fuse: fix llseek bug
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-mem.c
blobd718033dc531a562dd854db54db667c83d8a2707
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
59 return seg;
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs, bool isoc)
86 u32 val;
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
93 cpu_to_le64(next->dma);
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 /* Always set the chain bit with 0.95 hardware */
100 /* Set chain bit for isoc rings on AMD 0.96 host */
101 if (xhci_link_trb_quirk(xhci) ||
102 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
103 val |= TRB_CHAIN;
104 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
106 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
107 (unsigned long long)prev->dma,
108 (unsigned long long)next->dma);
111 /* XXX: Do we need the hcd structure in all these functions? */
112 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
114 struct xhci_segment *seg;
115 struct xhci_segment *first_seg;
117 if (!ring)
118 return;
119 if (ring->first_seg) {
120 first_seg = ring->first_seg;
121 seg = first_seg->next;
122 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
123 while (seg != first_seg) {
124 struct xhci_segment *next = seg->next;
125 xhci_segment_free(xhci, seg);
126 seg = next;
128 xhci_segment_free(xhci, first_seg);
129 ring->first_seg = NULL;
131 kfree(ring);
134 static void xhci_initialize_ring_info(struct xhci_ring *ring)
136 /* The ring is empty, so the enqueue pointer == dequeue pointer */
137 ring->enqueue = ring->first_seg->trbs;
138 ring->enq_seg = ring->first_seg;
139 ring->dequeue = ring->enqueue;
140 ring->deq_seg = ring->first_seg;
141 /* The ring is initialized to 0. The producer must write 1 to the cycle
142 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
143 * compare CCS to the cycle bit to check ownership, so CCS = 1.
145 ring->cycle_state = 1;
146 /* Not necessary for new rings, but needed for re-initialized rings */
147 ring->enq_updates = 0;
148 ring->deq_updates = 0;
152 * Create a new ring with zero or more segments.
154 * Link each segment together into a ring.
155 * Set the end flag and the cycle toggle bit on the last segment.
156 * See section 4.9.1 and figures 15 and 16.
158 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
159 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
161 struct xhci_ring *ring;
162 struct xhci_segment *prev;
164 ring = kzalloc(sizeof *(ring), flags);
165 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
166 if (!ring)
167 return NULL;
169 INIT_LIST_HEAD(&ring->td_list);
170 if (num_segs == 0)
171 return ring;
173 ring->first_seg = xhci_segment_alloc(xhci, flags);
174 if (!ring->first_seg)
175 goto fail;
176 num_segs--;
178 prev = ring->first_seg;
179 while (num_segs > 0) {
180 struct xhci_segment *next;
182 next = xhci_segment_alloc(xhci, flags);
183 if (!next)
184 goto fail;
185 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
187 prev = next;
188 num_segs--;
190 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
192 if (link_trbs) {
193 /* See section 4.9.2.1 and 6.4.4.1 */
194 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
195 cpu_to_le32(LINK_TOGGLE);
196 xhci_dbg(xhci, "Wrote link toggle flag to"
197 " segment %p (virtual), 0x%llx (DMA)\n",
198 prev, (unsigned long long)prev->dma);
200 xhci_initialize_ring_info(ring);
201 return ring;
203 fail:
204 xhci_ring_free(xhci, ring);
205 return NULL;
208 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
209 struct xhci_virt_device *virt_dev,
210 unsigned int ep_index)
212 int rings_cached;
214 rings_cached = virt_dev->num_rings_cached;
215 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
216 virt_dev->ring_cache[rings_cached] =
217 virt_dev->eps[ep_index].ring;
218 virt_dev->num_rings_cached++;
219 xhci_dbg(xhci, "Cached old ring, "
220 "%d ring%s cached\n",
221 virt_dev->num_rings_cached,
222 (virt_dev->num_rings_cached > 1) ? "s" : "");
223 } else {
224 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
225 xhci_dbg(xhci, "Ring cache full (%d rings), "
226 "freeing ring\n",
227 virt_dev->num_rings_cached);
229 virt_dev->eps[ep_index].ring = NULL;
232 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
233 * pointers to the beginning of the ring.
235 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
236 struct xhci_ring *ring, bool isoc)
238 struct xhci_segment *seg = ring->first_seg;
239 do {
240 memset(seg->trbs, 0,
241 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
242 /* All endpoint rings have link TRBs */
243 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
244 seg = seg->next;
245 } while (seg != ring->first_seg);
246 xhci_initialize_ring_info(ring);
247 /* td list should be empty since all URBs have been cancelled,
248 * but just in case...
250 INIT_LIST_HEAD(&ring->td_list);
253 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
255 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
256 int type, gfp_t flags)
258 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
259 if (!ctx)
260 return NULL;
262 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
263 ctx->type = type;
264 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
265 if (type == XHCI_CTX_TYPE_INPUT)
266 ctx->size += CTX_SIZE(xhci->hcc_params);
268 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
269 memset(ctx->bytes, 0, ctx->size);
270 return ctx;
273 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
274 struct xhci_container_ctx *ctx)
276 if (!ctx)
277 return;
278 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
279 kfree(ctx);
282 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
283 struct xhci_container_ctx *ctx)
285 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
286 return (struct xhci_input_control_ctx *)ctx->bytes;
289 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
290 struct xhci_container_ctx *ctx)
292 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
293 return (struct xhci_slot_ctx *)ctx->bytes;
295 return (struct xhci_slot_ctx *)
296 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
299 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
300 struct xhci_container_ctx *ctx,
301 unsigned int ep_index)
303 /* increment ep index by offset of start of ep ctx array */
304 ep_index++;
305 if (ctx->type == XHCI_CTX_TYPE_INPUT)
306 ep_index++;
308 return (struct xhci_ep_ctx *)
309 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
313 /***************** Streams structures manipulation *************************/
315 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
316 unsigned int num_stream_ctxs,
317 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
319 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
321 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
322 pci_free_consistent(pdev,
323 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
324 stream_ctx, dma);
325 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
326 return dma_pool_free(xhci->small_streams_pool,
327 stream_ctx, dma);
328 else
329 return dma_pool_free(xhci->medium_streams_pool,
330 stream_ctx, dma);
334 * The stream context array for each endpoint with bulk streams enabled can
335 * vary in size, based on:
336 * - how many streams the endpoint supports,
337 * - the maximum primary stream array size the host controller supports,
338 * - and how many streams the device driver asks for.
340 * The stream context array must be a power of 2, and can be as small as
341 * 64 bytes or as large as 1MB.
