sdio: link unknown CIS tuples to the sdio_func structure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ieee1394 / sbp2.c
bloba81ba8fca0db168314a2ce21aee0cecb0fd4f567
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/compiler.h>
55 #include <linux/delay.h>
56 #include <linux/device.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/gfp.h>
59 #include <linux/init.h>
60 #include <linux/kernel.h>
61 #include <linux/list.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/moduleparam.h>
65 #include <linux/sched.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/stat.h>
69 #include <linux/string.h>
70 #include <linux/stringify.h>
71 #include <linux/types.h>
72 #include <linux/wait.h>
73 #include <linux/workqueue.h>
75 #include <asm/byteorder.h>
76 #include <asm/errno.h>
77 #include <asm/param.h>
78 #include <asm/scatterlist.h>
79 #include <asm/system.h>
80 #include <asm/types.h>
82 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
83 #include <asm/io.h> /* for bus_to_virt */
84 #endif
86 #include <scsi/scsi.h>
87 #include <scsi/scsi_cmnd.h>
88 #include <scsi/scsi_dbg.h>
89 #include <scsi/scsi_device.h>
90 #include <scsi/scsi_host.h>
92 #include "csr1212.h"
93 #include "highlevel.h"
94 #include "hosts.h"
95 #include "ieee1394.h"
96 #include "ieee1394_core.h"
97 #include "ieee1394_hotplug.h"
98 #include "ieee1394_transactions.h"
99 #include "ieee1394_types.h"
100 #include "nodemgr.h"
101 #include "sbp2.h"
104 * Module load parameter definitions
108 * Change max_speed on module load if you have a bad IEEE-1394
109 * controller that has trouble running 2KB packets at 400mb.
111 * NOTE: On certain OHCI parts I have seen short packets on async transmit
112 * (probably due to PCI latency/throughput issues with the part). You can
113 * bump down the speed if you are running into problems.
115 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
116 module_param_named(max_speed, sbp2_max_speed, int, 0644);
117 MODULE_PARM_DESC(max_speed, "Force max speed "
118 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
121 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
122 * This is and always has been buggy in multiple subtle ways. See above TODOs.
124 static int sbp2_serialize_io = 1;
125 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
126 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
127 "(default = Y, faster but buggy = N)");
130 * Bump up max_sectors if you'd like to support very large sized
131 * transfers. Please note that some older sbp2 bridge chips are broken for
132 * transfers greater or equal to 128KB. Default is a value of 255
133 * sectors, or just under 128KB (at 512 byte sector size). I can note that
134 * the Oxsemi sbp2 chipsets have no problems supporting very large
135 * transfer sizes.
137 static int sbp2_max_sectors = SBP2_MAX_SECTORS;
138 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
139 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
140 "(default = " __stringify(SBP2_MAX_SECTORS) ")");
143 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
144 * do an exclusive login, as it's generally unsafe to have two hosts
145 * talking to a single sbp2 device at the same time (filesystem coherency,
146 * etc.). If you're running an sbp2 device that supports multiple logins,
147 * and you're either running read-only filesystems or some sort of special
148 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
149 * File System, or Lustre, then set exclusive_login to zero.
151 * So far only bridges from Oxford Semiconductor are known to support
152 * concurrent logins. Depending on firmware, four or two concurrent logins
153 * are possible on OXFW911 and newer Oxsemi bridges.
155 static int sbp2_exclusive_login = 1;
156 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
157 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
158 "(default = Y, use N for concurrent initiators)");
161 * If any of the following workarounds is required for your device to work,
162 * please submit the kernel messages logged by sbp2 to the linux1394-devel
163 * mailing list.
165 * - 128kB max transfer
166 * Limit transfer size. Necessary for some old bridges.
168 * - 36 byte inquiry
169 * When scsi_mod probes the device, let the inquiry command look like that
170 * from MS Windows.
172 * - skip mode page 8
173 * Suppress sending of mode_sense for mode page 8 if the device pretends to
174 * support the SCSI Primary Block commands instead of Reduced Block Commands.
176 * - fix capacity
177 * Tell sd_mod to correct the last sector number reported by read_capacity.
178 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
179 * Don't use this with devices which don't have this bug.
181 * - override internal blacklist
182 * Instead of adding to the built-in blacklist, use only the workarounds
183 * specified in the module load parameter.
184 * Useful if a blacklist entry interfered with a non-broken device.
186 static int sbp2_default_workarounds;
187 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
188 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
189 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
190 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
191 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
192 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
193 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
194 ", or a combination)");
197 * This influences the format of the sysfs attribute
198 * /sys/bus/scsi/devices/.../ieee1394_id.
200 * The default format is like in older kernels: %016Lx:%d:%d
201 * It contains the target's EUI-64, a number given to the logical unit by
202 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
204 * The long format is: %016Lx:%06x:%04x
205 * It contains the target's EUI-64, the unit directory's directory_ID as per
206 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
207 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
208 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
209 * independent of the implementation of the ieee1394 nodemgr, the longer format
210 * is recommended for future use.
212 static int sbp2_long_sysfs_ieee1394_id;
213 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
214 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
215 "(default = backwards-compatible = N, SAM-conforming = Y)");
218 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
219 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
222 * Globals
224 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
225 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
226 void (*)(struct scsi_cmnd *));
227 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
228 static int sbp2_start_device(struct sbp2_lu *);
229 static void sbp2_remove_device(struct sbp2_lu *);
230 static int sbp2_login_device(struct sbp2_lu *);
231 static int sbp2_reconnect_device(struct sbp2_lu *);
232 static int sbp2_logout_device(struct sbp2_lu *);
233 static void sbp2_host_reset(struct hpsb_host *);
234 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
235 u64, size_t, u16);
236 static int sbp2_agent_reset(struct sbp2_lu *, int);
237 static void sbp2_parse_unit_directory(struct sbp2_lu *,
238 struct unit_directory *);
239 static int sbp2_set_busy_timeout(struct sbp2_lu *);
240 static int sbp2_max_speed_and_size(struct sbp2_lu *);
243 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
245 static struct hpsb_highlevel sbp2_highlevel = {
246 .name = SBP2_DEVICE_NAME,
247 .host_reset = sbp2_host_reset,
250 static struct hpsb_address_ops sbp2_ops = {
251 .write = sbp2_handle_status_write
254 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
255 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
256 u64, size_t, u16);
257 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
258 size_t, u16);
260 static struct hpsb_address_ops sbp2_physdma_ops = {
261 .read = sbp2_handle_physdma_read,
262 .write = sbp2_handle_physdma_write,
264 #endif
268 * Interface to driver core and IEEE 1394 core
270 static struct ieee1394_device_id sbp2_id_table[] = {
272 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
273 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
274 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
277 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
279 static int sbp2_probe(struct device *);
280 static int sbp2_remove(struct device *);
281 static int sbp2_update(struct unit_directory *);
283 static struct hpsb_protocol_driver sbp2_driver = {
284 .name = SBP2_DEVICE_NAME,
285 .id_table = sbp2_id_table,
286 .update = sbp2_update,
287 .driver = {
288 .probe = sbp2_probe,
289 .remove = sbp2_remove,
295 * Interface to SCSI core
297 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
298 void (*)(struct scsi_cmnd *));
299 static int sbp2scsi_abort(struct scsi_cmnd *);
300 static int sbp2scsi_reset(struct scsi_cmnd *);
301 static int sbp2scsi_slave_alloc(struct scsi_device *);
302 static int sbp2scsi_slave_configure(struct scsi_device *);
303 static void sbp2scsi_slave_destroy(struct scsi_device *);
304 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
305 struct device_attribute *, char *);
307 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
309 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
310 &dev_attr_ieee1394_id,
311 NULL
314 static struct scsi_host_template sbp2_shost_template = {
315 .module = THIS_MODULE,
316 .name = "SBP-2 IEEE-1394",
317 .proc_name = SBP2_DEVICE_NAME,
318 .queuecommand = sbp2scsi_queuecommand,
319 .eh_abort_handler = sbp2scsi_abort,
320 .eh_device_reset_handler = sbp2scsi_reset,
321 .slave_alloc = sbp2scsi_slave_alloc,
322 .slave_configure = sbp2scsi_slave_configure,
323 .slave_destroy = sbp2scsi_slave_destroy,
324 .this_id = -1,
325 .sg_tablesize = SG_ALL,
326 .use_clustering = ENABLE_CLUSTERING,
327 .cmd_per_lun = SBP2_MAX_CMDS,
328 .can_queue = SBP2_MAX_CMDS,
329 .sdev_attrs = sbp2_sysfs_sdev_attrs,
332 /* for match-all entries in sbp2_workarounds_table */
333 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
336 * List of devices with known bugs.
