2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static const struct inode_operations btrfs_dir_inode_operations
;
61 static const struct inode_operations btrfs_symlink_inode_operations
;
62 static const struct inode_operations btrfs_dir_ro_inode_operations
;
63 static const struct inode_operations btrfs_special_inode_operations
;
64 static const struct inode_operations btrfs_file_inode_operations
;
65 static const struct address_space_operations btrfs_aops
;
66 static const struct address_space_operations btrfs_symlink_aops
;
67 static const struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_path_cachep
;
74 struct kmem_cache
*btrfs_free_space_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
88 static int btrfs_truncate(struct inode
*inode
);
89 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
90 static noinline
int cow_file_range(struct inode
*inode
,
91 struct page
*locked_page
,
92 u64 start
, u64 end
, int *page_started
,
93 unsigned long *nr_written
, int unlock
);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
96 struct inode
*inode
, struct inode
*dir
,
97 const struct qstr
*qstr
)
101 err
= btrfs_init_acl(trans
, inode
, dir
);
103 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
112 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
113 struct btrfs_root
*root
, struct inode
*inode
,
114 u64 start
, size_t size
, size_t compressed_size
,
116 struct page
**compressed_pages
)
118 struct btrfs_key key
;
119 struct btrfs_path
*path
;
120 struct extent_buffer
*leaf
;
121 struct page
*page
= NULL
;
124 struct btrfs_file_extent_item
*ei
;
127 size_t cur_size
= size
;
129 unsigned long offset
;
131 if (compressed_size
&& compressed_pages
)
132 cur_size
= compressed_size
;
134 path
= btrfs_alloc_path();
138 path
->leave_spinning
= 1;
139 btrfs_set_trans_block_group(trans
, inode
);
141 key
.objectid
= inode
->i_ino
;
143 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
144 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
146 inode_add_bytes(inode
, size
);
147 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
154 leaf
= path
->nodes
[0];
155 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
156 struct btrfs_file_extent_item
);
157 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
158 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
159 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
160 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
161 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
162 ptr
= btrfs_file_extent_inline_start(ei
);
164 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
167 while (compressed_size
> 0) {
168 cpage
= compressed_pages
[i
];
169 cur_size
= min_t(unsigned long, compressed_size
,
172 kaddr
= kmap_atomic(cpage
, KM_USER0
);
173 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
174 kunmap_atomic(kaddr
, KM_USER0
);
178 compressed_size
-= cur_size
;
180 btrfs_set_file_extent_compression(leaf
, ei
,
183 page
= find_get_page(inode
->i_mapping
,
184 start
>> PAGE_CACHE_SHIFT
);
185 btrfs_set_file_extent_compression(leaf
, ei
, 0);
186 kaddr
= kmap_atomic(page
, KM_USER0
);
187 offset
= start
& (PAGE_CACHE_SIZE
- 1);
188 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
189 kunmap_atomic(kaddr
, KM_USER0
);
190 page_cache_release(page
);
192 btrfs_mark_buffer_dirty(leaf
);
193 btrfs_free_path(path
);
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
204 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
205 btrfs_update_inode(trans
, root
, inode
);
209 btrfs_free_path(path
);
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
219 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
220 struct btrfs_root
*root
,
221 struct inode
*inode
, u64 start
, u64 end
,
222 size_t compressed_size
, int compress_type
,
223 struct page
**compressed_pages
)
225 u64 isize
= i_size_read(inode
);
226 u64 actual_end
= min(end
+ 1, isize
);
227 u64 inline_len
= actual_end
- start
;
228 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
229 ~((u64
)root
->sectorsize
- 1);
231 u64 data_len
= inline_len
;
235 data_len
= compressed_size
;
238 actual_end
>= PAGE_CACHE_SIZE
||
239 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
241 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
243 data_len
> root
->fs_info
->max_inline
) {
247 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
251 if (isize
> actual_end
)
252 inline_len
= min_t(u64
, isize
, actual_end
);
253 ret
= insert_inline_extent(trans
, root
, inode
, start
,
254 inline_len
, compressed_size
,
255 compress_type
, compressed_pages
);
257 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
258 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
262 struct async_extent
{
267 unsigned long nr_pages
;
269 struct list_head list
;
274 struct btrfs_root
*root
;
275 struct page
*locked_page
;
278 struct list_head extents
;
279 struct btrfs_work work
;
282 static noinline
int add_async_extent(struct async_cow
*cow
,
283 u64 start
, u64 ram_size
,
286 unsigned long nr_pages
,
289 struct async_extent
*async_extent
;
