superblock: introduce per-sb cache shrinker infrastructure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob2762804a140db03cb432648a1b38d910f24f640d
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 EXPORT_SYMBOL(rename_lock);
87 static struct kmem_cache *dentry_cache __read_mostly;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
136 #endif
138 static void __d_free(struct rcu_head *head)
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry *dentry)
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
241 static void __dentry_lru_del(struct dentry *dentry)
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
248 static void dentry_lru_del(struct dentry *dentry)
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
257 static void dentry_lru_move_tail(struct dentry *dentry)
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
267 spin_unlock(&dcache_lru_lock);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
287 list_del(&dentry->d_u.d_child);
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
300 d_free(dentry);
301 return parent;
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry *dentry)
321 if (!d_unhashed(dentry)) {
322 struct hlist_bl_head *b;
323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 b = &dentry->d_sb->s_anon;
325 else
326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
328 hlist_bl_lock(b);
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
331 hlist_bl_unlock(b);
333 dentry_rcuwalk_barrier(dentry);
336 EXPORT_SYMBOL(__d_drop);
338 void d_drop(struct dentry *dentry)
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
344 EXPORT_SYMBOL(d_drop);
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
355 void d_clear_need_lookup(struct dentry *dentry)
357 spin_lock(&dentry->d_lock);
358 __d_drop(dentry);
359 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
360 spin_unlock(&dentry->d_lock);
362 EXPORT_SYMBOL(d_clear_need_lookup);
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
370 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
373 struct inode *inode;
374 struct dentry *parent;
376 inode = dentry->d_inode;
377 if (inode && !spin_trylock(&inode->i_lock)) {
378 relock:
379 spin_unlock(&dentry->d_lock);
380 cpu_relax();
381 return dentry; /* try again with same dentry */
383 if (IS_ROOT(dentry))
384 parent = NULL;
385 else
386 parent = dentry->d_parent;
387 if (parent && !spin_trylock(&parent->d_lock)) {
388 if (inode)
389 spin_unlock(&inode->i_lock);
390 goto relock;
393 if (ref)
394 dentry->d_count--;
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry);
397 /* if it was on the hash then remove it */
398 __d_drop(dentry);
399 return d_kill(dentry, parent);
403 * This is dput
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
420 * dput - release a dentry
421 * @dentry: dentry to release
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
428 void dput(struct dentry *dentry)
430 if (!dentry)
431 return;
433 repeat:
434 if (dentry->d_count == 1)
435 might_sleep();
436 spin_lock(&dentry->d_lock);
437 BUG_ON(!dentry->d_count);
438 if (dentry->d_count > 1) {
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
444 if (dentry->d_flags & DCACHE_OP_DELETE) {
445 if (dentry->d_op->d_delete(dentry))
446 goto kill_it;
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry))
451 goto kill_it;
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
456 * memory pressure.
458 if (!d_need_lookup(dentry))
459 dentry->d_flags |= DCACHE_REFERENCED;
460 dentry_lru_add(dentry);
462 dentry->d_count--;
463 spin_unlock(&dentry->d_lock);
464 return;
466 kill_it:
467 dentry = dentry_kill(dentry, 1);
468 if (dentry)
469 goto repeat;
471 EXPORT_SYMBOL(dput);
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
482 * no dcache lock.
485 int d_invalidate(struct dentry * dentry)
488 * If it's already been dropped, return OK.
490 spin_lock(&dentry->d_lock);
491 if (d_unhashed(dentry)) {
492 spin_unlock(&dentry->d_lock);
493 return 0;
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
499 if (!list_empty(&dentry->d_subdirs)) {
500 spin_unlock(&dentry->d_lock);
501 shrink_dcache_parent(dentry);
502 spin_lock(&dentry->d_lock);
506 * Somebody else still using it?
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
515 if (dentry->d_count > 1) {
516 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
517 spin_unlock(&dentry->d_lock);
518 return -EBUSY;
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
524 return 0;
526 EXPORT_SYMBOL(d_invalidate);
528 /* This must be called with d_lock held */
529 static inline void __dget_dlock(struct dentry *dentry)
531 dentry->d_count++;
534 static inline void __dget(struct dentry *dentry)
536 spin_lock(&dentry->d_lock);
537 __dget_dlock(dentry);
538 spin_unlock(&dentry->d_lock);
541 struct dentry *dget_parent(struct dentry *dentry)
543 struct dentry *ret;
545 repeat:
547 * Don't need rcu_dereference because we re-check it was correct under
548 * the lock.
550 rcu_read_lock();
551 ret = dentry->d_parent;
552 if (!ret) {
553 rcu_read_unlock();
554 goto out;
556 spin_lock(&ret->d_lock);
557 if (unlikely(ret != dentry->d_parent)) {
558 spin_unlock(&ret->d_lock);
559 rcu_read_unlock();
560 goto repeat;
562 rcu_read_unlock();
563 BUG_ON(!ret->d_count);
564 ret->d_count++;
565 spin_unlock(&ret->d_lock);
566 out:
567 return ret;
569 EXPORT_SYMBOL(dget_parent);
572 * d_find_alias - grab a hashed alias of inode
573 * @inode: inode in question
574 * @want_discon: flag, used by d_splice_alias, to request
575 * that only a DISCONNECTED alias be returned.
577 * If inode has a hashed alias, or is a directory and has any alias,
578 * acquire the reference to alias and return it. Otherwise return NULL.
579 * Notice that if inode is a directory there can be only one alias and
580 * it can be unhashed only if it has no children, or if it is the root
581 * of a filesystem.
583 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
584 * any other hashed alias over that one unless @want_discon is set,
585 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
587 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
589 struct dentry *alias, *discon_alias;
591 again:
592 discon_alias = NULL;
593 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
594 spin_lock(&alias->d_lock);
595 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
596 if (IS_ROOT(alias) &&
597 (alias->d_flags & DCACHE_DISCONNECTED)) {
598 discon_alias = alias;
599 } else if (!want_discon) {
600 __dget_dlock(alias);
601 spin_unlock(&alias->d_lock);
602 return alias;
605 spin_unlock(&alias->d_lock);
607 if (discon_alias) {
608 alias = discon_alias;
609 spin_lock(&alias->d_lock);
610 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
611 if (IS_ROOT(alias) &&
612 (alias->d_flags & DCACHE_DISCONNECTED)) {
613 __dget_dlock(alias);
614 spin_unlock(&alias->d_lock);
615 return alias;
618 spin_unlock(&alias->d_lock);
619 goto again;
621 return NULL;
624 struct dentry *d_find_alias(struct inode *inode)
626 struct dentry *de = NULL;
628 if (!list_empty(&inode->i_dentry)) {
629 spin_lock(&inode->i_lock);
630 de = __d_find_alias(inode, 0);
631 spin_unlock(&inode->i_lock);
633 return de;
635 EXPORT_SYMBOL(d_find_alias);
638 * Try to kill dentries associated with this inode.
639 * WARNING: you must own a reference to inode.
641 void d_prune_aliases(struct inode *inode)
643 struct dentry *dentry;
644 restart:
645 spin_lock(&inode->i_lock);
646 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
647 spin_lock(&dentry->d_lock);
648 if (!dentry->d_count) {
649 __dget_dlock(dentry);
650 __d_drop(dentry);
651 spin_unlock(&dentry->d_lock);
652 spin_unlock(&inode->i_lock);
653 dput(dentry);
654 goto restart;
656 spin_unlock(&dentry->d_lock);
658 spin_unlock(&inode->i_lock);
660 EXPORT_SYMBOL(d_prune_aliases);
663 * Try to throw away a dentry - free the inode, dput the parent.
664 * Requires dentry->d_lock is held, and dentry->d_count == 0.
665 * Releases dentry->d_lock.
667 * This may fail if locks cannot be acquired no problem, just try again.
669 static void try_prune_one_dentry(struct dentry *dentry)
670 __releases(dentry->d_lock)
672 struct dentry *parent;
674 parent = dentry_kill(dentry, 0);
676 * If dentry_kill returns NULL, we have nothing more to do.
677 * if it returns the same dentry, trylocks failed. In either
678 * case, just loop again.
680 * Otherwise, we need to prune ancestors too. This is necessary
681 * to prevent quadratic behavior of shrink_dcache_parent(), but
682 * is also expected to be beneficial in reducing dentry cache
683 * fragmentation.
685 if (!parent)
686 return;
687 if (parent == dentry)
688 return;
690 /* Prune ancestors. */
691 dentry = parent;
692 while (dentry) {
693 spin_lock(&dentry->d_lock);
694 if (dentry->d_count > 1) {
695 dentry->d_count--;
696 spin_unlock(&dentry->d_lock);
697 return;
699 dentry = dentry_kill(dentry, 1);
703 static void shrink_dentry_list(struct list_head *list)
705 struct dentry *dentry;
707 rcu_read_lock();
708 for (;;) {
709 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
710 if (&dentry->d_lru == list)
711 break; /* empty */
712 spin_lock(&dentry->d_lock);
713 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
714 spin_unlock(&dentry->d_lock);
715 continue;
719 * We found an inuse dentry which was not removed from
720 * the LRU because of laziness during lookup. Do not free
721 * it - just keep it off the LRU list.