338 * The firmware_revision field, masked with 0xffff00, is the best indicator
339 * for the type of bridge chip of a device. It yields a few false positives
340 * but this did not break correctly behaving devices so far.
342 static const struct {
343 u32 firmware_revision;
344 u32 model_id;
345 unsigned workarounds;
346 } sbp2_workarounds_table[] = {
347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348 .firmware_revision = 0x002800,
349 .model_id = 0x001010,
350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
351 SBP2_WORKAROUND_MODE_SENSE_8,
353 /* Initio bridges, actually only needed for some older ones */ {
354 .firmware_revision = 0x000200,
355 .model_id = SBP2_ROM_VALUE_WILDCARD,
356 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
358 /* Symbios bridge */ {
359 .firmware_revision = 0xa0b800,
360 .model_id = SBP2_ROM_VALUE_WILDCARD,
361 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
363 /* iPod 4th generation */ {
364 .firmware_revision = 0x0a2700,
365 .model_id = 0x000021,
366 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
368 /* iPod mini */ {
369 .firmware_revision = 0x0a2700,
370 .model_id = 0x000023,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
373 /* iPod Photo */ {
374 .firmware_revision = 0x0a2700,
375 .model_id = 0x00007e,
376 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
380 /**************************************
381 * General utility functions
382 **************************************/
384 #ifndef __BIG_ENDIAN
386 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
388 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
390 u32 *temp = buffer;
392 for (length = (length >> 2); length--; )
393 temp[length] = be32_to_cpu(temp[length]);
397 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
399 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
401 u32 *temp = buffer;
403 for (length = (length >> 2); length--; )
404 temp[length] = cpu_to_be32(temp[length]);
406 #else /* BIG_ENDIAN */
407 /* Why waste the cpu cycles? */
408 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
409 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
410 #endif
412 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
415 * Waits for completion of an SBP-2 access request.
416 * Returns nonzero if timed out or prematurely interrupted.
418 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
420 long leftover;
422 leftover = wait_event_interruptible_timeout(
423 sbp2_access_wq, lu->access_complete, timeout);
424 lu->access_complete = 0;
425 return leftover <= 0;
428 static void sbp2_free_packet(void *packet)
430 hpsb_free_tlabel(packet);
431 hpsb_free_packet(packet);
435 * This is much like hpsb_node_write(), except it ignores the response
436 * subaction and returns immediately. Can be used from atomic context.
438 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
439 quadlet_t *buf, size_t len)
441 struct hpsb_packet *packet;
443 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
444 if (!packet)
445 return -ENOMEM;
447 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
448 hpsb_node_fill_packet(ne, packet);
449 if (hpsb_send_packet(packet) < 0) {
450 sbp2_free_packet(packet);
451 return -EIO;
453 return 0;
456 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
457 quadlet_t *data, size_t len)
459 /* There is a small window after a bus reset within which the node
460 * entry's generation is current but the reconnect wasn't completed. */
461 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
462 return;
464 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
465 data, len))
466 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
468 /* Now accept new SCSI commands, unless a bus reset happended during
469 * hpsb_node_write. */
470 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
471 scsi_unblock_requests(lu->shost);
474 static void sbp2util_write_orb_pointer(struct work_struct *work)
476 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
477 quadlet_t data[2];
479 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
480 data[1] = lu->last_orb_dma;
481 sbp2util_cpu_to_be32_buffer(data, 8);
482 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
485 static void sbp2util_write_doorbell(struct work_struct *work)
487 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
489 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
492 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
494 struct sbp2_fwhost_info *hi = lu->hi;
495 struct sbp2_command_info *cmd;
496 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
498 for (i = 0; i < orbs; i++) {
499 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
500 if (!cmd)
501 return -ENOMEM;
502 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
503 &cmd->command_orb,
504 sizeof(struct sbp2_command_orb),
505 DMA_TO_DEVICE);
506 cmd->sge_dma = dma_map_single(hi->host->device.parent,
507 &cmd->scatter_gather_element,
508 sizeof(cmd->scatter_gather_element),
509 DMA_TO_DEVICE);
510 INIT_LIST_HEAD(&cmd->list);
511 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
513 return 0;
516 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
517 struct hpsb_host *host)
519 struct list_head *lh, *next;
520 struct sbp2_command_info *cmd;
521 unsigned long flags;
523 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
524 if (!list_empty(&lu->cmd_orb_completed))
525 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
526 cmd = list_entry(lh, struct sbp2_command_info, list);
527 dma_unmap_single(host->device.parent,
528 cmd->command_orb_dma,
529 sizeof(struct sbp2_command_orb),
530 DMA_TO_DEVICE);
531 dma_unmap_single(host->device.parent, cmd->sge_dma,
532 sizeof(cmd->scatter_gather_element),
533 DMA_TO_DEVICE);
534 kfree(cmd);
536 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
537 return;
541 * Finds the sbp2_command for a given outstanding command ORB.
542 * Only looks at the in-use list.
544 static struct sbp2_command_info *sbp2util_find_command_for_orb(
545 struct sbp2_lu *lu, dma_addr_t orb)
547 struct sbp2_command_info *cmd;
548 unsigned long flags;
550 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
551 if (!list_empty(&lu->cmd_orb_inuse))
552 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
553 if (cmd->command_orb_dma == orb) {
554 spin_unlock_irqrestore(
555 &lu->cmd_orb_lock, flags);
556 return cmd;
558 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
559 return NULL;
563 * Finds the sbp2_command for a given outstanding SCpnt.
564 * Only looks at the in-use list.
565 * Must be called with lu->cmd_orb_lock held.
