net: Batch inet_twsk_purge
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_ipv4.c
blobfee9aabd5aa18471ae6f54b030f46e6ae33ef7d3
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 return NULL;
99 #endif
101 struct inet_hashinfo tcp_hashinfo;
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 ip_hdr(skb)->saddr,
107 tcp_hdr(skb)->dest,
108 tcp_hdr(skb)->source);
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
122 holder.
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
127 if (tcptw->tw_ts_recent_stamp &&
128 (twp == NULL || (sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
132 tp->write_seq = 1;
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 sock_hold(sktw);
136 return 1;
139 return 0;
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct rtable *rt;
151 __be32 daddr, nexthop;
152 int tmp;
153 int err;
155 if (addr_len < sizeof(struct sockaddr_in))
156 return -EINVAL;
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
161 nexthop = daddr = usin->sin_addr.s_addr;
162 if (inet->opt && inet->opt->srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet->opt->faddr;
168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 IPPROTO_TCP,
171 inet->inet_sport, usin->sin_port, sk, 1);
172 if (tmp < 0) {
173 if (tmp == -ENETUNREACH)
174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 return tmp;
178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 ip_rt_put(rt);
180 return -ENETUNREACH;
183 if (!inet->opt || !inet->opt->srr)
184 daddr = rt->rt_dst;
186 if (!inet->inet_saddr)
187 inet->inet_saddr = rt->rt_src;
188 inet->inet_rcv_saddr = inet->inet_saddr;
190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
191 /* Reset inherited state */
192 tp->rx_opt.ts_recent = 0;
193 tp->rx_opt.ts_recent_stamp = 0;
194 tp->write_seq = 0;
197 if (tcp_death_row.sysctl_tw_recycle &&
198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 struct inet_peer *peer = rt_get_peer(rt);
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
206 if (peer != NULL &&
207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 tp->rx_opt.ts_recent = peer->tcp_ts;
213 inet->inet_dport = usin->sin_port;
214 inet->inet_daddr = daddr;
216 inet_csk(sk)->icsk_ext_hdr_len = 0;
217 if (inet->opt)
218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
227 tcp_set_state(sk, TCP_SYN_SENT);
228 err = inet_hash_connect(&tcp_death_row, sk);
229 if (err)
230 goto failure;
232 err = ip_route_newports(&rt, IPPROTO_TCP,
233 inet->inet_sport, inet->inet_dport, sk);
234 if (err)
235 goto failure;
237 /* OK, now commit destination to socket. */
238 sk->sk_gso_type = SKB_GSO_TCPV4;
239 sk_setup_caps(sk, &rt->u.dst);
241 if (!tp->write_seq)
242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
243 inet->inet_daddr,
244 inet->inet_sport,
245 usin->sin_port);
247 inet->inet_id = tp->write_seq ^ jiffies;
249 err = tcp_connect(sk);
250 rt = NULL;
251 if (err)
252 goto failure;
254 return 0;
256 failure:
258 * This unhashes the socket and releases the local port,
259 * if necessary.
261 tcp_set_state(sk, TCP_CLOSE);
262 ip_rt_put(rt);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
265 return err;
269 * This routine does path mtu discovery as defined in RFC1191.
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
278 * unfragmented).
280 if (sk->sk_state == TCP_LISTEN)
281 return;
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
289 if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 return;
292 dst->ops->update_pmtu(dst, mtu);
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 sk->sk_err_soft = EMSGSIZE;
300 mtu = dst_mtu(dst);
302 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 tcp_sync_mss(sk, mtu);
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
309 * discovery.
311 tcp_simple_retransmit(sk);
312 } /* else let the usual retransmit timer handle it */
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
335 struct inet_connection_sock *icsk;
336 struct tcp_sock *tp;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(icmp_skb)->type;
339 const int code = icmp_hdr(icmp_skb)->code;
340 struct sock *sk;
341 struct sk_buff *skb;
342 __u32 seq;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349 return;
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
354 if (!sk) {
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356 return;
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
360 return;
363 bh_lock_sock(sk);
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 if (sk->sk_state == TCP_CLOSE)
371 goto out;
373 icsk = inet_csk(sk);
374 tp = tcp_sk(sk);
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
379 goto out;
382 switch (type) {
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
385 goto out;
386 case ICMP_PARAMETERPROB:
387 err = EPROTO;
388 break;
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
391 goto out;
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
396 goto out;
399 err = icmp_err_convert[code].errno;
400 /* check if icmp_skb allows revert of backoff
401 * (see draft-zimmermann-tcp-lcd) */
402 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
403 break;
404 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
405 !icsk->icsk_backoff)
406 break;
408 icsk->icsk_backoff--;
409 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
410 icsk->icsk_backoff;
411 tcp_bound_rto(sk);
413 skb = tcp_write_queue_head(sk);
414 BUG_ON(!skb);
416 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
417 tcp_time_stamp - TCP_SKB_CB(skb)->when);
419 if (remaining) {
420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
421 remaining, TCP_RTO_MAX);
422 } else if (sock_owned_by_user(sk)) {
423 /* RTO revert clocked out retransmission,
424 * but socket is locked. Will defer. */
425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
426 HZ/20, TCP_RTO_MAX);
427 } else {
428 /* RTO revert clocked out retransmission.
429 * Will retransmit now */
430 tcp_retransmit_timer(sk);
433 break;
434 case ICMP_TIME_EXCEEDED:
435 err = EHOSTUNREACH;
436 break;
437 default:
438 goto out;
441 switch (sk->sk_state) {
442 struct request_sock *req, **prev;
443 case TCP_LISTEN:
444 if (sock_owned_by_user(sk))
445 goto out;
447 req = inet_csk_search_req(sk, &prev, th->dest,
448 iph->daddr, iph->saddr);
449 if (!req)
450 goto out;
452 /* ICMPs are not backlogged, hence we cannot get
453 an established socket here.
455 WARN_ON(req->sk);
457 if (seq != tcp_rsk(req)->snt_isn) {
458 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
459 goto out;
463 * Still in SYN_RECV, just remove it silently.
464 * There is no good way to pass the error to the newly
465 * created socket, and POSIX does not want network
466 * errors returned from accept().
468 inet_csk_reqsk_queue_drop(sk, req, prev);
469 goto out;
471 case TCP_SYN_SENT:
472 case TCP_SYN_RECV: /* Cannot happen.
473 It can f.e. if SYNs crossed.
475 if (!sock_owned_by_user(sk)) {
476 sk->sk_err = err;
478 sk->sk_error_report(sk);
480 tcp_done(sk);
481 } else {
482 sk->sk_err_soft = err;
484 goto out;
487 /* If we've already connected we will keep trying
488 * until we time out, or the user gives up.
490 * rfc1122 4.2.3.9 allows to consider as hard errors
491 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
492 * but it is obsoleted by pmtu discovery).
494 * Note, that in modern internet, where routing is unreliable
495 * and in each dark corner broken firewalls sit, sending random
496 * errors ordered by their masters even this two messages finally lose
497 * their original sense (even Linux sends invalid PORT_UNREACHs)
499 * Now we are in compliance with RFCs.
500 * --ANK (980905)
503 inet = inet_sk(sk);
504 if (!sock_owned_by_user(sk) && inet->recverr) {
505 sk->sk_err = err;
506 sk->sk_error_report(sk);
507 } else { /* Only an error on timeout */
508 sk->sk_err_soft = err;
511 out:
512 bh_unlock_sock(sk);
513 sock_put(sk);
516 /* This routine computes an IPv4 TCP checksum. */
517 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
519 struct inet_sock *inet = inet_sk(sk);
520 struct tcphdr *th = tcp_hdr(skb);
522 if (skb->ip_summed == CHECKSUM_PARTIAL) {
523 th->check = ~tcp_v4_check(len, inet->inet_saddr,
524 inet->inet_daddr, 0);
525 skb->csum_start = skb_transport_header(skb) - skb->head;
526 skb->csum_offset = offsetof(struct tcphdr, check);
527 } else {
528 th->check = tcp_v4_check(len, inet->inet_saddr,
529 inet->inet_daddr,
530 csum_partial(th,
531 th->doff << 2,
532 skb->csum));
536 int tcp_v4_gso_send_check(struct sk_buff *skb)
538 const struct iphdr *iph;
539 struct tcphdr *th;
541 if (!pskb_may_pull(skb, sizeof(*th)))
542 return -EINVAL;
544 iph = ip_hdr(skb);
545 th = tcp_hdr(skb);
547 th->check = 0;
548 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 skb->ip_summed = CHECKSUM_PARTIAL;
552 return 0;
556 * This routine will send an RST to the other tcp.