343 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
344 unsigned int num_stream_ctxs, dma_addr_t *dma,
345 gfp_t mem_flags)
347 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
349 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
350 return pci_alloc_consistent(pdev,
351 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
352 dma);
353 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
354 return dma_pool_alloc(xhci->small_streams_pool,
355 mem_flags, dma);
356 else
357 return dma_pool_alloc(xhci->medium_streams_pool,
358 mem_flags, dma);
361 struct xhci_ring *xhci_dma_to_transfer_ring(
362 struct xhci_virt_ep *ep,
363 u64 address)
365 if (ep->ep_state & EP_HAS_STREAMS)
366 return radix_tree_lookup(&ep->stream_info->trb_address_map,
367 address >> SEGMENT_SHIFT);
368 return ep->ring;
371 /* Only use this when you know stream_info is valid */
372 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
373 static struct xhci_ring *dma_to_stream_ring(
374 struct xhci_stream_info *stream_info,
375 u64 address)
377 return radix_tree_lookup(&stream_info->trb_address_map,
378 address >> SEGMENT_SHIFT);
380 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
382 struct xhci_ring *xhci_stream_id_to_ring(
383 struct xhci_virt_device *dev,
384 unsigned int ep_index,
385 unsigned int stream_id)
387 struct xhci_virt_ep *ep = &dev->eps[ep_index];
389 if (stream_id == 0)
390 return ep->ring;
391 if (!ep->stream_info)
392 return NULL;
394 if (stream_id > ep->stream_info->num_streams)
395 return NULL;
396 return ep->stream_info->stream_rings[stream_id];
399 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
400 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
401 unsigned int num_streams,
402 struct xhci_stream_info *stream_info)
404 u32 cur_stream;
405 struct xhci_ring *cur_ring;
406 u64 addr;
408 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
409 struct xhci_ring *mapped_ring;
410 int trb_size = sizeof(union xhci_trb);
412 cur_ring = stream_info->stream_rings[cur_stream];
413 for (addr = cur_ring->first_seg->dma;
414 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
415 addr += trb_size) {
416 mapped_ring = dma_to_stream_ring(stream_info, addr);
417 if (cur_ring != mapped_ring) {
418 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
419 "didn't map to stream ID %u; "
420 "mapped to ring %p\n",
421 (unsigned long long) addr,
422 cur_stream,
423 mapped_ring);
424 return -EINVAL;
427 /* One TRB after the end of the ring segment shouldn't return a
428 * pointer to the current ring (although it may be a part of a
429 * different ring).
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 if (mapped_ring != cur_ring) {
433 /* One TRB before should also fail */
434 addr = cur_ring->first_seg->dma - trb_size;
435 mapped_ring = dma_to_stream_ring(stream_info, addr);
437 if (mapped_ring == cur_ring) {
438 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
439 "mapped to valid stream ID %u; "
440 "mapped ring = %p\n",
441 (unsigned long long) addr,
442 cur_stream,
443 mapped_ring);
444 return -EINVAL;
447 return 0;
449 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
452 * Change an endpoint's internal structure so it supports stream IDs. The
453 * number of requested streams includes stream 0, which cannot be used by device
454 * drivers.
456 * The number of stream contexts in the stream context array may be bigger than
457 * the number of streams the driver wants to use. This is because the number of
458 * stream context array entries must be a power of two.
460 * We need a radix tree for mapping physical addresses of TRBs to which stream
461 * ID they belong to. We need to do this because the host controller won't tell
462 * us which stream ring the TRB came from. We could store the stream ID in an
463 * event data TRB, but that doesn't help us for the cancellation case, since the
464 * endpoint may stop before it reaches that event data TRB.
466 * The radix tree maps the upper portion of the TRB DMA address to a ring
467 * segment that has the same upper portion of DMA addresses. For example, say I
468 * have segments of size 1KB, that are always 64-byte aligned. A segment may
469 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
470 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
471 * pass the radix tree a key to get the right stream ID:
473 * 0x10c90fff >> 10 = 0x43243
474 * 0x10c912c0 >> 10 = 0x43244
475 * 0x10c91400 >> 10 = 0x43245
477 * Obviously, only those TRBs with DMA addresses that are within the segment
478 * will make the radix tree return the stream ID for that ring.
480 * Caveats for the radix tree:
482 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
483 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
484 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
485 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
486 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
487 * extended systems (where the DMA address can be bigger than 32-bits),
488 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
490 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
491 unsigned int num_stream_ctxs,
492 unsigned int num_streams, gfp_t mem_flags)
494 struct xhci_stream_info *stream_info;
495 u32 cur_stream;
496 struct xhci_ring *cur_ring;
497 unsigned long key;
498 u64 addr;
499 int ret;
501 xhci_dbg(xhci, "Allocating %u streams and %u "
502 "stream context array entries.\n",
503 num_streams, num_stream_ctxs);
504 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
505 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
506 return NULL;
508 xhci->cmd_ring_reserved_trbs++;
510 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
511 if (!stream_info)
512 goto cleanup_trbs;
514 stream_info->num_streams = num_streams;
515 stream_info->num_stream_ctxs = num_stream_ctxs;
517 /* Initialize the array of virtual pointers to stream rings. */
518 stream_info->stream_rings = kzalloc(
519 sizeof(struct xhci_ring *)*num_streams,
520 mem_flags);
521 if (!stream_info->stream_rings)
522 goto cleanup_info;
524 /* Initialize the array of DMA addresses for stream rings for the HW. */
525 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
526 num_stream_ctxs, &stream_info->ctx_array_dma,
527 mem_flags);
528 if (!stream_info->stream_ctx_array)
529 goto cleanup_ctx;
530 memset(stream_info->stream_ctx_array, 0,
531 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
533 /* Allocate everything needed to free the stream rings later */
534 stream_info->free_streams_command =
535 xhci_alloc_command(xhci, true, true, mem_flags);
536 if (!stream_info->free_streams_command)
537 goto cleanup_ctx;
539 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
541 /* Allocate rings for all the streams that the driver will use,
542 * and add their segment DMA addresses to the radix tree.
543 * Stream 0 is reserved.
545 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
546 stream_info->stream_rings[cur_stream] =
547 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
548 cur_ring = stream_info->stream_rings[cur_stream];
549 if (!cur_ring)
550 goto cleanup_rings;
551 cur_ring->stream_id = cur_stream;
552 /* Set deq ptr, cycle bit, and stream context type */
553 addr = cur_ring->first_seg->dma |
554 SCT_FOR_CTX(SCT_PRI_TR) |
555 cur_ring->cycle_state;
556 stream_info->stream_ctx_array[cur_stream].stream_ring =
557 cpu_to_le64(addr);
558 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
559 cur_stream, (unsigned long long) addr);
561 key = (unsigned long)
562 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
563 ret = radix_tree_insert(&stream_info->trb_address_map,
564 key, cur_ring);
565 if (ret) {
566 xhci_ring_free(xhci, cur_ring);
567 stream_info->stream_rings[cur_stream] = NULL;
568 goto cleanup_rings;
571 /* Leave the other unused stream ring pointers in the stream context
572 * array initialized to zero. This will cause the xHC to give us an
573 * error if the device asks for a stream ID we don't have setup (if it
574 * was any other way, the host controller would assume the ring is
575 * "empty" and wait forever for data to be queued to that stream ID).
577 #if XHCI_DEBUG
578 /* Do a little test on the radix tree to make sure it returns the
579 * correct values.