723 if (dentry->d_count) {
724 dentry_lru_del(dentry);
725 spin_unlock(&dentry->d_lock);
726 continue;
729 rcu_read_unlock();
731 try_prune_one_dentry(dentry);
733 rcu_read_lock();
735 rcu_read_unlock();
739 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
740 * @sb: superblock to shrink dentry LRU.
741 * @count: number of entries to prune
742 * @flags: flags to control the dentry processing
744 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
746 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
748 struct dentry *dentry;
749 LIST_HEAD(referenced);
750 LIST_HEAD(tmp);
752 relock:
753 spin_lock(&dcache_lru_lock);
754 while (!list_empty(&sb->s_dentry_lru)) {
755 dentry = list_entry(sb->s_dentry_lru.prev,
756 struct dentry, d_lru);
757 BUG_ON(dentry->d_sb != sb);
759 if (!spin_trylock(&dentry->d_lock)) {
760 spin_unlock(&dcache_lru_lock);
761 cpu_relax();
762 goto relock;
766 * If we are honouring the DCACHE_REFERENCED flag and the
767 * dentry has this flag set, don't free it. Clear the flag
768 * and put it back on the LRU.
770 if (flags & DCACHE_REFERENCED &&
771 dentry->d_flags & DCACHE_REFERENCED) {
772 dentry->d_flags &= ~DCACHE_REFERENCED;
773 list_move(&dentry->d_lru, &referenced);
774 spin_unlock(&dentry->d_lock);
775 } else {
776 list_move_tail(&dentry->d_lru, &tmp);
777 spin_unlock(&dentry->d_lock);
778 if (!--count)
779 break;
781 cond_resched_lock(&dcache_lru_lock);
783 if (!list_empty(&referenced))
784 list_splice(&referenced, &sb->s_dentry_lru);
785 spin_unlock(&dcache_lru_lock);
787 shrink_dentry_list(&tmp);
791 * prune_dcache_sb - shrink the dcache
792 * @nr_to_scan: number of entries to try to free
794 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
795 * done when we need more memory an called from the superblock shrinker
796 * function.
798 * This function may fail to free any resources if all the dentries are in
799 * use.
801 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
803 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
807 * shrink_dcache_sb - shrink dcache for a superblock
808 * @sb: superblock
810 * Shrink the dcache for the specified super block. This is used to free
811 * the dcache before unmounting a file system.
813 void shrink_dcache_sb(struct super_block *sb)
815 LIST_HEAD(tmp);
817 spin_lock(&dcache_lru_lock);
818 while (!list_empty(&sb->s_dentry_lru)) {
819 list_splice_init(&sb->s_dentry_lru, &tmp);
820 spin_unlock(&dcache_lru_lock);
821 shrink_dentry_list(&tmp);
822 spin_lock(&dcache_lru_lock);
824 spin_unlock(&dcache_lru_lock);
826 EXPORT_SYMBOL(shrink_dcache_sb);
829 * destroy a single subtree of dentries for unmount
830 * - see the comments on shrink_dcache_for_umount() for a description of the
831 * locking
833 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
835 struct dentry *parent;
836 unsigned detached = 0;
838 BUG_ON(!IS_ROOT(dentry));
840 /* detach this root from the system */
841 spin_lock(&dentry->d_lock);
842 dentry_lru_del(dentry);
843 __d_drop(dentry);
844 spin_unlock(&dentry->d_lock);
846 for (;;) {
847 /* descend to the first leaf in the current subtree */
848 while (!list_empty(&dentry->d_subdirs)) {
849 struct dentry *loop;
851 /* this is a branch with children - detach all of them
852 * from the system in one go */
853 spin_lock(&dentry->d_lock);
854 list_for_each_entry(loop, &dentry->d_subdirs,
855 d_u.d_child) {
856 spin_lock_nested(&loop->d_lock,
857 DENTRY_D_LOCK_NESTED);
858 dentry_lru_del(loop);
859 __d_drop(loop);
860 spin_unlock(&loop->d_lock);
862 spin_unlock(&dentry->d_lock);
864 /* move to the first child */
865 dentry = list_entry(dentry->d_subdirs.next,
866 struct dentry, d_u.d_child);
869 /* consume the dentries from this leaf up through its parents
870 * until we find one with children or run out altogether */
871 do {
872 struct inode *inode;
874 if (dentry->d_count != 0) {
875 printk(KERN_ERR
876 "BUG: Dentry %p{i=%lx,n=%s}"
877 " still in use (%d)"
878 " [unmount of %s %s]\n",
879 dentry,
880 dentry->d_inode ?
881 dentry->d_inode->i_ino : 0UL,
882 dentry->d_name.name,
883 dentry->d_count,
884 dentry->d_sb->s_type->name,
885 dentry->d_sb->s_id);
886 BUG();
889 if (IS_ROOT(dentry)) {
890 parent = NULL;
891 list_del(&dentry->d_u.d_child);
892 } else {
893 parent = dentry->d_parent;
894 spin_lock(&parent->d_lock);
895 parent->d_count--;
896 list_del(&dentry->d_u.d_child);
897 spin_unlock(&parent->d_lock);
900 detached++;
902 inode = dentry->d_inode;
903 if (inode) {
904 dentry->d_inode = NULL;
905 list_del_init(&dentry->d_alias);
906 if (dentry->d_op && dentry->d_op->d_iput)
907 dentry->d_op->d_iput(dentry, inode);
908 else
909 iput(inode);
912 d_free(dentry);
914 /* finished when we fall off the top of the tree,
915 * otherwise we ascend to the parent and move to the
916 * next sibling if there is one */
917 if (!parent)
918 return;
919 dentry = parent;
920 } while (list_empty(&dentry->d_subdirs));
922 dentry = list_entry(dentry->d_subdirs.next,
923 struct dentry, d_u.d_child);
928 * destroy the dentries attached to a superblock on unmounting
929 * - we don't need to use dentry->d_lock because:
930 * - the superblock is detached from all mountings and open files, so the
931 * dentry trees will not be rearranged by the VFS
932 * - s_umount is write-locked, so the memory pressure shrinker will ignore
933 * any dentries belonging to this superblock that it comes across
934 * - the filesystem itself is no longer permitted to rearrange the dentries
935 * in this superblock
937 void shrink_dcache_for_umount(struct super_block *sb)
939 struct dentry *dentry;
941 if (down_read_trylock(&sb->s_umount))
942 BUG();
944 dentry = sb->s_root;
945 sb->s_root = NULL;
946 spin_lock(&dentry->d_lock);
947 dentry->d_count--;
948 spin_unlock(&dentry->d_lock);
949 shrink_dcache_for_umount_subtree(dentry);
951 while (!hlist_bl_empty(&sb->s_anon)) {
952 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
953 shrink_dcache_for_umount_subtree(dentry);
958 * This tries to ascend one level of parenthood, but
959 * we can race with renaming, so we need to re-check
960 * the parenthood after dropping the lock and check
961 * that the sequence number still matches.
963 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
965 struct dentry *new = old->d_parent;
967 rcu_read_lock();
968 spin_unlock(&old->d_lock);
969 spin_lock(&new->d_lock);
972 * might go back up the wrong parent if we have had a rename
973 * or deletion
975 if (new != old->d_parent ||
976 (old->d_flags & DCACHE_DISCONNECTED) ||
977 (!locked && read_seqretry(&rename_lock, seq))) {
978 spin_unlock(&new->d_lock);
979 new = NULL;
981 rcu_read_unlock();
982 return new;
987 * Search for at least 1 mount point in the dentry's subdirs.
988 * We descend to the next level whenever the d_subdirs
989 * list is non-empty and continue searching.
993 * have_submounts - check for mounts over a dentry
994 * @parent: dentry to check.
996 * Return true if the parent or its subdirectories contain
997 * a mount point
999 int have_submounts(struct dentry *parent)
1001 struct dentry *this_parent;
1002 struct list_head *next;
1003 unsigned seq;
1004 int locked = 0;
1006 seq = read_seqbegin(&rename_lock);
1007 again:
1008 this_parent = parent;
1010 if (d_mountpoint(parent))
1011 goto positive;
1012 spin_lock(&this_parent->d_lock);
1013 repeat:
1014 next = this_parent->d_subdirs.next;
1015 resume:
1016 while (next != &this_parent->d_subdirs) {
1017 struct list_head *tmp = next;
1018 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1019 next = tmp->next;
1021 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1022 /* Have we found a mount point ? */
1023 if (d_mountpoint(dentry)) {
1024 spin_unlock(&dentry->d_lock);
1025 spin_unlock(&this_parent->d_lock);
1026 goto positive;
1028 if (!list_empty(&dentry->d_subdirs)) {
1029 spin_unlock(&this_parent->d_lock);
1030 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1031 this_parent = dentry;
1032 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1033 goto repeat;
1035 spin_unlock(&dentry->d_lock);
1038 * All done at this level ... ascend and resume the search.