558 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
559 * for reset.
560 * Answer: if a packet caused RST, it is not for a socket
561 * existing in our system, if it is matched to a socket,
562 * it is just duplicate segment or bug in other side's TCP.
563 * So that we build reply only basing on parameters
564 * arrived with segment.
565 * Exception: precedence violation. We do not implement it in any case.
568 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
570 struct tcphdr *th = tcp_hdr(skb);
571 struct {
572 struct tcphdr th;
573 #ifdef CONFIG_TCP_MD5SIG
574 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
575 #endif
576 } rep;
577 struct ip_reply_arg arg;
578 #ifdef CONFIG_TCP_MD5SIG
579 struct tcp_md5sig_key *key;
580 #endif
581 struct net *net;
583 /* Never send a reset in response to a reset. */
584 if (th->rst)
585 return;
587 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
588 return;
590 /* Swap the send and the receive. */
591 memset(&rep, 0, sizeof(rep));
592 rep.th.dest = th->source;
593 rep.th.source = th->dest;
594 rep.th.doff = sizeof(struct tcphdr) / 4;
595 rep.th.rst = 1;
597 if (th->ack) {
598 rep.th.seq = th->ack_seq;
599 } else {
600 rep.th.ack = 1;
601 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
602 skb->len - (th->doff << 2));
605 memset(&arg, 0, sizeof(arg));
606 arg.iov[0].iov_base = (unsigned char *)&rep;
607 arg.iov[0].iov_len = sizeof(rep.th);
609 #ifdef CONFIG_TCP_MD5SIG
610 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
611 if (key) {
612 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
613 (TCPOPT_NOP << 16) |
614 (TCPOPT_MD5SIG << 8) |
615 TCPOLEN_MD5SIG);
616 /* Update length and the length the header thinks exists */
617 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
618 rep.th.doff = arg.iov[0].iov_len / 4;
620 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
621 key, ip_hdr(skb)->saddr,
622 ip_hdr(skb)->daddr, &rep.th);
624 #endif
625 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
626 ip_hdr(skb)->saddr, /* XXX */
627 arg.iov[0].iov_len, IPPROTO_TCP, 0);
628 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
629 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
631 net = dev_net(skb_dst(skb)->dev);
632 ip_send_reply(net->ipv4.tcp_sock, skb,
633 &arg, arg.iov[0].iov_len);
635 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
636 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
639 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
640 outside socket context is ugly, certainly. What can I do?
643 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
644 u32 win, u32 ts, int oif,
645 struct tcp_md5sig_key *key,
646 int reply_flags)
648 struct tcphdr *th = tcp_hdr(skb);
649 struct {
650 struct tcphdr th;
651 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
652 #ifdef CONFIG_TCP_MD5SIG
653 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
654 #endif
656 } rep;
657 struct ip_reply_arg arg;
658 struct net *net = dev_net(skb_dst(skb)->dev);
660 memset(&rep.th, 0, sizeof(struct tcphdr));
661 memset(&arg, 0, sizeof(arg));
663 arg.iov[0].iov_base = (unsigned char *)&rep;
664 arg.iov[0].iov_len = sizeof(rep.th);
665 if (ts) {
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
667 (TCPOPT_TIMESTAMP << 8) |
668 TCPOLEN_TIMESTAMP);
669 rep.opt[1] = htonl(tcp_time_stamp);
670 rep.opt[2] = htonl(ts);
671 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
674 /* Swap the send and the receive. */
675 rep.th.dest = th->source;
676 rep.th.source = th->dest;
677 rep.th.doff = arg.iov[0].iov_len / 4;
678 rep.th.seq = htonl(seq);
679 rep.th.ack_seq = htonl(ack);
680 rep.th.ack = 1;
681 rep.th.window = htons(win);
683 #ifdef CONFIG_TCP_MD5SIG
684 if (key) {
685 int offset = (ts) ? 3 : 0;
687 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
688 (TCPOPT_NOP << 16) |
689 (TCPOPT_MD5SIG << 8) |
690 TCPOLEN_MD5SIG);
691 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
692 rep.th.doff = arg.iov[0].iov_len/4;
694 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
695 key, ip_hdr(skb)->saddr,
696 ip_hdr(skb)->daddr, &rep.th);
698 #endif
699 arg.flags = reply_flags;
700 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
701 ip_hdr(skb)->saddr, /* XXX */
702 arg.iov[0].iov_len, IPPROTO_TCP, 0);
703 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
704 if (oif)
705 arg.bound_dev_if = oif;
707 ip_send_reply(net->ipv4.tcp_sock, skb,
708 &arg, arg.iov[0].iov_len);
710 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
715 struct inet_timewait_sock *tw = inet_twsk(sk);
716 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
718 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
719 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
720 tcptw->tw_ts_recent,
721 tw->tw_bound_dev_if,
722 tcp_twsk_md5_key(tcptw),
723 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
726 inet_twsk_put(tw);
729 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
730 struct request_sock *req)
732 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
734 req->ts_recent,
736 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
737 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
741 * Send a SYN-ACK after having received a SYN.
742 * This still operates on a request_sock only, not on a big
743 * socket.
745 static int __tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
746 struct request_sock *req,
747 struct request_values *rvp)
749 const struct inet_request_sock *ireq = inet_rsk(req);
750 int err = -1;
751 struct sk_buff * skb;
753 /* First, grab a route. */
754 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
755 return -1;
757 skb = tcp_make_synack(sk, dst, req, rvp);
759 if (skb) {
760 struct tcphdr *th = tcp_hdr(skb);
762 th->check = tcp_v4_check(skb->len,
763 ireq->loc_addr,
764 ireq->rmt_addr,
765 csum_partial(th, skb->len,
766 skb->csum));
768 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
769 ireq->rmt_addr,
770 ireq->opt);
771 err = net_xmit_eval(err);
774 dst_release(dst);
775 return err;
778 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
779 struct request_values *rvp)
781 return __tcp_v4_send_synack(sk, NULL, req, rvp);
785 * IPv4 request_sock destructor.
787 static void tcp_v4_reqsk_destructor(struct request_sock *req)
789 kfree(inet_rsk(req)->opt);
792 #ifdef CONFIG_SYN_COOKIES
793 static void syn_flood_warning(struct sk_buff *skb)
795 static unsigned long warntime;
797 if (time_after(jiffies, (warntime + HZ * 60))) {
798 warntime = jiffies;
799 printk(KERN_INFO
800 "possible SYN flooding on port %d. Sending cookies.\n",
801 ntohs(tcp_hdr(skb)->dest));
804 #endif
807 * Save and compile IPv4 options into the request_sock if needed.
809 static struct ip_options *tcp_v4_save_options(struct sock *sk,
810 struct sk_buff *skb)
812 struct ip_options *opt = &(IPCB(skb)->opt);
813 struct ip_options *dopt = NULL;
815 if (opt && opt->optlen) {
816 int opt_size = optlength(opt);
817 dopt = kmalloc(opt_size, GFP_ATOMIC);
818 if (dopt) {
819 if (ip_options_echo(dopt, skb)) {
820 kfree(dopt);
821 dopt = NULL;
825 return dopt;
828 #ifdef CONFIG_TCP_MD5SIG
830 * RFC2385 MD5 checksumming requires a mapping of
831 * IP address->MD5 Key.
832 * We need to maintain these in the sk structure.