581 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
582 goto cleanup_rings;
583 #endif
585 return stream_info;
587 cleanup_rings:
588 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
589 cur_ring = stream_info->stream_rings[cur_stream];
590 if (cur_ring) {
591 addr = cur_ring->first_seg->dma;
592 radix_tree_delete(&stream_info->trb_address_map,
593 addr >> SEGMENT_SHIFT);
594 xhci_ring_free(xhci, cur_ring);
595 stream_info->stream_rings[cur_stream] = NULL;
598 xhci_free_command(xhci, stream_info->free_streams_command);
599 cleanup_ctx:
600 kfree(stream_info->stream_rings);
601 cleanup_info:
602 kfree(stream_info);
603 cleanup_trbs:
604 xhci->cmd_ring_reserved_trbs--;
605 return NULL;
608 * Sets the MaxPStreams field and the Linear Stream Array field.
609 * Sets the dequeue pointer to the stream context array.
611 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
612 struct xhci_ep_ctx *ep_ctx,
613 struct xhci_stream_info *stream_info)
615 u32 max_primary_streams;
616 /* MaxPStreams is the number of stream context array entries, not the
617 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
618 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
620 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
621 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
622 1 << (max_primary_streams + 1));
623 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
624 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
625 | EP_HAS_LSA);
626 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
630 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
631 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
632 * not at the beginning of the ring).
634 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
635 struct xhci_ep_ctx *ep_ctx,
636 struct xhci_virt_ep *ep)
638 dma_addr_t addr;
639 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
640 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
641 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
644 /* Frees all stream contexts associated with the endpoint,
646 * Caller should fix the endpoint context streams fields.
648 void xhci_free_stream_info(struct xhci_hcd *xhci,
649 struct xhci_stream_info *stream_info)
651 int cur_stream;
652 struct xhci_ring *cur_ring;
653 dma_addr_t addr;
655 if (!stream_info)
656 return;
658 for (cur_stream = 1; cur_stream < stream_info->num_streams;
659 cur_stream++) {
660 cur_ring = stream_info->stream_rings[cur_stream];
661 if (cur_ring) {
662 addr = cur_ring->first_seg->dma;
663 radix_tree_delete(&stream_info->trb_address_map,
664 addr >> SEGMENT_SHIFT);
665 xhci_ring_free(xhci, cur_ring);
666 stream_info->stream_rings[cur_stream] = NULL;
669 xhci_free_command(xhci, stream_info->free_streams_command);
670 xhci->cmd_ring_reserved_trbs--;
671 if (stream_info->stream_ctx_array)
672 xhci_free_stream_ctx(xhci,
673 stream_info->num_stream_ctxs,
674 stream_info->stream_ctx_array,
675 stream_info->ctx_array_dma);
677 if (stream_info)
678 kfree(stream_info->stream_rings);
679 kfree(stream_info);
683 /***************** Device context manipulation *************************/
685 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
686 struct xhci_virt_ep *ep)
688 init_timer(&ep->stop_cmd_timer);
689 ep->stop_cmd_timer.data = (unsigned long) ep;
690 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
691 ep->xhci = xhci;
694 /* All the xhci_tds in the ring's TD list should be freed at this point */
695 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
697 struct xhci_virt_device *dev;
698 int i;
700 /* Slot ID 0 is reserved */
701 if (slot_id == 0 || !xhci->devs[slot_id])
702 return;
704 dev = xhci->devs[slot_id];
705 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
706 if (!dev)
707 return;
709 for (i = 0; i < 31; ++i) {
710 if (dev->eps[i].ring)
711 xhci_ring_free(xhci, dev->eps[i].ring);
712 if (dev->eps[i].stream_info)
713 xhci_free_stream_info(xhci,
714 dev->eps[i].stream_info);
717 if (dev->ring_cache) {
718 for (i = 0; i < dev->num_rings_cached; i++)
719 xhci_ring_free(xhci, dev->ring_cache[i]);
720 kfree(dev->ring_cache);
723 if (dev->in_ctx)
724 xhci_free_container_ctx(xhci, dev->in_ctx);
725 if (dev->out_ctx)
726 xhci_free_container_ctx(xhci, dev->out_ctx);
728 kfree(xhci->devs[slot_id]);
729 xhci->devs[slot_id] = NULL;
732 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
733 struct usb_device *udev, gfp_t flags)
735 struct xhci_virt_device *dev;
736 int i;
738 /* Slot ID 0 is reserved */
739 if (slot_id == 0 || xhci->devs[slot_id]) {
740 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
741 return 0;
744 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
745 if (!xhci->devs[slot_id])
746 return 0;
747 dev = xhci->devs[slot_id];
749 /* Allocate the (output) device context that will be used in the HC. */
750 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
751 if (!dev->out_ctx)
752 goto fail;
754 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
755 (unsigned long long)dev->out_ctx->dma);
757 /* Allocate the (input) device context for address device command */
758 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
759 if (!dev->in_ctx)
760 goto fail;
762 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
763 (unsigned long long)dev->in_ctx->dma);
765 /* Initialize the cancellation list and watchdog timers for each ep */
766 for (i = 0; i < 31; i++) {
767 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
768 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
771 /* Allocate endpoint 0 ring */
772 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
773 if (!dev->eps[0].ring)
774 goto fail;
776 /* Allocate pointers to the ring cache */
777 dev->ring_cache = kzalloc(
778 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
779 flags);
780 if (!dev->ring_cache)
781 goto fail;
782 dev->num_rings_cached = 0;
784 init_completion(&dev->cmd_completion);
785 INIT_LIST_HEAD(&dev->cmd_list);
786 dev->udev = udev;
788 /* Point to output device context in dcbaa. */
789 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
790 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
791 slot_id,
792 &xhci->dcbaa->dev_context_ptrs[slot_id],
793 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
795 return 1;
796 fail:
797 xhci_free_virt_device(xhci, slot_id);
798 return 0;
801 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
802 struct usb_device *udev)
804 struct xhci_virt_device *virt_dev;
805 struct xhci_ep_ctx *ep0_ctx;
806 struct xhci_ring *ep_ring;
808 virt_dev = xhci->devs[udev->slot_id];
809 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
810 ep_ring = virt_dev->eps[0].ring;
812 * FIXME we don't keep track of the dequeue pointer very well after a
813 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
814 * host to our enqueue pointer. This should only be called after a
815 * configured device has reset, so all control transfers should have
816 * been completed or cancelled before the reset.
818 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
819 ep_ring->enqueue)
820 | ep_ring->cycle_state);
824 * The xHCI roothub may have ports of differing speeds in any order in the port
825 * status registers. xhci->port_array provides an array of the port speed for
826 * each offset into the port status registers.
828 * The xHCI hardware wants to know the roothub port number that the USB device
829 * is attached to (or the roothub port its ancestor hub is attached to). All we
830 * know is the index of that port under either the USB 2.0 or the USB 3.0
831 * roothub, but that doesn't give us the real index into the HW port status
832 * registers. Scan through the xHCI roothub port array, looking for the Nth
833 * entry of the correct port speed. Return the port number of that entry.