1040 if (this_parent != parent) {
1041 struct dentry *child = this_parent;
1042 this_parent = try_to_ascend(this_parent, locked, seq);
1043 if (!this_parent)
1044 goto rename_retry;
1045 next = child->d_u.d_child.next;
1046 goto resume;
1048 spin_unlock(&this_parent->d_lock);
1049 if (!locked && read_seqretry(&rename_lock, seq))
1050 goto rename_retry;
1051 if (locked)
1052 write_sequnlock(&rename_lock);
1053 return 0; /* No mount points found in tree */
1054 positive:
1055 if (!locked && read_seqretry(&rename_lock, seq))
1056 goto rename_retry;
1057 if (locked)
1058 write_sequnlock(&rename_lock);
1059 return 1;
1061 rename_retry:
1062 locked = 1;
1063 write_seqlock(&rename_lock);
1064 goto again;
1066 EXPORT_SYMBOL(have_submounts);
1069 * Search the dentry child list for the specified parent,
1070 * and move any unused dentries to the end of the unused
1071 * list for prune_dcache(). We descend to the next level
1072 * whenever the d_subdirs list is non-empty and continue
1073 * searching.
1075 * It returns zero iff there are no unused children,
1076 * otherwise it returns the number of children moved to
1077 * the end of the unused list. This may not be the total
1078 * number of unused children, because select_parent can
1079 * drop the lock and return early due to latency
1080 * constraints.
1082 static int select_parent(struct dentry * parent)
1084 struct dentry *this_parent;
1085 struct list_head *next;
1086 unsigned seq;
1087 int found = 0;
1088 int locked = 0;
1090 seq = read_seqbegin(&rename_lock);
1091 again:
1092 this_parent = parent;
1093 spin_lock(&this_parent->d_lock);
1094 repeat:
1095 next = this_parent->d_subdirs.next;
1096 resume:
1097 while (next != &this_parent->d_subdirs) {
1098 struct list_head *tmp = next;
1099 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1100 next = tmp->next;
1102 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1105 * move only zero ref count dentries to the end
1106 * of the unused list for prune_dcache
1108 if (!dentry->d_count) {
1109 dentry_lru_move_tail(dentry);
1110 found++;
1111 } else {
1112 dentry_lru_del(dentry);
1116 * We can return to the caller if we have found some (this
1117 * ensures forward progress). We'll be coming back to find
1118 * the rest.
1120 if (found && need_resched()) {
1121 spin_unlock(&dentry->d_lock);
1122 goto out;
1126 * Descend a level if the d_subdirs list is non-empty.
1128 if (!list_empty(&dentry->d_subdirs)) {
1129 spin_unlock(&this_parent->d_lock);
1130 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1131 this_parent = dentry;
1132 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1133 goto repeat;
1136 spin_unlock(&dentry->d_lock);
1139 * All done at this level ... ascend and resume the search.
1141 if (this_parent != parent) {
1142 struct dentry *child = this_parent;
1143 this_parent = try_to_ascend(this_parent, locked, seq);
1144 if (!this_parent)
1145 goto rename_retry;
1146 next = child->d_u.d_child.next;
1147 goto resume;
1149 out:
1150 spin_unlock(&this_parent->d_lock);
1151 if (!locked && read_seqretry(&rename_lock, seq))
1152 goto rename_retry;
1153 if (locked)
1154 write_sequnlock(&rename_lock);
1155 return found;
1157 rename_retry:
1158 if (found)
1159 return found;
1160 locked = 1;
1161 write_seqlock(&rename_lock);
1162 goto again;
1166 * shrink_dcache_parent - prune dcache
1167 * @parent: parent of entries to prune
1169 * Prune the dcache to remove unused children of the parent dentry.
1172 void shrink_dcache_parent(struct dentry * parent)
1174 struct super_block *sb = parent->d_sb;
1175 int found;
1177 while ((found = select_parent(parent)) != 0)
1178 __shrink_dcache_sb(sb, found, 0);
1180 EXPORT_SYMBOL(shrink_dcache_parent);
1183 * __d_alloc - allocate a dcache entry
1184 * @sb: filesystem it will belong to
1185 * @name: qstr of the name
1187 * Allocates a dentry. It returns %NULL if there is insufficient memory
1188 * available. On a success the dentry is returned. The name passed in is
1189 * copied and the copy passed in may be reused after this call.
1192 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1194 struct dentry *dentry;
1195 char *dname;
1197 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1198 if (!dentry)
1199 return NULL;
1201 if (name->len > DNAME_INLINE_LEN-1) {
1202 dname = kmalloc(name->len + 1, GFP_KERNEL);
1203 if (!dname) {
1204 kmem_cache_free(dentry_cache, dentry);
1205 return NULL;
1207 } else {
1208 dname = dentry->d_iname;
1210 dentry->d_name.name = dname;
1212 dentry->d_name.len = name->len;
1213 dentry->d_name.hash = name->hash;
1214 memcpy(dname, name->name, name->len);
1215 dname[name->len] = 0;
1217 dentry->d_count = 1;
1218 dentry->d_flags = 0;
1219 spin_lock_init(&dentry->d_lock);
1220 seqcount_init(&dentry->d_seq);
1221 dentry->d_inode = NULL;
1222 dentry->d_parent = dentry;
1223 dentry->d_sb = sb;
1224 dentry->d_op = NULL;
1225 dentry->d_fsdata = NULL;
1226 INIT_HLIST_BL_NODE(&dentry->d_hash);
1227 INIT_LIST_HEAD(&dentry->d_lru);
1228 INIT_LIST_HEAD(&dentry->d_subdirs);
1229 INIT_LIST_HEAD(&dentry->d_alias);
1230 INIT_LIST_HEAD(&dentry->d_u.d_child);
1231 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1233 this_cpu_inc(nr_dentry);
1235 return dentry;
1239 * d_alloc - allocate a dcache entry
1240 * @parent: parent of entry to allocate
1241 * @name: qstr of the name
1243 * Allocates a dentry. It returns %NULL if there is insufficient memory
1244 * available. On a success the dentry is returned. The name passed in is
1245 * copied and the copy passed in may be reused after this call.
1247 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1249 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1250 if (!dentry)
1251 return NULL;
1253 spin_lock(&parent->d_lock);
1255 * don't need child lock because it is not subject
1256 * to concurrency here
1258 __dget_dlock(parent);
1259 dentry->d_parent = parent;
1260 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1261 spin_unlock(&parent->d_lock);
1263 return dentry;
1265 EXPORT_SYMBOL(d_alloc);
1267 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1269 struct dentry *dentry = __d_alloc(sb, name);
1270 if (dentry)
1271 dentry->d_flags |= DCACHE_DISCONNECTED;
1272 return dentry;
1274 EXPORT_SYMBOL(d_alloc_pseudo);
1276 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1278 struct qstr q;
1280 q.name = name;
1281 q.len = strlen(name);
1282 q.hash = full_name_hash(q.name, q.len);
1283 return d_alloc(parent, &q);
1285 EXPORT_SYMBOL(d_alloc_name);
1287 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1289 WARN_ON_ONCE(dentry->d_op);
1290 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1291 DCACHE_OP_COMPARE |
1292 DCACHE_OP_REVALIDATE |
1293 DCACHE_OP_DELETE ));
1294 dentry->d_op = op;
1295 if (!op)
1296 return;
1297 if (op->d_hash)
1298 dentry->d_flags |= DCACHE_OP_HASH;
1299 if (op->d_compare)
1300 dentry->d_flags |= DCACHE_OP_COMPARE;
1301 if (op->d_revalidate)
1302 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1303 if (op->d_delete)
1304 dentry->d_flags |= DCACHE_OP_DELETE;
1307 EXPORT_SYMBOL(d_set_d_op);
1309 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1311 spin_lock(&dentry->d_lock);
1312 if (inode) {
1313 if (unlikely(IS_AUTOMOUNT(inode)))
1314 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1315 list_add(&dentry->d_alias, &inode->i_dentry);
1317 dentry->d_inode = inode;
1318 dentry_rcuwalk_barrier(dentry);
1319 spin_unlock(&dentry->d_lock);
1320 fsnotify_d_instantiate(dentry, inode);
1324 * d_instantiate - fill in inode information for a dentry
1325 * @entry: dentry to complete
1326 * @inode: inode to attach to this dentry
1328 * Fill in inode information in the entry.
1330 * This turns negative dentries into productive full members
1331 * of society.
1333 * NOTE! This assumes that the inode count has been incremented
1334 * (or otherwise set) by the caller to indicate that it is now
1335 * in use by the dcache.
1338 void d_instantiate(struct dentry *entry, struct inode * inode)
1340 BUG_ON(!list_empty(&entry->d_alias));
1341 if (inode)
1342 spin_lock(&inode->i_lock);
1343 __d_instantiate(entry, inode);
1344 if (inode)
1345 spin_unlock(&inode->i_lock);
1346 security_d_instantiate(entry, inode);
1348 EXPORT_SYMBOL(d_instantiate);
1351 * d_instantiate_unique - instantiate a non-aliased dentry
1352 * @entry: dentry to instantiate
1353 * @inode: inode to attach to this dentry
1355 * Fill in inode information in the entry. On success, it returns NULL.
1356 * If an unhashed alias of "entry" already exists, then we return the
1357 * aliased dentry instead and drop one reference to inode.
1359 * Note that in order to avoid conflicts with rename() etc, the caller
1360 * had better be holding the parent directory semaphore.
1362 * This also assumes that the inode count has been incremented
1363 * (or otherwise set) by the caller to indicate that it is now
1364 * in use by the dcache.