835 /* Find the Key structure for an address. */
836 static struct tcp_md5sig_key *
837 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
839 struct tcp_sock *tp = tcp_sk(sk);
840 int i;
842 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
843 return NULL;
844 for (i = 0; i < tp->md5sig_info->entries4; i++) {
845 if (tp->md5sig_info->keys4[i].addr == addr)
846 return &tp->md5sig_info->keys4[i].base;
848 return NULL;
851 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
852 struct sock *addr_sk)
854 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
857 EXPORT_SYMBOL(tcp_v4_md5_lookup);
859 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
860 struct request_sock *req)
862 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
865 /* This can be called on a newly created socket, from other files */
866 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
867 u8 *newkey, u8 newkeylen)
869 /* Add Key to the list */
870 struct tcp_md5sig_key *key;
871 struct tcp_sock *tp = tcp_sk(sk);
872 struct tcp4_md5sig_key *keys;
874 key = tcp_v4_md5_do_lookup(sk, addr);
875 if (key) {
876 /* Pre-existing entry - just update that one. */
877 kfree(key->key);
878 key->key = newkey;
879 key->keylen = newkeylen;
880 } else {
881 struct tcp_md5sig_info *md5sig;
883 if (!tp->md5sig_info) {
884 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
885 GFP_ATOMIC);
886 if (!tp->md5sig_info) {
887 kfree(newkey);
888 return -ENOMEM;
890 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
892 if (tcp_alloc_md5sig_pool(sk) == NULL) {
893 kfree(newkey);
894 return -ENOMEM;
896 md5sig = tp->md5sig_info;
898 if (md5sig->alloced4 == md5sig->entries4) {
899 keys = kmalloc((sizeof(*keys) *
900 (md5sig->entries4 + 1)), GFP_ATOMIC);
901 if (!keys) {
902 kfree(newkey);
903 tcp_free_md5sig_pool();
904 return -ENOMEM;
907 if (md5sig->entries4)
908 memcpy(keys, md5sig->keys4,
909 sizeof(*keys) * md5sig->entries4);
911 /* Free old key list, and reference new one */
912 kfree(md5sig->keys4);
913 md5sig->keys4 = keys;
914 md5sig->alloced4++;
916 md5sig->entries4++;
917 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
918 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
919 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
921 return 0;
924 EXPORT_SYMBOL(tcp_v4_md5_do_add);
926 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
927 u8 *newkey, u8 newkeylen)
929 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
930 newkey, newkeylen);
933 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
935 struct tcp_sock *tp = tcp_sk(sk);
936 int i;
938 for (i = 0; i < tp->md5sig_info->entries4; i++) {
939 if (tp->md5sig_info->keys4[i].addr == addr) {
940 /* Free the key */
941 kfree(tp->md5sig_info->keys4[i].base.key);
942 tp->md5sig_info->entries4--;
944 if (tp->md5sig_info->entries4 == 0) {
945 kfree(tp->md5sig_info->keys4);
946 tp->md5sig_info->keys4 = NULL;
947 tp->md5sig_info->alloced4 = 0;
948 } else if (tp->md5sig_info->entries4 != i) {
949 /* Need to do some manipulation */
950 memmove(&tp->md5sig_info->keys4[i],
951 &tp->md5sig_info->keys4[i+1],
952 (tp->md5sig_info->entries4 - i) *
953 sizeof(struct tcp4_md5sig_key));
955 tcp_free_md5sig_pool();
956 return 0;
959 return -ENOENT;
962 EXPORT_SYMBOL(tcp_v4_md5_do_del);
964 static void tcp_v4_clear_md5_list(struct sock *sk)
966 struct tcp_sock *tp = tcp_sk(sk);
968 /* Free each key, then the set of key keys,
969 * the crypto element, and then decrement our
970 * hold on the last resort crypto.
972 if (tp->md5sig_info->entries4) {
973 int i;
974 for (i = 0; i < tp->md5sig_info->entries4; i++)
975 kfree(tp->md5sig_info->keys4[i].base.key);
976 tp->md5sig_info->entries4 = 0;
977 tcp_free_md5sig_pool();
979 if (tp->md5sig_info->keys4) {
980 kfree(tp->md5sig_info->keys4);
981 tp->md5sig_info->keys4 = NULL;
982 tp->md5sig_info->alloced4 = 0;
986 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
987 int optlen)
989 struct tcp_md5sig cmd;
990 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
991 u8 *newkey;
993 if (optlen < sizeof(cmd))
994 return -EINVAL;
996 if (copy_from_user(&cmd, optval, sizeof(cmd)))
997 return -EFAULT;
999 if (sin->sin_family != AF_INET)
1000 return -EINVAL;
1002 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1003 if (!tcp_sk(sk)->md5sig_info)
1004 return -ENOENT;
1005 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1008 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1009 return -EINVAL;
1011 if (!tcp_sk(sk)->md5sig_info) {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013 struct tcp_md5sig_info *p;
1015 p = kzalloc(sizeof(*p), sk->sk_allocation);
1016 if (!p)
1017 return -EINVAL;
1019 tp->md5sig_info = p;
1020 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1023 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1024 if (!newkey)
1025 return -ENOMEM;
1026 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1027 newkey, cmd.tcpm_keylen);
1030 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1031 __be32 daddr, __be32 saddr, int nbytes)
1033 struct tcp4_pseudohdr *bp;
1034 struct scatterlist sg;
1036 bp = &hp->md5_blk.ip4;
1039 * 1. the TCP pseudo-header (in the order: source IP address,
1040 * destination IP address, zero-padded protocol number, and
1041 * segment length)
1043 bp->saddr = saddr;
1044 bp->daddr = daddr;
1045 bp->pad = 0;
1046 bp->protocol = IPPROTO_TCP;
1047 bp->len = cpu_to_be16(nbytes);
1049 sg_init_one(&sg, bp, sizeof(*bp));
1050 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1053 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1054 __be32 daddr, __be32 saddr, struct tcphdr *th)
1056 struct tcp_md5sig_pool *hp;
1057 struct hash_desc *desc;
1059 hp = tcp_get_md5sig_pool();
1060 if (!hp)
1061 goto clear_hash_noput;
1062 desc = &hp->md5_desc;
1064 if (crypto_hash_init(desc))
1065 goto clear_hash;
1066 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1067 goto clear_hash;
1068 if (tcp_md5_hash_header(hp, th))
1069 goto clear_hash;
1070 if (tcp_md5_hash_key(hp, key))
1071 goto clear_hash;
1072 if (crypto_hash_final(desc, md5_hash))
1073 goto clear_hash;
1075 tcp_put_md5sig_pool();
1076 return 0;
1078 clear_hash:
1079 tcp_put_md5sig_pool();
1080 clear_hash_noput:
1081 memset(md5_hash, 0, 16);
1082 return 1;
1085 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1086 struct sock *sk, struct request_sock *req,
1087 struct sk_buff *skb)
1089 struct tcp_md5sig_pool *hp;
1090 struct hash_desc *desc;
1091 struct tcphdr *th = tcp_hdr(skb);
1092 __be32 saddr, daddr;
1094 if (sk) {
1095 saddr = inet_sk(sk)->inet_saddr;
1096 daddr = inet_sk(sk)->inet_daddr;
1097 } else if (req) {
1098 saddr = inet_rsk(req)->loc_addr;
1099 daddr = inet_rsk(req)->rmt_addr;
1100 } else {
1101 const struct iphdr *iph = ip_hdr(skb);
1102 saddr = iph->saddr;
1103 daddr = iph->daddr;
1106 hp = tcp_get_md5sig_pool();
1107 if (!hp)
1108 goto clear_hash_noput;
1109 desc = &hp->md5_desc;
1111 if (crypto_hash_init(desc))
1112 goto clear_hash;
1114 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1115 goto clear_hash;
1116 if (tcp_md5_hash_header(hp, th))
1117 goto clear_hash;
1118 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1119 goto clear_hash;
1120 if (tcp_md5_hash_key(hp, key))
1121 goto clear_hash;
1122 if (crypto_hash_final(desc, md5_hash))
1123 goto clear_hash;
1125 tcp_put_md5sig_pool();
1126 return 0;
1128 clear_hash:
1129 tcp_put_md5sig_pool();
1130 clear_hash_noput:
1131 memset(md5_hash, 0, 16);
1132 return 1;
1135 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1137 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1140 * This gets called for each TCP segment that arrives
1141 * so we want to be efficient.
