if (ioc_batching(q
, ioc
))
830 ioc
->nr_batch_requests
--;
832 trace_block_getrq(q
, bio
, rw_flags
& 1);
838 * No available requests for this queue, unplug the device and wait for some
839 * requests to become available.
841 * Called with q->queue_lock held, and returns with it unlocked.
843 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
846 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
849 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
852 struct io_context
*ioc
;
853 struct request_list
*rl
= &q
->rq
;
855 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
856 TASK_UNINTERRUPTIBLE
);
858 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
860 __generic_unplug_device(q
);
861 spin_unlock_irq(q
->queue_lock
);
865 * After sleeping, we become a "batching" process and
866 * will be able to allocate at least one request, and
867 * up to a big batch of them for a small period time.
868 * See ioc_batching, ioc_set_batching
870 ioc
= current_io_context(GFP_NOIO
, q
->node
);
871 ioc_set_batching(q
, ioc
);
873 spin_lock_irq(q
->queue_lock
);
874 finish_wait(&rl
->wait
[is_sync
], &wait
);
876 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
882 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
886 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
888 spin_lock_irq(q
->queue_lock
);
889 if (gfp_mask
& __GFP_WAIT
) {
890 rq
= get_request_wait(q
, rw
, NULL
);
892 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
894 spin_unlock_irq(q
->queue_lock
);
896 /* q->queue_lock is unlocked at this point */
900 EXPORT_SYMBOL(blk_get_request
);
903 * blk_make_request - given a bio, allocate a corresponding struct request.
904 * @q: target request queue
905 * @bio: The bio describing the memory mappings that will be submitted for IO.
906 * It may be a chained-bio properly constructed by block/bio layer.
907 * @gfp_mask: gfp flags to be used for memory allocation
909 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
910 * type commands. Where the struct request needs to be farther initialized by
911 * the caller. It is passed a &struct bio, which describes the memory info of
914 * The caller of blk_make_request must make sure that bi_io_vec
915 * are set to describe the memory buffers. That bio_data_dir() will return
916 * the needed direction of the request. (And all bio's in the passed bio-chain
917 * are properly set accordingly)
919 * If called under none-sleepable conditions, mapped bio buffers must not
920 * need bouncing, by calling the appropriate masked or flagged allocator,
921 * suitable for the target device. Otherwise the call to blk_queue_bounce will
924 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
925 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
926 * anything but the first bio in the chain. Otherwise you risk waiting for IO
927 * completion of a bio that hasn't been submitted yet, thus resulting in a
928 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
929 * of bio_alloc(), as that avoids the mempool deadlock.
930 * If possible a big IO should be split into smaller parts when allocation
931 * fails. Partial allocation should not be an error, or you risk a live-lock.
933 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
936 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
939 return ERR_PTR(-ENOMEM
);
942 struct bio
*bounce_bio
= bio
;
945 blk_queue_bounce(q
, &bounce_bio
);
946 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
955 EXPORT_SYMBOL(blk_make_request
);
958 * blk_requeue_request - put a request back on queue
959 * @q: request queue where request should be inserted
960 * @rq: request to be inserted
963 * Drivers often keep queueing requests until the hardware cannot accept
964 * more, when that condition happens we need to put the request back
965 * on the queue. Must be called with queue lock held.
967 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
969 blk_delete_timer(rq
);
970 blk_clear_rq_complete(rq
);
971 trace_block_rq_requeue(q
, rq
);
973 if (blk_rq_tagged(rq
))
974 blk_queue_end_tag(q
, rq
);
976 BUG_ON(blk_queued_rq(rq
));
978 elv_requeue_request(q
, rq
);
980 EXPORT_SYMBOL(blk_requeue_request
);
983 * blk_insert_request - insert a special request into a request queue
984 * @q: request queue where request should be inserted
985 * @rq: request to be inserted
986 * @at_head: insert request at head or tail of queue
987 * @data: private data
990 * Many block devices need to execute commands asynchronously, so they don't
991 * block the whole kernel from preemption during request execution. This is
992 * accomplished normally by inserting aritficial requests tagged as
993 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
994 * be scheduled for actual execution by the request queue.
996 * We have the option of inserting the head or the tail of the queue.
997 * Typically we use the tail for new ioctls and so forth. We use the head
998 * of the queue for things like a QUEUE_FULL message from a device, or a
999 * host that is unable to accept a particular command.
1001 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
1002 int at_head
, void *data
)
1004 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
1005 unsigned long flags
;
1008 * tell I/O scheduler that this isn't a regular read/write (ie it
1009 * must not attempt merges on this) and that it acts as a soft
1012 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
1016 spin_lock_irqsave(q
->queue_lock
, flags
);
1019 * If command is tagged, release the tag
1021 if (blk_rq_tagged(rq
))
1022 blk_queue_end_tag(q
, rq
);
1024 drive_stat_acct(rq
, 1);
1025 __elv_add_request(q
, rq
, where
, 0);
1027 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1029 EXPORT_SYMBOL(blk_insert_request
);
1032 * add-request adds a request to the linked list.
1033 * queue lock is held and interrupts disabled, as we muck with the
1034 * request queue list.