1366 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1367 struct inode *inode)
1369 struct dentry *alias;
1370 int len = entry->d_name.len;
1371 const char *name = entry->d_name.name;
1372 unsigned int hash = entry->d_name.hash;
1374 if (!inode) {
1375 __d_instantiate(entry, NULL);
1376 return NULL;
1379 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1380 struct qstr *qstr = &alias->d_name;
1383 * Don't need alias->d_lock here, because aliases with
1384 * d_parent == entry->d_parent are not subject to name or
1385 * parent changes, because the parent inode i_mutex is held.
1387 if (qstr->hash != hash)
1388 continue;
1389 if (alias->d_parent != entry->d_parent)
1390 continue;
1391 if (dentry_cmp(qstr->name, qstr->len, name, len))
1392 continue;
1393 __dget(alias);
1394 return alias;
1397 __d_instantiate(entry, inode);
1398 return NULL;
1401 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1403 struct dentry *result;
1405 BUG_ON(!list_empty(&entry->d_alias));
1407 if (inode)
1408 spin_lock(&inode->i_lock);
1409 result = __d_instantiate_unique(entry, inode);
1410 if (inode)
1411 spin_unlock(&inode->i_lock);
1413 if (!result) {
1414 security_d_instantiate(entry, inode);
1415 return NULL;
1418 BUG_ON(!d_unhashed(result));
1419 iput(inode);
1420 return result;
1423 EXPORT_SYMBOL(d_instantiate_unique);
1426 * d_alloc_root - allocate root dentry
1427 * @root_inode: inode to allocate the root for
1429 * Allocate a root ("/") dentry for the inode given. The inode is
1430 * instantiated and returned. %NULL is returned if there is insufficient
1431 * memory or the inode passed is %NULL.
1434 struct dentry * d_alloc_root(struct inode * root_inode)
1436 struct dentry *res = NULL;
1438 if (root_inode) {
1439 static const struct qstr name = { .name = "/", .len = 1 };
1441 res = __d_alloc(root_inode->i_sb, &name);
1442 if (res)
1443 d_instantiate(res, root_inode);
1445 return res;
1447 EXPORT_SYMBOL(d_alloc_root);
1449 static struct dentry * __d_find_any_alias(struct inode *inode)
1451 struct dentry *alias;
1453 if (list_empty(&inode->i_dentry))
1454 return NULL;
1455 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1456 __dget(alias);
1457 return alias;
1460 static struct dentry * d_find_any_alias(struct inode *inode)
1462 struct dentry *de;
1464 spin_lock(&inode->i_lock);
1465 de = __d_find_any_alias(inode);
1466 spin_unlock(&inode->i_lock);
1467 return de;
1472 * d_obtain_alias - find or allocate a dentry for a given inode
1473 * @inode: inode to allocate the dentry for
1475 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1476 * similar open by handle operations. The returned dentry may be anonymous,
1477 * or may have a full name (if the inode was already in the cache).
1479 * When called on a directory inode, we must ensure that the inode only ever
1480 * has one dentry. If a dentry is found, that is returned instead of
1481 * allocating a new one.
1483 * On successful return, the reference to the inode has been transferred
1484 * to the dentry. In case of an error the reference on the inode is released.
1485 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1486 * be passed in and will be the error will be propagate to the return value,
1487 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1489 struct dentry *d_obtain_alias(struct inode *inode)
1491 static const struct qstr anonstring = { .name = "" };
1492 struct dentry *tmp;
1493 struct dentry *res;
1495 if (!inode)
1496 return ERR_PTR(-ESTALE);
1497 if (IS_ERR(inode))
1498 return ERR_CAST(inode);
1500 res = d_find_any_alias(inode);
1501 if (res)
1502 goto out_iput;
1504 tmp = __d_alloc(inode->i_sb, &anonstring);
1505 if (!tmp) {
1506 res = ERR_PTR(-ENOMEM);
1507 goto out_iput;
1510 spin_lock(&inode->i_lock);
1511 res = __d_find_any_alias(inode);
1512 if (res) {
1513 spin_unlock(&inode->i_lock);
1514 dput(tmp);
1515 goto out_iput;
1518 /* attach a disconnected dentry */
1519 spin_lock(&tmp->d_lock);
1520 tmp->d_inode = inode;
1521 tmp->d_flags |= DCACHE_DISCONNECTED;
1522 list_add(&tmp->d_alias, &inode->i_dentry);
1523 hlist_bl_lock(&tmp->d_sb->s_anon);
1524 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1525 hlist_bl_unlock(&tmp->d_sb->s_anon);
1526 spin_unlock(&tmp->d_lock);
1527 spin_unlock(&inode->i_lock);
1528 security_d_instantiate(tmp, inode);
1530 return tmp;
1532 out_iput:
1533 if (res && !IS_ERR(res))
1534 security_d_instantiate(res, inode);
1535 iput(inode);
1536 return res;
1538 EXPORT_SYMBOL(d_obtain_alias);
1541 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1542 * @inode: the inode which may have a disconnected dentry
1543 * @dentry: a negative dentry which we want to point to the inode.
1545 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1546 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1547 * and return it, else simply d_add the inode to the dentry and return NULL.
1549 * This is needed in the lookup routine of any filesystem that is exportable
1550 * (via knfsd) so that we can build dcache paths to directories effectively.
1552 * If a dentry was found and moved, then it is returned. Otherwise NULL
1553 * is returned. This matches the expected return value of ->lookup.
1556 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1558 struct dentry *new = NULL;
1560 if (IS_ERR(inode))
1561 return ERR_CAST(inode);
1563 if (inode && S_ISDIR(inode->i_mode)) {
1564 spin_lock(&inode->i_lock);
1565 new = __d_find_alias(inode, 1);
1566 if (new) {
1567 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1568 spin_unlock(&inode->i_lock);
1569 security_d_instantiate(new, inode);
1570 d_move(new, dentry);
1571 iput(inode);
1572 } else {
1573 /* already taking inode->i_lock, so d_add() by hand */
1574 __d_instantiate(dentry, inode);
1575 spin_unlock(&inode->i_lock);
1576 security_d_instantiate(dentry, inode);
1577 d_rehash(dentry);
1579 } else
1580 d_add(dentry, inode);
1581 return new;
1583 EXPORT_SYMBOL(d_splice_alias);
1586 * d_add_ci - lookup or allocate new dentry with case-exact name
1587 * @inode: the inode case-insensitive lookup has found
1588 * @dentry: the negative dentry that was passed to the parent's lookup func
1589 * @name: the case-exact name to be associated with the returned dentry
1591 * This is to avoid filling the dcache with case-insensitive names to the
1592 * same inode, only the actual correct case is stored in the dcache for
1593 * case-insensitive filesystems.
1595 * For a case-insensitive lookup match and if the the case-exact dentry
1596 * already exists in in the dcache, use it and return it.
1598 * If no entry exists with the exact case name, allocate new dentry with
1599 * the exact case, and return the spliced entry.
1601 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1602 struct qstr *name)
1604 int error;
1605 struct dentry *found;
1606 struct dentry *new;
1609 * First check if a dentry matching the name already exists,
1610 * if not go ahead and create it now.
1612 found = d_hash_and_lookup(dentry->d_parent, name);
1613 if (!found) {
1614 new = d_alloc(dentry->d_parent, name);
1615 if (!new) {
1616 error = -ENOMEM;
1617 goto err_out;
1620 found = d_splice_alias(inode, new);
1621 if (found) {
1622 dput(new);
1623 return found;
1625 return new;
1629 * If a matching dentry exists, and it's not negative use it.
1631 * Decrement the reference count to balance the iget() done
1632 * earlier on.
1634 if (found->d_inode) {
1635 if (unlikely(found->d_inode != inode)) {
1636 /* This can't happen because bad inodes are unhashed. */
1637 BUG_ON(!is_bad_inode(inode));
1638 BUG_ON(!is_bad_inode(found->d_inode));
1640 iput(inode);
1641 return found;
1645 * We are going to instantiate this dentry, unhash it and clear the
1646 * lookup flag so we can do that.
1648 if (unlikely(d_need_lookup(found)))
1649 d_clear_need_lookup(found);
1652 * Negative dentry: instantiate it unless the inode is a directory and
1653 * already has a dentry.
1655 spin_lock(&inode->i_lock);
1656 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1657 __d_instantiate(found, inode);
1658 spin_unlock(&inode->i_lock);
1659 security_d_instantiate(found, inode);
1660 return found;
1664 * In case a directory already has a (disconnected) entry grab a
1665 * reference to it, move it in place and use it.
1667 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1668 __dget(new);
1669 spin_unlock(&inode->i_lock);
1670 security_d_instantiate(found, inode);
1671 d_move(new, found);
1672 iput(inode);
1673 dput(found);
1674 return new;
1676 err_out:
1677 iput(inode);
1678 return ERR_PTR(error);
1680 EXPORT_SYMBOL(d_add_ci);
1683 * __d_lookup_rcu - search for a dentry (racy, store-free)
1684 * @parent: parent dentry
1685 * @name: qstr of name we wish to find
1686 * @seq: returns d_seq value at the point where the dentry was found
1687 * @inode: returns dentry->d_inode when the inode was found valid.
1688 * Returns: dentry, or NULL
1690 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691 * resolution (store-free path walking) design described in
1692 * Documentation/filesystems/path-lookup.txt.
1694 * This is not to be used outside core vfs.
1696 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697 * held, and rcu_read_lock held. The returned dentry must not be stored into
1698 * without taking d_lock and checking d_seq sequence count against @seq
1699 * returned here.