1142 * We have 3 drop cases:
1143 * o No MD5 hash and one expected.
1144 * o MD5 hash and we're not expecting one.
1145 * o MD5 hash and its wrong.
1147 __u8 *hash_location = NULL;
1148 struct tcp_md5sig_key *hash_expected;
1149 const struct iphdr *iph = ip_hdr(skb);
1150 struct tcphdr *th = tcp_hdr(skb);
1151 int genhash;
1152 unsigned char newhash[16];
1154 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1155 hash_location = tcp_parse_md5sig_option(th);
1157 /* We've parsed the options - do we have a hash? */
1158 if (!hash_expected && !hash_location)
1159 return 0;
1161 if (hash_expected && !hash_location) {
1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1163 return 1;
1166 if (!hash_expected && hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1168 return 1;
1171 /* Okay, so this is hash_expected and hash_location -
1172 * so we need to calculate the checksum.
1174 genhash = tcp_v4_md5_hash_skb(newhash,
1175 hash_expected,
1176 NULL, NULL, skb);
1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1179 if (net_ratelimit()) {
1180 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1181 &iph->saddr, ntohs(th->source),
1182 &iph->daddr, ntohs(th->dest),
1183 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1185 return 1;
1187 return 0;
1190 #endif
1192 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1193 .family = PF_INET,
1194 .obj_size = sizeof(struct tcp_request_sock),
1195 .rtx_syn_ack = tcp_v4_send_synack,
1196 .send_ack = tcp_v4_reqsk_send_ack,
1197 .destructor = tcp_v4_reqsk_destructor,
1198 .send_reset = tcp_v4_send_reset,
1201 #ifdef CONFIG_TCP_MD5SIG
1202 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1203 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1204 .calc_md5_hash = tcp_v4_md5_hash_skb,
1206 #endif
1208 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1209 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1210 .twsk_unique = tcp_twsk_unique,
1211 .twsk_destructor= tcp_twsk_destructor,
1214 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1216 struct tcp_extend_values tmp_ext;
1217 struct tcp_options_received tmp_opt;
1218 u8 *hash_location;
1219 struct request_sock *req;
1220 struct inet_request_sock *ireq;
1221 struct tcp_sock *tp = tcp_sk(sk);
1222 struct dst_entry *dst = NULL;
1223 __be32 saddr = ip_hdr(skb)->saddr;
1224 __be32 daddr = ip_hdr(skb)->daddr;
1225 __u32 isn = TCP_SKB_CB(skb)->when;
1226 #ifdef CONFIG_SYN_COOKIES
1227 int want_cookie = 0;
1228 #else
1229 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1230 #endif
1232 /* Never answer to SYNs send to broadcast or multicast */
1233 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1234 goto drop;
1236 /* TW buckets are converted to open requests without
1237 * limitations, they conserve resources and peer is
1238 * evidently real one.
1240 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1241 #ifdef CONFIG_SYN_COOKIES
1242 if (sysctl_tcp_syncookies) {
1243 want_cookie = 1;
1244 } else
1245 #endif
1246 goto drop;
1249 /* Accept backlog is full. If we have already queued enough
1250 * of warm entries in syn queue, drop request. It is better than
1251 * clogging syn queue with openreqs with exponentially increasing
1252 * timeout.
1254 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1255 goto drop;
1257 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1258 if (!req)
1259 goto drop;
1261 #ifdef CONFIG_TCP_MD5SIG
1262 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1263 #endif
1265 ireq = inet_rsk(req);
1266 ireq->loc_addr = daddr;
1267 ireq->rmt_addr = saddr;
1268 ireq->no_srccheck = inet_sk(sk)->transparent;
1269 ireq->opt = tcp_v4_save_options(sk, skb);
1271 dst = inet_csk_route_req(sk, req);
1272 if(!dst)
1273 goto drop_and_free;
1275 tcp_clear_options(&tmp_opt);
1276 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1277 tmp_opt.user_mss = tp->rx_opt.user_mss;
1278 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, dst);
1280 if (tmp_opt.cookie_plus > 0 &&
1281 tmp_opt.saw_tstamp &&
1282 !tp->rx_opt.cookie_out_never &&
1283 (sysctl_tcp_cookie_size > 0 ||
1284 (tp->cookie_values != NULL &&
1285 tp->cookie_values->cookie_desired > 0))) {
1286 u8 *c;
1287 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1288 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1290 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1291 goto drop_and_release;
1293 /* Secret recipe starts with IP addresses */
1294 *mess++ ^= daddr;
1295 *mess++ ^= saddr;
1297 /* plus variable length Initiator Cookie */
1298 c = (u8 *)mess;
1299 while (l-- > 0)
1300 *c++ ^= *hash_location++;
1302 #ifdef CONFIG_SYN_COOKIES
1303 want_cookie = 0; /* not our kind of cookie */
1304 #endif
1305 tmp_ext.cookie_out_never = 0; /* false */
1306 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1307 } else if (!tp->rx_opt.cookie_in_always) {
1308 /* redundant indications, but ensure initialization. */
1309 tmp_ext.cookie_out_never = 1; /* true */
1310 tmp_ext.cookie_plus = 0;
1311 } else {
1312 goto drop_and_release;
1314 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1316 if (want_cookie && !tmp_opt.saw_tstamp)
1317 tcp_clear_options(&tmp_opt);
1319 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1320 tcp_openreq_init(req, &tmp_opt, skb);
1322 if (security_inet_conn_request(sk, skb, req))
1323 goto drop_and_release;
1325 if (!want_cookie)
1326 TCP_ECN_create_request(req, tcp_hdr(skb));
1328 if (want_cookie) {
1329 #ifdef CONFIG_SYN_COOKIES
1330 syn_flood_warning(skb);
1331 req->cookie_ts = tmp_opt.tstamp_ok;
1332 #endif
1333 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1334 } else if (!isn) {
1335 struct inet_peer *peer = NULL;
1337 /* VJ's idea. We save last timestamp seen
1338 * from the destination in peer table, when entering
1339 * state TIME-WAIT, and check against it before
1340 * accepting new connection request.
1342 * If "isn" is not zero, this request hit alive
1343 * timewait bucket, so that all the necessary checks
1344 * are made in the function processing timewait state.
1346 if (tmp_opt.saw_tstamp &&
1347 tcp_death_row.sysctl_tw_recycle &&
1348 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1349 peer->v4daddr == saddr) {
1350 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1351 (s32)(peer->tcp_ts - req->ts_recent) >
1352 TCP_PAWS_WINDOW) {
1353 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1354 goto drop_and_release;
1357 /* Kill the following clause, if you dislike this way. */
1358 else if (!sysctl_tcp_syncookies &&
1359 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1360 (sysctl_max_syn_backlog >> 2)) &&
1361 (!peer || !peer->tcp_ts_stamp) &&
1362 (!dst || !dst_metric(dst, RTAX_RTT))) {
1363 /* Without syncookies last quarter of
1364 * backlog is filled with destinations,
1365 * proven to be alive.
1366 * It means that we continue to communicate
1367 * to destinations, already remembered
1368 * to the moment of synflood.
1370 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1371 &saddr, ntohs(tcp_hdr(skb)->source));
1372 goto drop_and_release;
1375 isn = tcp_v4_init_sequence(skb);
1377 tcp_rsk(req)->snt_isn = isn;
1379 if (__tcp_v4_send_synack(sk, dst, req,
1380 (struct request_values *)&tmp_ext) ||
1381 want_cookie)
1382 goto drop_and_free;
1384 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1385 return 0;
1387 drop_and_release:
1388 dst_release(dst);
1389 drop_and_free:
1390 reqsk_free(req);
1391 drop:
1392 return 0;
1397 * The three way handshake has completed - we got a valid synack -
1398 * now create the new socket.