567 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
568 struct sbp2_lu *lu, void *SCpnt)
570 struct sbp2_command_info *cmd;
572 if (!list_empty(&lu->cmd_orb_inuse))
573 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
574 if (cmd->Current_SCpnt == SCpnt)
575 return cmd;
576 return NULL;
579 static struct sbp2_command_info *sbp2util_allocate_command_orb(
580 struct sbp2_lu *lu,
581 struct scsi_cmnd *Current_SCpnt,
582 void (*Current_done)(struct scsi_cmnd *))
584 struct list_head *lh;
585 struct sbp2_command_info *cmd = NULL;
586 unsigned long flags;
588 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
589 if (!list_empty(&lu->cmd_orb_completed)) {
590 lh = lu->cmd_orb_completed.next;
591 list_del(lh);
592 cmd = list_entry(lh, struct sbp2_command_info, list);
593 cmd->Current_done = Current_done;
594 cmd->Current_SCpnt = Current_SCpnt;
595 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
596 } else
597 SBP2_ERR("%s: no orbs available", __FUNCTION__);
598 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
599 return cmd;
603 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
604 * Must be called with lu->cmd_orb_lock held.
606 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
607 struct sbp2_command_info *cmd)
609 struct hpsb_host *host = lu->ud->ne->host;
611 if (cmd->cmd_dma) {
612 if (cmd->dma_type == CMD_DMA_SINGLE)
613 dma_unmap_single(host->device.parent, cmd->cmd_dma,
614 cmd->dma_size, cmd->dma_dir);
615 else if (cmd->dma_type == CMD_DMA_PAGE)
616 dma_unmap_page(host->device.parent, cmd->cmd_dma,
617 cmd->dma_size, cmd->dma_dir);
618 /* XXX: Check for CMD_DMA_NONE bug */
619 cmd->dma_type = CMD_DMA_NONE;
620 cmd->cmd_dma = 0;
622 if (cmd->sge_buffer) {
623 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
624 cmd->dma_size, cmd->dma_dir);
625 cmd->sge_buffer = NULL;
627 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
631 * Is lu valid? Is the 1394 node still present?
633 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
635 return lu && lu->ne && !lu->ne->in_limbo;
638 /*********************************************
639 * IEEE-1394 core driver stack related section
640 *********************************************/
642 static int sbp2_probe(struct device *dev)
644 struct unit_directory *ud;
645 struct sbp2_lu *lu;
647 ud = container_of(dev, struct unit_directory, device);
649 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
650 * instead. */
651 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
652 return -ENODEV;
654 lu = sbp2_alloc_device(ud);
655 if (!lu)
656 return -ENOMEM;
658 sbp2_parse_unit_directory(lu, ud);
659 return sbp2_start_device(lu);
662 static int sbp2_remove(struct device *dev)
664 struct unit_directory *ud;
665 struct sbp2_lu *lu;
666 struct scsi_device *sdev;
668 ud = container_of(dev, struct unit_directory, device);
669 lu = ud->device.driver_data;
670 if (!lu)
671 return 0;
673 if (lu->shost) {
674 /* Get rid of enqueued commands if there is no chance to
675 * send them. */
676 if (!sbp2util_node_is_available(lu))
677 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
678 /* scsi_remove_device() may trigger shutdown functions of SCSI
679 * highlevel drivers which would deadlock if blocked. */
680 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
681 scsi_unblock_requests(lu->shost);
683 sdev = lu->sdev;
684 if (sdev) {
685 lu->sdev = NULL;
686 scsi_remove_device(sdev);
689 sbp2_logout_device(lu);
690 sbp2_remove_device(lu);
692 return 0;
695 static int sbp2_update(struct unit_directory *ud)
697 struct sbp2_lu *lu = ud->device.driver_data;
699 if (sbp2_reconnect_device(lu)) {
700 /* Reconnect has failed. Perhaps we didn't reconnect fast
701 * enough. Try a regular login, but first log out just in
702 * case of any weirdness. */
703 sbp2_logout_device(lu);
705 if (sbp2_login_device(lu)) {
706 /* Login failed too, just fail, and the backend
707 * will call our sbp2_remove for us */
708 SBP2_ERR("Failed to reconnect to sbp2 device!");
709 return -EBUSY;
713 sbp2_set_busy_timeout(lu);
714 sbp2_agent_reset(lu, 1);
715 sbp2_max_speed_and_size(lu);
717 /* Complete any pending commands with busy (so they get retried)
718 * and remove them from our queue. */
719 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
721 /* Accept new commands unless there was another bus reset in the
722 * meantime. */
723 if (hpsb_node_entry_valid(lu->ne)) {
724 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
725 scsi_unblock_requests(lu->shost);
727 return 0;
730 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
732 struct sbp2_fwhost_info *hi;
733 struct Scsi_Host *shost = NULL;
734 struct sbp2_lu *lu = NULL;
736 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
737 if (!lu) {
738 SBP2_ERR("failed to create lu");
739 goto failed_alloc;
742 lu->ne = ud->ne;
743 lu->ud = ud;
744 lu->speed_code = IEEE1394_SPEED_100;
745 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
746 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
747 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
748 INIT_LIST_HEAD(&lu->cmd_orb_completed);
749 INIT_LIST_HEAD(&lu->lu_list);
750 spin_lock_init(&lu->cmd_orb_lock);
751 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
752 INIT_WORK(&lu->protocol_work, NULL);
754 ud->device.driver_data = lu;
756 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
757 if (!hi) {
758 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
759 sizeof(*hi));
760 if (!hi) {
761 SBP2_ERR("failed to allocate hostinfo");
762 goto failed_alloc;
764 hi->host = ud->ne->host;
765 INIT_LIST_HEAD(&hi->logical_units);
767 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
768 /* Handle data movement if physical dma is not
769 * enabled or not supported on host controller */
770 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
771 &sbp2_physdma_ops,
772 0x0ULL, 0xfffffffcULL)) {
773 SBP2_ERR("failed to register lower 4GB address range");
774 goto failed_alloc;
776 #endif
779 /* Prevent unloading of the 1394 host */
780 if (!try_module_get(hi->host->driver->owner)) {
781 SBP2_ERR("failed to get a reference on 1394 host driver");
782 goto failed_alloc;
785 lu->hi = hi;
787 list_add_tail(&lu->lu_list, &hi->logical_units);
789 /* Register the status FIFO address range. We could use the same FIFO
790 * for targets at different nodes. However we need different FIFOs per
791 * target in order to support multi-unit devices.
792 * The FIFO is located out of the local host controller's physical range
793 * but, if possible, within the posted write area. Status writes will
794 * then be performed as unified transactions. This slightly reduces
795 * bandwidth usage, and some Prolific based devices seem to require it.