1701 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1702 * function.
1704 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705 * the returned dentry, so long as its parent's seqlock is checked after the
1706 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707 * is formed, giving integrity down the path walk.
1709 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1710 unsigned *seq, struct inode **inode)
1712 unsigned int len = name->len;
1713 unsigned int hash = name->hash;
1714 const unsigned char *str = name->name;
1715 struct hlist_bl_head *b = d_hash(parent, hash);
1716 struct hlist_bl_node *node;
1717 struct dentry *dentry;
1720 * Note: There is significant duplication with __d_lookup_rcu which is
1721 * required to prevent single threaded performance regressions
1722 * especially on architectures where smp_rmb (in seqcounts) are costly.
1723 * Keep the two functions in sync.
1727 * The hash list is protected using RCU.
1729 * Carefully use d_seq when comparing a candidate dentry, to avoid
1730 * races with d_move().
1732 * It is possible that concurrent renames can mess up our list
1733 * walk here and result in missing our dentry, resulting in the
1734 * false-negative result. d_lookup() protects against concurrent
1735 * renames using rename_lock seqlock.
1737 * See Documentation/filesystems/path-lookup.txt for more details.
1739 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1740 struct inode *i;
1741 const char *tname;
1742 int tlen;
1744 if (dentry->d_name.hash != hash)
1745 continue;
1747 seqretry:
1748 *seq = read_seqcount_begin(&dentry->d_seq);
1749 if (dentry->d_parent != parent)
1750 continue;
1751 if (d_unhashed(dentry))
1752 continue;
1753 tlen = dentry->d_name.len;
1754 tname = dentry->d_name.name;
1755 i = dentry->d_inode;
1756 prefetch(tname);
1757 if (i)
1758 prefetch(i);
1760 * This seqcount check is required to ensure name and
1761 * len are loaded atomically, so as not to walk off the
1762 * edge of memory when walking. If we could load this
1763 * atomically some other way, we could drop this check.
1765 if (read_seqcount_retry(&dentry->d_seq, *seq))
1766 goto seqretry;
1767 if (parent->d_flags & DCACHE_OP_COMPARE) {
1768 if (parent->d_op->d_compare(parent, *inode,
1769 dentry, i,
1770 tlen, tname, name))
1771 continue;
1772 } else {
1773 if (dentry_cmp(tname, tlen, str, len))
1774 continue;
1777 * No extra seqcount check is required after the name
1778 * compare. The caller must perform a seqcount check in
1779 * order to do anything useful with the returned dentry
1780 * anyway.
1782 *inode = i;
1783 return dentry;
1785 return NULL;
1789 * d_lookup - search for a dentry
1790 * @parent: parent dentry
1791 * @name: qstr of name we wish to find
1792 * Returns: dentry, or NULL
1794 * d_lookup searches the children of the parent dentry for the name in
1795 * question. If the dentry is found its reference count is incremented and the
1796 * dentry is returned. The caller must use dput to free the entry when it has
1797 * finished using it. %NULL is returned if the dentry does not exist.
1799 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1801 struct dentry *dentry;
1802 unsigned seq;
1804 do {
1805 seq = read_seqbegin(&rename_lock);
1806 dentry = __d_lookup(parent, name);
1807 if (dentry)
1808 break;
1809 } while (read_seqretry(&rename_lock, seq));
1810 return dentry;
1812 EXPORT_SYMBOL(d_lookup);
1815 * __d_lookup - search for a dentry (racy)
1816 * @parent: parent dentry
1817 * @name: qstr of name we wish to find
1818 * Returns: dentry, or NULL
1820 * __d_lookup is like d_lookup, however it may (rarely) return a
1821 * false-negative result due to unrelated rename activity.
1823 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1824 * however it must be used carefully, eg. with a following d_lookup in
1825 * the case of failure.
1827 * __d_lookup callers must be commented.
1829 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1831 unsigned int len = name->len;
1832 unsigned int hash = name->hash;
1833 const unsigned char *str = name->name;
1834 struct hlist_bl_head *b = d_hash(parent, hash);
1835 struct hlist_bl_node *node;
1836 struct dentry *found = NULL;
1837 struct dentry *dentry;
1840 * Note: There is significant duplication with __d_lookup_rcu which is
1841 * required to prevent single threaded performance regressions
1842 * especially on architectures where smp_rmb (in seqcounts) are costly.
1843 * Keep the two functions in sync.
1847 * The hash list is protected using RCU.
1849 * Take d_lock when comparing a candidate dentry, to avoid races
1850 * with d_move().
1852 * It is possible that concurrent renames can mess up our list
1853 * walk here and result in missing our dentry, resulting in the
1854 * false-negative result. d_lookup() protects against concurrent
1855 * renames using rename_lock seqlock.
1857 * See Documentation/filesystems/path-lookup.txt for more details.
1859 rcu_read_lock();
1861 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1862 const char *tname;
1863 int tlen;
1865 if (dentry->d_name.hash != hash)
1866 continue;
1868 spin_lock(&dentry->d_lock);
1869 if (dentry->d_parent != parent)
1870 goto next;
1871 if (d_unhashed(dentry))
1872 goto next;
1875 * It is safe to compare names since d_move() cannot
1876 * change the qstr (protected by d_lock).
1878 tlen = dentry->d_name.len;
1879 tname = dentry->d_name.name;
1880 if (parent->d_flags & DCACHE_OP_COMPARE) {
1881 if (parent->d_op->d_compare(parent, parent->d_inode,
1882 dentry, dentry->d_inode,
1883 tlen, tname, name))
1884 goto next;
1885 } else {
1886 if (dentry_cmp(tname, tlen, str, len))
1887 goto next;
1890 dentry->d_count++;
1891 found = dentry;
1892 spin_unlock(&dentry->d_lock);
1893 break;
1894 next:
1895 spin_unlock(&dentry->d_lock);
1897 rcu_read_unlock();
1899 return found;
1903 * d_hash_and_lookup - hash the qstr then search for a dentry
1904 * @dir: Directory to search in
1905 * @name: qstr of name we wish to find
1907 * On hash failure or on lookup failure NULL is returned.
1909 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1911 struct dentry *dentry = NULL;
1914 * Check for a fs-specific hash function. Note that we must
1915 * calculate the standard hash first, as the d_op->d_hash()
1916 * routine may choose to leave the hash value unchanged.
1918 name->hash = full_name_hash(name->name, name->len);
1919 if (dir->d_flags & DCACHE_OP_HASH) {
1920 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1921 goto out;
1923 dentry = d_lookup(dir, name);
1924 out:
1925 return dentry;
1929 * d_validate - verify dentry provided from insecure source (deprecated)
1930 * @dentry: The dentry alleged to be valid child of @dparent
1931 * @dparent: The parent dentry (known to be valid)
1933 * An insecure source has sent us a dentry, here we verify it and dget() it.
1934 * This is used by ncpfs in its readdir implementation.
1935 * Zero is returned in the dentry is invalid.
1937 * This function is slow for big directories, and deprecated, do not use it.
1939 int d_validate(struct dentry *dentry, struct dentry *dparent)
1941 struct dentry *child;
1943 spin_lock(&dparent->d_lock);
1944 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1945 if (dentry == child) {
1946 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1947 __dget_dlock(dentry);
1948 spin_unlock(&dentry->d_lock);
1949 spin_unlock(&dparent->d_lock);
1950 return 1;
1953 spin_unlock(&dparent->d_lock);
1955 return 0;
1957 EXPORT_SYMBOL(d_validate);
1960 * When a file is deleted, we have two options:
1961 * - turn this dentry into a negative dentry
1962 * - unhash this dentry and free it.
1964 * Usually, we want to just turn this into
1965 * a negative dentry, but if anybody else is
1966 * currently using the dentry or the inode
1967 * we can't do that and we fall back on removing
1968 * it from the hash queues and waiting for
1969 * it to be deleted later when it has no users
1973 * d_delete - delete a dentry
1974 * @dentry: The dentry to delete
1976 * Turn the dentry into a negative dentry if possible, otherwise
1977 * remove it from the hash queues so it can be deleted later
1980 void d_delete(struct dentry * dentry)
1982 struct inode *inode;
1983 int isdir = 0;
1985 * Are we the only user?
1987 again:
1988 spin_lock(&dentry->d_lock);
1989 inode = dentry->d_inode;
1990 isdir = S_ISDIR(inode->i_mode);
1991 if (dentry->d_count == 1) {
1992 if (inode && !spin_trylock(&inode->i_lock)) {
1993 spin_unlock(&dentry->d_lock);
1994 cpu_relax();
1995 goto again;
1997 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1998 dentry_unlink_inode(dentry);
1999 fsnotify_nameremove(dentry, isdir);
2000 return;
2003 if (!d_unhashed(dentry))
2004 __d_drop(dentry);
2006 spin_unlock(&dentry->d_lock);
2008 fsnotify_nameremove(dentry, isdir);
2010 EXPORT_SYMBOL(d_delete);
2012 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2014 BUG_ON(!d_unhashed(entry));
2015 hlist_bl_lock(b);
2016 entry->d_flags |= DCACHE_RCUACCESS;
2017 hlist_bl_add_head_rcu(&entry->d_hash, b);
2018 hlist_bl_unlock(b);
2021 static void _d_rehash(struct dentry * entry)
2023 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2027 * d_rehash - add an entry back to the hash
2028 * @entry: dentry to add to the hash
2030 * Adds a dentry to the hash according to its name.