291 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
292 BUG_ON(!async_extent
);
293 async_extent
->start
= start
;
294 async_extent
->ram_size
= ram_size
;
295 async_extent
->compressed_size
= compressed_size
;
296 async_extent
->pages
= pages
;
297 async_extent
->nr_pages
= nr_pages
;
298 async_extent
->compress_type
= compress_type
;
299 list_add_tail(&async_extent
->list
, &cow
->extents
);
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline
int compress_file_range(struct inode
*inode
,
320 struct page
*locked_page
,
322 struct async_cow
*async_cow
,
325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
326 struct btrfs_trans_handle
*trans
;
328 u64 blocksize
= root
->sectorsize
;
330 u64 isize
= i_size_read(inode
);
332 struct page
**pages
= NULL
;
333 unsigned long nr_pages
;
334 unsigned long nr_pages_ret
= 0;
335 unsigned long total_compressed
= 0;
336 unsigned long total_in
= 0;
337 unsigned long max_compressed
= 128 * 1024;
338 unsigned long max_uncompressed
= 128 * 1024;
341 int compress_type
= root
->fs_info
->compress_type
;
343 actual_end
= min_t(u64
, isize
, end
+ 1);
346 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
347 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
359 if (actual_end
<= start
)
360 goto cleanup_and_bail_uncompressed
;
362 total_compressed
= actual_end
- start
;
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
374 total_compressed
= min(total_compressed
, max_uncompressed
);
375 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
376 num_bytes
= max(blocksize
, num_bytes
);
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
385 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
386 (btrfs_test_opt(root
, COMPRESS
) ||
387 (BTRFS_I(inode
)->force_compress
) ||
388 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
390 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
393 if (BTRFS_I(inode
)->force_compress
)
394 compress_type
= BTRFS_I(inode
)->force_compress
;
396 ret
= btrfs_compress_pages(compress_type
,
397 inode
->i_mapping
, start
,
398 total_compressed
, pages
,
399 nr_pages
, &nr_pages_ret
,
405 unsigned long offset
= total_compressed
&
406 (PAGE_CACHE_SIZE
- 1);
407 struct page
*page
= pages
[nr_pages_ret
- 1];
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
414 kaddr
= kmap_atomic(page
, KM_USER0
);
415 memset(kaddr
+ offset
, 0,
416 PAGE_CACHE_SIZE
- offset
);
417 kunmap_atomic(kaddr
, KM_USER0
);
423 trans
= btrfs_join_transaction(root
, 1);
424 BUG_ON(IS_ERR(trans
));
425 btrfs_set_trans_block_group(trans
, inode
);
426 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
428 /* lets try to make an inline extent */
429 if (ret
|| total_in
< (actual_end
- start
)) {
430 /* we didn't compress the entire range, try
431 * to make an uncompressed inline extent.
433 ret
= cow_file_range_inline(trans
, root
, inode
,
434 start
, end
, 0, 0, NULL
);
436 /* try making a compressed inline extent */
437 ret
= cow_file_range_inline(trans
, root
, inode
,
440 compress_type
, pages
);
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
448 extent_clear_unlock_delalloc(inode
,
449 &BTRFS_I(inode
)->io_tree
,
451 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
452 EXTENT_CLEAR_DELALLOC
|
453 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
455 btrfs_end_transaction(trans
, root
);
458 btrfs_end_transaction(trans
, root
);
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
467 total_compressed
= (total_compressed
+ blocksize
- 1) &
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
474 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
475 ~(PAGE_CACHE_SIZE
- 1);
476 if (total_compressed
>= total_in
) {
479 num_bytes
= total_in
;
482 if (!will_compress
&& pages
) {
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
487 for (i
= 0; i
< nr_pages_ret
; i
++) {
488 WARN_ON(pages
[i
]->mapping
);
489 page_cache_release(pages
[i
]);
493 total_compressed
= 0;
496 /* flag the file so we don't compress in the future */
497 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
498 !(BTRFS_I(inode
)->force_compress
)) {
499 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
509 add_async_extent(async_cow
, start
, num_bytes
,
510 total_compressed
, pages
, nr_pages_ret
,
513 if (start
+ num_bytes
< end
) {
520 cleanup_and_bail_uncompressed
:
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
528 if (page_offset(locked_page
) >= start
&&
529 page_offset(locked_page
) <= end
) {
530 __set_page_dirty_nobuffers(locked_page
);
531 /* unlocked later on in the async handlers */
533 add_async_extent(async_cow
, start
, end
- start
+ 1,
534 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
542 for (i
= 0; i
< nr_pages_ret
; i
++) {
543 WARN_ON(pages
[i
]->mapping
);
544 page_cache_release(pages
[i
]);
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
557 static noinline
int submit_compressed_extents(struct inode
*inode
,
558 struct async_cow
*async_cow
)
560 struct async_extent
*async_extent
;
562 struct btrfs_trans_handle
*trans
;
563 struct btrfs_key ins
;
564 struct extent_map
*em
;
565 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