1036 static inline void add_request(struct request_queue
*q
, struct request
*req
)
1038 drive_stat_acct(req
, 1);
1041 * elevator indicated where it wants this request to be
1042 * inserted at elevator_merge time
1044 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
1047 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1050 if (now
== part
->stamp
)
1053 if (part_in_flight(part
)) {
1054 __part_stat_add(cpu
, part
, time_in_queue
,
1055 part_in_flight(part
) * (now
- part
->stamp
));
1056 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1062 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1063 * @cpu: cpu number for stats access
1064 * @part: target partition
1066 * The average IO queue length and utilisation statistics are maintained
1067 * by observing the current state of the queue length and the amount of
1068 * time it has been in this state for.
1070 * Normally, that accounting is done on IO completion, but that can result
1071 * in more than a second's worth of IO being accounted for within any one
1072 * second, leading to >100% utilisation. To deal with that, we call this
1073 * function to do a round-off before returning the results when reading
1074 * /proc/diskstats. This accounts immediately for all queue usage up to
1075 * the current jiffies and restarts the counters again.
1077 void part_round_stats(int cpu
, struct hd_struct
*part
)
1079 unsigned long now
= jiffies
;
1082 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1083 part_round_stats_single(cpu
, part
, now
);
1085 EXPORT_SYMBOL_GPL(part_round_stats
);
1088 * queue lock must be held
1090 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1094 if (unlikely(--req
->ref_count
))
1097 elv_completed_request(q
, req
);
1099 /* this is a bio leak */
1100 WARN_ON(req
->bio
!= NULL
);
1103 * Request may not have originated from ll_rw_blk. if not,
1104 * it didn't come out of our reserved rq pools
1106 if (req
->cmd_flags
& REQ_ALLOCED
) {
1107 int is_sync
= rq_is_sync(req
) != 0;
1108 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1110 BUG_ON(!list_empty(&req
->queuelist
));
1111 BUG_ON(!hlist_unhashed(&req
->hash
));
1113 blk_free_request(q
, req
);
1114 freed_request(q
, is_sync
, priv
);
1117 EXPORT_SYMBOL_GPL(__blk_put_request
);
1119 void blk_put_request(struct request
*req
)
1121 unsigned long flags
;
1122 struct request_queue
*q
= req
->q
;
1124 spin_lock_irqsave(q
->queue_lock
, flags
);
1125 __blk_put_request(q
, req
);
1126 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1128 EXPORT_SYMBOL(blk_put_request
);
1130 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1132 req
->cpu
= bio
->bi_comp_cpu
;
1133 req
->cmd_type
= REQ_TYPE_FS
;
1136 * Inherit FAILFAST from bio (for read-ahead, and explicit
1137 * FAILFAST). FAILFAST flags are identical for req and bio.
1139 if (bio_rw_flagged(bio
, BIO_RW_AHEAD
))
1140 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1142 req
->cmd_flags
|= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1144 if (unlikely(bio_rw_flagged(bio
, BIO_RW_DISCARD
))) {
1145 req
->cmd_flags
|= REQ_DISCARD
;
1146 if (bio_rw_flagged(bio
, BIO_RW_BARRIER
))
1147 req
->cmd_flags
|= REQ_SOFTBARRIER
;
1148 } else if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
)))
1149 req
->cmd_flags
|= REQ_HARDBARRIER
;
1151 if (bio_rw_flagged(bio
, BIO_RW_SYNCIO
))
1152 req
->cmd_flags
|= REQ_RW_SYNC
;
1153 if (bio_rw_flagged(bio
, BIO_RW_META
))
1154 req
->cmd_flags
|= REQ_RW_META
;
1155 if (bio_rw_flagged(bio
, BIO_RW_NOIDLE
))
1156 req
->cmd_flags
|= REQ_NOIDLE
;
1159 req
->__sector
= bio
->bi_sector
;
1160 req
->ioprio
= bio_prio(bio
);
1161 blk_rq_bio_prep(req
->q
, req
, bio
);
1165 * Only disabling plugging for non-rotational devices if it does tagging
1166 * as well, otherwise we do need the proper merging
1168 static inline bool queue_should_plug(struct request_queue
*q
)
1170 return !(blk_queue_nonrot(q
) && blk_queue_tagged(q
));
1173 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1175 struct request
*req
;
1177 unsigned int bytes
= bio
->bi_size
;
1178 const unsigned short prio
= bio_prio(bio
);
1179 const bool sync
= bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
1180 const bool unplug
= bio_rw_flagged(bio
, BIO_RW_UNPLUG
);
1181 const unsigned int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1184 if (bio_rw_flagged(bio
, BIO_RW_BARRIER
) &&
1185 (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1186 bio_endio(bio
, -EOPNOTSUPP
);
1190 * low level driver can indicate that it wants pages above a
1191 * certain limit bounced to low memory (ie for highmem, or even
1192 * ISA dma in theory)
1194 blk_queue_bounce(q
, &bio
);
1196 spin_lock_irq(q
->queue_lock
);
1198 if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
)) || elv_queue_empty(q
))
1201 el_ret
= elv_merge(q
, &req
, bio
);
1203 case ELEVATOR_BACK_MERGE
:
1204 BUG_ON(!rq_mergeable(req
));
1206 if (!ll_back_merge_fn(q
, req
, bio
))
1209 trace_block_bio_backmerge(q
, bio
);
1211 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1212 blk_rq_set_mixed_merge(req
);
1214 req
->biotail
->bi_next
= bio
;
1216 req
->__data_len
+= bytes
;
1217 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1218 if (!blk_rq_cpu_valid(req
))
1219 req
->cpu
= bio
->bi_comp_cpu
;
1220 drive_stat_acct(req
, 0);
1221 elv_bio_merged(q
, req
, bio
);
1222 if (!attempt_back_merge(q
, req
))
1223 elv_merged_request(q
, req
, el_ret
);
1226 case ELEVATOR_FRONT_MERGE
:
1227 BUG_ON(!rq_mergeable(req
));
1229 if (!ll_front_merge_fn(q
, req
, bio
))
1232 trace_block_bio_frontmerge(q
, bio
);
1234 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
) {
1235 blk_rq_set_mixed_merge(req
);
1236 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1237 req
->cmd_flags
|= ff
;
1240 bio
->bi_next
= req
->bio
;
1244 * may not be valid. if the low level driver said
1245 * it didn't need a bounce buffer then it better
1246 * not touch req->buffer either...