835 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
836 struct usb_device *udev)
838 struct usb_device *top_dev;
839 unsigned int num_similar_speed_ports;
840 unsigned int faked_port_num;
841 int i;
843 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
844 top_dev = top_dev->parent)
845 /* Found device below root hub */;
846 faked_port_num = top_dev->portnum;
847 for (i = 0, num_similar_speed_ports = 0;
848 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
849 u8 port_speed = xhci->port_array[i];
852 * Skip ports that don't have known speeds, or have duplicate
853 * Extended Capabilities port speed entries.
855 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
856 continue;
859 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
860 * 1.1 ports are under the USB 2.0 hub. If the port speed
861 * matches the device speed, it's a similar speed port.
863 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
864 num_similar_speed_ports++;
865 if (num_similar_speed_ports == faked_port_num)
866 /* Roothub ports are numbered from 1 to N */
867 return i+1;
869 return 0;
872 /* Setup an xHCI virtual device for a Set Address command */
873 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
875 struct xhci_virt_device *dev;
876 struct xhci_ep_ctx *ep0_ctx;
877 struct xhci_slot_ctx *slot_ctx;
878 u32 port_num;
879 struct usb_device *top_dev;
881 dev = xhci->devs[udev->slot_id];
882 /* Slot ID 0 is reserved */
883 if (udev->slot_id == 0 || !dev) {
884 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
885 udev->slot_id);
886 return -EINVAL;
888 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
889 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
891 /* 3) Only the control endpoint is valid - one endpoint context */
892 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
893 switch (udev->speed) {
894 case USB_SPEED_SUPER:
895 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
896 break;
897 case USB_SPEED_HIGH:
898 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
899 break;
900 case USB_SPEED_FULL:
901 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
902 break;
903 case USB_SPEED_LOW:
904 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
905 break;
906 case USB_SPEED_WIRELESS:
907 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
908 return -EINVAL;
909 break;
910 default:
911 /* Speed was set earlier, this shouldn't happen. */
912 BUG();
914 /* Find the root hub port this device is under */
915 port_num = xhci_find_real_port_number(xhci, udev);
916 if (!port_num)
917 return -EINVAL;
918 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
919 /* Set the port number in the virtual_device to the faked port number */
920 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
921 top_dev = top_dev->parent)
922 /* Found device below root hub */;
923 dev->port = top_dev->portnum;
924 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
925 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927 /* Is this a LS/FS device under an external HS hub? */
928 if (udev->tt && udev->tt->hub->parent) {
929 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
930 (udev->ttport << 8));
931 if (udev->tt->multi)
932 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
935 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937 /* Step 4 - ring already allocated */
938 /* Step 5 */
939 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 * XXX: Not sure about wireless USB devices.
943 switch (udev->speed) {
944 case USB_SPEED_SUPER:
945 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
946 break;
947 case USB_SPEED_HIGH:
948 /* USB core guesses at a 64-byte max packet first for FS devices */
949 case USB_SPEED_FULL:
950 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
951 break;
952 case USB_SPEED_LOW:
953 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
954 break;
955 case USB_SPEED_WIRELESS:
956 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
957 return -EINVAL;
958 break;
959 default:
960 /* New speed? */
961 BUG();
963 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
964 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
967 dev->eps[0].ring->cycle_state);
969 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971 return 0;
975 * Convert interval expressed as 2^(bInterval - 1) == interval into
976 * straight exponent value 2^n == interval.
979 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
980 struct usb_host_endpoint *ep)
982 unsigned int interval;
984 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
985 if (interval != ep->desc.bInterval - 1)
986 dev_warn(&udev->dev,
987 "ep %#x - rounding interval to %d %sframes\n",
988 ep->desc.bEndpointAddress,
989 1 << interval,
990 udev->speed == USB_SPEED_FULL ? "" : "micro");
992 if (udev->speed == USB_SPEED_FULL) {
994 * Full speed isoc endpoints specify interval in frames,
995 * not microframes. We are using microframes everywhere,
996 * so adjust accordingly.
998 interval += 3; /* 1 frame = 2^3 uframes */
1001 return interval;
1005 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1006 * microframes, rounded down to nearest power of 2.
1008 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1009 struct usb_host_endpoint *ep)
1011 unsigned int interval;
1013 interval = fls(8 * ep->desc.bInterval) - 1;
1014 interval = clamp_val(interval, 3, 10);
1015 if ((1 << interval) != 8 * ep->desc.bInterval)
1016 dev_warn(&udev->dev,
1017 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1018 ep->desc.bEndpointAddress,
1019 1 << interval,
1020 8 * ep->desc.bInterval);
1022 return interval;
1025 /* Return the polling or NAK interval.
1027 * The polling interval is expressed in "microframes". If xHCI's Interval field
1028 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1031 * is set to 0.
1033 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1034 struct usb_host_endpoint *ep)
1036 unsigned int interval = 0;
1038 switch (udev->speed) {
1039 case USB_SPEED_HIGH:
1040 /* Max NAK rate */
1041 if (usb_endpoint_xfer_control(&ep->desc) ||
1042 usb_endpoint_xfer_bulk(&ep->desc)) {
1043 interval = ep->desc.bInterval;
1044 break;
1046 /* Fall through - SS and HS isoc/int have same decoding */
1048 case USB_SPEED_SUPER:
1049 if (usb_endpoint_xfer_int(&ep->desc) ||
1050 usb_endpoint_xfer_isoc(&ep->desc)) {
1051 interval = xhci_parse_exponent_interval(udev, ep);
1053 break;
1055 case USB_SPEED_FULL:
1056 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1057 interval = xhci_parse_exponent_interval(udev, ep);
1058 break;
1061 * Fall through for interrupt endpoint interval decoding
1062 * since it uses the same rules as low speed interrupt
1063 * endpoints.
1066 case USB_SPEED_LOW:
1067 if (usb_endpoint_xfer_int(&ep->desc) ||
1068 usb_endpoint_xfer_isoc(&ep->desc)) {
1070 interval = xhci_parse_frame_interval(udev, ep);
1072 break;
1074 default:
1075 BUG();
1077 return EP_INTERVAL(interval);
1080 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1081 * High speed endpoint descriptors can define "the number of additional
1082 * transaction opportunities per microframe", but that goes in the Max Burst
1083 * endpoint context field.
1085 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1086 struct usb_host_endpoint *ep)
1088 if (udev->speed != USB_SPEED_SUPER ||
1089 !usb_endpoint_xfer_isoc(&ep->desc))
1090 return 0;
1091 return ep->ss_ep_comp.bmAttributes;
1094 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1095 struct usb_host_endpoint *ep)
1097 int in;
1098 u32 type;
1100 in = usb_endpoint_dir_in(&ep->desc);
1101 if (usb_endpoint_xfer_control(&ep->desc)) {
1102 type = EP_TYPE(CTRL_EP);
1103 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1104 if (in)
1105 type = EP_TYPE(BULK_IN_EP);
1106 else
1107 type = EP_TYPE(BULK_OUT_EP);
1108 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1109 if (in)
1110 type = EP_TYPE(ISOC_IN_EP);
1111 else
1112 type = EP_TYPE(ISOC_OUT_EP);
1113 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1114 if (in)
1115 type = EP_TYPE(INT_IN_EP);
1116 else
1117 type = EP_TYPE(INT_OUT_EP);
1118 } else {
1119 BUG();
1121 return type;
1124 /* Return the maximum endpoint service interval time (ESIT) payload.