566 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
567 struct extent_io_tree
*io_tree
;
570 if (list_empty(&async_cow
->extents
))
574 while (!list_empty(&async_cow
->extents
)) {
575 async_extent
= list_entry(async_cow
->extents
.next
,
576 struct async_extent
, list
);
577 list_del(&async_extent
->list
);
579 io_tree
= &BTRFS_I(inode
)->io_tree
;
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent
->pages
) {
584 int page_started
= 0;
585 unsigned long nr_written
= 0;
587 lock_extent(io_tree
, async_extent
->start
,
588 async_extent
->start
+
589 async_extent
->ram_size
- 1, GFP_NOFS
);
591 /* allocate blocks */
592 ret
= cow_file_range(inode
, async_cow
->locked_page
,
594 async_extent
->start
+
595 async_extent
->ram_size
- 1,
596 &page_started
, &nr_written
, 0);
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
604 if (!page_started
&& !ret
)
605 extent_write_locked_range(io_tree
,
606 inode
, async_extent
->start
,
607 async_extent
->start
+
608 async_extent
->ram_size
- 1,
616 lock_extent(io_tree
, async_extent
->start
,
617 async_extent
->start
+ async_extent
->ram_size
- 1,
620 trans
= btrfs_join_transaction(root
, 1);
621 BUG_ON(IS_ERR(trans
));
622 ret
= btrfs_reserve_extent(trans
, root
,
623 async_extent
->compressed_size
,
624 async_extent
->compressed_size
,
627 btrfs_end_transaction(trans
, root
);
631 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
632 WARN_ON(async_extent
->pages
[i
]->mapping
);
633 page_cache_release(async_extent
->pages
[i
]);
635 kfree(async_extent
->pages
);
636 async_extent
->nr_pages
= 0;
637 async_extent
->pages
= NULL
;
638 unlock_extent(io_tree
, async_extent
->start
,
639 async_extent
->start
+
640 async_extent
->ram_size
- 1, GFP_NOFS
);
645 * here we're doing allocation and writeback of the
648 btrfs_drop_extent_cache(inode
, async_extent
->start
,
649 async_extent
->start
+
650 async_extent
->ram_size
- 1, 0);
652 em
= alloc_extent_map(GFP_NOFS
);
654 em
->start
= async_extent
->start
;
655 em
->len
= async_extent
->ram_size
;
656 em
->orig_start
= em
->start
;
658 em
->block_start
= ins
.objectid
;
659 em
->block_len
= ins
.offset
;
660 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
661 em
->compress_type
= async_extent
->compress_type
;
662 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
663 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
666 write_lock(&em_tree
->lock
);
667 ret
= add_extent_mapping(em_tree
, em
);
668 write_unlock(&em_tree
->lock
);
669 if (ret
!= -EEXIST
) {
673 btrfs_drop_extent_cache(inode
, async_extent
->start
,
674 async_extent
->start
+
675 async_extent
->ram_size
- 1, 0);
678 ret
= btrfs_add_ordered_extent_compress(inode
,
681 async_extent
->ram_size
,
683 BTRFS_ORDERED_COMPRESSED
,
684 async_extent
->compress_type
);
688 * clear dirty, set writeback and unlock the pages.
690 extent_clear_unlock_delalloc(inode
,
691 &BTRFS_I(inode
)->io_tree
,
693 async_extent
->start
+
694 async_extent
->ram_size
- 1,
695 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
696 EXTENT_CLEAR_UNLOCK
|
697 EXTENT_CLEAR_DELALLOC
|
698 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
700 ret
= btrfs_submit_compressed_write(inode
,
702 async_extent
->ram_size
,
704 ins
.offset
, async_extent
->pages
,
705 async_extent
->nr_pages
);
708 alloc_hint
= ins
.objectid
+ ins
.offset
;
716 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
719 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
720 struct extent_map
*em
;
723 read_lock(&em_tree
->lock
);
724 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
731 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
733 em
= search_extent_mapping(em_tree
, 0, 0);
734 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
735 alloc_hint
= em
->block_start
;
739 alloc_hint
= em
->block_start
;
743 read_unlock(&em_tree
->lock
);
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
761 static noinline
int cow_file_range(struct inode
*inode
,
762 struct page
*locked_page
,
763 u64 start
, u64 end
, int *page_started
,
764 unsigned long *nr_written
,
767 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
768 struct btrfs_trans_handle
*trans
;
771 unsigned long ram_size
;
774 u64 blocksize
= root
->sectorsize
;
775 struct btrfs_key ins
;
776 struct extent_map
*em
;
777 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
780 BUG_ON(root
== root
->fs_info
->tree_root
);
781 trans
= btrfs_join_transaction(root
, 1);
782 BUG_ON(IS_ERR(trans
));
783 btrfs_set_trans_block_group(trans
, inode
);
784 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
786 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
787 num_bytes
= max(blocksize
, num_bytes
);
788 disk_num_bytes
= num_bytes
;
792 /* lets try to make an inline extent */
793 ret
= cow_file_range_inline(trans
, root
, inode
,
794 start
, end
, 0, 0, NULL
);
796 extent_clear_unlock_delalloc(inode
,
797 &BTRFS_I(inode
)->io_tree
,
799 EXTENT_CLEAR_UNLOCK_PAGE
|
800 EXTENT_CLEAR_UNLOCK
|
801 EXTENT_CLEAR_DELALLOC
|
803 EXTENT_SET_WRITEBACK
|
804 EXTENT_END_WRITEBACK
);
806 *nr_written
