[NETNS][IPV6]: Add ipv6 structure for netns.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobf28d1fb30608cd5667b6b6f9c67e545bdb4802de
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
16 * tunables
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
29 * offset from end of service tree
31 #define CFQ_IDLE_DELAY (HZ / 5)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
53 #define ASYNC (0)
54 #define SYNC (1)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
73 struct cfq_data {
74 struct request_queue *queue;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
87 * idle window management
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
96 * async queue for each priority case
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
101 sector_t last_position;
102 unsigned long last_end_request;
105 * tunables, see top of file
107 unsigned int cfq_quantum;
108 unsigned int cfq_fifo_expire[2];
109 unsigned int cfq_back_penalty;
110 unsigned int cfq_back_max;
111 unsigned int cfq_slice[2];
112 unsigned int cfq_slice_async_rq;
113 unsigned int cfq_slice_idle;
115 struct list_head cic_list;
119 * Per process-grouping structure
121 struct cfq_queue {
122 /* reference count */
123 atomic_t ref;
124 /* parent cfq_data */
125 struct cfq_data *cfqd;
126 /* service_tree member */
127 struct rb_node rb_node;
128 /* service_tree key */
129 unsigned long rb_key;
130 /* sorted list of pending requests */
131 struct rb_root sort_list;
132 /* if fifo isn't expired, next request to serve */
133 struct request *next_rq;
134 /* requests queued in sort_list */
135 int queued[2];
136 /* currently allocated requests */
137 int allocated[2];
138 /* pending metadata requests */
139 int meta_pending;
140 /* fifo list of requests in sort_list */
141 struct list_head fifo;
143 unsigned long slice_end;
144 long slice_resid;
146 /* number of requests that are on the dispatch list or inside driver */
147 int dispatched;
149 /* io prio of this group */
150 unsigned short ioprio, org_ioprio;
151 unsigned short ioprio_class, org_ioprio_class;
153 /* various state flags, see below */
154 unsigned int flags;
157 enum cfqq_state_flags {
158 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
159 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
160 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
161 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
162 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
163 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
164 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
165 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
166 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
167 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
168 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
171 #define CFQ_CFQQ_FNS(name) \
172 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
174 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
176 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
178 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
180 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
182 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
185 CFQ_CFQQ_FNS(on_rr);
186 CFQ_CFQQ_FNS(wait_request);
187 CFQ_CFQQ_FNS(must_alloc);
188 CFQ_CFQQ_FNS(must_alloc_slice);
189 CFQ_CFQQ_FNS(must_dispatch);
190 CFQ_CFQQ_FNS(fifo_expire);
191 CFQ_CFQQ_FNS(idle_window);
192 CFQ_CFQQ_FNS(prio_changed);
193 CFQ_CFQQ_FNS(queue_new);
194 CFQ_CFQQ_FNS(slice_new);
195 CFQ_CFQQ_FNS(sync);
196 #undef CFQ_CFQQ_FNS
198 static void cfq_dispatch_insert(struct request_queue *, struct request *);
199 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
200 struct io_context *, gfp_t);
201 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
202 struct io_context *);
204 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
205 int is_sync)
207 return cic->cfqq[!!is_sync];
210 static inline void cic_set_cfqq(struct cfq_io_context *cic,
211 struct cfq_queue *cfqq, int is_sync)
213 cic->cfqq[!!is_sync] = cfqq;
217 * We regard a request as SYNC, if it's either a read or has the SYNC bit
218 * set (in which case it could also be direct WRITE).
220 static inline int cfq_bio_sync(struct bio *bio)
222 if (bio_data_dir(bio) == READ || bio_sync(bio))
223 return 1;
225 return 0;
229 * scheduler run of queue, if there are requests pending and no one in the
230 * driver that will restart queueing
232 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
234 if (cfqd->busy_queues)
235 kblockd_schedule_work(&cfqd->unplug_work);
238 static int cfq_queue_empty(struct request_queue *q)
240 struct cfq_data *cfqd = q->elevator->elevator_data;
242 return !cfqd->busy_queues;
246 * Scale schedule slice based on io priority. Use the sync time slice only
247 * if a queue is marked sync and has sync io queued. A sync queue with async
248 * io only, should not get full sync slice length.
250 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
251 unsigned short prio)
253 const int base_slice = cfqd->cfq_slice[sync];
255 WARN_ON(prio >= IOPRIO_BE_NR);
257 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260 static inline int
261 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
263 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266 static inline void
267 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
269 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
274 * isn't valid until the first request from the dispatch is activated
275 * and the slice time set.
277 static inline int cfq_slice_used(struct cfq_queue *cfqq)
279 if (cfq_cfqq_slice_new(cfqq))
280 return 0;
281 if (time_before(jiffies, cfqq->slice_end))
282 return 0;
284 return 1;
288 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
289 * We choose the request that is closest to the head right now. Distance
290 * behind the head is penalized and only allowed to a certain extent.
292 static struct request *
293 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
295 sector_t last, s1, s2, d1 = 0, d2 = 0;
296 unsigned long back_max;
297 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
298 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
299 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
301 if (rq1 == NULL || rq1 == rq2)
302 return rq2;
303 if (rq2 == NULL)
304 return rq1;
306 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
307 return rq1;
308 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
309 return rq2;
310 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
311 return rq1;
312 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
313 return rq2;
315 s1 = rq1->sector;
316 s2 = rq2->sector;
318 last = cfqd->last_position;
321 * by definition, 1KiB is 2 sectors
323 back_max = cfqd->cfq_back_max * 2;
326 * Strict one way elevator _except_ in the case where we allow
327 * short backward seeks which are biased as twice the cost of a
328 * similar forward seek.
330 if (s1 >= last)
331 d1 = s1 - last;
332 else if (s1 + back_max >= last)
333 d1 = (last - s1) * cfqd->cfq_back_penalty;
334 else
335 wrap |= CFQ_RQ1_WRAP;
337 if (s2 >= last)
338 d2 = s2 - last;
339 else if (s2 + back_max >= last)
340 d2 = (last - s2) * cfqd->cfq_back_penalty;
341 else
342 wrap |= CFQ_RQ2_WRAP;
344 /* Found required data */
347 * By doing switch() on the bit mask "wrap" we avoid having to
348 * check two variables for all permutations: --> faster!
350 switch (wrap) {
351 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
352 if (d1 < d2)
353 return rq1;
354 else if (d2 < d1)
355 return rq2;
356 else {
357 if (s1 >= s2)
358 return rq1;
359 else
360 return rq2;
363 case CFQ_RQ2_WRAP:
364 return rq1;
365 case CFQ_RQ1_WRAP:
366 return rq2;
367 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
368 default:
370 * Since both rqs are wrapped,
371 * start with the one that's further behind head
372 * (--> only *one* back seek required),
373 * since back seek takes more time than forward.