797 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
798 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
799 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
800 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
801 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
802 SBP2_ERR("failed to allocate status FIFO address range");
803 goto failed_alloc;
806 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
807 if (!shost) {
808 SBP2_ERR("failed to register scsi host");
809 goto failed_alloc;
812 shost->hostdata[0] = (unsigned long)lu;
814 if (!scsi_add_host(shost, &ud->device)) {
815 lu->shost = shost;
816 return lu;
819 SBP2_ERR("failed to add scsi host");
820 scsi_host_put(shost);
822 failed_alloc:
823 sbp2_remove_device(lu);
824 return NULL;
827 static void sbp2_host_reset(struct hpsb_host *host)
829 struct sbp2_fwhost_info *hi;
830 struct sbp2_lu *lu;
832 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
833 if (!hi)
834 return;
835 list_for_each_entry(lu, &hi->logical_units, lu_list)
836 if (likely(atomic_read(&lu->state) !=
837 SBP2LU_STATE_IN_SHUTDOWN)) {
838 atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
839 scsi_block_requests(lu->shost);
843 static int sbp2_start_device(struct sbp2_lu *lu)
845 struct sbp2_fwhost_info *hi = lu->hi;
846 int error;
848 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
849 sizeof(struct sbp2_login_response),
850 &lu->login_response_dma, GFP_KERNEL);
851 if (!lu->login_response)
852 goto alloc_fail;
854 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
855 sizeof(struct sbp2_query_logins_orb),
856 &lu->query_logins_orb_dma, GFP_KERNEL);
857 if (!lu->query_logins_orb)
858 goto alloc_fail;
860 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
861 sizeof(struct sbp2_query_logins_response),
862 &lu->query_logins_response_dma, GFP_KERNEL);
863 if (!lu->query_logins_response)
864 goto alloc_fail;
866 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
867 sizeof(struct sbp2_reconnect_orb),
868 &lu->reconnect_orb_dma, GFP_KERNEL);
869 if (!lu->reconnect_orb)
870 goto alloc_fail;
872 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
873 sizeof(struct sbp2_logout_orb),
874 &lu->logout_orb_dma, GFP_KERNEL);
875 if (!lu->logout_orb)
876 goto alloc_fail;
878 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
879 sizeof(struct sbp2_login_orb),
880 &lu->login_orb_dma, GFP_KERNEL);
881 if (!lu->login_orb)
882 goto alloc_fail;
884 if (sbp2util_create_command_orb_pool(lu))
885 goto alloc_fail;
887 /* Wait a second before trying to log in. Previously logged in
888 * initiators need a chance to reconnect. */
889 if (msleep_interruptible(1000)) {
890 sbp2_remove_device(lu);
891 return -EINTR;
894 if (sbp2_login_device(lu)) {
895 sbp2_remove_device(lu);
896 return -EBUSY;
899 sbp2_set_busy_timeout(lu);
900 sbp2_agent_reset(lu, 1);
901 sbp2_max_speed_and_size(lu);
903 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
904 if (error) {
905 SBP2_ERR("scsi_add_device failed");
906 sbp2_logout_device(lu);
907 sbp2_remove_device(lu);
908 return error;
911 return 0;
913 alloc_fail:
914 SBP2_ERR("Could not allocate memory for lu");
915 sbp2_remove_device(lu);
916 return -ENOMEM;
919 static void sbp2_remove_device(struct sbp2_lu *lu)
921 struct sbp2_fwhost_info *hi;
923 if (!lu)
924 return;
925 hi = lu->hi;
926 if (!hi)
927 goto no_hi;
929 if (lu->shost) {
930 scsi_remove_host(lu->shost);
931 scsi_host_put(lu->shost);
933 flush_scheduled_work();
934 sbp2util_remove_command_orb_pool(lu, hi->host);
936 list_del(&lu->lu_list);
938 if (lu->login_response)
939 dma_free_coherent(hi->host->device.parent,
940 sizeof(struct sbp2_login_response),
941 lu->login_response,
942 lu->login_response_dma);
943 if (lu->login_orb)
944 dma_free_coherent(hi->host->device.parent,
945 sizeof(struct sbp2_login_orb),
946 lu->login_orb,
947 lu->login_orb_dma);
948 if (lu->reconnect_orb)
949 dma_free_coherent(hi->host->device.parent,
950 sizeof(struct sbp2_reconnect_orb),
951 lu->reconnect_orb,
952 lu->reconnect_orb_dma);
953 if (lu->logout_orb)
954 dma_free_coherent(hi->host->device.parent,
955 sizeof(struct sbp2_logout_orb),
956 lu->logout_orb,
957 lu->logout_orb_dma);
958 if (lu->query_logins_orb)
959 dma_free_coherent(hi->host->device.parent,
960 sizeof(struct sbp2_query_logins_orb),
961 lu->query_logins_orb,
962 lu->query_logins_orb_dma);
963 if (lu->query_logins_response)
964 dma_free_coherent(hi->host->device.parent,
965 sizeof(struct sbp2_query_logins_response),
966 lu->query_logins_response,
967 lu->query_logins_response_dma);
969 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
970 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
971 lu->status_fifo_addr);
973 lu->ud->device.driver_data = NULL;
975 module_put(hi->host->driver->owner);
976 no_hi:
977 kfree(lu);
980 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
982 * Deal with write requests on adapters which do not support physical DMA or
983 * have it switched off.
985 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
986 int destid, quadlet_t *data, u64 addr,
987 size_t length, u16 flags)
989 memcpy(bus_to_virt((u32) addr), data, length);
990 return RCODE_COMPLETE;
994 * Deal with read requests on adapters which do not support physical DMA or
995 * have it switched off.
997 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
998 quadlet_t *data, u64 addr, size_t length,
999 u16 flags)
1001 memcpy(data, bus_to_virt((u32) addr), length);
1002 return RCODE_COMPLETE;
1004 #endif
1006 /**************************************
1007 * SBP-2 protocol related section
1008 **************************************/
1010 static int sbp2_query_logins(struct sbp2_lu *lu)
1012 struct sbp2_fwhost_info *hi = lu->hi;
1013 quadlet_t data[2];
1014 int max_logins;
1015 int active_logins;
1017 lu->query_logins_orb->reserved1 = 0x0;
1018 lu->query_logins_orb->reserved2 = 0x0;
1020 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1021 lu->query_logins_orb->query_response_hi =
1022 ORB_SET_NODE_ID(hi->host->node_id);
1023 lu->query_logins_orb->lun_misc =
1024 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1025 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1026 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1028 lu->query_logins_orb->reserved_resp_length =
1029 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1030 sizeof(struct sbp2_query_logins_response));
1032 lu->query_logins_orb->status_fifo_hi =
1033 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1034 lu->query_logins_orb->status_fifo_lo =
1035 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1037 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1038 sizeof(struct sbp2_query_logins_orb));
1040 memset(lu->query_logins_response, 0,
1041 sizeof(struct sbp2_query_logins_response));
1043 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1044 data[1] = lu->query_logins_orb_dma;
1045 sbp2util_cpu_to_be32_buffer(data, 8);
1047 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1049 if (sbp2util_access_timeout(lu, 2*HZ)) {
1050 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1051 return -EIO;
1054 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1055 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1056 return -EIO;
1059 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1060 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1061 return -EIO;
1064 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1065 sizeof(struct sbp2_query_logins_response));
1067 max_logins = RESPONSE_GET_MAX_LOGINS(
1068 lu->query_logins_response->length_max_logins);
1069 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1071 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1072 lu->query_logins_response->length_max_logins);
1073 SBP2_INFO("Number of active logins: %d", active_logins);
1075 if (active_logins >= max_logins) {
1076 return -EIO;
1079 return 0;
1082 static int sbp2_login_device(struct sbp2_lu *lu)
1084 struct sbp2_fwhost_info *hi = lu->hi;
1085 quadlet_t data[2];
1087 if (!lu->login_orb)
1088 return -EIO;
1090 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1091 SBP2_INFO("Device does not support any more concurrent logins");
1092 return -EIO;
1095 /* assume no password */
1096 lu->login_orb->password_hi = 0;
1097 lu->login_orb->password_lo = 0;
1099 lu->login_orb->login_response_lo = lu->login_response_dma;
1100 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1101 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1103 /* one second reconnect time */
1104 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1105 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1106 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1107 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1109 lu->login_orb->passwd_resp_lengths =