= *nr_written
+
807 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
814 BUG_ON(disk_num_bytes
>
815 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
817 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
818 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
820 while (disk_num_bytes
> 0) {
823 cur_alloc_size
= disk_num_bytes
;
824 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
825 root
->sectorsize
, 0, alloc_hint
,
829 em
= alloc_extent_map(GFP_NOFS
);
832 em
->orig_start
= em
->start
;
833 ram_size
= ins
.offset
;
834 em
->len
= ins
.offset
;
836 em
->block_start
= ins
.objectid
;
837 em
->block_len
= ins
.offset
;
838 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
839 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
842 write_lock(&em_tree
->lock
);
843 ret
= add_extent_mapping(em_tree
, em
);
844 write_unlock(&em_tree
->lock
);
845 if (ret
!= -EEXIST
) {
849 btrfs_drop_extent_cache(inode
, start
,
850 start
+ ram_size
- 1, 0);
853 cur_alloc_size
= ins
.offset
;
854 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
855 ram_size
, cur_alloc_size
, 0);
858 if (root
->root_key
.objectid
==
859 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
860 ret
= btrfs_reloc_clone_csums(inode
, start
,
865 if (disk_num_bytes
< cur_alloc_size
)
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
875 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
876 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
879 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
880 start
, start
+ ram_size
- 1,
882 disk_num_bytes
-= cur_alloc_size
;
883 num_bytes
-= cur_alloc_size
;
884 alloc_hint
= ins
.objectid
+ ins
.offset
;
885 start
+= cur_alloc_size
;
889 btrfs_end_transaction(trans
, root
);
895 * work queue call back to started compression on a file and pages
897 static noinline
void async_cow_start(struct btrfs_work
*work
)
899 struct async_cow
*async_cow
;
901 async_cow
= container_of(work
, struct async_cow
, work
);
903 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
904 async_cow
->start
, async_cow
->end
, async_cow
,
907 async_cow
->inode
= NULL
;
911 * work queue call back to submit previously compressed pages
913 static noinline
void async_cow_submit(struct btrfs_work
*work
)
915 struct async_cow
*async_cow
;
916 struct btrfs_root
*root
;
917 unsigned long nr_pages
;
919 async_cow
= container_of(work
, struct async_cow
, work
);
921 root
= async_cow
->root
;
922 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
925 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
927 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
929 waitqueue_active(&root
->fs_info
->async_submit_wait
))
930 wake_up(&root
->fs_info
->async_submit_wait
);
932 if (async_cow
->inode
)
933 submit_compressed_extents(async_cow
->inode
, async_cow
);
936 static noinline
void async_cow_free(struct btrfs_work
*work
)
938 struct async_cow
*async_cow
;
939 async_cow
= container_of(work
, struct async_cow
, work
);
943 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
944 u64 start
, u64 end
, int *page_started
,
945 unsigned long *nr_written
)
947 struct async_cow
*async_cow
;
948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
949 unsigned long nr_pages
;
951 int limit
= 10 * 1024 * 1042;
953 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
954 1, 0, NULL
, GFP_NOFS
);
955 while (start
< end
) {
956 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
958 async_cow
->inode
= inode
;
959 async_cow
->root
= root
;
960 async_cow
->locked_page
= locked_page
;
961 async_cow
->start
= start
;
963 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
966 cur_end
= min(end
, start
+ 512 * 1024 - 1);
968 async_cow
->end
= cur_end
;
969 INIT_LIST_HEAD(&async_cow
->extents
);
971 async_cow
->work
.func
= async_cow_start
;
972 async_cow
->work
.ordered_func
= async_cow_submit
;
973 async_cow
->work
.ordered_free
= async_cow_free
;
974 async_cow
->work
.flags
= 0;
976 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
978 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
980 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
983 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
984 wait_event(root
->fs_info
->async_submit_wait
,
985 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
989 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
990 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
991 wait_event(root
->fs_info
->async_submit_wait
,
992 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
996 *nr_written
+= nr_pages
;
1003 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1004 u64 bytenr
, u64 num_bytes
)
1007 struct btrfs_ordered_sum
*sums
;
1010 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1011 bytenr
+ num_bytes
- 1, &list
);
1012 if (ret
== 0 && list_empty(&list
))
1015 while (!list_empty(&list
)) {
1016 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1017 list_del(&sums
->list
);
1024 * when nowcow writeback call back. This checks for snapshots or COW copies
1025 * of the extents that exist in the file, and COWs the file as required.