375 if (s1 <= s2)
376 return rq1;
377 else
378 return rq2;
383 * The below is leftmost cache rbtree addon
385 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
387 if (!root->left)
388 root->left = rb_first(&root->rb);
390 if (root->left)
391 return rb_entry(root->left, struct cfq_queue, rb_node);
393 return NULL;
396 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
398 if (root->left == n)
399 root->left = NULL;
401 rb_erase(n, &root->rb);
402 RB_CLEAR_NODE(n);
406 * would be nice to take fifo expire time into account as well
408 static struct request *
409 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
410 struct request *last)
412 struct rb_node *rbnext = rb_next(&last->rb_node);
413 struct rb_node *rbprev = rb_prev(&last->rb_node);
414 struct request *next = NULL, *prev = NULL;
416 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
418 if (rbprev)
419 prev = rb_entry_rq(rbprev);
421 if (rbnext)
422 next = rb_entry_rq(rbnext);
423 else {
424 rbnext = rb_first(&cfqq->sort_list);
425 if (rbnext && rbnext != &last->rb_node)
426 next = rb_entry_rq(rbnext);
429 return cfq_choose_req(cfqd, next, prev);
432 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
433 struct cfq_queue *cfqq)
436 * just an approximation, should be ok.
438 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
439 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
447 static void cfq_service_tree_add(struct cfq_data *cfqd,
448 struct cfq_queue *cfqq, int add_front)
450 struct rb_node **p, *parent;
451 struct cfq_queue *__cfqq;
452 unsigned long rb_key;
453 int left;
455 if (cfq_class_idle(cfqq)) {
456 rb_key = CFQ_IDLE_DELAY;
457 parent = rb_last(&cfqd->service_tree.rb);
458 if (parent && parent != &cfqq->rb_node) {
459 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
460 rb_key += __cfqq->rb_key;
461 } else
462 rb_key += jiffies;
463 } else if (!add_front) {
464 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
465 rb_key += cfqq->slice_resid;
466 cfqq->slice_resid = 0;
467 } else
468 rb_key = 0;
470 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
472 * same position, nothing more to do
474 if (rb_key == cfqq->rb_key)
475 return;
477 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
480 left = 1;
481 parent = NULL;
482 p = &cfqd->service_tree.rb.rb_node;
483 while (*p) {
484 struct rb_node **n;
486 parent = *p;
487 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
490 * sort RT queues first, we always want to give
491 * preference to them. IDLE queues goes to the back.
492 * after that, sort on the next service time.
494 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
495 n = &(*p)->rb_left;
496 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
497 n = &(*p)->rb_right;
498 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
499 n = &(*p)->rb_left;
500 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
501 n = &(*p)->rb_right;
502 else if (rb_key < __cfqq->rb_key)
503 n = &(*p)->rb_left;
504 else
505 n = &(*p)->rb_right;
507 if (n == &(*p)->rb_right)
508 left = 0;
510 p = n;
513 if (left)
514 cfqd->service_tree.left = &cfqq->rb_node;
516 cfqq->rb_key = rb_key;
517 rb_link_node(&cfqq->rb_node, parent, p);
518 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
522 * Update cfqq's position in the service tree.
524 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
527 * Resorting requires the cfqq to be on the RR list already.
529 if (cfq_cfqq_on_rr(cfqq))
530 cfq_service_tree_add(cfqd, cfqq, 0);
534 * add to busy list of queues for service, trying to be fair in ordering
535 * the pending list according to last request service
537 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539 BUG_ON(cfq_cfqq_on_rr(cfqq));
540 cfq_mark_cfqq_on_rr(cfqq);
541 cfqd->busy_queues++;
543 cfq_resort_rr_list(cfqd, cfqq);
547 * Called when the cfqq no longer has requests pending, remove it from
548 * the service tree.
550 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
552 BUG_ON(!cfq_cfqq_on_rr(cfqq));
553 cfq_clear_cfqq_on_rr(cfqq);
555 if (!RB_EMPTY_NODE(&cfqq->rb_node))
556 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
558 BUG_ON(!cfqd->busy_queues);
559 cfqd->busy_queues--;
563 * rb tree support functions
565 static void cfq_del_rq_rb(struct request *rq)
567 struct cfq_queue *cfqq = RQ_CFQQ(rq);
568 struct cfq_data *cfqd = cfqq->cfqd;
569 const int sync = rq_is_sync(rq);
571 BUG_ON(!cfqq->queued[sync]);
572 cfqq->queued[sync]--;
574 elv_rb_del(&cfqq->sort_list, rq);
576 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
577 cfq_del_cfqq_rr(cfqd, cfqq);
580 static void cfq_add_rq_rb(struct request *rq)
582 struct cfq_queue *cfqq = RQ_CFQQ(rq);
583 struct cfq_data *cfqd = cfqq->cfqd;
584 struct request *__alias;
586 cfqq->queued[rq_is_sync(rq)]++;
589 * looks a little odd, but the first insert might return an alias.
590 * if that happens, put the alias on the dispatch list
592 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
593 cfq_dispatch_insert(cfqd->queue, __alias);
595 if (!cfq_cfqq_on_rr(cfqq))
596 cfq_add_cfqq_rr(cfqd, cfqq);
599 * check if this request is a better next-serve candidate
601 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
602 BUG_ON(!cfqq->next_rq);
605 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
607 elv_rb_del(&cfqq->sort_list, rq);
608 cfqq->queued[rq_is_sync(rq)]--;
609 cfq_add_rq_rb(rq);
612 static struct request *
613 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
615 struct task_struct *tsk = current;
616 struct cfq_io_context *cic;
617 struct cfq_queue *cfqq;
619 cic = cfq_cic_lookup(cfqd, tsk->io_context);
620 if (!cic)
621 return NULL;
623 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
624 if (cfqq) {
625 sector_t sector = bio->bi_sector + bio_sectors(bio);
627 return elv_rb_find(&cfqq->sort_list, sector);
630 return NULL;
633 static void cfq_activate_request(struct request_queue *q, struct request *rq)
635 struct cfq_data *cfqd = q->elevator->elevator_data;
637 cfqd->rq_in_driver++;
640 * If the depth is larger 1, it really could be queueing. But lets
641 * make the mark a little higher - idling could still be good for
642 * low queueing, and a low queueing number could also just indicate
643 * a SCSI mid layer like behaviour where limit+1 is often seen.