2033 void d_rehash(struct dentry * entry)
2035 spin_lock(&entry->d_lock);
2036 _d_rehash(entry);
2037 spin_unlock(&entry->d_lock);
2039 EXPORT_SYMBOL(d_rehash);
2042 * dentry_update_name_case - update case insensitive dentry with a new name
2043 * @dentry: dentry to be updated
2044 * @name: new name
2046 * Update a case insensitive dentry with new case of name.
2048 * dentry must have been returned by d_lookup with name @name. Old and new
2049 * name lengths must match (ie. no d_compare which allows mismatched name
2050 * lengths).
2052 * Parent inode i_mutex must be held over d_lookup and into this call (to
2053 * keep renames and concurrent inserts, and readdir(2) away).
2055 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2057 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2058 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2060 spin_lock(&dentry->d_lock);
2061 write_seqcount_begin(&dentry->d_seq);
2062 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2063 write_seqcount_end(&dentry->d_seq);
2064 spin_unlock(&dentry->d_lock);
2066 EXPORT_SYMBOL(dentry_update_name_case);
2068 static void switch_names(struct dentry *dentry, struct dentry *target)
2070 if (dname_external(target)) {
2071 if (dname_external(dentry)) {
2073 * Both external: swap the pointers
2075 swap(target->d_name.name, dentry->d_name.name);
2076 } else {
2078 * dentry:internal, target:external. Steal target's
2079 * storage and make target internal.
2081 memcpy(target->d_iname, dentry->d_name.name,
2082 dentry->d_name.len + 1);
2083 dentry->d_name.name = target->d_name.name;
2084 target->d_name.name = target->d_iname;
2086 } else {
2087 if (dname_external(dentry)) {
2089 * dentry:external, target:internal. Give dentry's
2090 * storage to target and make dentry internal
2092 memcpy(dentry->d_iname, target->d_name.name,
2093 target->d_name.len + 1);
2094 target->d_name.name = dentry->d_name.name;
2095 dentry->d_name.name = dentry->d_iname;
2096 } else {
2098 * Both are internal. Just copy target to dentry
2100 memcpy(dentry->d_iname, target->d_name.name,
2101 target->d_name.len + 1);
2102 dentry->d_name.len = target->d_name.len;
2103 return;
2106 swap(dentry->d_name.len, target->d_name.len);
2109 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2112 * XXXX: do we really need to take target->d_lock?
2114 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2115 spin_lock(&target->d_parent->d_lock);
2116 else {
2117 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2118 spin_lock(&dentry->d_parent->d_lock);
2119 spin_lock_nested(&target->d_parent->d_lock,
2120 DENTRY_D_LOCK_NESTED);
2121 } else {
2122 spin_lock(&target->d_parent->d_lock);
2123 spin_lock_nested(&dentry->d_parent->d_lock,
2124 DENTRY_D_LOCK_NESTED);
2127 if (target < dentry) {
2128 spin_lock_nested(&target->d_lock, 2);
2129 spin_lock_nested(&dentry->d_lock, 3);
2130 } else {
2131 spin_lock_nested(&dentry->d_lock, 2);
2132 spin_lock_nested(&target->d_lock, 3);
2136 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2137 struct dentry *target)
2139 if (target->d_parent != dentry->d_parent)
2140 spin_unlock(&dentry->d_parent->d_lock);
2141 if (target->d_parent != target)
2142 spin_unlock(&target->d_parent->d_lock);
2146 * When switching names, the actual string doesn't strictly have to
2147 * be preserved in the target - because we're dropping the target
2148 * anyway. As such, we can just do a simple memcpy() to copy over
2149 * the new name before we switch.
2151 * Note that we have to be a lot more careful about getting the hash
2152 * switched - we have to switch the hash value properly even if it
2153 * then no longer matches the actual (corrupted) string of the target.
2154 * The hash value has to match the hash queue that the dentry is on..
2157 * __d_move - move a dentry
2158 * @dentry: entry to move
2159 * @target: new dentry
2161 * Update the dcache to reflect the move of a file name. Negative
2162 * dcache entries should not be moved in this way. Caller hold
2163 * rename_lock.
2165 static void __d_move(struct dentry * dentry, struct dentry * target)
2167 if (!dentry->d_inode)
2168 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2170 BUG_ON(d_ancestor(dentry, target));
2171 BUG_ON(d_ancestor(target, dentry));
2173 dentry_lock_for_move(dentry, target);
2175 write_seqcount_begin(&dentry->d_seq);
2176 write_seqcount_begin(&target->d_seq);
2178 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2181 * Move the dentry to the target hash queue. Don't bother checking
2182 * for the same hash queue because of how unlikely it is.
2184 __d_drop(dentry);
2185 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2187 /* Unhash the target: dput() will then get rid of it */
2188 __d_drop(target);
2190 list_del(&dentry->d_u.d_child);
2191 list_del(&target->d_u.d_child);
2193 /* Switch the names.. */
2194 switch_names(dentry, target);
2195 swap(dentry->d_name.hash, target->d_name.hash);
2197 /* ... and switch the parents */
2198 if (IS_ROOT(dentry)) {
2199 dentry->d_parent = target->d_parent;
2200 target->d_parent = target;
2201 INIT_LIST_HEAD(&target->d_u.d_child);
2202 } else {
2203 swap(dentry->d_parent, target->d_parent);
2205 /* And add them back to the (new) parent lists */
2206 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2209 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2211 write_seqcount_end(&target->d_seq);
2212 write_seqcount_end(&dentry->d_seq);
2214 dentry_unlock_parents_for_move(dentry, target);
2215 spin_unlock(&target->d_lock);
2216 fsnotify_d_move(dentry);
2217 spin_unlock(&dentry->d_lock);
2221 * d_move - move a dentry
2222 * @dentry: entry to move
2223 * @target: new dentry
2225 * Update the dcache to reflect the move of a file name. Negative
2226 * dcache entries should not be moved in this way.
2228 void d_move(struct dentry *dentry, struct dentry *target)
2230 write_seqlock(&rename_lock);
2231 __d_move(dentry, target);
2232 write_sequnlock(&rename_lock);
2234 EXPORT_SYMBOL(d_move);
2237 * d_ancestor - search for an ancestor
2238 * @p1: ancestor dentry
2239 * @p2: child dentry
2241 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242 * an ancestor of p2, else NULL.
2244 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2246 struct dentry *p;
2248 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2249 if (p->d_parent == p1)
2250 return p;
2252 return NULL;
2256 * This helper attempts to cope with remotely renamed directories
2258 * It assumes that the caller is already holding
2259 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2261 * Note: If ever the locking in lock_rename() changes, then please
2262 * remember to update this too...
2264 static struct dentry *__d_unalias(struct inode *inode,
2265 struct dentry *dentry, struct dentry *alias)
2267 struct mutex *m1 = NULL, *m2 = NULL;
2268 struct dentry *ret;
2270 /* If alias and dentry share a parent, then no extra locks required */
2271 if (alias->d_parent == dentry->d_parent)
2272 goto out_unalias;
2274 /* See lock_rename() */
2275 ret = ERR_PTR(-EBUSY);
2276 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2277 goto out_err;
2278 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2279 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2280 goto out_err;
2281 m2 = &alias->d_parent->d_inode->i_mutex;
2282 out_unalias:
2283 __d_move(alias, dentry);
2284 ret = alias;
2285 out_err:
2286 spin_unlock(&inode->i_lock);
2287 if (m2)
2288 mutex_unlock(m2);
2289 if (m1)
2290 mutex_unlock(m1);
2291 return ret;
2295 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296 * named dentry in place of the dentry to be replaced.
2297 * returns with anon->d_lock held!