1027 * If no cow copies or snapshots exist, we write directly to the existing
1030 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1031 struct page
*locked_page
,
1032 u64 start
, u64 end
, int *page_started
, int force
,
1033 unsigned long *nr_written
)
1035 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1036 struct btrfs_trans_handle
*trans
;
1037 struct extent_buffer
*leaf
;
1038 struct btrfs_path
*path
;
1039 struct btrfs_file_extent_item
*fi
;
1040 struct btrfs_key found_key
;
1052 bool nolock
= false;
1054 path
= btrfs_alloc_path();
1056 if (root
== root
->fs_info
->tree_root
) {
1058 trans
= btrfs_join_transaction_nolock(root
, 1);
1060 trans
= btrfs_join_transaction(root
, 1);
1062 BUG_ON(IS_ERR(trans
));
1064 cow_start
= (u64
)-1;
1067 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1070 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1071 leaf
= path
->nodes
[0];
1072 btrfs_item_key_to_cpu(leaf
, &found_key
,
1073 path
->slots
[0] - 1);
1074 if (found_key
.objectid
== inode
->i_ino
&&
1075 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1080 leaf
= path
->nodes
[0];
1081 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1082 ret
= btrfs_next_leaf(root
, path
);
1087 leaf
= path
->nodes
[0];
1093 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1095 if (found_key
.objectid
> inode
->i_ino
||
1096 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1097 found_key
.offset
> end
)
1100 if (found_key
.offset
> cur_offset
) {
1101 extent_end
= found_key
.offset
;
1106 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1107 struct btrfs_file_extent_item
);
1108 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1110 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1111 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1112 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1113 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1114 extent_end
= found_key
.offset
+
1115 btrfs_file_extent_num_bytes(leaf
, fi
);
1116 if (extent_end
<= start
) {
1120 if (disk_bytenr
== 0)
1122 if (btrfs_file_extent_compression(leaf
, fi
) ||
1123 btrfs_file_extent_encryption(leaf
, fi
) ||
1124 btrfs_file_extent_other_encoding(leaf
, fi
))
1126 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1128 if (btrfs_extent_readonly(root
, disk_bytenr
))
1130 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1132 extent_offset
, disk_bytenr
))
1134 disk_bytenr
+= extent_offset
;
1135 disk_bytenr
+= cur_offset
- found_key
.offset
;
1136 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1138 * force cow if csum exists in the range.
1139 * this ensure that csum for a given extent are
1140 * either valid or do not exist.
1142 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1145 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1146 extent_end
= found_key
.offset
+
1147 btrfs_file_extent_inline_len(leaf
, fi
);
1148 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1153 if (extent_end
<= start
) {
1158 if (cow_start
== (u64
)-1)
1159 cow_start
= cur_offset
;
1160 cur_offset
= extent_end
;
1161 if (cur_offset
> end
)
1167 btrfs_release_path(root
, path
);
1168 if (cow_start
!= (u64
)-1) {
1169 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1170 found_key
.offset
- 1, page_started
,
1173 cow_start
= (u64
)-1;
1176 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1177 struct extent_map
*em
;
1178 struct extent_map_tree
*em_tree
;
1179 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1180 em
= alloc_extent_map(GFP_NOFS
);
1182 em
->start
= cur_offset
;
1183 em
->orig_start
= em
->start
;
1184 em
->len
= num_bytes
;
1185 em
->block_len
= num_bytes
;
1186 em
->block_start
= disk_bytenr
;
1187 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1188 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1190 write_lock(&em_tree
->lock
);
1191 ret
= add_extent_mapping(em_tree
, em
);
1192 write_unlock(&em_tree
->lock
);
1193 if (ret
!= -EEXIST
) {
1194 free_extent_map(em
);
1197 btrfs_drop_extent_cache(inode
, em
->start
,
1198 em
->start
+ em
->len
- 1, 0);
1200 type
= BTRFS_ORDERED_PREALLOC
;
1202 type
= BTRFS_ORDERED_NOCOW
;
1205 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1206 num_bytes
, num_bytes
, type
);
1209 if (root
->root_key
.objectid
==
1210 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1211 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1216 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1217 cur_offset
, cur_offset
+ num_bytes
- 1,
1218 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1219 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1220 EXTENT_SET_PRIVATE2
);
1221 cur_offset
= extent_end
;
1222 if (cur_offset
> end
)
1225 btrfs_release_path(root
, path
);
1227 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1228 cow_start
= cur_offset
;
1229 if (cow_start
!= (u64
)-1) {
1230 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1231 page_started
, nr_written
, 1);
1236 ret
= btrfs_end_transaction_nolock(trans
, root
);
1239 ret
= btrfs_end_transaction(trans
, root
);
1242 btrfs_free_path(path
);
1247 * extent_io.c call back to do delayed allocation processing
1249 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1250 u64 start
, u64 end
, int *page_started
,
1251 unsigned long *nr_written
)
1254 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1256 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1257 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1258 page_started
, 1, nr_written
);
1259 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1260 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1261 page_started
, 0, nr_written
);
1262 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1263 !(BTRFS_I(inode
)->force_compress
) &&
1264 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1265 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1266 page_started
, nr_written
, 1);
1268 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1269 page_started
, nr_written
);
1273 static int btrfs_split_extent_hook(struct inode
*inode
,
1274 struct extent_state
*orig
, u64 split
)
1276 /* not delalloc, ignore it */
1277 if (!(orig
->state
& EXTENT_DELALLOC
))
1280 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1285 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1286 * extents so we can keep track of new extents that are just merged onto old
1287 * extents, such as when we are doing sequential writes, so we can properly
1288 * account for the metadata space we'll need.