1125 * Basically, this is the maxpacket size, multiplied by the burst size
1126 * and mult size.
1128 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1129 struct usb_device *udev,
1130 struct usb_host_endpoint *ep)
1132 int max_burst;
1133 int max_packet;
1135 /* Only applies for interrupt or isochronous endpoints */
1136 if (usb_endpoint_xfer_control(&ep->desc) ||
1137 usb_endpoint_xfer_bulk(&ep->desc))
1138 return 0;
1140 if (udev->speed == USB_SPEED_SUPER)
1141 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1144 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1145 /* A 0 in max burst means 1 transfer per ESIT */
1146 return max_packet * (max_burst + 1);
1149 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1150 * Drivers will have to call usb_alloc_streams() to do that.
1152 int xhci_endpoint_init(struct xhci_hcd *xhci,
1153 struct xhci_virt_device *virt_dev,
1154 struct usb_device *udev,
1155 struct usb_host_endpoint *ep,
1156 gfp_t mem_flags)
1158 unsigned int ep_index;
1159 struct xhci_ep_ctx *ep_ctx;
1160 struct xhci_ring *ep_ring;
1161 unsigned int max_packet;
1162 unsigned int max_burst;
1163 u32 max_esit_payload;
1165 ep_index = xhci_get_endpoint_index(&ep->desc);
1166 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168 /* Set up the endpoint ring */
1170 * Isochronous endpoint ring needs bigger size because one isoc URB
1171 * carries multiple packets and it will insert multiple tds to the
1172 * ring.
1173 * This should be replaced with dynamic ring resizing in the future.
1175 if (usb_endpoint_xfer_isoc(&ep->desc))
1176 virt_dev->eps[ep_index].new_ring =
1177 xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1178 else
1179 virt_dev->eps[ep_index].new_ring =
1180 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1181 if (!virt_dev->eps[ep_index].new_ring) {
1182 /* Attempt to use the ring cache */
1183 if (virt_dev->num_rings_cached == 0)
1184 return -ENOMEM;
1185 virt_dev->eps[ep_index].new_ring =
1186 virt_dev->ring_cache[virt_dev->num_rings_cached];
1187 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1188 virt_dev->num_rings_cached--;
1189 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1190 usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1192 virt_dev->eps[ep_index].skip = false;
1193 ep_ring = virt_dev->eps[ep_index].new_ring;
1194 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1196 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1199 /* FIXME dig Mult and streams info out of ep companion desc */
1201 /* Allow 3 retries for everything but isoc;
1202 * CErr shall be set to 0 for Isoch endpoints.
1204 if (!usb_endpoint_xfer_isoc(&ep->desc))
1205 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206 else
1207 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1209 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1211 /* Set the max packet size and max burst */
1212 switch (udev->speed) {
1213 case USB_SPEED_SUPER:
1214 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216 /* dig out max burst from ep companion desc */
1217 max_packet = ep->ss_ep_comp.bMaxBurst;
1218 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219 break;
1220 case USB_SPEED_HIGH:
1221 /* bits 11:12 specify the number of additional transaction
1222 * opportunities per microframe (USB 2.0, section 9.6.6)
1224 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225 usb_endpoint_xfer_int(&ep->desc)) {
1226 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227 & 0x1800) >> 11;
1228 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1230 /* Fall through */
1231 case USB_SPEED_FULL:
1232 case USB_SPEED_LOW:
1233 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235 break;
1236 default:
1237 BUG();
1239 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1243 * XXX no idea how to calculate the average TRB buffer length for bulk
1244 * endpoints, as the driver gives us no clue how big each scatter gather
1245 * list entry (or buffer) is going to be.
1247 * For isochronous and interrupt endpoints, we set it to the max
1248 * available, until we have new API in the USB core to allow drivers to
1249 * declare how much bandwidth they actually need.
1251 * Normally, it would be calculated by taking the total of the buffer
1252 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1254 * use Event Data TRBs, and we don't chain in a link TRB on short
1255 * transfers, we're basically dividing by 1.
1257 * xHCI 1.0 specification indicates that the Average TRB Length should
1258 * be set to 8 for control endpoints.
1260 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262 else
1263 ep_ctx->tx_info |=
1264 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1266 /* FIXME Debug endpoint context */
1267 return 0;
1270 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271 struct xhci_virt_device *virt_dev,
1272 struct usb_host_endpoint *ep)
1274 unsigned int ep_index;
1275 struct xhci_ep_ctx *ep_ctx;
1277 ep_index = xhci_get_endpoint_index(&ep->desc);
1278 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1280 ep_ctx->ep_info = 0;
1281 ep_ctx->ep_info2 = 0;
1282 ep_ctx->deq = 0;
1283 ep_ctx->tx_info = 0;
1284 /* Don't free the endpoint ring until the set interface or configuration
1285 * request succeeds.