645 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
646 cfqd->hw_tag = 1;
648 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
651 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
653 struct cfq_data *cfqd = q->elevator->elevator_data;
655 WARN_ON(!cfqd->rq_in_driver);
656 cfqd->rq_in_driver--;
659 static void cfq_remove_request(struct request *rq)
661 struct cfq_queue *cfqq = RQ_CFQQ(rq);
663 if (cfqq->next_rq == rq)
664 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
666 list_del_init(&rq->queuelist);
667 cfq_del_rq_rb(rq);
669 if (rq_is_meta(rq)) {
670 WARN_ON(!cfqq->meta_pending);
671 cfqq->meta_pending--;
675 static int cfq_merge(struct request_queue *q, struct request **req,
676 struct bio *bio)
678 struct cfq_data *cfqd = q->elevator->elevator_data;
679 struct request *__rq;
681 __rq = cfq_find_rq_fmerge(cfqd, bio);
682 if (__rq && elv_rq_merge_ok(__rq, bio)) {
683 *req = __rq;
684 return ELEVATOR_FRONT_MERGE;
687 return ELEVATOR_NO_MERGE;
690 static void cfq_merged_request(struct request_queue *q, struct request *req,
691 int type)
693 if (type == ELEVATOR_FRONT_MERGE) {
694 struct cfq_queue *cfqq = RQ_CFQQ(req);
696 cfq_reposition_rq_rb(cfqq, req);
700 static void
701 cfq_merged_requests(struct request_queue *q, struct request *rq,
702 struct request *next)
705 * reposition in fifo if next is older than rq
707 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
708 time_before(next->start_time, rq->start_time))
709 list_move(&rq->queuelist, &next->queuelist);
711 cfq_remove_request(next);
714 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
715 struct bio *bio)
717 struct cfq_data *cfqd = q->elevator->elevator_data;
718 struct cfq_io_context *cic;
719 struct cfq_queue *cfqq;
722 * Disallow merge of a sync bio into an async request.
724 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
725 return 0;
728 * Lookup the cfqq that this bio will be queued with. Allow
729 * merge only if rq is queued there.
731 cic = cfq_cic_lookup(cfqd, current->io_context);
732 if (!cic)
733 return 0;
735 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
736 if (cfqq == RQ_CFQQ(rq))
737 return 1;
739 return 0;
742 static void __cfq_set_active_queue(struct cfq_data *cfqd,
743 struct cfq_queue *cfqq)
745 if (cfqq) {
746 cfqq->slice_end = 0;
747 cfq_clear_cfqq_must_alloc_slice(cfqq);
748 cfq_clear_cfqq_fifo_expire(cfqq);
749 cfq_mark_cfqq_slice_new(cfqq);
750 cfq_clear_cfqq_queue_new(cfqq);
753 cfqd->active_queue = cfqq;
757 * current cfqq expired its slice (or was too idle), select new one
759 static void
760 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
761 int timed_out)
763 if (cfq_cfqq_wait_request(cfqq))
764 del_timer(&cfqd->idle_slice_timer);
766 cfq_clear_cfqq_must_dispatch(cfqq);
767 cfq_clear_cfqq_wait_request(cfqq);
770 * store what was left of this slice, if the queue idled/timed out
772 if (timed_out && !cfq_cfqq_slice_new(cfqq))
773 cfqq->slice_resid = cfqq->slice_end - jiffies;
775 cfq_resort_rr_list(cfqd, cfqq);
777 if (cfqq == cfqd->active_queue)
778 cfqd->active_queue = NULL;
780 if (cfqd->active_cic) {
781 put_io_context(cfqd->active_cic->ioc);
782 cfqd->active_cic = NULL;
786 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
788 struct cfq_queue *cfqq = cfqd->active_queue;
790 if (cfqq)
791 __cfq_slice_expired(cfqd, cfqq, timed_out);
795 * Get next queue for service. Unless we have a queue preemption,
796 * we'll simply select the first cfqq in the service tree.
798 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
800 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
801 return NULL;
803 return cfq_rb_first(&cfqd->service_tree);
807 * Get and set a new active queue for service.
809 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
811 struct cfq_queue *cfqq;
813 cfqq = cfq_get_next_queue(cfqd);
814 __cfq_set_active_queue(cfqd, cfqq);
815 return cfqq;
818 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
819 struct request *rq)
821 if (rq->sector >= cfqd->last_position)
822 return rq->sector - cfqd->last_position;
823 else
824 return cfqd->last_position - rq->sector;
827 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
829 struct cfq_io_context *cic = cfqd->active_cic;
831 if (!sample_valid(cic->seek_samples))
832 return 0;
834 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
837 static int cfq_close_cooperator(struct cfq_data *cfq_data,
838 struct cfq_queue *cfqq)
841 * We should notice if some of the queues are cooperating, eg
842 * working closely on the same area of the disk. In that case,
843 * we can group them together and don't waste time idling.
845 return 0;
848 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
850 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
852 struct cfq_queue *cfqq = cfqd->active_queue;
853 struct cfq_io_context *cic;
854 unsigned long sl;
856 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
857 WARN_ON(cfq_cfqq_slice_new(cfqq));
860 * idle is disabled, either manually or by past process history
862 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
863 return;
866 * task has exited, don't wait
868 cic = cfqd->active_cic;
869 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
870 return;
873 * See if this prio level has a good candidate
875 if (cfq_close_cooperator(cfqd, cfqq) &&
876 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
877 return;
879 cfq_mark_cfqq_must_dispatch(cfqq);
880 cfq_mark_cfqq_wait_request(cfqq);
883 * we don't want to idle for seeks, but we do want to allow
884 * fair distribution of slice time for a process doing back-to-back
885 * seeks. so allow a little bit of time for him to submit a new rq
887 sl = cfqd->cfq_slice_idle;
888 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
889 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
891 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
895 * Move request from internal lists to the request queue dispatch list.
897 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
899 struct cfq_data *cfqd = q->elevator->elevator_data;
900 struct cfq_queue *cfqq = RQ_CFQQ(rq);
902 cfq_remove_request(rq);
903 cfqq->dispatched++;
904 elv_dispatch_sort(q, rq);
906 if (cfq_cfqq_sync(cfqq))
907 cfqd->sync_flight++;
911 * return expired entry, or NULL to just start from scratch in rbtree
913 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
915 struct cfq_data *cfqd = cfqq->cfqd;
916 struct request *rq;
917 int fifo;
919 if (cfq_cfqq_fifo_expire(cfqq))
920 return NULL;
922 cfq_mark_cfqq_fifo_expire(cfqq);
924 if (list_empty(&cfqq->fifo))
925 return NULL;
927 fifo = cfq_cfqq_sync(cfqq);
928 rq = rq_entry_fifo(cfqq->fifo.next);
930 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
931 return NULL;
933 return rq;
936 static inline int
937 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
939 const int base_rq = cfqd->cfq_slice_async_rq;
941 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
943 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
947 * Select a queue for service. If we have a current active queue,
948 * check whether to continue servicing it, or retrieve and set a new one.
950 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
952 struct cfq_queue *cfqq;
954 cfqq = cfqd->active_queue;
955 if (!cfqq)
956 goto new_queue;
959 * The active queue has run out of time, expire it and select new.
961 if (cfq_slice_used(cfqq))
962 goto expire;
965 * The active queue has requests and isn't expired, allow it to
966 * dispatch.
968 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
969 goto keep_queue;
972 * No requests pending. If the active queue still has requests in
973 * flight or is idling for a new request, allow either of these
974 * conditions to happen (or time out) before selecting a new queue.