1110 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1112 lu->login_orb->status_fifo_hi =
1113 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1114 lu->login_orb->status_fifo_lo =
1115 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1117 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1118 sizeof(struct sbp2_login_orb));
1120 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1122 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1123 data[1] = lu->login_orb_dma;
1124 sbp2util_cpu_to_be32_buffer(data, 8);
1126 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1128 /* wait up to 20 seconds for login status */
1129 if (sbp2util_access_timeout(lu, 20*HZ)) {
1130 SBP2_ERR("Error logging into SBP-2 device - timed out");
1131 return -EIO;
1134 /* make sure that the returned status matches the login ORB */
1135 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1136 SBP2_ERR("Error logging into SBP-2 device - timed out");
1137 return -EIO;
1140 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1141 SBP2_ERR("Error logging into SBP-2 device - failed");
1142 return -EIO;
1145 sbp2util_cpu_to_be32_buffer(lu->login_response,
1146 sizeof(struct sbp2_login_response));
1147 lu->command_block_agent_addr =
1148 ((u64)lu->login_response->command_block_agent_hi) << 32;
1149 lu->command_block_agent_addr |=
1150 ((u64)lu->login_response->command_block_agent_lo);
1151 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1153 SBP2_INFO("Logged into SBP-2 device");
1154 return 0;
1157 static int sbp2_logout_device(struct sbp2_lu *lu)
1159 struct sbp2_fwhost_info *hi = lu->hi;
1160 quadlet_t data[2];
1161 int error;
1163 lu->logout_orb->reserved1 = 0x0;
1164 lu->logout_orb->reserved2 = 0x0;
1165 lu->logout_orb->reserved3 = 0x0;
1166 lu->logout_orb->reserved4 = 0x0;
1168 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1169 lu->logout_orb->login_ID_misc |=
1170 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1171 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1173 lu->logout_orb->reserved5 = 0x0;
1174 lu->logout_orb->status_fifo_hi =
1175 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1176 lu->logout_orb->status_fifo_lo =
1177 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1179 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1180 sizeof(struct sbp2_logout_orb));
1182 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1183 data[1] = lu->logout_orb_dma;
1184 sbp2util_cpu_to_be32_buffer(data, 8);
1186 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1187 if (error)
1188 return error;
1190 /* wait up to 1 second for the device to complete logout */
1191 if (sbp2util_access_timeout(lu, HZ))
1192 return -EIO;
1194 SBP2_INFO("Logged out of SBP-2 device");
1195 return 0;
1198 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1200 struct sbp2_fwhost_info *hi = lu->hi;
1201 quadlet_t data[2];
1202 int error;
1204 lu->reconnect_orb->reserved1 = 0x0;
1205 lu->reconnect_orb->reserved2 = 0x0;
1206 lu->reconnect_orb->reserved3 = 0x0;
1207 lu->reconnect_orb->reserved4 = 0x0;
1209 lu->reconnect_orb->login_ID_misc =
1210 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1211 lu->reconnect_orb->login_ID_misc |=
1212 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1213 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1215 lu->reconnect_orb->reserved5 = 0x0;
1216 lu->reconnect_orb->status_fifo_hi =
1217 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1218 lu->reconnect_orb->status_fifo_lo =
1219 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1221 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1222 sizeof(struct sbp2_reconnect_orb));
1224 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1225 data[1] = lu->reconnect_orb_dma;
1226 sbp2util_cpu_to_be32_buffer(data, 8);
1228 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1229 if (error)
1230 return error;
1232 /* wait up to 1 second for reconnect status */
1233 if (sbp2util_access_timeout(lu, HZ)) {
1234 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1235 return -EIO;
1238 /* make sure that the returned status matches the reconnect ORB */
1239 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1240 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1241 return -EIO;
1244 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1245 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1246 return -EIO;
1249 SBP2_INFO("Reconnected to SBP-2 device");
1250 return 0;
1254 * Set the target node's Single Phase Retry limit. Affects the target's retry
1255 * behaviour if our node is too busy to accept requests.
1257 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1259 quadlet_t data;
1261 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1262 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1263 SBP2_ERR("%s error", __FUNCTION__);
1264 return 0;
1267 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1268 struct unit_directory *ud)
1270 struct csr1212_keyval *kv;
1271 struct csr1212_dentry *dentry;
1272 u64 management_agent_addr;
1273 u32 unit_characteristics, firmware_revision;
1274 unsigned workarounds;
1275 int i;
1277 management_agent_addr = 0;
1278 unit_characteristics = 0;
1279 firmware_revision = 0;
1281 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1282 switch (kv->key.id) {
1283 case CSR1212_KV_ID_DEPENDENT_INFO:
1284 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1285 management_agent_addr =
1286 CSR1212_REGISTER_SPACE_BASE +
1287 (kv->value.csr_offset << 2);
1289 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1290 lu->lun = ORB_SET_LUN(kv->value.immediate);
1291 break;
1293 case SBP2_UNIT_CHARACTERISTICS_KEY:
1294 /* FIXME: This is ignored so far.
1295 * See SBP-2 clause 7.4.8. */
1296 unit_characteristics = kv->value.immediate;
1297 break;
1299 case SBP2_FIRMWARE_REVISION_KEY:
1300 firmware_revision = kv->value.immediate;
1301 break;
1303 default:
1304 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1305 * Its "ordered" bit has consequences for command ORB
1306 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1307 break;
1311 workarounds = sbp2_default_workarounds;
1313 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1314 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1315 if (sbp2_workarounds_table[i].firmware_revision !=
1316 SBP2_ROM_VALUE_WILDCARD &&
1317 sbp2_workarounds_table[i].firmware_revision !=
1318 (firmware_revision & 0xffff00))
1319 continue;
1320 if (sbp2_workarounds_table[i].model_id !=
1321 SBP2_ROM_VALUE_WILDCARD &&
1322 sbp2_workarounds_table[i].model_id != ud->model_id)
1323 continue;
1324 workarounds |= sbp2_workarounds_table[i].workarounds;
1325 break;
1328 if (workarounds)
1329 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1330 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1331 " model_id 0x%06x)",
1332 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1333 workarounds, firmware_revision,
1334 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1335 ud->model_id);
1337 /* We would need one SCSI host template for each target to adjust
1338 * max_sectors on the fly, therefore warn only. */
1339 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1340 (sbp2_max_sectors * 512) > (128 * 1024))
1341 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1342 "max transfer size. WARNING: Current max_sectors "
1343 "setting is larger than 128KB (%d sectors)",
1344 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1345 sbp2_max_sectors);
1347 /* If this is a logical unit directory entry, process the parent
1348 * to get the values. */
1349 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1350 struct unit_directory *parent_ud = container_of(
1351 ud->device.parent, struct unit_directory, device);
1352 sbp2_parse_unit_directory(lu, parent_ud);
1353 } else {
1354 lu->management_agent_addr = management_agent_addr;
1355 lu->workarounds = workarounds;
1356 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1357 lu->lun = ORB_SET_LUN(ud->lun);
1361 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1364 * This function is called in order to determine the max speed and packet
1365 * size we can use in our ORBs. Note, that we (the driver and host) only
1366 * initiate the transaction. The SBP-2 device actually transfers the data
1367 * (by reading from the DMA area we tell it). This means that the SBP-2
1368 * device decides the actual maximum data it can transfer. We just tell it
1369 * the speed that it needs to use, and the max_rec the host supports, and
1370 * it takes care of the rest.