1400 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1401 struct request_sock *req,
1402 struct dst_entry *dst)
1404 struct inet_request_sock *ireq;
1405 struct inet_sock *newinet;
1406 struct tcp_sock *newtp;
1407 struct sock *newsk;
1408 #ifdef CONFIG_TCP_MD5SIG
1409 struct tcp_md5sig_key *key;
1410 #endif
1412 if (sk_acceptq_is_full(sk))
1413 goto exit_overflow;
1415 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1416 goto exit;
1418 newsk = tcp_create_openreq_child(sk, req, skb);
1419 if (!newsk)
1420 goto exit;
1422 newsk->sk_gso_type = SKB_GSO_TCPV4;
1423 sk_setup_caps(newsk, dst);
1425 newtp = tcp_sk(newsk);
1426 newinet = inet_sk(newsk);
1427 ireq = inet_rsk(req);
1428 newinet->inet_daddr = ireq->rmt_addr;
1429 newinet->inet_rcv_saddr = ireq->loc_addr;
1430 newinet->inet_saddr = ireq->loc_addr;
1431 newinet->opt = ireq->opt;
1432 ireq->opt = NULL;
1433 newinet->mc_index = inet_iif(skb);
1434 newinet->mc_ttl = ip_hdr(skb)->ttl;
1435 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1436 if (newinet->opt)
1437 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1438 newinet->inet_id = newtp->write_seq ^ jiffies;
1440 tcp_mtup_init(newsk);
1441 tcp_sync_mss(newsk, dst_mtu(dst));
1442 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1443 if (tcp_sk(sk)->rx_opt.user_mss &&
1444 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1445 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1447 tcp_initialize_rcv_mss(newsk);
1449 #ifdef CONFIG_TCP_MD5SIG
1450 /* Copy over the MD5 key from the original socket */
1451 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1452 if (key != NULL) {
1454 * We're using one, so create a matching key
1455 * on the newsk structure. If we fail to get
1456 * memory, then we end up not copying the key
1457 * across. Shucks.
1459 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1460 if (newkey != NULL)
1461 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1462 newkey, key->keylen);
1463 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1465 #endif
1467 __inet_hash_nolisten(newsk);
1468 __inet_inherit_port(sk, newsk);
1470 return newsk;
1472 exit_overflow:
1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1474 exit:
1475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1476 dst_release(dst);
1477 return NULL;
1480 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1482 struct tcphdr *th = tcp_hdr(skb);
1483 const struct iphdr *iph = ip_hdr(skb);
1484 struct sock *nsk;
1485 struct request_sock **prev;
1486 /* Find possible connection requests. */
1487 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1488 iph->saddr, iph->daddr);
1489 if (req)
1490 return tcp_check_req(sk, skb, req, prev);
1492 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1493 th->source, iph->daddr, th->dest, inet_iif(skb));
1495 if (nsk) {
1496 if (nsk->sk_state != TCP_TIME_WAIT) {
1497 bh_lock_sock(nsk);
1498 return nsk;
1500 inet_twsk_put(inet_twsk(nsk));
1501 return NULL;
1504 #ifdef CONFIG_SYN_COOKIES
1505 if (!th->rst && !th->syn && th->ack)
1506 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1507 #endif
1508 return sk;
1511 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1513 const struct iphdr *iph = ip_hdr(skb);
1515 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1516 if (!tcp_v4_check(skb->len, iph->saddr,
1517 iph->daddr, skb->csum)) {
1518 skb->ip_summed = CHECKSUM_UNNECESSARY;
1519 return 0;
1523 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1524 skb->len, IPPROTO_TCP, 0);
1526 if (skb->len <= 76) {
1527 return __skb_checksum_complete(skb);
1529 return 0;
1533 /* The socket must have it's spinlock held when we get
1534 * here.
1536 * We have a potential double-lock case here, so even when
1537 * doing backlog processing we use the BH locking scheme.
1538 * This is because we cannot sleep with the original spinlock
1539 * held.
1541 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1543 struct sock *rsk;
1544 #ifdef CONFIG_TCP_MD5SIG
1546 * We really want to reject the packet as early as possible
1547 * if:
1548 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1549 * o There is an MD5 option and we're not expecting one
1551 if (tcp_v4_inbound_md5_hash(sk, skb))
1552 goto discard;
1553 #endif
1555 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1556 TCP_CHECK_TIMER(sk);
1557 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1558 rsk = sk;
1559 goto reset;
1561 TCP_CHECK_TIMER(sk);
1562 return 0;
1565 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1566 goto csum_err;
1568 if (sk->sk_state == TCP_LISTEN) {
1569 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1570 if (!nsk)
1571 goto discard;
1573 if (nsk != sk) {
1574 if (tcp_child_process(sk, nsk, skb)) {
1575 rsk = nsk;
1576 goto reset;
1578 return 0;
1582 TCP_CHECK_TIMER(sk);
1583 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1584 rsk = sk;
1585 goto reset;
1587 TCP_CHECK_TIMER(sk);
1588 return 0;
1590 reset:
1591 tcp_v4_send_reset(rsk, skb);
1592 discard:
1593 kfree_skb(skb);
1594 /* Be careful here. If this function gets more complicated and
1595 * gcc suffers from register pressure on the x86, sk (in %ebx)
1596 * might be destroyed here. This current version compiles correctly,
1597 * but you have been warned.
1599 return 0;
1601 csum_err:
1602 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1603 goto discard;
1607 * From tcp_input.c
1610 int tcp_v4_rcv(struct sk_buff *skb)
1612 const struct iphdr *iph;
1613 struct tcphdr *th;
1614 struct sock *sk;
1615 int ret;
1616 struct net *net = dev_net(skb->dev);
1618 if (skb->pkt_type != PACKET_HOST)
1619 goto discard_it;
1621 /* Count it even if it's bad */
1622 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1624 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1625 goto discard_it;
1627 th = tcp_hdr(skb);
1629 if (th->doff < sizeof(struct tcphdr) / 4)
1630 goto bad_packet;
1631 if (!pskb_may_pull(skb, th->doff * 4))
1632 goto discard_it;
1634 /* An explanation is required here, I think.
1635 * Packet length and doff are validated by header prediction,
1636 * provided case of th->doff==0 is eliminated.
1637 * So, we defer the checks. */
1638 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1639 goto bad_packet;
1641 th = tcp_hdr(skb);
1642 iph = ip_hdr(skb);
1643 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1644 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1645 skb->len - th->doff * 4);
1646 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1647 TCP_SKB_CB(skb)->when = 0;
1648 TCP_SKB_CB(skb)->flags = iph->tos;
1649 TCP_SKB_CB(skb)->sacked = 0;
1651 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1652 if (!sk)
1653 goto no_tcp_socket;
1655 process:
1656 if (sk->sk_state == TCP_TIME_WAIT)
1657 goto do_time_wait;
1659 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1660 goto discard_and_relse;
1661 nf_reset(skb);
1663 if (sk_filter(sk, skb))
1664 goto discard_and_relse;
1666 skb->dev = NULL;
1668 bh_lock_sock_nested(sk);
1669 ret = 0;
1670 if (!sock_owned_by_user(sk)) {
1671 #ifdef CONFIG_NET_DMA
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1674 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1675 if (tp->ucopy.dma_chan)
1676 ret = tcp_v4_do_rcv(sk, skb);
1677 else
1678 #endif
1680 if (!tcp_prequeue(sk, skb))
1681 ret = tcp_v4_do_rcv(sk, skb);
1683 } else
1684 sk_add_backlog(sk, skb);
1685 bh_unlock_sock(sk);
1687 sock_put(sk);
1689 return ret;
1691 no_tcp_socket:
1692 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1693 goto discard_it;
1695 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1696 bad_packet:
1697 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1698 } else {
1699 tcp_v4_send_reset(NULL, skb);
1702 discard_it:
1703 /* Discard frame. */
1704 kfree_skb(skb);
1705 return 0;
1707 discard_and_relse:
1708 sock_put(sk);
1709 goto discard_it;
1711 do_time_wait:
1712 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1713 inet_twsk_put(inet_twsk(sk));
1714 goto discard_it;
1717 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1718 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1719 inet_twsk_put(inet_twsk(sk));
1720 goto discard_it;
1722 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1723 case TCP_TW_SYN: {
1724 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1725 &tcp_hashinfo,
1726 iph->daddr, th->dest,
1727 inet_iif(skb));
1728 if (sk2) {
1729 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1730 inet_twsk_put(inet_twsk(sk));
1731 sk = sk2;
1732 goto process;
1734 /* Fall through to ACK */
1736 case TCP_TW_ACK:
1737 tcp_v4_timewait_ack(sk, skb);
1738 break;
1739 case TCP_TW_RST:
1740 goto no_tcp_socket;
1741 case TCP_TW_SUCCESS:;
1743 goto discard_it;
1746 /* VJ's idea. Save last timestamp seen from this destination
1747 * and hold it at least for normal timewait interval to use for duplicate
1748 * segment detection in subsequent connections, before they enter synchronized
1749 * state.