976 if (timer_pending(&cfqd->idle_slice_timer) ||
977 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
978 cfqq = NULL;
979 goto keep_queue;
982 expire:
983 cfq_slice_expired(cfqd, 0);
984 new_queue:
985 cfqq = cfq_set_active_queue(cfqd);
986 keep_queue:
987 return cfqq;
991 * Dispatch some requests from cfqq, moving them to the request queue
992 * dispatch list.
994 static int
995 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
996 int max_dispatch)
998 int dispatched = 0;
1000 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1002 do {
1003 struct request *rq;
1006 * follow expired path, else get first next available
1008 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1009 rq = cfqq->next_rq;
1012 * finally, insert request into driver dispatch list
1014 cfq_dispatch_insert(cfqd->queue, rq);
1016 dispatched++;
1018 if (!cfqd->active_cic) {
1019 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1020 cfqd->active_cic = RQ_CIC(rq);
1023 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1024 break;
1026 } while (dispatched < max_dispatch);
1029 * expire an async queue immediately if it has used up its slice. idle
1030 * queue always expire after 1 dispatch round.
1032 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1033 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1034 cfq_class_idle(cfqq))) {
1035 cfqq->slice_end = jiffies + 1;
1036 cfq_slice_expired(cfqd, 0);
1039 return dispatched;
1042 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1044 int dispatched = 0;
1046 while (cfqq->next_rq) {
1047 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1048 dispatched++;
1051 BUG_ON(!list_empty(&cfqq->fifo));
1052 return dispatched;
1056 * Drain our current requests. Used for barriers and when switching
1057 * io schedulers on-the-fly.
1059 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1061 struct cfq_queue *cfqq;
1062 int dispatched = 0;
1064 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1065 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1067 cfq_slice_expired(cfqd, 0);
1069 BUG_ON(cfqd->busy_queues);
1071 return dispatched;
1074 static int cfq_dispatch_requests(struct request_queue *q, int force)
1076 struct cfq_data *cfqd = q->elevator->elevator_data;
1077 struct cfq_queue *cfqq;
1078 int dispatched;
1080 if (!cfqd->busy_queues)
1081 return 0;
1083 if (unlikely(force))
1084 return cfq_forced_dispatch(cfqd);
1086 dispatched = 0;
1087 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1088 int max_dispatch;
1090 max_dispatch = cfqd->cfq_quantum;
1091 if (cfq_class_idle(cfqq))
1092 max_dispatch = 1;
1094 if (cfqq->dispatched >= max_dispatch) {
1095 if (cfqd->busy_queues > 1)
1096 break;
1097 if (cfqq->dispatched >= 4 * max_dispatch)
1098 break;
1101 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1102 break;
1104 cfq_clear_cfqq_must_dispatch(cfqq);
1105 cfq_clear_cfqq_wait_request(cfqq);
1106 del_timer(&cfqd->idle_slice_timer);
1108 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1111 return dispatched;
1115 * task holds one reference to the queue, dropped when task exits. each rq
1116 * in-flight on this queue also holds a reference, dropped when rq is freed.
1118 * queue lock must be held here.
1120 static void cfq_put_queue(struct cfq_queue *cfqq)
1122 struct cfq_data *cfqd = cfqq->cfqd;
1124 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1126 if (!atomic_dec_and_test(&cfqq->ref))
1127 return;
1129 BUG_ON(rb_first(&cfqq->sort_list));
1130 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1131 BUG_ON(cfq_cfqq_on_rr(cfqq));
1133 if (unlikely(cfqd->active_queue == cfqq)) {
1134 __cfq_slice_expired(cfqd, cfqq, 0);
1135 cfq_schedule_dispatch(cfqd);
1138 kmem_cache_free(cfq_pool, cfqq);
1142 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1144 #define CIC_GANG_NR 16
1145 static unsigned int
1146 call_for_each_cic(struct io_context *ioc,
1147 void (*func)(struct io_context *, struct cfq_io_context *))
1149 struct cfq_io_context *cics[CIC_GANG_NR];
1150 unsigned long index = 0;
1151 unsigned int called = 0;
1152 int nr;
1154 rcu_read_lock();
1156 do {
1157 int i;
1160 * Perhaps there's a better way - this just gang lookups from
1161 * 0 to the end, restarting after each CIC_GANG_NR from the
1162 * last key + 1.
1164 nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
1165 index, CIC_GANG_NR);
1166 if (!nr)
1167 break;
1169 called += nr;
1170 index = 1 + (unsigned long) cics[nr - 1]->key;
1172 for (i = 0; i < nr; i++)
1173 func(ioc, cics[i]);
1174 } while (nr == CIC_GANG_NR);
1176 rcu_read_unlock();
1178 return called;
1181 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1183 unsigned long flags;
1185 BUG_ON(!cic->dead_key);
1187 spin_lock_irqsave(&ioc->lock, flags);
1188 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1189 spin_unlock_irqrestore(&ioc->lock, flags);
1191 kmem_cache_free(cfq_ioc_pool, cic);
1194 static void cfq_free_io_context(struct io_context *ioc)
1196 int freed;
1199 * ioc->refcount is zero here, so no more cic's are allowed to be
1200 * linked into this ioc. So it should be ok to iterate over the known
1201 * list, we will see all cic's since no new ones are added.
1203 freed = call_for_each_cic(ioc, cic_free_func);
1205 elv_ioc_count_mod(ioc_count, -freed);
1207 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1208 complete(ioc_gone);
1211 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1213 if (unlikely(cfqq == cfqd->active_queue)) {
1214 __cfq_slice_expired(cfqd, cfqq, 0);
1215 cfq_schedule_dispatch(cfqd);
1218 cfq_put_queue(cfqq);
1221 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1222 struct cfq_io_context *cic)
1224 list_del_init(&cic->queue_list);
1227 * Make sure key == NULL is seen for dead queues
1229 smp_wmb();
1230 cic->dead_key = (unsigned long) cic->key;
1231 cic->key = NULL;
1233 if (cic->cfqq[ASYNC]) {
1234 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1235 cic->cfqq[ASYNC] = NULL;
1238 if (cic->cfqq[SYNC]) {
1239 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1240 cic->cfqq[SYNC] = NULL;
1244 static void cfq_exit_single_io_context(struct io_context *ioc,
1245 struct cfq_io_context *cic)
1247 struct cfq_data *cfqd = cic->key;
1249 if (cfqd) {
1250 struct request_queue *q = cfqd->queue;
1251 unsigned long flags;
1253 spin_lock_irqsave(q->queue_lock, flags);
1254 __cfq_exit_single_io_context(cfqd, cic);
1255 spin_unlock_irqrestore(q->queue_lock, flags);
1260 * The process that ioc belongs to has exited, we need to clean up
1261 * and put the internal structures we have that belongs to that process.