1289 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1293 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294 struct xhci_container_ctx *in_ctx,
1295 struct xhci_container_ctx *out_ctx,
1296 unsigned int ep_index)
1298 struct xhci_ep_ctx *out_ep_ctx;
1299 struct xhci_ep_ctx *in_ep_ctx;
1301 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1304 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306 in_ep_ctx->deq = out_ep_ctx->deq;
1307 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1310 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command. Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1315 void xhci_slot_copy(struct xhci_hcd *xhci,
1316 struct xhci_container_ctx *in_ctx,
1317 struct xhci_container_ctx *out_ctx)
1319 struct xhci_slot_ctx *in_slot_ctx;
1320 struct xhci_slot_ctx *out_slot_ctx;
1322 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1325 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1331 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1334 int i;
1335 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1338 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1340 if (!num_sp)
1341 return 0;
1343 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344 if (!xhci->scratchpad)
1345 goto fail_sp;
1347 xhci->scratchpad->sp_array =
1348 pci_alloc_consistent(to_pci_dev(dev),
1349 num_sp * sizeof(u64),
1350 &xhci->scratchpad->sp_dma);
1351 if (!xhci->scratchpad->sp_array)
1352 goto fail_sp2;
1354 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355 if (!xhci->scratchpad->sp_buffers)
1356 goto fail_sp3;
1358 xhci->scratchpad->sp_dma_buffers =
1359 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1361 if (!xhci->scratchpad->sp_dma_buffers)
1362 goto fail_sp4;
1364 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365 for (i = 0; i < num_sp; i++) {
1366 dma_addr_t dma;
1367 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368 xhci->page_size, &dma);
1369 if (!buf)
1370 goto fail_sp5;
1372 xhci->scratchpad->sp_array[i] = dma;
1373 xhci->scratchpad->sp_buffers[i] = buf;
1374 xhci->scratchpad->sp_dma_buffers[i] = dma;
1377 return 0;
1379 fail_sp5:
1380 for (i = i - 1; i >= 0; i--) {
1381 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382 xhci->scratchpad->sp_buffers[i],
1383 xhci->scratchpad->sp_dma_buffers[i]);
1385 kfree(xhci->scratchpad->sp_dma_buffers);
1387 fail_sp4:
1388 kfree(xhci->scratchpad->sp_buffers);
1390 fail_sp3:
1391 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392 xhci->scratchpad->sp_array,
1393 xhci->scratchpad->sp_dma);
1395 fail_sp2:
1396 kfree(xhci->scratchpad);
1397 xhci->scratchpad = NULL;
1399 fail_sp:
1400 return -ENOMEM;
1403 static void scratchpad_free(struct xhci_hcd *xhci)
1405 int num_sp;
1406 int i;
1407 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1409 if (!xhci->scratchpad)
1410 return;
1412 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1414 for (i = 0; i < num_sp; i++) {
1415 pci_free_consistent(pdev, xhci->page_size,
1416 xhci->scratchpad->sp_buffers[i],
1417 xhci->scratchpad->sp_dma_buffers[i]);
1419 kfree(xhci->scratchpad->sp_dma_buffers);
1420 kfree(xhci->scratchpad->sp_buffers);
1421 pci_free_consistent(pdev, num_sp * sizeof(u64),
1422 xhci->scratchpad->sp_array,
1423 xhci->scratchpad->sp_dma);
1424 kfree(xhci->scratchpad);
1425 xhci->scratchpad = NULL;
1428 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429 bool allocate_in_ctx, bool allocate_completion,
1430 gfp_t mem_flags)
1432 struct xhci_command *command;
1434 command = kzalloc(sizeof(*command), mem_flags);
1435 if (!command)
1436 return NULL;
1438 if (allocate_in_ctx) {
1439 command->in_ctx =
1440 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441 mem_flags);
1442 if (!command->in_ctx) {
1443 kfree(command);
1444 return NULL;
1448 if (allocate_completion) {
1449 command->completion =
1450 kzalloc(sizeof(struct completion), mem_flags);
1451 if (!command->completion) {
1452 xhci_free_container_ctx(xhci, command->in_ctx);
1453 kfree(command);
1454 return NULL;
1456 init_completion(command->completion);
1459 command->status = 0;
1460 INIT_LIST_HEAD(&command->cmd_list);
1461 return command;
1464 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1466 int last;
1468 if (!urb_priv)
1469 return;
1471 last = urb_priv->length - 1;
1472 if (last >= 0) {
1473 int i;
1474 for (i = 0; i <= last; i++)
1475 kfree(urb_priv->td[i]);
1477 kfree(urb_priv);
1480 void xhci_free_command(struct xhci_hcd *xhci,
1481 struct xhci_command *command)
1483 xhci_free_container_ctx(xhci,
1484 command->in_ctx);
1485 kfree(command->completion);
1486 kfree(command);
1489 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1491 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492 int size;
1493 int i;
1495 /* Free the Event Ring Segment Table and the actual Event Ring */
1496 if (xhci->ir_set) {
1497 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1501 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502 if (xhci->erst.entries)
1503 pci_free_consistent(pdev, size,
1504 xhci->erst.entries, xhci->erst.erst_dma_addr);
1505 xhci->erst.entries = NULL;
1506 xhci_dbg(xhci, "Freed ERST\n");
1507 if (xhci->event_ring)
1508 xhci_ring_free(xhci, xhci->event_ring);
1509 xhci->event_ring = NULL;
1510 xhci_dbg(xhci, "Freed event ring\n");
1512 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1513 if (xhci->cmd_ring)
1514 xhci_ring_free(xhci, xhci->cmd_ring);
1515 xhci->cmd_ring = NULL;
1516 xhci_dbg(xhci, "Freed command ring\n");
1518 for (i = 1; i < MAX_HC_SLOTS; ++i)
1519 xhci_free_virt_device(xhci, i);
1521 if (xhci->segment_pool)
1522 dma_pool_destroy(xhci->segment_pool);
1523 xhci->segment_pool = NULL;
1524 xhci_dbg(xhci, "Freed segment pool\n");
1526 if (xhci->device_pool)
1527 dma_pool_destroy(xhci->device_pool);
1528 xhci->device_pool = NULL;
1529 xhci_dbg(xhci, "Freed device context pool\n");
1531 if (xhci->small_streams_pool)
1532 dma_pool_destroy(xhci->small_streams_pool);
1533 xhci->small_streams_pool = NULL;
1534 xhci_dbg(xhci, "Freed small stream array pool\n");
1536 if (xhci->medium_streams_pool)
1537 dma_pool_destroy(xhci->medium_streams_pool);
1538 xhci->medium_streams_pool = NULL;
1539 xhci_dbg(xhci, "Freed medium stream array pool\n");
1541 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542 if (xhci->dcbaa)
1543 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544 xhci->dcbaa, xhci->dcbaa->dma);
1545 xhci->dcbaa = NULL;
1547 scratchpad_free(xhci);
1549 xhci->num_usb2_ports = 0;
1550 xhci->num_usb3_ports = 0;
1551 kfree(xhci->usb2_ports);
1552 kfree(xhci->usb3_ports);
1553 kfree(xhci->port_array);
1555 xhci->page_size = 0;
1556 xhci->page_shift = 0;
1557 xhci->bus_state[0].bus_suspended = 0;
1558 xhci->bus_state[1].bus_suspended = 0;
1561 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562 struct xhci_segment *input_seg,
1563 union xhci_trb *start_trb,
1564 union xhci_trb *end_trb,
1565 dma_addr_t input_dma,
1566 struct xhci_segment *result_seg,
1567 char *test_name, int test_number)
1569 unsigned long long start_dma;
1570 unsigned long long end_dma;
1571 struct xhci_segment *seg;
1573 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1576 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577 if (seg != result_seg) {
1578 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579 test_name, test_number);
1580 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581 "input DMA 0x%llx\n",
1582 input_seg,
1583 (unsigned long long) input_dma);
1584 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585 "ending TRB %p (0x%llx DMA)\n",
1586 start_trb, start_dma,
1587 end_trb, end_dma);
1588 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589 result_seg, seg);
1590 return -1;
1592 return 0;
1595 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1598 struct {
1599 dma_addr_t input_dma;
1600 struct xhci_segment *result_seg;
1601 } simple_test_vector [] = {
1602 /* A zeroed DMA field should fail */
1603 { 0, NULL },
1604 /* One TRB before the ring start should fail */
1605 { xhci->event_ring->first_seg->dma - 16, NULL },