1248 req
->buffer
= bio_data(bio
);
1249 req
->__sector
= bio
->bi_sector
;
1250 req
->__data_len
+= bytes
;
1251 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1252 if (!blk_rq_cpu_valid(req
))
1253 req
->cpu
= bio
->bi_comp_cpu
;
1254 drive_stat_acct(req
, 0);
1255 elv_bio_merged(q
, req
, bio
);
1256 if (!attempt_front_merge(q
, req
))
1257 elv_merged_request(q
, req
, el_ret
);
1260 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1267 * This sync check and mask will be re-done in init_request_from_bio(),
1268 * but we need to set it earlier to expose the sync flag to the
1269 * rq allocator and io schedulers.
1271 rw_flags
= bio_data_dir(bio
);
1273 rw_flags
|= REQ_RW_SYNC
;
1276 * Grab a free request. This is might sleep but can not fail.
1277 * Returns with the queue unlocked.
1279 req
= get_request_wait(q
, rw_flags
, bio
);
1282 * After dropping the lock and possibly sleeping here, our request
1283 * may now be mergeable after it had proven unmergeable (above).
1284 * We don't worry about that case for efficiency. It won't happen
1285 * often, and the elevators are able to handle it.
1287 init_request_from_bio(req
, bio
);
1289 spin_lock_irq(q
->queue_lock
);
1290 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
) ||
1291 bio_flagged(bio
, BIO_CPU_AFFINE
))
1292 req
->cpu
= blk_cpu_to_group(smp_processor_id());
1293 if (queue_should_plug(q
) && elv_queue_empty(q
))
1295 add_request(q
, req
);
1297 if (unplug
|| !queue_should_plug(q
))
1298 __generic_unplug_device(q
);
1299 spin_unlock_irq(q
->queue_lock
);
1304 * If bio->bi_dev is a partition, remap the location
1306 static inline void blk_partition_remap(struct bio
*bio
)
1308 struct block_device
*bdev
= bio
->bi_bdev
;
1310 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1311 struct hd_struct
*p
= bdev
->bd_part
;
1313 bio
->bi_sector
+= p
->start_sect
;
1314 bio
->bi_bdev
= bdev
->bd_contains
;
1316 trace_block_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1318 bio
->bi_sector
- p
->start_sect
);
1322 static void handle_bad_sector(struct bio
*bio
)
1324 char b
[BDEVNAME_SIZE
];
1326 printk(KERN_INFO
"attempt to access beyond end of device\n");
1327 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1328 bdevname(bio
->bi_bdev
, b
),
1330 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1331 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1333 set_bit(BIO_EOF
, &bio
->bi_flags
);
1336 #ifdef CONFIG_FAIL_MAKE_REQUEST
1338 static DECLARE_FAULT_ATTR(fail_make_request
);
1340 static int __init
setup_fail_make_request(char *str
)
1342 return setup_fault_attr(&fail_make_request
, str
);
1344 __setup("fail_make_request=", setup_fail_make_request
);
1346 static int should_fail_request(struct bio
*bio
)
1348 struct hd_struct
*part
= bio
->bi_bdev
->bd_part
;
1350 if (part_to_disk(part
)->part0
.make_it_fail
|| part
->make_it_fail
)
1351 return should_fail(&fail_make_request
, bio
->bi_size
);
1356 static int __init
fail_make_request_debugfs(void)
1358 return init_fault_attr_dentries(&fail_make_request
,
1359 "fail_make_request");
1362 late_initcall(fail_make_request_debugfs
);
1364 #else /* CONFIG_FAIL_MAKE_REQUEST */
1366 static inline int should_fail_request(struct bio
*bio
)
1371 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1374 * Check whether this bio extends beyond the end of the device.
1376 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1383 /* Test device or partition size, when known. */
1384 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1386 sector_t sector
= bio
->bi_sector
;
1388 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1390 * This may well happen - the kernel calls bread()
1391 * without checking the size of the device, e.g., when
1392 * mounting a device.
1394 handle_bad_sector(bio
);
1403 * generic_make_request - hand a buffer to its device driver for I/O
1404 * @bio: The bio describing the location in memory and on the device.
1406 * generic_make_request() is used to make I/O requests of block
1407 * devices. It is passed a &struct bio, which describes the I/O that needs
1410 * generic_make_request() does not return any status. The
1411 * success/failure status of the request, along with notification of
1412 * completion, is delivered asynchronously through the bio->bi_end_io
1413 * function described (one day) else where.
1415 * The caller of generic_make_request must make sure that bi_io_vec
1416 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1417 * set to describe the device address, and the
1418 * bi_end_io and optionally bi_private are set to describe how
1419 * completion notification should be signaled.