1263 static void cfq_exit_io_context(struct io_context *ioc)
1265 rcu_assign_pointer(ioc->ioc_data, NULL);
1266 call_for_each_cic(ioc, cfq_exit_single_io_context);
1269 static struct cfq_io_context *
1270 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1272 struct cfq_io_context *cic;
1274 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1275 cfqd->queue->node);
1276 if (cic) {
1277 cic->last_end_request = jiffies;
1278 INIT_LIST_HEAD(&cic->queue_list);
1279 cic->dtor = cfq_free_io_context;
1280 cic->exit = cfq_exit_io_context;
1281 elv_ioc_count_inc(ioc_count);
1284 return cic;
1287 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1289 struct task_struct *tsk = current;
1290 int ioprio_class;
1292 if (!cfq_cfqq_prio_changed(cfqq))
1293 return;
1295 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1296 switch (ioprio_class) {
1297 default:
1298 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1299 case IOPRIO_CLASS_NONE:
1301 * no prio set, place us in the middle of the BE classes
1303 cfqq->ioprio = task_nice_ioprio(tsk);
1304 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1305 break;
1306 case IOPRIO_CLASS_RT:
1307 cfqq->ioprio = task_ioprio(ioc);
1308 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1309 break;
1310 case IOPRIO_CLASS_BE:
1311 cfqq->ioprio = task_ioprio(ioc);
1312 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1313 break;
1314 case IOPRIO_CLASS_IDLE:
1315 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1316 cfqq->ioprio = 7;
1317 cfq_clear_cfqq_idle_window(cfqq);
1318 break;
1322 * keep track of original prio settings in case we have to temporarily
1323 * elevate the priority of this queue
1325 cfqq->org_ioprio = cfqq->ioprio;
1326 cfqq->org_ioprio_class = cfqq->ioprio_class;
1327 cfq_clear_cfqq_prio_changed(cfqq);
1330 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1332 struct cfq_data *cfqd = cic->key;
1333 struct cfq_queue *cfqq;
1334 unsigned long flags;
1336 if (unlikely(!cfqd))
1337 return;
1339 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1341 cfqq = cic->cfqq[ASYNC];
1342 if (cfqq) {
1343 struct cfq_queue *new_cfqq;
1344 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1345 if (new_cfqq) {
1346 cic->cfqq[ASYNC] = new_cfqq;
1347 cfq_put_queue(cfqq);
1351 cfqq = cic->cfqq[SYNC];
1352 if (cfqq)
1353 cfq_mark_cfqq_prio_changed(cfqq);
1355 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1358 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1360 call_for_each_cic(ioc, changed_ioprio);
1361 ioc->ioprio_changed = 0;
1364 static struct cfq_queue *
1365 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1366 struct io_context *ioc, gfp_t gfp_mask)
1368 struct cfq_queue *cfqq, *new_cfqq = NULL;
1369 struct cfq_io_context *cic;
1371 retry:
1372 cic = cfq_cic_lookup(cfqd, ioc);
1373 /* cic always exists here */
1374 cfqq = cic_to_cfqq(cic, is_sync);
1376 if (!cfqq) {
1377 if (new_cfqq) {
1378 cfqq = new_cfqq;
1379 new_cfqq = NULL;
1380 } else if (gfp_mask & __GFP_WAIT) {
1382 * Inform the allocator of the fact that we will
1383 * just repeat this allocation if it fails, to allow
1384 * the allocator to do whatever it needs to attempt to
1385 * free memory.
1387 spin_unlock_irq(cfqd->queue->queue_lock);
1388 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1389 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1390 cfqd->queue->node);
1391 spin_lock_irq(cfqd->queue->queue_lock);
1392 goto retry;
1393 } else {
1394 cfqq = kmem_cache_alloc_node(cfq_pool,
1395 gfp_mask | __GFP_ZERO,
1396 cfqd->queue->node);
1397 if (!cfqq)
1398 goto out;
1401 RB_CLEAR_NODE(&cfqq->rb_node);
1402 INIT_LIST_HEAD(&cfqq->fifo);
1404 atomic_set(&cfqq->ref, 0);
1405 cfqq->cfqd = cfqd;
1407 cfq_mark_cfqq_prio_changed(cfqq);
1408 cfq_mark_cfqq_queue_new(cfqq);
1410 cfq_init_prio_data(cfqq, ioc);
1412 if (is_sync) {
1413 if (!cfq_class_idle(cfqq))
1414 cfq_mark_cfqq_idle_window(cfqq);
1415 cfq_mark_cfqq_sync(cfqq);
1419 if (new_cfqq)
1420 kmem_cache_free(cfq_pool, new_cfqq);
1422 out:
1423 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1424 return cfqq;
1427 static struct cfq_queue **
1428 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1430 switch(ioprio_class) {
1431 case IOPRIO_CLASS_RT:
1432 return &cfqd->async_cfqq[0][ioprio];
1433 case IOPRIO_CLASS_BE:
1434 return &cfqd->async_cfqq[1][ioprio];
1435 case IOPRIO_CLASS_IDLE:
1436 return &cfqd->async_idle_cfqq;
1437 default:
1438 BUG();
1442 static struct cfq_queue *
1443 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1444 gfp_t gfp_mask)
1446 const int ioprio = task_ioprio(ioc);
1447 const int ioprio_class = task_ioprio_class(ioc);
1448 struct cfq_queue **async_cfqq = NULL;
1449 struct cfq_queue *cfqq = NULL;
1451 if (!is_sync) {
1452 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1453 cfqq = *async_cfqq;
1456 if (!cfqq) {
1457 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1458 if (!cfqq)
1459 return NULL;
1463 * pin the queue now that it's allocated, scheduler exit will prune it
1465 if (!is_sync && !(*async_cfqq)) {
1466 atomic_inc(&cfqq->ref);
1467 *async_cfqq = cfqq;
1470 atomic_inc(&cfqq->ref);
1471 return cfqq;
1474 static void cfq_cic_free(struct cfq_io_context *cic)
1476 kmem_cache_free(cfq_ioc_pool, cic);
1477 elv_ioc_count_dec(ioc_count);
1479 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1480 complete(ioc_gone);
1484 * We drop cfq io contexts lazily, so we may find a dead one.
1486 static void
1487 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1488 struct cfq_io_context *cic)
1490 unsigned long flags;
1492 WARN_ON(!list_empty(&cic->queue_list));
1494 spin_lock_irqsave(&ioc->lock, flags);
1496 if (ioc->ioc_data == cic)
1497 rcu_assign_pointer(ioc->ioc_data, NULL);
1499 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1500 spin_unlock_irqrestore(&ioc->lock, flags);
1502 cfq_cic_free(cic);
1505 static struct cfq_io_context *
1506 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1508 struct cfq_io_context *cic;
1509 void *k;
1511 if (unlikely(!ioc))
1512 return NULL;
1515 * we maintain a last-hit cache, to avoid browsing over the tree
1517 cic = rcu_dereference(ioc->ioc_data);
1518 if (cic && cic->key == cfqd)
1519 return cic;
1521 do {
1522 rcu_read_lock();
1523 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1524 rcu_read_unlock();
1525 if (!cic)
1526 break;
1527 /* ->key must be copied to avoid race with cfq_exit_queue() */
1528 k = cic->key;
1529 if (unlikely(!k)) {
1530 cfq_drop_dead_cic(cfqd, ioc, cic);
1531 continue;
1534 rcu_assign_pointer(ioc->ioc_data, cic);
1535 break;
1536 } while (1);
1538 return cic;
1542 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1543 * the process specific cfq io context when entered from the block layer.