1606 /* One byte before the ring start should fail */
1607 { xhci->event_ring->first_seg->dma - 1, NULL },
1608 /* Starting TRB should succeed */
1609 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610 /* Ending TRB should succeed */
1611 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612 xhci->event_ring->first_seg },
1613 /* One byte after the ring end should fail */
1614 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615 /* One TRB after the ring end should fail */
1616 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617 /* An address of all ones should fail */
1618 { (dma_addr_t) (~0), NULL },
1620 struct {
1621 struct xhci_segment *input_seg;
1622 union xhci_trb *start_trb;
1623 union xhci_trb *end_trb;
1624 dma_addr_t input_dma;
1625 struct xhci_segment *result_seg;
1626 } complex_test_vector [] = {
1627 /* Test feeding a valid DMA address from a different ring */
1628 { .input_seg = xhci->event_ring->first_seg,
1629 .start_trb = xhci->event_ring->first_seg->trbs,
1630 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 .input_dma = xhci->cmd_ring->first_seg->dma,
1632 .result_seg = NULL,
1634 /* Test feeding a valid end TRB from a different ring */
1635 { .input_seg = xhci->event_ring->first_seg,
1636 .start_trb = xhci->event_ring->first_seg->trbs,
1637 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638 .input_dma = xhci->cmd_ring->first_seg->dma,
1639 .result_seg = NULL,
1641 /* Test feeding a valid start and end TRB from a different ring */
1642 { .input_seg = xhci->event_ring->first_seg,
1643 .start_trb = xhci->cmd_ring->first_seg->trbs,
1644 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645 .input_dma = xhci->cmd_ring->first_seg->dma,
1646 .result_seg = NULL,
1648 /* TRB in this ring, but after this TD */
1649 { .input_seg = xhci->event_ring->first_seg,
1650 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1651 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1652 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653 .result_seg = NULL,
1655 /* TRB in this ring, but before this TD */
1656 { .input_seg = xhci->event_ring->first_seg,
1657 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1658 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1659 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660 .result_seg = NULL,
1662 /* TRB in this ring, but after this wrapped TD */
1663 { .input_seg = xhci->event_ring->first_seg,
1664 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667 .result_seg = NULL,
1669 /* TRB in this ring, but before this wrapped TD */
1670 { .input_seg = xhci->event_ring->first_seg,
1671 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1673 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674 .result_seg = NULL,
1676 /* TRB not in this ring, and we have a wrapped TD */
1677 { .input_seg = xhci->event_ring->first_seg,
1678 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1680 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681 .result_seg = NULL,
1685 unsigned int num_tests;
1686 int i, ret;
1688 num_tests = ARRAY_SIZE(simple_test_vector);
1689 for (i = 0; i < num_tests; i++) {
1690 ret = xhci_test_trb_in_td(xhci,
1691 xhci->event_ring->first_seg,
1692 xhci->event_ring->first_seg->trbs,
1693 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694 simple_test_vector[i].input_dma,
1695 simple_test_vector[i].result_seg,
1696 "Simple", i);
1697 if (ret < 0)
1698 return ret;
1701 num_tests = ARRAY_SIZE(complex_test_vector);
1702 for (i = 0; i < num_tests; i++) {
1703 ret = xhci_test_trb_in_td(xhci,
1704 complex_test_vector[i].input_seg,
1705 complex_test_vector[i].start_trb,
1706 complex_test_vector[i].end_trb,
1707 complex_test_vector[i].input_dma,
1708 complex_test_vector[i].result_seg,
1709 "Complex", i);
1710 if (ret < 0)
1711 return ret;
1713 xhci_dbg(xhci, "TRB math tests passed.\n");
1714 return 0;
1717 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1719 u64 temp;
1720 dma_addr_t deq;
1722 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723 xhci->event_ring->dequeue);
1724 if (deq == 0 && !in_interrupt())
1725 xhci_warn(xhci, "WARN something wrong with SW event ring "
1726 "dequeue ptr.\n");
1727 /* Update HC event ring dequeue pointer */
1728 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729 temp &= ERST_PTR_MASK;
1730 /* Don't clear the EHB bit (which is RW1C) because
1731 * there might be more events to service.
1733 temp &= ~ERST_EHB;
1734 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735 "preserving EHB bit\n");
1736 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737 &xhci->ir_set->erst_dequeue);
1740 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741 __le32 __iomem *addr, u8 major_revision)
1743 u32 temp, port_offset, port_count;
1744 int i;
1746 if (major_revision > 0x03) {
1747 xhci_warn(xhci, "Ignoring unknown port speed, "
1748 "Ext Cap %p, revision = 0x%x\n",
1749 addr, major_revision);
1750 /* Ignoring port protocol we can't understand. FIXME */
1751 return;
1754 /* Port offset and count in the third dword, see section 7.2 */
1755 temp = xhci_readl(xhci, addr + 2);
1756 port_offset = XHCI_EXT_PORT_OFF(temp);
1757 port_count = XHCI_EXT_PORT_COUNT(temp);
1758 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759 "count = %u, revision = 0x%x\n",
1760 addr, port_offset, port_count, major_revision);
1761 /* Port count includes the current port offset */
1762 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1764 return;
1765 port_offset--;
1766 for (i = port_offset; i < (port_offset + port_count); i++) {
1767 /* Duplicate entry. Ignore the port if the revisions differ. */
1768 if (xhci->port_array[i] != 0) {
1769 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770 " port %u\n", addr, i);
1771 xhci_warn(xhci, "Port was marked as USB %u, "
1772 "duplicated as USB %u\n",
1773 xhci->port_array[i], major_revision);
1774 /* Only adjust the roothub port counts if we haven't
1775 * found a similar duplicate.
1777 if (xhci->port_array[i] != major_revision &&
1778 xhci->port_array[i] != DUPLICATE_ENTRY) {
1779 if (xhci->port_array[i] == 0x03)
1780 xhci->num_usb3_ports--;
1781 else
1782 xhci->num_usb2_ports--;
1783 xhci->port_array[i] = DUPLICATE_ENTRY;
1785 /* FIXME: Should we disable the port? */
1786 continue;
1788 xhci->port_array[i] = major_revision;
1789 if (major_revision == 0x03)
1790 xhci->num_usb3_ports++;
1791 else
1792 xhci->num_usb2_ports++;
1794 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be. We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1804 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1806 __le32 __iomem *addr;
1807 u32 offset;
1808 unsigned int num_ports;
1809 int i, port_index;
1811 addr = &xhci->cap_regs->hcc_params;
1812 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813 if (offset == 0) {
1814 xhci_err(xhci, "No Extended Capability registers, "
1815 "unable to set up roothub.\n");
1816 return -ENODEV;
1819 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821 if (!xhci->port_array)
1822 return -ENOMEM;
1825 * For whatever reason, the first capability offset is from the
1826 * capability register base, not from the HCCPARAMS register.
1827 * See section 5.3.6 for offset calculation.
1829 addr = &xhci->cap_regs->hc_capbase + offset;
1830 while (1) {
1831 u32 cap_id;
1833 cap_id = xhci_readl(xhci, addr);
1834 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835 xhci_add_in_port(xhci, num_ports, addr,
1836 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839 == num_ports)
1840 break;
1842 * Once you're into the Extended Capabilities, the offset is
1843 * always relative to the register holding the offset.
1845 addr += offset;
1848 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849 xhci_warn(xhci, "No ports on the roothubs?\n");
1850 return -ENODEV;
1852 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853 xhci->num_usb2_ports, xhci->num_usb3_ports);
1855 /* Place limits on the number of roothub ports so that the hub
1856 * descriptors aren't longer than the USB core will allocate.