1372 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1374 struct sbp2_fwhost_info *hi = lu->hi;
1375 u8 payload;
1377 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1379 if (lu->speed_code > sbp2_max_speed) {
1380 lu->speed_code = sbp2_max_speed;
1381 SBP2_INFO("Reducing speed to %s",
1382 hpsb_speedto_str[sbp2_max_speed]);
1385 /* Payload size is the lesser of what our speed supports and what
1386 * our host supports. */
1387 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1388 (u8) (hi->host->csr.max_rec - 1));
1390 /* If physical DMA is off, work around limitation in ohci1394:
1391 * packet size must not exceed PAGE_SIZE */
1392 if (lu->ne->host->low_addr_space < (1ULL << 32))
1393 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1394 payload)
1395 payload--;
1397 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1398 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1399 hpsb_speedto_str[lu->speed_code],
1400 SBP2_PAYLOAD_TO_BYTES(payload));
1402 lu->max_payload_size = payload;
1403 return 0;
1406 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1408 quadlet_t data;
1409 u64 addr;
1410 int retval;
1411 unsigned long flags;
1413 /* flush lu->protocol_work */
1414 if (wait)
1415 flush_scheduled_work();
1417 data = ntohl(SBP2_AGENT_RESET_DATA);
1418 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1420 if (wait)
1421 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1422 else
1423 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1425 if (retval < 0) {
1426 SBP2_ERR("hpsb_node_write failed.\n");
1427 return -EIO;
1430 /* make sure that the ORB_POINTER is written on next command */
1431 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1432 lu->last_orb = NULL;
1433 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1435 return 0;
1438 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1439 struct sbp2_fwhost_info *hi,
1440 struct sbp2_command_info *cmd,
1441 unsigned int scsi_use_sg,
1442 struct scatterlist *sgpnt,
1443 u32 orb_direction,
1444 enum dma_data_direction dma_dir)
1446 cmd->dma_dir = dma_dir;
1447 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1448 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1450 /* special case if only one element (and less than 64KB in size) */
1451 if ((scsi_use_sg == 1) &&
1452 (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
1454 cmd->dma_size = sgpnt[0].length;
1455 cmd->dma_type = CMD_DMA_PAGE;
1456 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1457 sgpnt[0].page, sgpnt[0].offset,
1458 cmd->dma_size, cmd->dma_dir);
1460 orb->data_descriptor_lo = cmd->cmd_dma;
1461 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1463 } else {
1464 struct sbp2_unrestricted_page_table *sg_element =
1465 &cmd->scatter_gather_element[0];
1466 u32 sg_count, sg_len;
1467 dma_addr_t sg_addr;
1468 int i, count = dma_map_sg(hi->host->device.parent, sgpnt,
1469 scsi_use_sg, dma_dir);
1471 cmd->dma_size = scsi_use_sg;
1472 cmd->sge_buffer = sgpnt;
1474 /* use page tables (s/g) */
1475 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1476 orb->data_descriptor_lo = cmd->sge_dma;
1478 /* loop through and fill out our SBP-2 page tables
1479 * (and split up anything too large) */
1480 for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
1481 sg_len = sg_dma_len(sgpnt);
1482 sg_addr = sg_dma_address(sgpnt);
1483 while (sg_len) {
1484 sg_element[sg_count].segment_base_lo = sg_addr;
1485 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1486 sg_element[sg_count].length_segment_base_hi =
1487 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1488 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1489 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1490 } else {
1491 sg_element[sg_count].length_segment_base_hi =
1492 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1493 sg_len = 0;
1495 sg_count++;
1499 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1501 sbp2util_cpu_to_be32_buffer(sg_element,
1502 (sizeof(struct sbp2_unrestricted_page_table)) *
1503 sg_count);
1507 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1508 struct sbp2_command_info *cmd,
1509 unchar *scsi_cmd,
1510 unsigned int scsi_use_sg,
1511 unsigned int scsi_request_bufflen,
1512 void *scsi_request_buffer,
1513 enum dma_data_direction dma_dir)
1515 struct sbp2_fwhost_info *hi = lu->hi;
1516 struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
1517 struct sbp2_command_orb *orb = &cmd->command_orb;
1518 u32 orb_direction;
1521 * Set-up our command ORB.
1523 * NOTE: We're doing unrestricted page tables (s/g), as this is
1524 * best performance (at least with the devices I have). This means
1525 * that data_size becomes the number of s/g elements, and
1526 * page_size should be zero (for unrestricted).
1528 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1529 orb->next_ORB_lo = 0x0;
1530 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1531 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1532 orb->misc |= ORB_SET_NOTIFY(1);
1534 if (dma_dir == DMA_NONE)
1535 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1536 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1537 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1538 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1539 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1540 else {
1541 SBP2_INFO("Falling back to DMA_NONE");
1542 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1545 /* set up our page table stuff */
1546 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1547 orb->data_descriptor_hi = 0x0;
1548 orb->data_descriptor_lo = 0x0;
1549 orb->misc |= ORB_SET_DIRECTION(1);
1550 } else
1551 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt,
1552 orb_direction, dma_dir);
1554 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1556 memset(orb->cdb, 0, 12);
1557 memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
1560 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1561 struct sbp2_command_info *cmd)
1563 struct sbp2_fwhost_info *hi = lu->hi;
1564 struct sbp2_command_orb *last_orb;
1565 dma_addr_t last_orb_dma;
1566 u64 addr = lu->command_block_agent_addr;
1567 quadlet_t data[2];
1568 size_t length;
1569 unsigned long flags;
1571 dma_sync_single_for_device(hi->host->device.parent,
1572 cmd->command_orb_dma,
1573 sizeof(struct sbp2_command_orb),
1574 DMA_TO_DEVICE);
1575 dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1576 sizeof(cmd->scatter_gather_element),
1577 DMA_TO_DEVICE);
1579 /* check to see if there are any previous orbs to use */
1580 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1581 last_orb = lu->last_orb;
1582 last_orb_dma = lu->last_orb_dma;
1583 if (!last_orb) {
1585 * last_orb == NULL means: We know that the target's fetch agent
1586 * is not active right now.
1588 addr += SBP2_ORB_POINTER_OFFSET;
1589 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1590 data[1] = cmd->command_orb_dma;
1591 sbp2util_cpu_to_be32_buffer(data, 8);
1592 length = 8;
1593 } else {
1595 * last_orb != NULL means: We know that the target's fetch agent
1596 * is (very probably) not dead or in reset state right now.
1597 * We have an ORB already sent that we can append a new one to.
1598 * The target's fetch agent may or may not have read this
1599 * previous ORB yet.