1544 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1546 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1547 struct cfq_io_context *cic, gfp_t gfp_mask)
1549 unsigned long flags;
1550 int ret;
1552 ret = radix_tree_preload(gfp_mask);
1553 if (!ret) {
1554 cic->ioc = ioc;
1555 cic->key = cfqd;
1557 spin_lock_irqsave(&ioc->lock, flags);
1558 ret = radix_tree_insert(&ioc->radix_root,
1559 (unsigned long) cfqd, cic);
1560 spin_unlock_irqrestore(&ioc->lock, flags);
1562 radix_tree_preload_end();
1564 if (!ret) {
1565 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1566 list_add(&cic->queue_list, &cfqd->cic_list);
1567 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1571 if (ret)
1572 printk(KERN_ERR "cfq: cic link failed!\n");
1574 return ret;
1578 * Setup general io context and cfq io context. There can be several cfq
1579 * io contexts per general io context, if this process is doing io to more
1580 * than one device managed by cfq.
1582 static struct cfq_io_context *
1583 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1585 struct io_context *ioc = NULL;
1586 struct cfq_io_context *cic;
1588 might_sleep_if(gfp_mask & __GFP_WAIT);
1590 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1591 if (!ioc)
1592 return NULL;
1594 cic = cfq_cic_lookup(cfqd, ioc);
1595 if (cic)
1596 goto out;
1598 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1599 if (cic == NULL)
1600 goto err;
1602 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1603 goto err_free;
1605 out:
1606 smp_read_barrier_depends();
1607 if (unlikely(ioc->ioprio_changed))
1608 cfq_ioc_set_ioprio(ioc);
1610 return cic;
1611 err_free:
1612 cfq_cic_free(cic);
1613 err:
1614 put_io_context(ioc);
1615 return NULL;
1618 static void
1619 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1621 unsigned long elapsed = jiffies - cic->last_end_request;
1622 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1624 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1625 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1626 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1629 static void
1630 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1631 struct request *rq)
1633 sector_t sdist;
1634 u64 total;
1636 if (cic->last_request_pos < rq->sector)
1637 sdist = rq->sector - cic->last_request_pos;
1638 else
1639 sdist = cic->last_request_pos - rq->sector;
1642 * Don't allow the seek distance to get too large from the
1643 * odd fragment, pagein, etc
1645 if (cic->seek_samples <= 60) /* second&third seek */
1646 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1647 else
1648 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1650 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1651 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1652 total = cic->seek_total + (cic->seek_samples/2);
1653 do_div(total, cic->seek_samples);
1654 cic->seek_mean = (sector_t)total;
1658 * Disable idle window if the process thinks too long or seeks so much that
1659 * it doesn't matter
1661 static void
1662 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1663 struct cfq_io_context *cic)
1665 int enable_idle;
1668 * Don't idle for async or idle io prio class
1670 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1671 return;
1673 enable_idle = cfq_cfqq_idle_window(cfqq);
1675 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1676 (cfqd->hw_tag && CIC_SEEKY(cic)))
1677 enable_idle = 0;
1678 else if (sample_valid(cic->ttime_samples)) {
1679 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1680 enable_idle = 0;
1681 else
1682 enable_idle = 1;
1685 if (enable_idle)
1686 cfq_mark_cfqq_idle_window(cfqq);
1687 else
1688 cfq_clear_cfqq_idle_window(cfqq);
1692 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1693 * no or if we aren't sure, a 1 will cause a preempt.
1695 static int
1696 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1697 struct request *rq)
1699 struct cfq_queue *cfqq;
1701 cfqq = cfqd->active_queue;
1702 if (!cfqq)
1703 return 0;
1705 if (cfq_slice_used(cfqq))
1706 return 1;
1708 if (cfq_class_idle(new_cfqq))
1709 return 0;
1711 if (cfq_class_idle(cfqq))
1712 return 1;
1715 * if the new request is sync, but the currently running queue is
1716 * not, let the sync request have priority.
1718 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1719 return 1;
1722 * So both queues are sync. Let the new request get disk time if
1723 * it's a metadata request and the current queue is doing regular IO.
1725 if (rq_is_meta(rq) && !cfqq->meta_pending)
1726 return 1;
1728 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1729 return 0;
1732 * if this request is as-good as one we would expect from the
1733 * current cfqq, let it preempt
1735 if (cfq_rq_close(cfqd, rq))
1736 return 1;
1738 return 0;
1742 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1743 * let it have half of its nominal slice.
1745 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1747 cfq_slice_expired(cfqd, 1);
1750 * Put the new queue at the front of the of the current list,
1751 * so we know that it will be selected next.
1753 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1755 cfq_service_tree_add(cfqd, cfqq, 1);
1757 cfqq->slice_end = 0;
1758 cfq_mark_cfqq_slice_new(cfqq);
1762 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1763 * something we should do about it
1765 static void
1766 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1767 struct request *rq)
1769 struct cfq_io_context *cic = RQ_CIC(rq);
1771 if (rq_is_meta(rq))
1772 cfqq->meta_pending++;
1774 cfq_update_io_thinktime(cfqd, cic);
1775 cfq_update_io_seektime(cfqd, cic, rq);
1776 cfq_update_idle_window(cfqd, cfqq, cic);
1778 cic->last_request_pos = rq->sector + rq->nr_sectors;
1780 if (cfqq == cfqd->active_queue) {
1782 * if we are waiting for a request for this queue, let it rip
1783 * immediately and flag that we must not expire this queue
1784 * just now
1786 if (cfq_cfqq_wait_request(cfqq)) {
1787 cfq_mark_cfqq_must_dispatch(cfqq);
1788 del_timer(&cfqd->idle_slice_timer);
1789 blk_start_queueing(cfqd->queue);
1791 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1793 * not the active queue - expire current slice if it is
1794 * idle and has expired it's mean thinktime or this new queue
1795 * has some old slice time left and is of higher priority
1797 cfq_preempt_queue(cfqd, cfqq);
1798 cfq_mark_cfqq_must_dispatch(cfqq);
1799 blk_start_queueing(cfqd->queue);
1803 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1805 struct cfq_data *cfqd = q->elevator->elevator_data;
1806 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1808 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1810 cfq_add_rq_rb(rq);
1812 list_add_tail(&rq->queuelist, &cfqq->fifo);
1814 cfq_rq_enqueued(cfqd, cfqq, rq);
1817 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1819 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1820 struct cfq_data *cfqd = cfqq->cfqd;
1821 const int sync = rq_is_sync(rq);
1822 unsigned long now;
1824 now = jiffies;
1826 WARN_ON(!cfqd->rq_in_driver);
1827 WARN_ON(!cfqq->dispatched);
1828 cfqd->rq_in_driver--;
1829 cfqq->dispatched--;
1831 if (cfq_cfqq_sync(cfqq))
1832 cfqd->sync_flight--;
1834 if (!cfq_class_idle(cfqq))
1835 cfqd->last_end_request = now;
1837 if (sync)
1838 RQ_CIC(rq)->last_end_request = now;
1841 * If this is the active queue, check if it needs to be expired,
1842 * or if we want to idle in case it has no pending requests.