1752 int tcp_v4_remember_stamp(struct sock *sk)
1754 struct inet_sock *inet = inet_sk(sk);
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1757 struct inet_peer *peer = NULL;
1758 int release_it = 0;
1760 if (!rt || rt->rt_dst != inet->inet_daddr) {
1761 peer = inet_getpeer(inet->inet_daddr, 1);
1762 release_it = 1;
1763 } else {
1764 if (!rt->peer)
1765 rt_bind_peer(rt, 1);
1766 peer = rt->peer;
1769 if (peer) {
1770 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1771 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1772 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1773 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1774 peer->tcp_ts = tp->rx_opt.ts_recent;
1776 if (release_it)
1777 inet_putpeer(peer);
1778 return 1;
1781 return 0;
1784 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1786 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1788 if (peer) {
1789 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1791 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1792 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1793 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1794 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1795 peer->tcp_ts = tcptw->tw_ts_recent;
1797 inet_putpeer(peer);
1798 return 1;
1801 return 0;
1804 const struct inet_connection_sock_af_ops ipv4_specific = {
1805 .queue_xmit = ip_queue_xmit,
1806 .send_check = tcp_v4_send_check,
1807 .rebuild_header = inet_sk_rebuild_header,
1808 .conn_request = tcp_v4_conn_request,
1809 .syn_recv_sock = tcp_v4_syn_recv_sock,
1810 .remember_stamp = tcp_v4_remember_stamp,
1811 .net_header_len = sizeof(struct iphdr),
1812 .setsockopt = ip_setsockopt,
1813 .getsockopt = ip_getsockopt,
1814 .addr2sockaddr = inet_csk_addr2sockaddr,
1815 .sockaddr_len = sizeof(struct sockaddr_in),
1816 .bind_conflict = inet_csk_bind_conflict,
1817 #ifdef CONFIG_COMPAT
1818 .compat_setsockopt = compat_ip_setsockopt,
1819 .compat_getsockopt = compat_ip_getsockopt,
1820 #endif
1823 #ifdef CONFIG_TCP_MD5SIG
1824 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1825 .md5_lookup = tcp_v4_md5_lookup,
1826 .calc_md5_hash = tcp_v4_md5_hash_skb,
1827 .md5_add = tcp_v4_md5_add_func,
1828 .md5_parse = tcp_v4_parse_md5_keys,
1830 #endif
1832 /* NOTE: A lot of things set to zero explicitly by call to
1833 * sk_alloc() so need not be done here.
1835 static int tcp_v4_init_sock(struct sock *sk)
1837 struct inet_connection_sock *icsk = inet_csk(sk);
1838 struct tcp_sock *tp = tcp_sk(sk);
1840 skb_queue_head_init(&tp->out_of_order_queue);
1841 tcp_init_xmit_timers(sk);
1842 tcp_prequeue_init(tp);
1844 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1845 tp->mdev = TCP_TIMEOUT_INIT;
1847 /* So many TCP implementations out there (incorrectly) count the
1848 * initial SYN frame in their delayed-ACK and congestion control
1849 * algorithms that we must have the following bandaid to talk
1850 * efficiently to them. -DaveM
1852 tp->snd_cwnd = 2;
1854 /* See draft-stevens-tcpca-spec-01 for discussion of the
1855 * initialization of these values.
1857 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1858 tp->snd_cwnd_clamp = ~0;
1859 tp->mss_cache = TCP_MSS_DEFAULT;
1861 tp->reordering = sysctl_tcp_reordering;
1862 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1864 sk->sk_state = TCP_CLOSE;
1866 sk->sk_write_space = sk_stream_write_space;
1867 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1869 icsk->icsk_af_ops = &ipv4_specific;
1870 icsk->icsk_sync_mss = tcp_sync_mss;
1871 #ifdef CONFIG_TCP_MD5SIG
1872 tp->af_specific = &tcp_sock_ipv4_specific;
1873 #endif
1875 /* TCP Cookie Transactions */
1876 if (sysctl_tcp_cookie_size > 0) {
1877 /* Default, cookies without s_data_payload. */
1878 tp->cookie_values =
1879 kzalloc(sizeof(*tp->cookie_values),
1880 sk->sk_allocation);
1881 if (tp->cookie_values != NULL)
1882 kref_init(&tp->cookie_values->kref);
1884 /* Presumed zeroed, in order of appearance:
1885 * cookie_in_always, cookie_out_never,
1886 * s_data_constant, s_data_in, s_data_out
1888 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1889 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1891 local_bh_disable();
1892 percpu_counter_inc(&tcp_sockets_allocated);
1893 local_bh_enable();
1895 return 0;
1898 void tcp_v4_destroy_sock(struct sock *sk)
1900 struct tcp_sock *tp = tcp_sk(sk);
1902 tcp_clear_xmit_timers(sk);
1904 tcp_cleanup_congestion_control(sk);
1906 /* Cleanup up the write buffer. */
1907 tcp_write_queue_purge(sk);
1909 /* Cleans up our, hopefully empty, out_of_order_queue. */
1910 __skb_queue_purge(&tp->out_of_order_queue);
1912 #ifdef CONFIG_TCP_MD5SIG
1913 /* Clean up the MD5 key list, if any */
1914 if (tp->md5sig_info) {
1915 tcp_v4_clear_md5_list(sk);
1916 kfree(tp->md5sig_info);
1917 tp->md5sig_info = NULL;
1919 #endif
1921 #ifdef CONFIG_NET_DMA
1922 /* Cleans up our sk_async_wait_queue */
1923 __skb_queue_purge(&sk->sk_async_wait_queue);
1924 #endif
1926 /* Clean prequeue, it must be empty really */
1927 __skb_queue_purge(&tp->ucopy.prequeue);
1929 /* Clean up a referenced TCP bind bucket. */
1930 if (inet_csk(sk)->icsk_bind_hash)
1931 inet_put_port(sk);
1934 * If sendmsg cached page exists, toss it.
1936 if (sk->sk_sndmsg_page) {
1937 __free_page(sk->sk_sndmsg_page);
1938 sk->sk_sndmsg_page = NULL;
1941 /* TCP Cookie Transactions */
1942 if (tp->cookie_values != NULL) {
1943 kref_put(&tp->cookie_values->kref,
1944 tcp_cookie_values_release);
1945 tp->cookie_values = NULL;
1948 percpu_counter_dec(&tcp_sockets_allocated);
1951 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1953 #ifdef CONFIG_PROC_FS
1954 /* Proc filesystem TCP sock list dumping. */
1956 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1958 return hlist_nulls_empty(head) ? NULL :
1959 list_entry(head->first, struct inet_timewait_sock, tw_node);
1962 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1964 return !is_a_nulls(tw->tw_node.next) ?