1290 static int btrfs_merge_extent_hook(struct inode
*inode
,
1291 struct extent_state
*new,
1292 struct extent_state
*other
)
1294 /* not delalloc, ignore it */
1295 if (!(other
->state
& EXTENT_DELALLOC
))
1298 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1303 * extent_io.c set_bit_hook, used to track delayed allocation
1304 * bytes in this file, and to maintain the list of inodes that
1305 * have pending delalloc work to be done.
1307 static int btrfs_set_bit_hook(struct inode
*inode
,
1308 struct extent_state
*state
, int *bits
)
1312 * set_bit and clear bit hooks normally require _irqsave/restore
1313 * but in this case, we are only testing for the DELALLOC
1314 * bit, which is only set or cleared with irqs on
1316 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1318 u64 len
= state
->end
+ 1 - state
->start
;
1319 int do_list
= (root
->root_key
.objectid
!=
1320 BTRFS_ROOT_TREE_OBJECTID
);
1322 if (*bits
& EXTENT_FIRST_DELALLOC
)
1323 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1325 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1327 spin_lock(&root
->fs_info
->delalloc_lock
);
1328 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1329 root
->fs_info
->delalloc_bytes
+= len
;
1330 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1331 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1332 &root
->fs_info
->delalloc_inodes
);
1334 spin_unlock(&root
->fs_info
->delalloc_lock
);
1340 * extent_io.c clear_bit_hook, see set_bit_hook for why
1342 static int btrfs_clear_bit_hook(struct inode
*inode
,
1343 struct extent_state
*state
, int *bits
)
1346 * set_bit and clear bit hooks normally require _irqsave/restore
1347 * but in this case, we are only testing for the DELALLOC
1348 * bit, which is only set or cleared with irqs on
1350 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1351 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1352 u64 len
= state
->end
+ 1 - state
->start
;
1353 int do_list
= (root
->root_key
.objectid
!=
1354 BTRFS_ROOT_TREE_OBJECTID
);
1356 if (*bits
& EXTENT_FIRST_DELALLOC
)
1357 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1358 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1359 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1361 if (*bits
& EXTENT_DO_ACCOUNTING
)
1362 btrfs_delalloc_release_metadata(inode
, len
);
1364 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1366 btrfs_free_reserved_data_space(inode
, len
);
1368 spin_lock(&root
->fs_info
->delalloc_lock
);
1369 root
->fs_info
->delalloc_bytes
-= len
;
1370 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1372 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1373 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1374 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1376 spin_unlock(&root
->fs_info
->delalloc_lock
);
1382 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1383 * we don't create bios that span stripes or chunks
1385 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1386 size_t size
, struct bio
*bio
,
1387 unsigned long bio_flags
)
1389 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1390 struct btrfs_mapping_tree
*map_tree
;
1391 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1396 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1399 length
= bio
->bi_size
;
1400 map_tree
= &root
->fs_info
->mapping_tree
;
1401 map_length
= length
;
1402 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1403 &map_length
, NULL
, 0);
1405 if (map_length
< length
+ size
)
1411 * in order to insert checksums into the metadata in large chunks,
1412 * we wait until bio submission time. All the pages in the bio are
1413 * checksummed and sums are attached onto the ordered extent record.
1415 * At IO completion time the cums attached on the ordered extent record
1416 * are inserted into the btree
1418 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1419 struct bio
*bio
, int mirror_num
,
1420 unsigned long bio_flags
,
1423 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1426 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1439 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1440 int mirror_num
, unsigned long bio_flags
,
1443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1444 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1448 * extent_io.c submission hook. This does the right thing for csum calculation
1449 * on write, or reading the csums from the tree before a read
1451 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1452 int mirror_num
, unsigned long bio_flags
,
1455 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1459 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1461 if (root
== root
->fs_info
->tree_root
)
1462 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1464 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1467 if (!(rw
& REQ_WRITE
)) {
1468 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1469 return btrfs_submit_compressed_read(inode
, bio
,
1470 mirror_num
, bio_flags
);
1471 } else if (!skip_sum
) {
1472 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1477 } else if (!skip_sum
) {
1478 /* csum items have already been cloned */
1479 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1481 /* we're doing a write, do the async checksumming */
1482 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1483 inode
, rw
, bio
, mirror_num
,
1484 bio_flags
, bio_offset
,
1485 __btrfs_submit_bio_start
,
1486 __btrfs_submit_bio_done
);
1490 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1494 * given a list of ordered sums record them in the inode. This happens
1495 * at IO completion time based on sums calculated at bio submission time.