2299 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2301 struct dentry *dparent, *aparent;
2303 dentry_lock_for_move(anon, dentry);
2305 write_seqcount_begin(&dentry->d_seq);
2306 write_seqcount_begin(&anon->d_seq);
2308 dparent = dentry->d_parent;
2309 aparent = anon->d_parent;
2311 switch_names(dentry, anon);
2312 swap(dentry->d_name.hash, anon->d_name.hash);
2314 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2315 list_del(&dentry->d_u.d_child);
2316 if (!IS_ROOT(dentry))
2317 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2318 else
2319 INIT_LIST_HEAD(&dentry->d_u.d_child);
2321 anon->d_parent = (dparent == dentry) ? anon : dparent;
2322 list_del(&anon->d_u.d_child);
2323 if (!IS_ROOT(anon))
2324 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2325 else
2326 INIT_LIST_HEAD(&anon->d_u.d_child);
2328 write_seqcount_end(&dentry->d_seq);
2329 write_seqcount_end(&anon->d_seq);
2331 dentry_unlock_parents_for_move(anon, dentry);
2332 spin_unlock(&dentry->d_lock);
2334 /* anon->d_lock still locked, returns locked */
2335 anon->d_flags &= ~DCACHE_DISCONNECTED;
2339 * d_materialise_unique - introduce an inode into the tree
2340 * @dentry: candidate dentry
2341 * @inode: inode to bind to the dentry, to which aliases may be attached
2343 * Introduces an dentry into the tree, substituting an extant disconnected
2344 * root directory alias in its place if there is one
2346 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2348 struct dentry *actual;
2350 BUG_ON(!d_unhashed(dentry));
2352 if (!inode) {
2353 actual = dentry;
2354 __d_instantiate(dentry, NULL);
2355 d_rehash(actual);
2356 goto out_nolock;
2359 spin_lock(&inode->i_lock);
2361 if (S_ISDIR(inode->i_mode)) {
2362 struct dentry *alias;
2364 /* Does an aliased dentry already exist? */
2365 alias = __d_find_alias(inode, 0);
2366 if (alias) {
2367 actual = alias;
2368 write_seqlock(&rename_lock);
2370 if (d_ancestor(alias, dentry)) {
2371 /* Check for loops */
2372 actual = ERR_PTR(-ELOOP);
2373 } else if (IS_ROOT(alias)) {
2374 /* Is this an anonymous mountpoint that we
2375 * could splice into our tree? */
2376 __d_materialise_dentry(dentry, alias);
2377 write_sequnlock(&rename_lock);
2378 __d_drop(alias);
2379 goto found;
2380 } else {
2381 /* Nope, but we must(!) avoid directory
2382 * aliasing */
2383 actual = __d_unalias(inode, dentry, alias);
2385 write_sequnlock(&rename_lock);
2386 if (IS_ERR(actual))
2387 dput(alias);
2388 goto out_nolock;
2392 /* Add a unique reference */
2393 actual = __d_instantiate_unique(dentry, inode);
2394 if (!actual)
2395 actual = dentry;
2396 else
2397 BUG_ON(!d_unhashed(actual));
2399 spin_lock(&actual->d_lock);
2400 found:
2401 _d_rehash(actual);
2402 spin_unlock(&actual->d_lock);
2403 spin_unlock(&inode->i_lock);
2404 out_nolock:
2405 if (actual == dentry) {
2406 security_d_instantiate(dentry, inode);
2407 return NULL;
2410 iput(inode);
2411 return actual;
2413 EXPORT_SYMBOL_GPL(d_materialise_unique);
2415 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2417 *buflen -= namelen;
2418 if (*buflen < 0)
2419 return -ENAMETOOLONG;
2420 *buffer -= namelen;
2421 memcpy(*buffer, str, namelen);
2422 return 0;
2425 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2427 return prepend(buffer, buflen, name->name, name->len);
2431 * prepend_path - Prepend path string to a buffer
2432 * @path: the dentry/vfsmount to report
2433 * @root: root vfsmnt/dentry (may be modified by this function)
2434 * @buffer: pointer to the end of the buffer
2435 * @buflen: pointer to buffer length
2437 * Caller holds the rename_lock.
2439 * If path is not reachable from the supplied root, then the value of
2440 * root is changed (without modifying refcounts).
2442 static int prepend_path(const struct path *path, struct path *root,
2443 char **buffer, int *buflen)
2445 struct dentry *dentry = path->dentry;
2446 struct vfsmount *vfsmnt = path->mnt;
2447 bool slash = false;
2448 int error = 0;
2450 br_read_lock(vfsmount_lock);
2451 while (dentry != root->dentry || vfsmnt != root->mnt) {
2452 struct dentry * parent;
2454 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2455 /* Global root? */
2456 if (vfsmnt->mnt_parent == vfsmnt) {
2457 goto global_root;
2459 dentry = vfsmnt->mnt_mountpoint;
2460 vfsmnt = vfsmnt->mnt_parent;
2461 continue;
2463 parent = dentry->d_parent;
2464 prefetch(parent);
2465 spin_lock(&dentry->d_lock);
2466 error = prepend_name(buffer, buflen, &dentry->d_name);
2467 spin_unlock(&dentry->d_lock);
2468 if (!error)
2469 error = prepend(buffer, buflen, "/", 1);
2470 if (error)
2471 break;
2473 slash = true;
2474 dentry = parent;
2477 out:
2478 if (!error && !slash)
2479 error = prepend(buffer, buflen, "/", 1);
2481 br_read_unlock(vfsmount_lock);
2482 return error;
2484 global_root:
2486 * Filesystems needing to implement special "root names"
2487 * should do so with ->d_dname()
2489 if (IS_ROOT(dentry) &&
2490 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2491 WARN(1, "Root dentry has weird name <%.*s>\n",
2492 (int) dentry->d_name.len, dentry->d_name.name);
2494 root->mnt = vfsmnt;
2495 root->dentry = dentry;
2496 goto out;
2500 * __d_path - return the path of a dentry
2501 * @path: the dentry/vfsmount to report
2502 * @root: root vfsmnt/dentry (may be modified by this function)
2503 * @buf: buffer to return value in
2504 * @buflen: buffer length
2506 * Convert a dentry into an ASCII path name.
2508 * Returns a pointer into the buffer or an error code if the
2509 * path was too long.
2511 * "buflen" should be positive.
2513 * If path is not reachable from the supplied root, then the value of
2514 * root is changed (without modifying refcounts).
2516 char *__d_path(const struct path *path, struct path *root,
2517 char *buf, int buflen)
2519 char *res = buf + buflen;
2520 int error;
2522 prepend(&res, &buflen, "\0", 1);
2523 write_seqlock(&rename_lock);
2524 error = prepend_path(path, root, &res, &buflen);
2525 write_sequnlock(&rename_lock);
2527 if (error)
2528 return ERR_PTR(error);
2529 return res;
2533 * same as __d_path but appends "(deleted)" for unlinked files.
2535 static int path_with_deleted(const struct path *path, struct path *root,
2536 char **buf, int *buflen)
2538 prepend(buf, buflen, "\0", 1);
2539 if (d_unlinked(path->dentry)) {
2540 int error = prepend(buf, buflen, " (deleted)", 10);
2541 if (error)
2542 return error;
2545 return prepend_path(path, root, buf, buflen);
2548 static int prepend_unreachable(char **buffer, int *buflen)
2550 return prepend(buffer, buflen, "(unreachable)", 13);
2554 * d_path - return the path of a dentry
2555 * @path: path to report
2556 * @buf: buffer to return value in
2557 * @buflen: buffer length
2559 * Convert a dentry into an ASCII path name. If the entry has been deleted
2560 * the string " (deleted)" is appended. Note that this is ambiguous.
2562 * Returns a pointer into the buffer or an error code if the path was
2563 * too long. Note: Callers should use the returned pointer, not the passed
2564 * in buffer, to use the name! The implementation often starts at an offset
2565 * into the buffer, and may leave 0 bytes at the start.
2567 * "buflen" should be positive.
2569 char *d_path(const struct path *path, char *buf, int buflen)
2571 char *res = buf + buflen;
2572 struct path root;
2573 struct path tmp;
2574 int error;
2577 * We have various synthetic filesystems that never get mounted. On
2578 * these filesystems dentries are never used for lookup purposes, and
2579 * thus don't need to be hashed. They also don't need a name until a
2580 * user wants to identify the object in /proc/pid/fd/. The little hack
2581 * below allows us to generate a name for these objects on demand:
2583 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2584 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2586 get_fs_root(current->fs, &root);
2587 write_seqlock(&rename_lock);
2588 tmp = root;
2589 error = path_with_deleted(path, &tmp, &res, &buflen);
2590 if (error)
2591 res = ERR_PTR(error);
2592 write_sequnlock(&rename_lock);
2593 path_put(&root);
2594 return res;
2596 EXPORT_SYMBOL(d_path);
2599 * d_path_with_unreachable - return the path of a dentry
2600 * @path: path to report
2601 * @buf: buffer to return value in
2602 * @buflen: buffer length
2604 * The difference from d_path() is that this prepends "(unreachable)"
2605 * to paths which are unreachable from the current process' root.
2607 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2609 char *res = buf + buflen;
2610 struct path root;
2611 struct path tmp;
2612 int error;
2614 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2615 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2617 get_fs_root(current->fs, &root);
2618 write_seqlock(&rename_lock);
2619 tmp = root;
2620 error = path_with_deleted(path, &tmp, &res, &buflen);
2621 if (!error && !path_equal(&tmp, &root))
2622 error = prepend_unreachable(&res, &buflen);
2623 write_sequnlock(&rename_lock);
2624 path_put(&root);
2625 if (error)
2626 res = ERR_PTR(error);
2628 return res;
2632 * Helper function for dentry_operations.d_dname() members
2634 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2635 const char *fmt, ...)
2637 va_list args;
2638 char temp[64];
2639 int sz;
2641 va_start(args, fmt);
2642 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2643 va_end(args);
2645 if (sz > sizeof(temp) || sz > buflen)
2646 return ERR_PTR(-ENAMETOOLONG);
2648 buffer += buflen - sz;
2649 return memcpy(buffer, temp, sz);
2653 * Write full pathname from the root of the filesystem into the buffer.