1421 * generic_make_request and the drivers it calls may use bi_next if this
1422 * bio happens to be merged with someone else, and may change bi_dev and
1423 * bi_sector for remaps as it sees fit. So the values of these fields
1424 * should NOT be depended on after the call to generic_make_request.
1426 static inline void __generic_make_request(struct bio
*bio
)
1428 struct request_queue
*q
;
1429 sector_t old_sector
;
1430 int ret
, nr_sectors
= bio_sectors(bio
);
1436 if (bio_check_eod(bio
, nr_sectors
))
1440 * Resolve the mapping until finished. (drivers are
1441 * still free to implement/resolve their own stacking
1442 * by explicitly returning 0)
1444 * NOTE: we don't repeat the blk_size check for each new device.
1445 * Stacking drivers are expected to know what they are doing.
1450 char b
[BDEVNAME_SIZE
];
1452 q
= bdev_get_queue(bio
->bi_bdev
);
1455 "generic_make_request: Trying to access "
1456 "nonexistent block-device %s (%Lu)\n",
1457 bdevname(bio
->bi_bdev
, b
),
1458 (long long) bio
->bi_sector
);
1462 if (unlikely(!bio_rw_flagged(bio
, BIO_RW_DISCARD
) &&
1463 nr_sectors
> queue_max_hw_sectors(q
))) {
1464 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1465 bdevname(bio
->bi_bdev
, b
),
1467 queue_max_hw_sectors(q
));
1471 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1474 if (should_fail_request(bio
))
1478 * If this device has partitions, remap block n
1479 * of partition p to block n+start(p) of the disk.
1481 blk_partition_remap(bio
);
1483 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1486 if (old_sector
!= -1)
1487 trace_block_remap(q
, bio
, old_dev
, old_sector
);
1489 old_sector
= bio
->bi_sector
;
1490 old_dev
= bio
->bi_bdev
->bd_dev
;
1492 if (bio_check_eod(bio
, nr_sectors
))
1495 if (bio_rw_flagged(bio
, BIO_RW_DISCARD
) &&
1496 !blk_queue_discard(q
)) {
1501 trace_block_bio_queue(q
, bio
);
1503 ret
= q
->make_request_fn(q
, bio
);
1509 bio_endio(bio
, err
);
1513 * We only want one ->make_request_fn to be active at a time,
1514 * else stack usage with stacked devices could be a problem.
1515 * So use current->bio_list to keep a list of requests
1516 * submited by a make_request_fn function.
1517 * current->bio_list is also used as a flag to say if
1518 * generic_make_request is currently active in this task or not.
1519 * If it is NULL, then no make_request is active. If it is non-NULL,
1520 * then a make_request is active, and new requests should be added
1523 void generic_make_request(struct bio
*bio
)
1525 struct bio_list bio_list_on_stack
;
1527 if (current
->bio_list
) {
1528 /* make_request is active */
1529 bio_list_add(current
->bio_list
, bio
);
1532 /* following loop may be a bit non-obvious, and so deserves some
1534 * Before entering the loop, bio->bi_next is NULL (as all callers
1535 * ensure that) so we have a list with a single bio.
1536 * We pretend that we have just taken it off a longer list, so
1537 * we assign bio_list to a pointer to the bio_list_on_stack,
1538 * thus initialising the bio_list of new bios to be
1539 * added. __generic_make_request may indeed add some more bios
1540 * through a recursive call to generic_make_request. If it
1541 * did, we find a non-NULL value in bio_list and re-enter the loop
1542 * from the top. In this case we really did just take the bio
1543 * of the top of the list (no pretending) and so remove it from
1544 * bio_list, and call into __generic_make_request again.
1546 * The loop was structured like this to make only one call to
1547 * __generic_make_request (which is important as it is large and
1548 * inlined) and to keep the structure simple.
1550 BUG_ON(bio
->bi_next
);
1551 bio_list_init(&bio_list_on_stack
);
1552 current
->bio_list
= &bio_list_on_stack
;
1554 __generic_make_request(bio
);
1555 bio
= bio_list_pop(current
->bio_list
);
1557 current
->bio_list
= NULL
; /* deactivate */
1559 EXPORT_SYMBOL(generic_make_request
);
1562 * submit_bio - submit a bio to the block device layer for I/O
1563 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1564 * @bio: The &struct bio which describes the I/O
1566 * submit_bio() is very similar in purpose to generic_make_request(), and
1567 * uses that function to do most of the work. Both are fairly rough
1568 * interfaces; @bio must be presetup and ready for I/O.
1571 void submit_bio(int rw
, struct bio
*bio
)
1573 int count
= bio_sectors(bio
);
1578 * If it's a regular read/write or a barrier with data attached,
1579 * go through the normal accounting stuff before submission.
1581 if (bio_has_data(bio
)) {
1583 count_vm_events(PGPGOUT
, count
);
1585 task_io_account_read(bio
->bi_size
);
1586 count_vm_events(PGPGIN
, count
);
1589 if (unlikely(block_dump
)) {
1590 char b
[BDEVNAME_SIZE
];
1591 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1592 current
->comm
, task_pid_nr(current
),
1593 (rw
& WRITE
) ? "WRITE" : "READ",
1594 (unsigned long long)bio
->bi_sector
,
1595 bdevname(bio
->bi_bdev
, b
));
1599 generic_make_request(bio
);
1601 EXPORT_SYMBOL(submit_bio
);
1604 * blk_rq_check_limits - Helper function to check a request for the queue limit
1606 * @rq: the request being checked
1609 * @rq may have been made based on weaker limitations of upper-level queues
1610 * in request stacking drivers, and it may violate the limitation of @q.