1497 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1498 struct inode
*inode
, u64 file_offset
,
1499 struct list_head
*list
)
1501 struct btrfs_ordered_sum
*sum
;
1503 btrfs_set_trans_block_group(trans
, inode
);
1505 list_for_each_entry(sum
, list
, list
) {
1506 btrfs_csum_file_blocks(trans
,
1507 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1512 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1513 struct extent_state
**cached_state
)
1515 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1517 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1518 cached_state
, GFP_NOFS
);
1521 /* see btrfs_writepage_start_hook for details on why this is required */
1522 struct btrfs_writepage_fixup
{
1524 struct btrfs_work work
;
1527 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1529 struct btrfs_writepage_fixup
*fixup
;
1530 struct btrfs_ordered_extent
*ordered
;
1531 struct extent_state
*cached_state
= NULL
;
1533 struct inode
*inode
;
1537 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1541 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1542 ClearPageChecked(page
);
1546 inode
= page
->mapping
->host
;
1547 page_start
= page_offset(page
);
1548 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1550 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1551 &cached_state
, GFP_NOFS
);
1553 /* already ordered? We're done */
1554 if (PagePrivate2(page
))
1557 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1559 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1560 page_end
, &cached_state
, GFP_NOFS
);
1562 btrfs_start_ordered_extent(inode
, ordered
, 1);
1567 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1568 ClearPageChecked(page
);
1570 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1571 &cached_state
, GFP_NOFS
);
1574 page_cache_release(page
);
1579 * There are a few paths in the higher layers of the kernel that directly
1580 * set the page dirty bit without asking the filesystem if it is a
1581 * good idea. This causes problems because we want to make sure COW
1582 * properly happens and the data=ordered rules are followed.
1584 * In our case any range that doesn't have the ORDERED bit set
1585 * hasn't been properly setup for IO. We kick off an async process
1586 * to fix it up. The async helper will wait for ordered extents, set
1587 * the delalloc bit and make it safe to write the page.
1589 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1591 struct inode
*inode
= page
->mapping
->host
;
1592 struct btrfs_writepage_fixup
*fixup
;
1593 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1595 /* this page is properly in the ordered list */
1596 if (TestClearPagePrivate2(page
))
1599 if (PageChecked(page
))
1602 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1606 SetPageChecked(page
);
1607 page_cache_get(page
);
1608 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1610 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1614 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1615 struct inode
*inode
, u64 file_pos
,
1616 u64 disk_bytenr
, u64 disk_num_bytes
,
1617 u64 num_bytes
, u64 ram_bytes
,
1618 u8 compression
, u8 encryption
,
1619 u16 other_encoding
, int extent_type
)
1621 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1622 struct btrfs_file_extent_item
*fi
;
1623 struct btrfs_path
*path
;
1624 struct extent_buffer
*leaf
;
1625 struct btrfs_key ins
;
1629 path
= btrfs_alloc_path();
1632 path
->leave_spinning
= 1;
1635 * we may be replacing one extent in the tree with another.
1636 * The new extent is pinned in the extent map, and we don't want
1637 * to drop it from the cache until it is completely in the btree.
1639 * So, tell btrfs_drop_extents to leave this extent in the cache.
1640 * the caller is expected to unpin it and allow it to be merged
1643 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1647 ins
.objectid
= inode
->i_ino
;
1648 ins
.offset
= file_pos
;
1649 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1650 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1652 leaf
= path
->nodes
[0];
1653 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1654 struct btrfs_file_extent_item
);
1655 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1656 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1657 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1658 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1659 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1660 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1661 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1662 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1663 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1664 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1666 btrfs_unlock_up_safe(path
, 1);
1667 btrfs_set_lock_blocking(leaf
);
1669 btrfs_mark_buffer_dirty(leaf
);
1671 inode_add_bytes(inode
, num_bytes
);
1673 ins
.objectid
= disk_bytenr
;
1674 ins
.offset
= disk_num_bytes
;
1675 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1676 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1677 root
->root_key
.objectid
,
1678 inode
->i_ino
, file_pos
, &ins
);
1680 btrfs_free_path(path
);
1686 * helper function for btrfs_finish_ordered_io, this
1687 * just reads in some of the csum leaves to prime them into ram
1688 * before we start the transaction. It limits the amount of btree
1689 * reads required while inside the transaction.