2655 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2657 char *end = buf + buflen;
2658 char *retval;
2660 prepend(&end, &buflen, "\0", 1);
2661 if (buflen < 1)
2662 goto Elong;
2663 /* Get '/' right */
2664 retval = end-1;
2665 *retval = '/';
2667 while (!IS_ROOT(dentry)) {
2668 struct dentry *parent = dentry->d_parent;
2669 int error;
2671 prefetch(parent);
2672 spin_lock(&dentry->d_lock);
2673 error = prepend_name(&end, &buflen, &dentry->d_name);
2674 spin_unlock(&dentry->d_lock);
2675 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2676 goto Elong;
2678 retval = end;
2679 dentry = parent;
2681 return retval;
2682 Elong:
2683 return ERR_PTR(-ENAMETOOLONG);
2686 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2688 char *retval;
2690 write_seqlock(&rename_lock);
2691 retval = __dentry_path(dentry, buf, buflen);
2692 write_sequnlock(&rename_lock);
2694 return retval;
2696 EXPORT_SYMBOL(dentry_path_raw);
2698 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2700 char *p = NULL;
2701 char *retval;
2703 write_seqlock(&rename_lock);
2704 if (d_unlinked(dentry)) {
2705 p = buf + buflen;
2706 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2707 goto Elong;
2708 buflen++;
2710 retval = __dentry_path(dentry, buf, buflen);
2711 write_sequnlock(&rename_lock);
2712 if (!IS_ERR(retval) && p)
2713 *p = '/'; /* restore '/' overriden with '\0' */
2714 return retval;
2715 Elong:
2716 return ERR_PTR(-ENAMETOOLONG);
2720 * NOTE! The user-level library version returns a
2721 * character pointer. The kernel system call just
2722 * returns the length of the buffer filled (which
2723 * includes the ending '\0' character), or a negative
2724 * error value. So libc would do something like
2726 * char *getcwd(char * buf, size_t size)
2728 * int retval;
2730 * retval = sys_getcwd(buf, size);
2731 * if (retval >= 0)
2732 * return buf;
2733 * errno = -retval;
2734 * return NULL;
2737 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2739 int error;
2740 struct path pwd, root;
2741 char *page = (char *) __get_free_page(GFP_USER);
2743 if (!page)
2744 return -ENOMEM;
2746 get_fs_root_and_pwd(current->fs, &root, &pwd);
2748 error = -ENOENT;
2749 write_seqlock(&rename_lock);
2750 if (!d_unlinked(pwd.dentry)) {
2751 unsigned long len;
2752 struct path tmp = root;
2753 char *cwd = page + PAGE_SIZE;
2754 int buflen = PAGE_SIZE;
2756 prepend(&cwd, &buflen, "\0", 1);
2757 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2758 write_sequnlock(&rename_lock);
2760 if (error)
2761 goto out;
2763 /* Unreachable from current root */
2764 if (!path_equal(&tmp, &root)) {
2765 error = prepend_unreachable(&cwd, &buflen);
2766 if (error)
2767 goto out;
2770 error = -ERANGE;
2771 len = PAGE_SIZE + page - cwd;
2772 if (len <= size) {
2773 error = len;
2774 if (copy_to_user(buf, cwd, len))
2775 error = -EFAULT;
2777 } else {
2778 write_sequnlock(&rename_lock);
2781 out:
2782 path_put(&pwd);
2783 path_put(&root);
2784 free_page((unsigned long) page);
2785 return error;
2789 * Test whether new_dentry is a subdirectory of old_dentry.
2791 * Trivially implemented using the dcache structure
2795 * is_subdir - is new dentry a subdirectory of old_dentry
2796 * @new_dentry: new dentry
2797 * @old_dentry: old dentry
2799 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2800 * Returns 0 otherwise.
2801 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2804 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2806 int result;
2807 unsigned seq;
2809 if (new_dentry == old_dentry)
2810 return 1;
2812 do {
2813 /* for restarting inner loop in case of seq retry */
2814 seq = read_seqbegin(&rename_lock);
2816 * Need rcu_readlock to protect against the d_parent trashing
2817 * due to d_move
2819 rcu_read_lock();
2820 if (d_ancestor(old_dentry, new_dentry))
2821 result = 1;
2822 else
2823 result = 0;
2824 rcu_read_unlock();
2825 } while (read_seqretry(&rename_lock, seq));
2827 return result;
2830 int path_is_under(struct path *path1, struct path *path2)
2832 struct vfsmount *mnt = path1->mnt;
2833 struct dentry *dentry = path1->dentry;
2834 int res;
2836 br_read_lock(vfsmount_lock);
2837 if (mnt != path2->mnt) {
2838 for (;;) {
2839 if (mnt->mnt_parent == mnt) {
2840 br_read_unlock(vfsmount_lock);
2841 return 0;
2843 if (mnt->mnt_parent == path2->mnt)
2844 break;
2845 mnt = mnt->mnt_parent;
2847 dentry = mnt->mnt_mountpoint;
2849 res = is_subdir(dentry, path2->dentry);
2850 br_read_unlock(vfsmount_lock);
2851 return res;
2853 EXPORT_SYMBOL(path_is_under);
2855 void d_genocide(struct dentry *root)
2857 struct dentry *this_parent;
2858 struct list_head *next;
2859 unsigned seq;
2860 int locked = 0;
2862 seq = read_seqbegin(&rename_lock);
2863 again:
2864 this_parent = root;
2865 spin_lock(&this_parent->d_lock);
2866 repeat:
2867 next = this_parent->d_subdirs.next;
2868 resume:
2869 while (next != &this_parent->d_subdirs) {
2870 struct list_head *tmp = next;
2871 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2872 next = tmp->next;
2874 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2875 if (d_unhashed(dentry) || !dentry->d_inode) {
2876 spin_unlock(&dentry->d_lock);
2877 continue;
2879 if (!list_empty(&dentry->d_subdirs)) {
2880 spin_unlock(&this_parent->d_lock);
2881 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2882 this_parent = dentry;
2883 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2884 goto repeat;
2886 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2887 dentry->d_flags |= DCACHE_GENOCIDE;
2888 dentry->d_count--;
2890 spin_unlock(&dentry->d_lock);
2892 if (this_parent != root) {
2893 struct dentry *child = this_parent;
2894 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2895 this_parent->d_flags |= DCACHE_GENOCIDE;
2896 this_parent->d_count--;
2898 this_parent = try_to_ascend(this_parent, locked, seq);
2899 if (!this_parent)
2900 goto rename_retry;
2901 next = child->d_u.d_child.next;
2902 goto resume;
2904 spin_unlock(&this_parent->d_lock);
2905 if (!locked && read_seqretry(&rename_lock, seq))
2906 goto rename_retry;
2907 if (locked)
2908 write_sequnlock(&rename_lock);
2909 return;
2911 rename_retry:
2912 locked = 1;
2913 write_seqlock(&rename_lock);
2914 goto again;
2918 * find_inode_number - check for dentry with name
2919 * @dir: directory to check
2920 * @name: Name to find.
2922 * Check whether a dentry already exists for the given name,
2923 * and return the inode number if it has an inode. Otherwise
2924 * 0 is returned.
2926 * This routine is used to post-process directory listings for
2927 * filesystems using synthetic inode numbers, and is necessary
2928 * to keep getcwd() working.
2931 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2933 struct dentry * dentry;
2934 ino_t ino = 0;
2936 dentry = d_hash_and_lookup(dir, name);
2937 if (dentry) {
2938 if (dentry->d_inode)
2939 ino = dentry->d_inode->i_ino;
2940 dput(dentry);
2942 return ino;
2944 EXPORT_SYMBOL(find_inode_number);
2946 static __initdata unsigned long dhash_entries;
2947 static int __init set_dhash_entries(char *str)
2949 if (!str)
2950 return 0;
2951 dhash_entries = simple_strtoul(str, &str, 0);
2952 return 1;
2954 __setup("dhash_entries=", set_dhash_entries);
2956 static void __init dcache_init_early(void)
2958 int loop;
2960 /* If hashes are distributed across NUMA nodes, defer
2961 * hash allocation until vmalloc space is available.
2963 if (hashdist)
2964 return;
2966 dentry_hashtable =
2967 alloc_large_system_hash("Dentry cache",
2968 sizeof(struct hlist_bl_head),
2969 dhash_entries,
2971 HASH_EARLY,
2972 &d_hash_shift,
2973 &d_hash_mask,
2976 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2977 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2980 static void __init dcache_init(void)
2982 int loop;
2985 * A constructor could be added for stable state like the lists,
2986 * but it is probably not worth it because of the cache nature
2987 * of the dcache.
2989 dentry_cache = KMEM_CACHE(dentry,
2990 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2992 /* Hash may have been set up in dcache_init_early */
2993 if (!hashdist)
2994 return;
2996 dentry_hashtable =
2997 alloc_large_system_hash("Dentry cache",
2998 sizeof(struct hlist_bl_head),
2999 dhash_entries,
3002 &d_hash_shift,
3003 &d_hash_mask,
3006 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3007 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3010 /* SLAB cache for __getname() consumers */
3011 struct kmem_cache *names_cachep __read_mostly;
3012 EXPORT_SYMBOL(names_cachep);
3014 EXPORT_SYMBOL(d_genocide);
3016 void __init vfs_caches_init_early(void)
3018 dcache_init_early();
3019 inode_init_early();
3022 void __init vfs_caches_init(unsigned long mempages)
3024 unsigned long reserve;
3026 /* Base hash sizes on available memory, with a reserve equal to
3027 150% of current kernel size */
3029 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3030 mempages -= reserve;
3032 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3033 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3035 dcache_init();
3036 inode_init();
3037 files_init(mempages);
3038 mnt_init();
3039 bdev_cache_init();
3040 chrdev_init();