1858 if (xhci->num_usb3_ports > 15) {
1859 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860 xhci->num_usb3_ports = 15;
1862 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1864 USB_MAXCHILDREN);
1865 xhci->num_usb2_ports = USB_MAXCHILDREN;
1869 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870 * Not sure how the USB core will handle a hub with no ports...
1872 if (xhci->num_usb2_ports) {
1873 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874 xhci->num_usb2_ports, flags);
1875 if (!xhci->usb2_ports)
1876 return -ENOMEM;
1878 port_index = 0;
1879 for (i = 0; i < num_ports; i++) {
1880 if (xhci->port_array[i] == 0x03 ||
1881 xhci->port_array[i] == 0 ||
1882 xhci->port_array[i] == DUPLICATE_ENTRY)
1883 continue;
1885 xhci->usb2_ports[port_index] =
1886 &xhci->op_regs->port_status_base +
1887 NUM_PORT_REGS*i;
1888 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889 "addr = %p\n", i,
1890 xhci->usb2_ports[port_index]);
1891 port_index++;
1892 if (port_index == xhci->num_usb2_ports)
1893 break;
1896 if (xhci->num_usb3_ports) {
1897 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898 xhci->num_usb3_ports, flags);
1899 if (!xhci->usb3_ports)
1900 return -ENOMEM;
1902 port_index = 0;
1903 for (i = 0; i < num_ports; i++)
1904 if (xhci->port_array[i] == 0x03) {
1905 xhci->usb3_ports[port_index] =
1906 &xhci->op_regs->port_status_base +
1907 NUM_PORT_REGS*i;
1908 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909 "addr = %p\n", i,
1910 xhci->usb3_ports[port_index]);
1911 port_index++;
1912 if (port_index == xhci->num_usb3_ports)
1913 break;
1916 return 0;
1919 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1921 dma_addr_t dma;
1922 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1923 unsigned int val, val2;
1924 u64 val_64;
1925 struct xhci_segment *seg;
1926 u32 page_size;
1927 int i;
1929 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931 for (i = 0; i < 16; i++) {
1932 if ((0x1 & page_size) != 0)
1933 break;
1934 page_size = page_size >> 1;
1936 if (i < 16)
1937 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1938 else
1939 xhci_warn(xhci, "WARN: no supported page size\n");
1940 /* Use 4K pages, since that's common and the minimum the HC supports */
1941 xhci->page_shift = 12;
1942 xhci->page_size = 1 << xhci->page_shift;
1943 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1946 * Program the Number of Device Slots Enabled field in the CONFIG
1947 * register with the max value of slots the HC can handle.
1949 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951 (unsigned int) val);
1952 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953 val |= (val2 & ~HCS_SLOTS_MASK);
1954 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955 (unsigned int) val);
1956 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1959 * Section 5.4.8 - doorbell array must be
1960 * "physically contiguous and 64-byte (cache line) aligned".
1962 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963 sizeof(*xhci->dcbaa), &dma);
1964 if (!xhci->dcbaa)
1965 goto fail;
1966 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967 xhci->dcbaa->dma = dma;
1968 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1973 * Initialize the ring segment pool. The ring must be a contiguous
1974 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1975 * however, the command ring segment needs 64-byte aligned segments,
1976 * so we pick the greater alignment need.
1978 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979 SEGMENT_SIZE, 64, xhci->page_size);
1981 /* See Table 46 and Note on Figure 55 */
1982 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983 2112, 64, xhci->page_size);
1984 if (!xhci->segment_pool || !xhci->device_pool)
1985 goto fail;
1987 /* Linear stream context arrays don't have any boundary restrictions,
1988 * and only need to be 16-byte aligned.
1990 xhci->small_streams_pool =
1991 dma_pool_create("xHCI 256 byte stream ctx arrays",
1992 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993 xhci->medium_streams_pool =
1994 dma_pool_create("xHCI 1KB stream ctx arrays",
1995 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997 * will be allocated with pci_alloc_consistent()
2000 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001 goto fail;
2003 /* Set up the command ring to have one segments for now. */
2004 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2005 if (!xhci->cmd_ring)
2006 goto fail;
2007 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2009 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2011 /* Set the address in the Command Ring Control register */
2012 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015 xhci->cmd_ring->cycle_state;
2016 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2017 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018 xhci_dbg_cmd_ptrs(xhci);
2020 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2021 val &= DBOFF_MASK;
2022 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023 " from cap regs base addr\n", val);
2024 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025 xhci_dbg_regs(xhci);
2026 xhci_print_run_regs(xhci);
2027 /* Set ir_set to interrupt register set 0 */
2028 xhci->ir_set = &xhci->run_regs->ir_set[0];
2031 * Event ring setup: Allocate a normal ring, but also setup
2032 * the event ring segment table (ERST). Section 4.9.3.
2034 xhci_dbg(xhci, "// Allocating event ring\n");
2035 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2036 flags);
2037 if (!xhci->event_ring)
2038 goto fail;
2039 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2040 goto fail;
2042 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2043 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2044 if (!xhci->erst.entries)
2045 goto fail;
2046 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2047 (unsigned long long)dma);
2049 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2050 xhci->erst.num_entries = ERST_NUM_SEGS;
2051 xhci->erst.erst_dma_addr = dma;
2052 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2053 xhci->erst.num_entries,
2054 xhci->erst.entries,
2055 (unsigned long long)xhci->erst.erst_dma_addr);
2057 /* set ring base address and size for each segment table entry */
2058 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2059 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2060 entry->seg_addr = cpu_to_le64(seg->dma);
2061 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2062 entry->rsvd = 0;
2063 seg = seg->next;
2066 /* set ERST count with the number of entries in the segment table */
2067 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2068 val &= ERST_SIZE_MASK;
2069 val |= ERST_NUM_SEGS;
2070 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2071 val);
2072 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2074 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2075 /* set the segment table base address */
2076 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2077 (unsigned long long)xhci->erst.erst_dma_addr);
2078 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2079 val_64 &= ERST_PTR_MASK;
2080 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2081 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2083 /* Set the event ring dequeue address */
2084 xhci_set_hc_event_deq(xhci);
2085 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2086 xhci_print_ir_set(xhci, 0);
2089 * XXX: Might need to set the Interrupter Moderation Register to
2090 * something other than the default (~1ms minimum between interrupts).
2091 * See section 5.5.1.2.
2093 init_completion(&xhci->addr_dev);
2094 for (i = 0; i < MAX_HC_SLOTS; ++i)
2095 xhci->devs[i] = NULL;
2096 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2097 xhci->bus_state[0].resume_done[i] = 0;
2098 xhci->bus_state[1].resume_done[i] = 0;
2101 if (scratchpad_alloc(xhci, flags))
2102 goto fail;
2103 if (xhci_setup_port_arrays(xhci, flags))
2104 goto fail;
2106 return 0;
2108 fail:
2109 xhci_warn(xhci, "Couldn't initialize memory\n");
2110 xhci_mem_cleanup(xhci);
2111 return -ENOMEM;