1601 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1602 sizeof(struct sbp2_command_orb),
1603 DMA_TO_DEVICE);
1604 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1605 wmb();
1606 /* Tells hardware that this pointer is valid */
1607 last_orb->next_ORB_hi = 0;
1608 dma_sync_single_for_device(hi->host->device.parent,
1609 last_orb_dma,
1610 sizeof(struct sbp2_command_orb),
1611 DMA_TO_DEVICE);
1612 addr += SBP2_DOORBELL_OFFSET;
1613 data[0] = 0;
1614 length = 4;
1616 lu->last_orb = &cmd->command_orb;
1617 lu->last_orb_dma = cmd->command_orb_dma;
1618 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1620 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1622 * sbp2util_node_write_no_wait failed. We certainly ran out
1623 * of transaction labels, perhaps just because there were no
1624 * context switches which gave khpsbpkt a chance to collect
1625 * free tlabels. Try again in non-atomic context. If necessary,
1626 * the workqueue job will sleep to guaranteedly get a tlabel.
1627 * We do not accept new commands until the job is over.
1629 scsi_block_requests(lu->shost);
1630 PREPARE_WORK(&lu->protocol_work,
1631 last_orb ? sbp2util_write_doorbell:
1632 sbp2util_write_orb_pointer);
1633 schedule_work(&lu->protocol_work);
1637 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1638 void (*done)(struct scsi_cmnd *))
1640 unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
1641 unsigned int request_bufflen = scsi_bufflen(SCpnt);
1642 struct sbp2_command_info *cmd;
1644 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1645 if (!cmd)
1646 return -EIO;
1648 sbp2_create_command_orb(lu, cmd, scsi_cmd, scsi_sg_count(SCpnt),
1649 request_bufflen, scsi_sglist(SCpnt),
1650 SCpnt->sc_data_direction);
1651 sbp2_link_orb_command(lu, cmd);
1653 return 0;
1657 * Translates SBP-2 status into SCSI sense data for check conditions
1659 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1660 unchar *sense_data)
1662 /* OK, it's pretty ugly... ;-) */
1663 sense_data[0] = 0x70;
1664 sense_data[1] = 0x0;
1665 sense_data[2] = sbp2_status[9];
1666 sense_data[3] = sbp2_status[12];
1667 sense_data[4] = sbp2_status[13];
1668 sense_data[5] = sbp2_status[14];
1669 sense_data[6] = sbp2_status[15];
1670 sense_data[7] = 10;
1671 sense_data[8] = sbp2_status[16];
1672 sense_data[9] = sbp2_status[17];
1673 sense_data[10] = sbp2_status[18];
1674 sense_data[11] = sbp2_status[19];
1675 sense_data[12] = sbp2_status[10];
1676 sense_data[13] = sbp2_status[11];
1677 sense_data[14] = sbp2_status[20];
1678 sense_data[15] = sbp2_status[21];
1680 return sbp2_status[8] & 0x3f;
1683 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1684 int destid, quadlet_t *data, u64 addr,
1685 size_t length, u16 fl)
1687 struct sbp2_fwhost_info *hi;
1688 struct sbp2_lu *lu = NULL, *lu_tmp;
1689 struct scsi_cmnd *SCpnt = NULL;
1690 struct sbp2_status_block *sb;
1691 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1692 struct sbp2_command_info *cmd;
1693 unsigned long flags;
1695 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1696 SBP2_ERR("Wrong size of status block");
1697 return RCODE_ADDRESS_ERROR;
1699 if (unlikely(!host)) {
1700 SBP2_ERR("host is NULL - this is bad!");
1701 return RCODE_ADDRESS_ERROR;
1703 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1704 if (unlikely(!hi)) {
1705 SBP2_ERR("host info is NULL - this is bad!");
1706 return RCODE_ADDRESS_ERROR;
1709 /* Find the unit which wrote the status. */
1710 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1711 if (lu_tmp->ne->nodeid == nodeid &&
1712 lu_tmp->status_fifo_addr == addr) {
1713 lu = lu_tmp;
1714 break;
1717 if (unlikely(!lu)) {
1718 SBP2_ERR("lu is NULL - device is gone?");
1719 return RCODE_ADDRESS_ERROR;
1722 /* Put response into lu status fifo buffer. The first two bytes
1723 * come in big endian bit order. Often the target writes only a
1724 * truncated status block, minimally the first two quadlets. The rest
1725 * is implied to be zeros. */
1726 sb = &lu->status_block;
1727 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1728 memcpy(sb, data, length);
1729 sbp2util_be32_to_cpu_buffer(sb, 8);
1731 /* Ignore unsolicited status. Handle command ORB status. */
1732 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1733 cmd = NULL;
1734 else
1735 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1736 if (cmd) {
1737 dma_sync_single_for_cpu(hi->host->device.parent,
1738 cmd->command_orb_dma,
1739 sizeof(struct sbp2_command_orb),
1740 DMA_TO_DEVICE);
1741 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1742 sizeof(cmd->scatter_gather_element),
1743 DMA_TO_DEVICE);
1744 /* Grab SCSI command pointers and check status. */
1746 * FIXME: If the src field in the status is 1, the ORB DMA must
1747 * not be reused until status for a subsequent ORB is received.
1749 SCpnt = cmd->Current_SCpnt;
1750 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1751 sbp2util_mark_command_completed(lu, cmd);
1752 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1754 if (SCpnt) {
1755 u32 h = sb->ORB_offset_hi_misc;
1756 u32 r = STATUS_GET_RESP(h);
1758 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1759 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1760 r, STATUS_GET_SBP_STATUS(h));
1761 scsi_status =
1762 r == RESP_STATUS_TRANSPORT_FAILURE ?