1611 * Since the block layer and the underlying device driver trust @rq
1612 * after it is inserted to @q, it should be checked against @q before
1613 * the insertion using this generic function.
1615 * This function should also be useful for request stacking drivers
1616 * in some cases below, so export this fuction.
1617 * Request stacking drivers like request-based dm may change the queue
1618 * limits while requests are in the queue (e.g. dm's table swapping).
1619 * Such request stacking drivers should check those requests agaist
1620 * the new queue limits again when they dispatch those requests,
1621 * although such checkings are also done against the old queue limits
1622 * when submitting requests.
1624 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1626 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1627 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1628 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1633 * queue's settings related to segment counting like q->bounce_pfn
1634 * may differ from that of other stacking queues.
1635 * Recalculate it to check the request correctly on this queue's
1638 blk_recalc_rq_segments(rq
);
1639 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1640 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1646 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1649 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1650 * @q: the queue to submit the request
1651 * @rq: the request being queued
1653 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1655 unsigned long flags
;
1657 if (blk_rq_check_limits(q
, rq
))
1660 #ifdef CONFIG_FAIL_MAKE_REQUEST
1661 if (rq
->rq_disk
&& rq
->rq_disk
->part0
.make_it_fail
&&
1662 should_fail(&fail_make_request
, blk_rq_bytes(rq
)))
1666 spin_lock_irqsave(q
->queue_lock
, flags
);
1669 * Submitting request must be dequeued before calling this function
1670 * because it will be linked to another request_queue
1672 BUG_ON(blk_queued_rq(rq
));
1674 drive_stat_acct(rq
, 1);
1675 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1677 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1681 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1684 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1685 * @rq: request to examine
1688 * A request could be merge of IOs which require different failure
1689 * handling. This function determines the number of bytes which
1690 * can be failed from the beginning of the request without
1691 * crossing into area which need to be retried further.
1694 * The number of bytes to fail.
1697 * queue_lock must be held.
1699 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1701 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1702 unsigned int bytes
= 0;
1705 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1706 return blk_rq_bytes(rq
);
1709 * Currently the only 'mixing' which can happen is between
1710 * different fastfail types. We can safely fail portions
1711 * which have all the failfast bits that the first one has -
1712 * the ones which are at least as eager to fail as the first
1715 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1716 if ((bio
->bi_rw
& ff
) != ff
)
1718 bytes
+= bio
->bi_size
;
1721 /* this could lead to infinite loop */
1722 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1725 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1727 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1729 if (blk_do_io_stat(req
)) {
1730 const int rw
= rq_data_dir(req
);
1731 struct hd_struct
*part
;
1734 cpu
= part_stat_lock();
1735 part
= disk_map_sector_rcu(req
->rq_disk
, blk_rq_pos(req
));
1736 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1741 static void blk_account_io_done(struct request
*req
)
1744 * Account IO completion. bar_rq isn't accounted as a normal
1745 * IO on queueing nor completion. Accounting the containing
1746 * request is enough.
1748 if (blk_do_io_stat(req
) && req
!= &req
->q
->bar_rq
) {
1749 unsigned long duration
= jiffies
- req
->start_time
;
1750 const int rw
= rq_data_dir(req
);
1751 struct hd_struct
*part
;
1754 cpu
= part_stat_lock();
1755 part
= disk_map_sector_rcu(req
->rq_disk
, blk_rq_pos(req
));
1757 part_stat_inc(cpu
, part
, ios
[rw
]);
1758 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1759 part_round_stats(cpu
, part
);
1760 part_dec_in_flight(part
, rw
);
1767 * blk_peek_request - peek at the top of a request queue
1768 * @q: request queue to peek at
1771 * Return the request at the top of @q. The returned request
1772 * should be started using blk_start_request() before LLD starts
1776 * Pointer to the request at the top of @q if available. Null
1780 * queue_lock must be held.
1782 struct request
*blk_peek_request(struct request_queue
*q
)
1787 while ((rq
= __elv_next_request(q
)) != NULL
) {
1788 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1790 * This is the first time the device driver
1791 * sees this request (possibly after
1792 * requeueing). Notify IO scheduler.
1794 if (blk_sorted_rq(rq
))
1795 elv_activate_rq(q
, rq
);
1798 * just mark as started even if we don't start
1799 * it, a request that has been delayed should
1800 * not be passed by new incoming requests
1802 rq
->cmd_flags
|= REQ_STARTED
;
1803 trace_block_rq_issue(q
, rq
);
1806 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1807 q
->end_sector
= rq_end_sector(rq
);
1808 q
->boundary_rq
= NULL
;
1811 if (rq
->cmd_flags
& REQ_DONTPREP
)
1814 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1816 * make sure space for the drain appears we
1817 * know we can do this because max_hw_segments
1818 * has been adjusted to be one fewer than the
1821 rq
->nr_phys_segments
++;
1827 ret
= q
->prep_rq_fn(q
, rq
);
1828 if (ret
== BLKPREP_OK
) {
1830 } else if (ret
== BLKPREP_DEFER
) {
1832 * the request may have been (partially) prepped.