1844 if (cfqd->active_queue == cfqq) {
1845 if (cfq_cfqq_slice_new(cfqq)) {
1846 cfq_set_prio_slice(cfqd, cfqq);
1847 cfq_clear_cfqq_slice_new(cfqq);
1849 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1850 cfq_slice_expired(cfqd, 1);
1851 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1852 cfq_arm_slice_timer(cfqd);
1855 if (!cfqd->rq_in_driver)
1856 cfq_schedule_dispatch(cfqd);
1860 * we temporarily boost lower priority queues if they are holding fs exclusive
1861 * resources. they are boosted to normal prio (CLASS_BE/4)
1863 static void cfq_prio_boost(struct cfq_queue *cfqq)
1865 if (has_fs_excl()) {
1867 * boost idle prio on transactions that would lock out other
1868 * users of the filesystem
1870 if (cfq_class_idle(cfqq))
1871 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1872 if (cfqq->ioprio > IOPRIO_NORM)
1873 cfqq->ioprio = IOPRIO_NORM;
1874 } else {
1876 * check if we need to unboost the queue
1878 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1879 cfqq->ioprio_class = cfqq->org_ioprio_class;
1880 if (cfqq->ioprio != cfqq->org_ioprio)
1881 cfqq->ioprio = cfqq->org_ioprio;
1885 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1887 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1888 !cfq_cfqq_must_alloc_slice(cfqq)) {
1889 cfq_mark_cfqq_must_alloc_slice(cfqq);
1890 return ELV_MQUEUE_MUST;
1893 return ELV_MQUEUE_MAY;
1896 static int cfq_may_queue(struct request_queue *q, int rw)
1898 struct cfq_data *cfqd = q->elevator->elevator_data;
1899 struct task_struct *tsk = current;
1900 struct cfq_io_context *cic;
1901 struct cfq_queue *cfqq;
1904 * don't force setup of a queue from here, as a call to may_queue
1905 * does not necessarily imply that a request actually will be queued.
1906 * so just lookup a possibly existing queue, or return 'may queue'
1907 * if that fails
1909 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1910 if (!cic)
1911 return ELV_MQUEUE_MAY;
1913 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1914 if (cfqq) {
1915 cfq_init_prio_data(cfqq, cic->ioc);
1916 cfq_prio_boost(cfqq);
1918 return __cfq_may_queue(cfqq);
1921 return ELV_MQUEUE_MAY;
1925 * queue lock held here
1927 static void cfq_put_request(struct request *rq)
1929 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1931 if (cfqq) {
1932 const int rw = rq_data_dir(rq);
1934 BUG_ON(!cfqq->allocated[rw]);
1935 cfqq->allocated[rw]--;
1937 put_io_context(RQ_CIC(rq)->ioc);
1939 rq->elevator_private = NULL;
1940 rq->elevator_private2 = NULL;
1942 cfq_put_queue(cfqq);
1947 * Allocate cfq data structures associated with this request.
1949 static int
1950 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1952 struct cfq_data *cfqd = q->elevator->elevator_data;
1953 struct cfq_io_context *cic;
1954 const int rw = rq_data_dir(rq);
1955 const int is_sync = rq_is_sync(rq);
1956 struct cfq_queue *cfqq;
1957 unsigned long flags;
1959 might_sleep_if(gfp_mask & __GFP_WAIT);
1961 cic = cfq_get_io_context(cfqd, gfp_mask);
1963 spin_lock_irqsave(q->queue_lock, flags);
1965 if (!cic)
1966 goto queue_fail;
1968 cfqq = cic_to_cfqq(cic, is_sync);
1969 if (!cfqq) {
1970 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1972 if (!cfqq)
1973 goto queue_fail;
1975 cic_set_cfqq(cic, cfqq, is_sync);
1978 cfqq->allocated[rw]++;
1979 cfq_clear_cfqq_must_alloc(cfqq);
1980 atomic_inc(&cfqq->ref);
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1984 rq->elevator_private = cic;
1985 rq->elevator_private2 = cfqq;
1986 return 0;
1988 queue_fail:
1989 if (cic)
1990 put_io_context(cic->ioc);
1992 cfq_schedule_dispatch(cfqd);
1993 spin_unlock_irqrestore(q->queue_lock, flags);
1994 return 1;
1997 static void cfq_kick_queue(struct work_struct *work)
1999 struct cfq_data *cfqd =
2000 container_of(work, struct cfq_data, unplug_work);
2001 struct request_queue *q = cfqd->queue;
2002 unsigned long flags;
2004 spin_lock_irqsave(q->queue_lock, flags);
2005 blk_start_queueing(q);
2006 spin_unlock_irqrestore(q->queue_lock, flags);
2010 * Timer running if the active_queue is currently idling inside its time slice
2012 static void cfq_idle_slice_timer(unsigned long data)
2014 struct cfq_data *cfqd = (struct cfq_data *) data;
2015 struct cfq_queue *cfqq;
2016 unsigned long flags;
2017 int timed_out = 1;
2019 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2021 if ((cfqq = cfqd->active_queue) != NULL) {
2022 timed_out = 0;
2025 * expired
2027 if (cfq_slice_used(cfqq))
2028 goto expire;
2031 * only expire and reinvoke request handler, if there are
2032 * other queues with pending requests
2034 if (!cfqd->busy_queues)
2035 goto out_cont;
2038 * not expired and it has a request pending, let it dispatch
2040 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2041 cfq_mark_cfqq_must_dispatch(cfqq);
2042 goto out_kick;
2045 expire:
2046 cfq_slice_expired(cfqd, timed_out);
2047 out_kick:
2048 cfq_schedule_dispatch(cfqd);
2049 out_cont:
2050 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2053 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2055 del_timer_sync(&cfqd->idle_slice_timer);
2056 kblockd_flush_work(&cfqd->unplug_work);
2059 static void cfq_put_async_queues(struct cfq_data *cfqd)
2061 int i;
2063 for (i = 0; i < IOPRIO_BE_NR; i++) {
2064 if (cfqd->async_cfqq[0][i])
2065 cfq_put_queue(cfqd->async_cfqq[0][i]);
2066 if (cfqd->async_cfqq[1][i])
2067 cfq_put_queue(cfqd->async_cfqq[1][i]);
2070 if (cfqd->async_idle_cfqq)
2071 cfq_put_queue(cfqd->async_idle_cfqq);
2074 static void cfq_exit_queue(elevator_t *e)
2076 struct cfq_data *cfqd = e->elevator_data;
2077 struct request_queue *q = cfqd->queue;
2079 cfq_shutdown_timer_wq(cfqd);
2081 spin_lock_irq(q->queue_lock);
2083 if (cfqd->active_queue)
2084 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2086 while (!list_empty(&cfqd->cic_list)) {
2087 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2088 struct cfq_io_context,
2089 queue_list);
2091 __cfq_exit_single_io_context(cfqd, cic);
2094 cfq_put_async_queues(cfqd);