1965 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1968 static void *listening_get_next(struct seq_file *seq, void *cur)
1970 struct inet_connection_sock *icsk;
1971 struct hlist_nulls_node *node;
1972 struct sock *sk = cur;
1973 struct inet_listen_hashbucket *ilb;
1974 struct tcp_iter_state *st = seq->private;
1975 struct net *net = seq_file_net(seq);
1977 if (!sk) {
1978 st->bucket = 0;
1979 ilb = &tcp_hashinfo.listening_hash[0];
1980 spin_lock_bh(&ilb->lock);
1981 sk = sk_nulls_head(&ilb->head);
1982 goto get_sk;
1984 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1985 ++st->num;
1987 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1988 struct request_sock *req = cur;
1990 icsk = inet_csk(st->syn_wait_sk);
1991 req = req->dl_next;
1992 while (1) {
1993 while (req) {
1994 if (req->rsk_ops->family == st->family) {
1995 cur = req;
1996 goto out;
1998 req = req->dl_next;
2000 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2001 break;
2002 get_req:
2003 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2005 sk = sk_next(st->syn_wait_sk);
2006 st->state = TCP_SEQ_STATE_LISTENING;
2007 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2008 } else {
2009 icsk = inet_csk(sk);
2010 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2011 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2012 goto start_req;
2013 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2014 sk = sk_next(sk);
2016 get_sk:
2017 sk_nulls_for_each_from(sk, node) {
2018 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2019 cur = sk;
2020 goto out;
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2025 start_req:
2026 st->uid = sock_i_uid(sk);
2027 st->syn_wait_sk = sk;
2028 st->state = TCP_SEQ_STATE_OPENREQ;
2029 st->sbucket = 0;
2030 goto get_req;
2032 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2034 spin_unlock_bh(&ilb->lock);
2035 if (++st->bucket < INET_LHTABLE_SIZE) {
2036 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2037 spin_lock_bh(&ilb->lock);
2038 sk = sk_nulls_head(&ilb->head);
2039 goto get_sk;
2041 cur = NULL;
2042 out:
2043 return cur;
2046 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2048 void *rc = listening_get_next(seq, NULL);
2050 while (rc && *pos) {
2051 rc = listening_get_next(seq, rc);
2052 --*pos;
2054 return rc;
2057 static inline int empty_bucket(struct tcp_iter_state *st)
2059 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2060 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2063 static void *established_get_first(struct seq_file *seq)
2065 struct tcp_iter_state *st = seq->private;
2066 struct net *net = seq_file_net(seq);
2067 void *rc = NULL;
2069 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2070 struct sock *sk;
2071 struct hlist_nulls_node *node;
2072 struct inet_timewait_sock *tw;
2073 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2075 /* Lockless fast path for the common case of empty buckets */
2076 if (empty_bucket(st))
2077 continue;
2079 spin_lock_bh(lock);
2080 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2081 if (sk->sk_family != st->family ||
2082 !net_eq(sock_net(sk), net)) {
2083 continue;
2085 rc = sk;
2086 goto out;
2088 st->state = TCP_SEQ_STATE_TIME_WAIT;
2089 inet_twsk_for_each(tw, node,
2090 &tcp_hashinfo.ehash[st->bucket].twchain) {
2091 if (tw->tw_family != st->family ||
2092 !net_eq(twsk_net(tw), net)) {
2093 continue;
2095 rc = tw;
2096 goto out;
2098 spin_unlock_bh(lock);
2099 st->state = TCP_SEQ_STATE_ESTABLISHED;
2101 out:
2102 return rc;
2105 static void *established_get_next(struct seq_file *seq, void *cur)
2107 struct sock *sk = cur;
2108 struct inet_timewait_sock *tw;
2109 struct hlist_nulls_node *node;
2110 struct tcp_iter_state *st = seq->private;
2111 struct net *net = seq_file_net(seq);
2113 ++st->num;
2115 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2116 tw = cur;
2117 tw = tw_next(tw);
2118 get_tw:
2119 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2120 tw = tw_next(tw);
2122 if (tw) {
2123 cur = tw;
2124 goto out;
2126 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2127 st->state = TCP_SEQ_STATE_ESTABLISHED;
2129 /* Look for next non empty bucket */
2130 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2131 empty_bucket(st))
2133 if (st->bucket > tcp_hashinfo.ehash_mask)
2134 return NULL;
2136 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2137 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2138 } else
2139 sk = sk_nulls_next(sk);
2141 sk_nulls_for_each_from(sk, node) {
2142 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2143 goto found;
2146 st->state = TCP_SEQ_STATE_TIME_WAIT;
2147 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2148 goto get_tw;
2149 found:
2150 cur = sk;
2151 out:
2152 return cur;
2155 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2157 void *rc = established_get_first(seq);
2159 while (rc && pos) {
2160 rc = established_get_next(seq, rc);
2161 --pos;
2163 return rc;
2166 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2168 void *rc;
2169 struct tcp_iter_state *st = seq->private;
2171 st->state = TCP_SEQ_STATE_LISTENING;
2172 rc = listening_get_idx(seq, &pos);
2174 if (!rc) {
2175 st->state = TCP_SEQ_STATE_ESTABLISHED;
2176 rc = established_get_idx(seq, pos);
2179 return rc;
2182 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2184 struct tcp_iter_state *st = seq->private;
2185 st->state = TCP_SEQ_STATE_LISTENING;
2186 st->num = 0;
2187 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2190 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2192 void *rc = NULL;
2193 struct tcp_iter_state *st;
2195 if (v == SEQ_START_TOKEN) {
2196 rc = tcp_get_idx(seq, 0);
2197 goto out;
2199 st = seq->private;
2201 switch (st->state) {
2202 case TCP_SEQ_STATE_OPENREQ:
2203 case TCP_SEQ_STATE_LISTENING:
2204 rc = listening_get_next(seq, v);
2205 if (!rc) {
2206 st->state = TCP_SEQ_STATE_ESTABLISHED;
2207 rc = established_get_first(seq);
2209 break;
2210 case TCP_SEQ_STATE_ESTABLISHED:
2211 case TCP_SEQ_STATE_TIME_WAIT:
2212 rc = established_get_next(seq, v);
2213 break;
2215 out:
2216 ++*pos;
2217 return rc;
2220 static void tcp_seq_stop(struct seq_file *seq, void *v)
2222 struct tcp_iter_state *st = seq->private;
2224 switch (st->state) {
2225 case TCP_SEQ_STATE_OPENREQ:
2226 if (v) {
2227 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2228 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2230 case TCP_SEQ_STATE_LISTENING:
2231 if (v != SEQ_START_TOKEN)
2232 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2233 break;
2234 case TCP_SEQ_STATE_TIME_WAIT:
2235 case TCP_SEQ_STATE_ESTABLISHED:
2236 if (v)
2237 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2238 break;
2242 static int tcp_seq_open(struct inode *inode, struct file *file)
2244 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2245 struct tcp_iter_state *s;
2246 int err;
2248 err = seq_open_net(inode, file, &afinfo->seq_ops,
2249 sizeof(struct tcp_iter_state));
2250 if (err < 0)
2251 return err;
2253 s = ((struct seq_file *)file->private_data)->private;
2254 s->family = afinfo->family;
2255 return 0;
2258 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2260 int rc = 0;
2261 struct proc_dir_entry *p;
2263 afinfo->seq_fops.open = tcp_seq_open;
2264 afinfo->seq_fops.read = seq_read;
2265 afinfo->seq_fops.llseek = seq_lseek;
2266 afinfo->seq_fops.release = seq_release_net;
2268 afinfo->seq_ops.start = tcp_seq_start;
2269 afinfo->seq_ops.next = tcp_seq_next;
2270 afinfo->seq_ops.stop = tcp_seq_stop;
2272 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2273 &afinfo->seq_fops, afinfo);
2274 if (!p)
2275 rc = -ENOMEM;
2276 return rc;
2279 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2281 proc_net_remove(net, afinfo->name);
2284 static void get_openreq4(struct sock *sk, struct request_sock *req,