1833 * we need to keep this request in the front to
1834 * avoid resource deadlock. REQ_STARTED will
1835 * prevent other fs requests from passing this one.
1837 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1838 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1840 * remove the space for the drain we added
1841 * so that we don't add it again
1843 --rq
->nr_phys_segments
;
1848 } else if (ret
== BLKPREP_KILL
) {
1849 rq
->cmd_flags
|= REQ_QUIET
;
1851 * Mark this request as started so we don't trigger
1852 * any debug logic in the end I/O path.
1854 blk_start_request(rq
);
1855 __blk_end_request_all(rq
, -EIO
);
1857 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1864 EXPORT_SYMBOL(blk_peek_request
);
1866 void blk_dequeue_request(struct request
*rq
)
1868 struct request_queue
*q
= rq
->q
;
1870 BUG_ON(list_empty(&rq
->queuelist
));
1871 BUG_ON(ELV_ON_HASH(rq
));
1873 list_del_init(&rq
->queuelist
);
1876 * the time frame between a request being removed from the lists
1877 * and to it is freed is accounted as io that is in progress at
1880 if (blk_account_rq(rq
)) {
1881 q
->in_flight
[rq_is_sync(rq
)]++;
1882 set_io_start_time_ns(rq
);
1887 * blk_start_request - start request processing on the driver
1888 * @req: request to dequeue
1891 * Dequeue @req and start timeout timer on it. This hands off the
1892 * request to the driver.
1894 * Block internal functions which don't want to start timer should
1895 * call blk_dequeue_request().
1898 * queue_lock must be held.
1900 void blk_start_request(struct request
*req
)
1902 blk_dequeue_request(req
);
1905 * We are now handing the request to the hardware, initialize
1906 * resid_len to full count and add the timeout handler.
1908 req
->resid_len
= blk_rq_bytes(req
);
1909 if (unlikely(blk_bidi_rq(req
)))
1910 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
1914 EXPORT_SYMBOL(blk_start_request
);
1917 * blk_fetch_request - fetch a request from a request queue
1918 * @q: request queue to fetch a request from
1921 * Return the request at the top of @q. The request is started on
1922 * return and LLD can start processing it immediately.
1925 * Pointer to the request at the top of @q if available. Null
1929 * queue_lock must be held.
1931 struct request
*blk_fetch_request(struct request_queue
*q
)
1935 rq
= blk_peek_request(q
);
1937 blk_start_request(rq
);
1940 EXPORT_SYMBOL(blk_fetch_request
);
1943 * blk_update_request - Special helper function for request stacking drivers
1944 * @req: the request being processed
1945 * @error: %0 for success, < %0 for error
1946 * @nr_bytes: number of bytes to complete @req
1949 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1950 * the request structure even if @req doesn't have leftover.
1951 * If @req has leftover, sets it up for the next range of segments.
1953 * This special helper function is only for request stacking drivers
1954 * (e.g. request-based dm) so that they can handle partial completion.
1955 * Actual device drivers should use blk_end_request instead.
1957 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1958 * %false return from this function.
1961 * %false - this request doesn't have any more data
1962 * %true - this request has more data
1964 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
1966 int total_bytes
, bio_nbytes
, next_idx
= 0;
1972 trace_block_rq_complete(req
->q
, req
);
1975 * For fs requests, rq is just carrier of independent bio's
1976 * and each partial completion should be handled separately.
1977 * Reset per-request error on each partial completion.
1979 * TODO: tj: This is too subtle. It would be better to let
1980 * low level drivers do what they see fit.
1982 if (blk_fs_request(req
))
1985 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1986 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1987 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1988 (unsigned long long)blk_rq_pos(req
));
1991 blk_account_io_completion(req
, nr_bytes
);
1993 total_bytes
= bio_nbytes
= 0;
1994 while ((bio
= req
->bio
) != NULL
) {
1997 if (nr_bytes
>= bio
->bi_size
) {
1998 req
->bio
= bio
->bi_next
;
1999 nbytes
= bio
->bi_size
;
2000 req_bio_endio(req
, bio
, nbytes
, error
);
2004 int idx
= bio
->bi_idx
+ next_idx
;
2006 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2007 blk_dump_rq_flags(req
, "__end_that");
2008 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2009 __func__
, idx
, bio
->bi_vcnt
);
2013 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2014 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2017 * not a complete bvec done
2019 if (unlikely(nbytes
> nr_bytes
)) {
2020 bio_nbytes
+= nr_bytes
;
2021 total_bytes
+= nr_bytes
;
2026 * advance to the next vector
2029 bio_nbytes
+= nbytes
;
2032 total_bytes
+= nbytes
;
2038 * end more in this run, or just return 'not-done'
2040 if (unlikely(nr_bytes
<= 0))
2050 * Reset counters so that the request stacking driver
2051 * can find how many bytes remain in the request
2054 req
->__data_len
= 0;
2059 * if the request wasn't completed, update state
2062 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2063 bio
->bi_idx
+= next_idx
;
2064 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2065 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2068 req
->__data_len
-= total_bytes
;
2069 req
->buffer
= bio_data(req
->bio
);
2071 /* update sector only for requests with clear definition of sector */
2072 if (blk_fs_request(req
) || blk_discard_rq(req
))
2073 req
->__sector
+= total_bytes
>> 9;
2075 /* mixed attributes always follow the first bio */
2076 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2077 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2078 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2082 * If total number of sectors is less than the first segment
2083 * size, something has gone terribly wrong.