2096 spin_unlock_irq(q->queue_lock);
2098 cfq_shutdown_timer_wq(cfqd);
2100 kfree(cfqd);
2103 static void *cfq_init_queue(struct request_queue *q)
2105 struct cfq_data *cfqd;
2107 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2108 if (!cfqd)
2109 return NULL;
2111 cfqd->service_tree = CFQ_RB_ROOT;
2112 INIT_LIST_HEAD(&cfqd->cic_list);
2114 cfqd->queue = q;
2116 init_timer(&cfqd->idle_slice_timer);
2117 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2118 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2120 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2122 cfqd->last_end_request = jiffies;
2123 cfqd->cfq_quantum = cfq_quantum;
2124 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2125 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2126 cfqd->cfq_back_max = cfq_back_max;
2127 cfqd->cfq_back_penalty = cfq_back_penalty;
2128 cfqd->cfq_slice[0] = cfq_slice_async;
2129 cfqd->cfq_slice[1] = cfq_slice_sync;
2130 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2131 cfqd->cfq_slice_idle = cfq_slice_idle;
2133 return cfqd;
2136 static void cfq_slab_kill(void)
2138 if (cfq_pool)
2139 kmem_cache_destroy(cfq_pool);
2140 if (cfq_ioc_pool)
2141 kmem_cache_destroy(cfq_ioc_pool);
2144 static int __init cfq_slab_setup(void)
2146 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2147 if (!cfq_pool)
2148 goto fail;
2150 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
2151 if (!cfq_ioc_pool)
2152 goto fail;
2154 return 0;
2155 fail:
2156 cfq_slab_kill();
2157 return -ENOMEM;
2161 * sysfs parts below -->
2163 static ssize_t
2164 cfq_var_show(unsigned int var, char *page)
2166 return sprintf(page, "%d\n", var);
2169 static ssize_t
2170 cfq_var_store(unsigned int *var, const char *page, size_t count)
2172 char *p = (char *) page;
2174 *var = simple_strtoul(p, &p, 10);
2175 return count;
2178 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2179 static ssize_t __FUNC(elevator_t *e, char *page) \
2181 struct cfq_data *cfqd = e->elevator_data; \
2182 unsigned int __data = __VAR; \
2183 if (__CONV) \
2184 __data = jiffies_to_msecs(__data); \
2185 return cfq_var_show(__data, (page)); \
2187 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2188 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2189 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2190 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2191 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2192 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2193 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2194 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2195 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2196 #undef SHOW_FUNCTION
2198 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2199 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2201 struct cfq_data *cfqd = e->elevator_data; \
2202 unsigned int __data; \
2203 int ret = cfq_var_store(&__data, (page), count); \
2204 if (__data < (MIN)) \
2205 __data = (MIN); \
2206 else if (__data > (MAX)) \
2207 __data = (MAX); \
2208 if (__CONV) \
2209 *(__PTR) = msecs_to_jiffies(__data); \
2210 else \
2211 *(__PTR) = __data; \
2212 return ret; \
2214 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2215 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2216 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2217 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2218 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2219 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2220 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2221 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2222 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2223 #undef STORE_FUNCTION
2225 #define CFQ_ATTR(name) \
2226 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2228 static struct elv_fs_entry cfq_attrs[] = {
2229 CFQ_ATTR(quantum),
2230 CFQ_ATTR(fifo_expire_sync),
2231 CFQ_ATTR(fifo_expire_async),
2232 CFQ_ATTR(back_seek_max),
2233 CFQ_ATTR(back_seek_penalty),
2234 CFQ_ATTR(slice_sync),
2235 CFQ_ATTR(slice_async),
2236 CFQ_ATTR(slice_async_rq),
2237 CFQ_ATTR(slice_idle),
2238 __ATTR_NULL
2241 static struct elevator_type iosched_cfq = {
2242 .ops = {
2243 .elevator_merge_fn = cfq_merge,
2244 .elevator_merged_fn = cfq_merged_request,
2245 .elevator_merge_req_fn = cfq_merged_requests,
2246 .elevator_allow_merge_fn = cfq_allow_merge,
2247 .elevator_dispatch_fn = cfq_dispatch_requests,
2248 .elevator_add_req_fn = cfq_insert_request,
2249 .elevator_activate_req_fn = cfq_activate_request,
2250 .elevator_deactivate_req_fn = cfq_deactivate_request,
2251 .elevator_queue_empty_fn = cfq_queue_empty,
2252 .elevator_completed_req_fn = cfq_completed_request,
2253 .elevator_former_req_fn = elv_rb_former_request,
2254 .elevator_latter_req_fn = elv_rb_latter_request,
2255 .elevator_set_req_fn = cfq_set_request,
2256 .elevator_put_req_fn = cfq_put_request,
2257 .elevator_may_queue_fn = cfq_may_queue,
2258 .elevator_init_fn = cfq_init_queue,
2259 .elevator_exit_fn = cfq_exit_queue,
2260 .trim = cfq_free_io_context,
2262 .elevator_attrs = cfq_attrs,
2263 .elevator_name = "cfq",
2264 .elevator_owner = THIS_MODULE,
2267 static int __init cfq_init(void)
2270 * could be 0 on HZ < 1000 setups
2272 if (!cfq_slice_async)
2273 cfq_slice_async = 1;
2274 if (!cfq_slice_idle)
2275 cfq_slice_idle = 1;
2277 if (cfq_slab_setup())
2278 return -ENOMEM;
2280 elv_register(&iosched_cfq);
2282 return 0;
2285 static void __exit cfq_exit(void)
2287 DECLARE_COMPLETION_ONSTACK(all_gone);
2288 elv_unregister(&iosched_cfq);
2289 ioc_gone = &all_gone;
2290 /* ioc_gone's update must be visible before reading ioc_count */
2291 smp_wmb();
2292 if (elv_ioc_count_read(ioc_count))
2293 wait_for_completion(ioc_gone);
2294 synchronize_rcu();
2295 cfq_slab_kill();
2298 module_init(cfq_init);
2299 module_exit(cfq_exit);
2301 MODULE_AUTHOR("Jens Axboe");
2302 MODULE_LICENSE("GPL");
2303 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");