1763 SBP2_SCSI_STATUS_BUSY :
1764 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1767 if (STATUS_GET_LEN(h) > 1)
1768 scsi_status = sbp2_status_to_sense_data(
1769 (unchar *)sb, SCpnt->sense_buffer);
1771 if (STATUS_TEST_DEAD(h))
1772 sbp2_agent_reset(lu, 0);
1775 /* Check here to see if there are no commands in-use. If there
1776 * are none, we know that the fetch agent left the active state
1777 * _and_ that we did not reactivate it yet. Therefore clear
1778 * last_orb so that next time we write directly to the
1779 * ORB_POINTER register. That way the fetch agent does not need
1780 * to refetch the next_ORB. */
1781 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1782 if (list_empty(&lu->cmd_orb_inuse))
1783 lu->last_orb = NULL;
1784 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1786 } else {
1787 /* It's probably status after a management request. */
1788 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1789 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1790 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1791 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1792 lu->access_complete = 1;
1793 wake_up_interruptible(&sbp2_access_wq);
1797 if (SCpnt)
1798 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1799 cmd->Current_done);
1800 return RCODE_COMPLETE;
1803 /**************************************
1804 * SCSI interface related section
1805 **************************************/
1807 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1808 void (*done)(struct scsi_cmnd *))
1810 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1811 struct sbp2_fwhost_info *hi;
1812 int result = DID_NO_CONNECT << 16;
1814 if (unlikely(!sbp2util_node_is_available(lu)))
1815 goto done;
1817 hi = lu->hi;
1819 if (unlikely(!hi)) {
1820 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1821 goto done;
1824 /* Multiple units are currently represented to the SCSI core as separate
1825 * targets, not as one target with multiple LUs. Therefore return
1826 * selection time-out to any IO directed at non-zero LUNs. */
1827 if (unlikely(SCpnt->device->lun))
1828 goto done;
1830 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1831 SBP2_ERR("Bus reset in progress - rejecting command");
1832 result = DID_BUS_BUSY << 16;
1833 goto done;
1836 /* Bidirectional commands are not yet implemented,
1837 * and unknown transfer direction not handled. */
1838 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1839 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1840 result = DID_ERROR << 16;
1841 goto done;
1844 if (sbp2_send_command(lu, SCpnt, done)) {
1845 SBP2_ERR("Error sending SCSI command");
1846 sbp2scsi_complete_command(lu,
1847 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1848 SCpnt, done);
1850 return 0;
1852 done:
1853 SCpnt->result = result;
1854 done(SCpnt);
1855 return 0;
1858 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1860 struct sbp2_fwhost_info *hi = lu->hi;
1861 struct list_head *lh;
1862 struct sbp2_command_info *cmd;
1863 unsigned long flags;
1865 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1866 while (!list_empty(&lu->cmd_orb_inuse)) {
1867 lh = lu->cmd_orb_inuse.next;
1868 cmd = list_entry(lh, struct sbp2_command_info, list);
1869 dma_sync_single_for_cpu(hi->host->device.parent,
1870 cmd->command_orb_dma,
1871 sizeof(struct sbp2_command_orb),
1872 DMA_TO_DEVICE);
1873 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1874 sizeof(cmd->scatter_gather_element),
1875 DMA_TO_DEVICE);
1876 sbp2util_mark_command_completed(lu, cmd);
1877 if (cmd->Current_SCpnt) {
1878 cmd->Current_SCpnt->result = status << 16;
1879 cmd->Current_done(cmd->Current_SCpnt);
1882 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1884 return;
1888 * Complete a regular SCSI command. Can be called in atomic context.
1890 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1891 struct scsi_cmnd *SCpnt,
1892 void (*done)(struct scsi_cmnd *))
1894 if (!SCpnt) {
1895 SBP2_ERR("SCpnt is NULL");
1896 return;
1899 switch (scsi_status) {
1900 case SBP2_SCSI_STATUS_GOOD:
1901 SCpnt->result = DID_OK << 16;
1902 break;
1904 case SBP2_SCSI_STATUS_BUSY:
1905 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1906 SCpnt->result = DID_BUS_BUSY << 16;
1907 break;
1909 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1910 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1911 break;
1913 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1914 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1915 SCpnt->result = DID_NO_CONNECT << 16;
1916 scsi_print_command(SCpnt);
1917 break;
1919 case SBP2_SCSI_STATUS_CONDITION_MET:
1920 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1921 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1922 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1923 SCpnt->result = DID_ERROR << 16;
1924 scsi_print_command(SCpnt);
1925 break;
1927 default:
1928 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1929 SCpnt->result = DID_ERROR << 16;
1932 /* If a bus reset is in progress and there was an error, complete
1933 * the command as busy so that it will get retried. */
1934 if (!hpsb_node_entry_valid(lu->ne)
1935 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1936 SBP2_ERR("Completing command with busy (bus reset)");
1937 SCpnt->result = DID_BUS_BUSY << 16;
1940 /* Tell the SCSI stack that we're done with this command. */
1941 done(SCpnt);
1944 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1946 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1948 lu->sdev = sdev;
1949 sdev->allow_restart = 1;
1951 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1952 sdev->inquiry_len = 36;
1953 return 0;
1956 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1958 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1960 sdev->use_10_for_rw = 1;
1962 if (sdev->type == TYPE_ROM)
1963 sdev->use_10_for_ms = 1;
1964 if (sdev->type == TYPE_DISK &&
1965 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1966 sdev->skip_ms_page_8 = 1;
1967 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1968 sdev->fix_capacity = 1;
1969 return 0;
1972 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
1974 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
1975 return;
1979 * Called by scsi stack when something has really gone wrong.
1980 * Usually called when a command has timed-out for some reason.
1982 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
1984 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1985 struct sbp2_fwhost_info *hi = lu->hi;
1986 struct sbp2_command_info *cmd;
1987 unsigned long flags;
1989 SBP2_INFO("aborting sbp2 command");
1990 scsi_print_command(SCpnt);
1992 if (sbp2util_node_is_available(lu)) {
1993 sbp2_agent_reset(lu, 1);
1995 /* Return a matching command structure to the free pool. */
1996 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1997 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
1998 if (cmd) {
1999 dma_sync_single_for_cpu(hi->host->device.parent,
2000 cmd->command_orb_dma,
2001 sizeof(struct sbp2_command_orb),
2002 DMA_TO_DEVICE);
2003 dma_sync_single_for_cpu(hi->host->device.parent,
2004 cmd->sge_dma,
2005 sizeof(cmd->scatter_gather_element),
2006 DMA_TO_DEVICE);
2007 sbp2util_mark_command_completed(lu, cmd);
2008 if (cmd->Current_SCpnt) {
2009 cmd->Current_SCpnt->result = DID_ABORT << 16;
2010 cmd->Current_done(cmd->Current_SCpnt);
2013 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2015 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2018 return SUCCESS;
2022 * Called by scsi stack when something has really gone wrong.
2024 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2026 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2028 SBP2_INFO("reset requested");
2030 if (sbp2util_node_is_available(lu)) {
2031 SBP2_INFO("generating sbp2 fetch agent reset");
2032 sbp2_agent_reset(lu, 1);
2035 return SUCCESS;
2038 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2039 struct device_attribute *attr,
2040 char *buf)
2042 struct scsi_device *sdev;
2043 struct sbp2_lu *lu;
2045 if (!(sdev = to_scsi_device(dev)))
2046 return 0;
2048 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2049 return 0;
2051 if (sbp2_long_sysfs_ieee1394_id)
2052 return sprintf(buf, "%016Lx:%06x:%04x\n",
2053 (unsigned long long)lu->ne->guid,
2054 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2055 else
2056 return sprintf(buf, "%016Lx:%d:%d\n",
2057 (unsigned long long)lu->ne->guid,
2058 lu->ud->id, ORB_SET_LUN(lu->lun));
2061 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2062 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2063 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2064 MODULE_LICENSE("GPL");
2066 static int sbp2_module_init(void)
2068 int ret;
2070 if (sbp2_serialize_io) {
2071 sbp2_shost_template.can_queue = 1;
2072 sbp2_shost_template.cmd_per_lun = 1;
2075 if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
2076 (sbp2_max_sectors * 512) > (128 * 1024))
2077 sbp2_max_sectors = 128 * 1024 / 512;
2078 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2080 hpsb_register_highlevel(&sbp2_highlevel);
2081 ret = hpsb_register_protocol(&sbp2_driver);
2082 if (ret) {
2083 SBP2_ERR("Failed to register protocol");
2084 hpsb_unregister_highlevel(&sbp2_highlevel);
2085 return ret;
2087 return 0;
2090 static void __exit sbp2_module_exit(void)
2092 hpsb_unregister_protocol(&sbp2_driver);
2093 hpsb_unregister_highlevel(&sbp2_highlevel);
2096 module_init(sbp2_module_init);
2097 module_exit(sbp2_module_exit);