2085 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2086 printk(KERN_ERR
"blk: request botched\n");
2087 req
->__data_len
= blk_rq_cur_bytes(req
);
2090 /* recalculate the number of segments */
2091 blk_recalc_rq_segments(req
);
2095 EXPORT_SYMBOL_GPL(blk_update_request
);
2097 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2098 unsigned int nr_bytes
,
2099 unsigned int bidi_bytes
)
2101 if (blk_update_request(rq
, error
, nr_bytes
))
2104 /* Bidi request must be completed as a whole */
2105 if (unlikely(blk_bidi_rq(rq
)) &&
2106 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2109 add_disk_randomness(rq
->rq_disk
);
2115 * queue lock must be held
2117 static void blk_finish_request(struct request
*req
, int error
)
2119 if (blk_rq_tagged(req
))
2120 blk_queue_end_tag(req
->q
, req
);
2122 BUG_ON(blk_queued_rq(req
));
2124 if (unlikely(laptop_mode
) && blk_fs_request(req
))
2125 laptop_io_completion(&req
->q
->backing_dev_info
);
2127 blk_delete_timer(req
);
2129 blk_account_io_done(req
);
2132 req
->end_io(req
, error
);
2134 if (blk_bidi_rq(req
))
2135 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2137 __blk_put_request(req
->q
, req
);
2142 * blk_end_bidi_request - Complete a bidi request
2143 * @rq: the request to complete
2144 * @error: %0 for success, < %0 for error
2145 * @nr_bytes: number of bytes to complete @rq
2146 * @bidi_bytes: number of bytes to complete @rq->next_rq
2149 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2150 * Drivers that supports bidi can safely call this member for any
2151 * type of request, bidi or uni. In the later case @bidi_bytes is
2155 * %false - we are done with this request
2156 * %true - still buffers pending for this request
2158 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2159 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2161 struct request_queue
*q
= rq
->q
;
2162 unsigned long flags
;
2164 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2167 spin_lock_irqsave(q
->queue_lock
, flags
);
2168 blk_finish_request(rq
, error
);
2169 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2175 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2176 * @rq: the request to complete
2177 * @error: %0 for success, < %0 for error
2178 * @nr_bytes: number of bytes to complete @rq
2179 * @bidi_bytes: number of bytes to complete @rq->next_rq
2182 * Identical to blk_end_bidi_request() except that queue lock is
2183 * assumed to be locked on entry and remains so on return.
2186 * %false - we are done with this request
2187 * %true - still buffers pending for this request
2189 static bool __blk_end_bidi_request(struct request
*rq
, int error
,
2190 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2192 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2195 blk_finish_request(rq
, error
);
2201 * blk_end_request - Helper function for drivers to complete the request.
2202 * @rq: the request being processed
2203 * @error: %0 for success, < %0 for error
2204 * @nr_bytes: number of bytes to complete
2207 * Ends I/O on a number of bytes attached to @rq.
2208 * If @rq has leftover, sets it up for the next range of segments.
2211 * %false - we are done with this request
2212 * %true - still buffers pending for this request
2214 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2216 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2218 EXPORT_SYMBOL(blk_end_request
);
2221 * blk_end_request_all - Helper function for drives to finish the request.
2222 * @rq: the request to finish
2223 * @error: %0 for success, < %0 for error
2226 * Completely finish @rq.
2228 void blk_end_request_all(struct request
*rq
, int error
)
2231 unsigned int bidi_bytes
= 0;
2233 if (unlikely(blk_bidi_rq(rq
)))
2234 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2236 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2239 EXPORT_SYMBOL(blk_end_request_all
);
2242 * blk_end_request_cur - Helper function to finish the current request chunk.
2243 * @rq: the request to finish the current chunk for
2244 * @error: %0 for success, < %0 for error
2247 * Complete the current consecutively mapped chunk from @rq.
2250 * %false - we are done with this request
2251 * %true - still buffers pending for this request
2253 bool blk_end_request_cur(struct request
*rq
, int error
)
2255 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2257 EXPORT_SYMBOL(blk_end_request_cur
);
2260 * blk_end_request_err - Finish a request till the next failure boundary.
2261 * @rq: the request to finish till the next failure boundary for
2262 * @error: must be negative errno
2265 * Complete @rq till the next failure boundary.
2268 * %false - we are done with this request
2269 * %true - still buffers pending for this request
2271 bool blk_end_request_err(struct request
*rq
, int error
)
2273 WARN_ON(error
>= 0);
2274 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2276 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2279 * __blk_end_request - Helper function for drivers to complete the request.
2280 * @rq: the request being processed
2281 * @error: %0 for success, < %0 for error
2282 * @nr_bytes: number of bytes to complete
2285 * Must be called with queue lock held unlike blk_end_request().
2288 * %false - we are done with this request
2289 * %true - still buffers pending for this request
2291 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2293 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2295 EXPORT_SYMBOL(__blk_end_request
);
2298 * __blk_end_request_all - Helper function for drives to finish the request.
2299 * @rq: the request to finish
2300 * @error: %0 for success, < %0 for error
2303 * Completely finish @rq. Must be called with queue lock held.