2285 struct seq_file *f, int i, int uid, int *len)
2287 const struct inet_request_sock *ireq = inet_rsk(req);
2288 int ttd = req->expires - jiffies;
2290 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2291 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2293 ireq->loc_addr,
2294 ntohs(inet_sk(sk)->inet_sport),
2295 ireq->rmt_addr,
2296 ntohs(ireq->rmt_port),
2297 TCP_SYN_RECV,
2298 0, 0, /* could print option size, but that is af dependent. */
2299 1, /* timers active (only the expire timer) */
2300 jiffies_to_clock_t(ttd),
2301 req->retrans,
2302 uid,
2303 0, /* non standard timer */
2304 0, /* open_requests have no inode */
2305 atomic_read(&sk->sk_refcnt),
2306 req,
2307 len);
2310 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2312 int timer_active;
2313 unsigned long timer_expires;
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 const struct inet_connection_sock *icsk = inet_csk(sk);
2316 struct inet_sock *inet = inet_sk(sk);
2317 __be32 dest = inet->inet_daddr;
2318 __be32 src = inet->inet_rcv_saddr;
2319 __u16 destp = ntohs(inet->inet_dport);
2320 __u16 srcp = ntohs(inet->inet_sport);
2322 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2323 timer_active = 1;
2324 timer_expires = icsk->icsk_timeout;
2325 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2326 timer_active = 4;
2327 timer_expires = icsk->icsk_timeout;
2328 } else if (timer_pending(&sk->sk_timer)) {
2329 timer_active = 2;
2330 timer_expires = sk->sk_timer.expires;
2331 } else {
2332 timer_active = 0;
2333 timer_expires = jiffies;
2336 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2337 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2338 i, src, srcp, dest, destp, sk->sk_state,
2339 tp->write_seq - tp->snd_una,
2340 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2341 (tp->rcv_nxt - tp->copied_seq),
2342 timer_active,
2343 jiffies_to_clock_t(timer_expires - jiffies),
2344 icsk->icsk_retransmits,
2345 sock_i_uid(sk),
2346 icsk->icsk_probes_out,
2347 sock_i_ino(sk),
2348 atomic_read(&sk->sk_refcnt), sk,
2349 jiffies_to_clock_t(icsk->icsk_rto),
2350 jiffies_to_clock_t(icsk->icsk_ack.ato),
2351 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2352 tp->snd_cwnd,
2353 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2354 len);
2357 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2358 struct seq_file *f, int i, int *len)
2360 __be32 dest, src;
2361 __u16 destp, srcp;
2362 int ttd = tw->tw_ttd - jiffies;
2364 if (ttd < 0)
2365 ttd = 0;
2367 dest = tw->tw_daddr;
2368 src = tw->tw_rcv_saddr;
2369 destp = ntohs(tw->tw_dport);
2370 srcp = ntohs(tw->tw_sport);
2372 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2373 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2374 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2375 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2376 atomic_read(&tw->tw_refcnt), tw, len);
2379 #define TMPSZ 150
2381 static int tcp4_seq_show(struct seq_file *seq, void *v)
2383 struct tcp_iter_state *st;
2384 int len;
2386 if (v == SEQ_START_TOKEN) {
2387 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2388 " sl local_address rem_address st tx_queue "
2389 "rx_queue tr tm->when retrnsmt uid timeout "
2390 "inode");
2391 goto out;
2393 st = seq->private;
2395 switch (st->state) {
2396 case TCP_SEQ_STATE_LISTENING:
2397 case TCP_SEQ_STATE_ESTABLISHED:
2398 get_tcp4_sock(v, seq, st->num, &len);
2399 break;
2400 case TCP_SEQ_STATE_OPENREQ:
2401 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2402 break;
2403 case TCP_SEQ_STATE_TIME_WAIT:
2404 get_timewait4_sock(v, seq, st->num, &len);
2405 break;
2407 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2408 out:
2409 return 0;
2412 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2413 .name = "tcp",
2414 .family = AF_INET,
2415 .seq_fops = {
2416 .owner = THIS_MODULE,
2418 .seq_ops = {
2419 .show = tcp4_seq_show,
2423 static int tcp4_proc_init_net(struct net *net)
2425 return tcp_proc_register(net, &tcp4_seq_afinfo);
2428 static void tcp4_proc_exit_net(struct net *net)
2430 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2433 static struct pernet_operations tcp4_net_ops = {
2434 .init = tcp4_proc_init_net,
2435 .exit = tcp4_proc_exit_net,
2438 int __init tcp4_proc_init(void)
2440 return register_pernet_subsys(&tcp4_net_ops);
2443 void tcp4_proc_exit(void)
2445 unregister_pernet_subsys(&tcp4_net_ops);
2447 #endif /* CONFIG_PROC_FS */
2449 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2451 struct iphdr *iph = skb_gro_network_header(skb);
2453 switch (skb->ip_summed) {
2454 case CHECKSUM_COMPLETE:
2455 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2456 skb->csum)) {
2457 skb->ip_summed = CHECKSUM_UNNECESSARY;
2458 break;
2461 /* fall through */
2462 case CHECKSUM_NONE:
2463 NAPI_GRO_CB(skb)->flush = 1;
2464 return NULL;
2467 return tcp_gro_receive(head, skb);
2469 EXPORT_SYMBOL(tcp4_gro_receive);
2471 int tcp4_gro_complete(struct sk_buff *skb)
2473 struct iphdr *iph = ip_hdr(skb);
2474 struct tcphdr *th = tcp_hdr(skb);
2476 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2477 iph->saddr, iph->daddr, 0);
2478 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2480 return tcp_gro_complete(skb);
2482 EXPORT_SYMBOL(tcp4_gro_complete);
2484 struct proto tcp_prot = {
2485 .name = "TCP",
2486 .owner = THIS_MODULE,
2487 .close = tcp_close,
2488 .connect = tcp_v4_connect,
2489 .disconnect = tcp_disconnect,
2490 .accept = inet_csk_accept,
2491 .ioctl = tcp_ioctl,
2492 .init = tcp_v4_init_sock,
2493 .destroy = tcp_v4_destroy_sock,
2494 .shutdown = tcp_shutdown,
2495 .setsockopt = tcp_setsockopt,
2496 .getsockopt = tcp_getsockopt,
2497 .recvmsg = tcp_recvmsg,
2498 .backlog_rcv = tcp_v4_do_rcv,
2499 .hash = inet_hash,
2500 .unhash = inet_unhash,
2501 .get_port = inet_csk_get_port,
2502 .enter_memory_pressure = tcp_enter_memory_pressure,
2503 .sockets_allocated = &tcp_sockets_allocated,
2504 .orphan_count = &tcp_orphan_count,
2505 .memory_allocated = &tcp_memory_allocated,
2506 .memory_pressure = &tcp_memory_pressure,
2507 .sysctl_mem = sysctl_tcp_mem,
2508 .sysctl_wmem = sysctl_tcp_wmem,
2509 .sysctl_rmem = sysctl_tcp_rmem,
2510 .max_header = MAX_TCP_HEADER,
2511 .obj_size = sizeof(struct tcp_sock),
2512 .slab_flags = SLAB_DESTROY_BY_RCU,
2513 .twsk_prot = &tcp_timewait_sock_ops,
2514 .rsk_prot = &tcp_request_sock_ops,
2515 .h.hashinfo = &tcp_hashinfo,
2516 #ifdef CONFIG_COMPAT
2517 .compat_setsockopt = compat_tcp_setsockopt,
2518 .compat_getsockopt = compat_tcp_getsockopt,
2519 #endif
2523 static int __net_init tcp_sk_init(struct net *net)
2525 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2526 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2529 static void __net_exit tcp_sk_exit(struct net *net)
2531 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2534 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2536 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2539 static struct pernet_operations __net_initdata tcp_sk_ops = {
2540 .init = tcp_sk_init,
2541 .exit = tcp_sk_exit,
2542 .exit_batch = tcp_sk_exit_batch,
2545 void __init tcp_v4_init(void)
2547 inet_hashinfo_init(&tcp_hashinfo);
2548 if (register_pernet_subsys(&tcp_sk_ops))
2549 panic("Failed to create the TCP control socket.\n");
2552 EXPORT_SYMBOL(ipv4_specific);
2553 EXPORT_SYMBOL(tcp_hashinfo);
2554 EXPORT_SYMBOL(tcp_prot);
2555 EXPORT_SYMBOL(tcp_v4_conn_request);
2556 EXPORT_SYMBOL(tcp_v4_connect);
2557 EXPORT_SYMBOL(tcp_v4_do_rcv);
2558 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2559 EXPORT_SYMBOL(tcp_v4_send_check);
2560 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2562 #ifdef CONFIG_PROC_FS
2563 EXPORT_SYMBOL(tcp_proc_register);
2564 EXPORT_SYMBOL(tcp_proc_unregister);
2565 #endif
2566 EXPORT_SYMBOL(sysctl_tcp_low_latency);