2305 void __blk_end_request_all(struct request
*rq
, int error
)
2308 unsigned int bidi_bytes
= 0;
2310 if (unlikely(blk_bidi_rq(rq
)))
2311 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2313 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2316 EXPORT_SYMBOL(__blk_end_request_all
);
2319 * __blk_end_request_cur - Helper function to finish the current request chunk.
2320 * @rq: the request to finish the current chunk for
2321 * @error: %0 for success, < %0 for error
2324 * Complete the current consecutively mapped chunk from @rq. Must
2325 * be called with queue lock held.
2328 * %false - we are done with this request
2329 * %true - still buffers pending for this request
2331 bool __blk_end_request_cur(struct request
*rq
, int error
)
2333 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2335 EXPORT_SYMBOL(__blk_end_request_cur
);
2338 * __blk_end_request_err - Finish a request till the next failure boundary.
2339 * @rq: the request to finish till the next failure boundary for
2340 * @error: must be negative errno
2343 * Complete @rq till the next failure boundary. Must be called
2344 * with queue lock held.
2347 * %false - we are done with this request
2348 * %true - still buffers pending for this request
2350 bool __blk_end_request_err(struct request
*rq
, int error
)
2352 WARN_ON(error
>= 0);
2353 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2355 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2357 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2360 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2361 rq
->cmd_flags
|= bio
->bi_rw
& REQ_RW
;
2363 if (bio_has_data(bio
)) {
2364 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2365 rq
->buffer
= bio_data(bio
);
2367 rq
->__data_len
= bio
->bi_size
;
2368 rq
->bio
= rq
->biotail
= bio
;
2371 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2374 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2376 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2377 * @rq: the request to be flushed
2380 * Flush all pages in @rq.
2382 void rq_flush_dcache_pages(struct request
*rq
)
2384 struct req_iterator iter
;
2385 struct bio_vec
*bvec
;
2387 rq_for_each_segment(bvec
, rq
, iter
)
2388 flush_dcache_page(bvec
->bv_page
);
2390 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2394 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2395 * @q : the queue of the device being checked
2398 * Check if underlying low-level drivers of a device are busy.
2399 * If the drivers want to export their busy state, they must set own
2400 * exporting function using blk_queue_lld_busy() first.
2402 * Basically, this function is used only by request stacking drivers
2403 * to stop dispatching requests to underlying devices when underlying
2404 * devices are busy. This behavior helps more I/O merging on the queue
2405 * of the request stacking driver and prevents I/O throughput regression
2406 * on burst I/O load.
2409 * 0 - Not busy (The request stacking driver should dispatch request)
2410 * 1 - Busy (The request stacking driver should stop dispatching request)
2412 int blk_lld_busy(struct request_queue
*q
)
2415 return q
->lld_busy_fn(q
);
2419 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2422 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2423 * @rq: the clone request to be cleaned up
2426 * Free all bios in @rq for a cloned request.
2428 void blk_rq_unprep_clone(struct request
*rq
)
2432 while ((bio
= rq
->bio
) != NULL
) {
2433 rq
->bio
= bio
->bi_next
;
2438 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2441 * Copy attributes of the original request to the clone request.
2442 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2444 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2446 dst
->cpu
= src
->cpu
;
2447 dst
->cmd_flags
= (rq_data_dir(src
) | REQ_NOMERGE
);
2448 dst
->cmd_type
= src
->cmd_type
;
2449 dst
->__sector
= blk_rq_pos(src
);
2450 dst
->__data_len
= blk_rq_bytes(src
);
2451 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2452 dst
->ioprio
= src
->ioprio
;
2453 dst
->extra_len
= src
->extra_len
;
2457 * blk_rq_prep_clone - Helper function to setup clone request
2458 * @rq: the request to be setup
2459 * @rq_src: original request to be cloned
2460 * @bs: bio_set that bios for clone are allocated from
2461 * @gfp_mask: memory allocation mask for bio
2462 * @bio_ctr: setup function to be called for each clone bio.
2463 * Returns %0 for success, non %0 for failure.
2464 * @data: private data to be passed to @bio_ctr
2467 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2468 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2469 * are not copied, and copying such parts is the caller's responsibility.
2470 * Also, pages which the original bios are pointing to are not copied
2471 * and the cloned bios just point same pages.
2472 * So cloned bios must be completed before original bios, which means
2473 * the caller must complete @rq before @rq_src.
2475 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2476 struct bio_set
*bs
, gfp_t gfp_mask
,
2477 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2480 struct bio
*bio
, *bio_src
;
2485 blk_rq_init(NULL
, rq
);
2487 __rq_for_each_bio(bio_src
, rq_src
) {
2488 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2492 __bio_clone(bio
, bio_src
);
2494 if (bio_integrity(bio_src
) &&
2495 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2498 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2502 rq
->biotail
->bi_next
= bio
;
2505 rq
->bio
= rq
->biotail
= bio
;
2508 __blk_rq_prep_clone(rq
, rq_src
);
2515 blk_rq_unprep_clone(rq
);
2519 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2521 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2523 return queue_work(kblockd_workqueue
, work
);
2525 EXPORT_SYMBOL(kblockd_schedule_work
);
2527 int __init
blk_dev_init(void)
2529 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2530 sizeof(((struct request
*)0)->cmd_flags
));
2532 kblockd_workqueue
= create_workqueue("kblockd");
2533 if (!kblockd_workqueue
)
2534 panic("Failed to create kblockd\n");
2536 request_cachep
= kmem_cache_create("blkdev_requests",
2537 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2539 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2540 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);