1691 /* as ordered data IO finishes, this gets called so we can finish
1692 * an ordered extent if the range of bytes in the file it covers are
1695 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1697 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1698 struct btrfs_trans_handle
*trans
= NULL
;
1699 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1700 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1701 struct extent_state
*cached_state
= NULL
;
1702 int compress_type
= 0;
1704 bool nolock
= false;
1706 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1710 BUG_ON(!ordered_extent
);
1712 nolock
= (root
== root
->fs_info
->tree_root
);
1714 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1715 BUG_ON(!list_empty(&ordered_extent
->list
));
1716 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1719 trans
= btrfs_join_transaction_nolock(root
, 1);
1721 trans
= btrfs_join_transaction(root
, 1);
1722 BUG_ON(IS_ERR(trans
));
1723 btrfs_set_trans_block_group(trans
, inode
);
1724 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1725 ret
= btrfs_update_inode(trans
, root
, inode
);
1731 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1732 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1733 0, &cached_state
, GFP_NOFS
);
1736 trans
= btrfs_join_transaction_nolock(root
, 1);
1738 trans
= btrfs_join_transaction(root
, 1);
1739 BUG_ON(IS_ERR(trans
));
1740 btrfs_set_trans_block_group(trans
, inode
);
1741 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1743 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1744 compress_type
= ordered_extent
->compress_type
;
1745 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1746 BUG_ON(compress_type
);
1747 ret
= btrfs_mark_extent_written(trans
, inode
,
1748 ordered_extent
->file_offset
,
1749 ordered_extent
->file_offset
+
1750 ordered_extent
->len
);
1753 BUG_ON(root
== root
->fs_info
->tree_root
);
1754 ret
= insert_reserved_file_extent(trans
, inode
,
1755 ordered_extent
->file_offset
,
1756 ordered_extent
->start
,
1757 ordered_extent
->disk_len
,
1758 ordered_extent
->len
,
1759 ordered_extent
->len
,
1760 compress_type
, 0, 0,
1761 BTRFS_FILE_EXTENT_REG
);
1762 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1763 ordered_extent
->file_offset
,
1764 ordered_extent
->len
);
1767 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1768 ordered_extent
->file_offset
+
1769 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1771 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1772 &ordered_extent
->list
);
1774 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1776 ret
= btrfs_update_inode(trans
, root
, inode
);
1783 btrfs_end_transaction_nolock(trans
, root
);
1785 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1787 btrfs_end_transaction(trans
, root
);
1791 btrfs_put_ordered_extent(ordered_extent
);
1792 /* once for the tree */
1793 btrfs_put_ordered_extent(ordered_extent
);
1798 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1799 struct extent_state
*state
, int uptodate
)
1801 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1803 ClearPagePrivate2(page
);
1804 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1808 * When IO fails, either with EIO or csum verification fails, we
1809 * try other mirrors that might have a good copy of the data. This
1810 * io_failure_record is used to record state as we go through all the
1811 * mirrors. If another mirror has good data, the page is set up to date
1812 * and things continue. If a good mirror can't be found, the original
1813 * bio end_io callback is called to indicate things have failed.
1815 struct io_failure_record
{
1820 unsigned long bio_flags
;
1824 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1825 struct page
*page
, u64 start
, u64 end
,
1826 struct extent_state
*state
)
1828 struct io_failure_record
*failrec
= NULL
;
1830 struct extent_map
*em
;
1831 struct inode
*inode
= page
->mapping
->host
;
1832 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1833 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1840 ret
= get_state_private(failure_tree
, start
, &private);
1842 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1845 failrec
->start
= start
;
1846 failrec
->len
= end
- start
+ 1;
1847 failrec
->last_mirror
= 0;
1848 failrec
->bio_flags
= 0;
1850 read_lock(&em_tree
->lock
);
1851 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1852 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1853 free_extent_map(em
);
1856 read_unlock(&em_tree
->lock
);
1858 if (!em
|| IS_ERR(em
)) {
1862 logical
= start
- em
->start
;
1863 logical
= em
->block_start
+ logical
;
1864 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1865 logical
= em
->block_start
;
1866 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1867 extent_set_compress_type(&failrec
->bio_flags
,
1870 failrec
->logical
= logical
;
1871 free_extent_map(em
);
1872 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1873 EXTENT_DIRTY
, GFP_NOFS
);
1874 set_state_private(failure_tree
, start
,
1875 (u64
)(unsigned long)failrec
);
1877 failrec
= (struct io_failure_record
*)(unsigned long)private;
1879 num_copies
= btrfs_num_copies(
1880 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1881 failrec
->logical
, failrec
->len
);
1882 failrec
->last_mirror
++;
1884 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1885 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1888 if (state
&& state
->start
!= failrec
->start
)
1890 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1892 if (!state
|| failrec
->last_mirror
> num_copies
) {
1893 set_state_private(failure_tree
, failrec
->start
, 0);
1894 clear_extent_bits(failure_tree
, failrec
->start
,
1895 failrec
->start
+ failrec
->len
- 1,
1896 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1900 bio
= bio_alloc(GFP_NOFS
, 1);
1901 bio
->bi_private
= state
;
1902 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1903 bio
->bi_sector
= failrec
->logical
>> 9;
1904 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1907 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1908 if (failed_bio
->bi_rw
& REQ_WRITE
)
1913 ret
= BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1914 failrec
->last_mirror
,
1915 failrec
->bio_flags
, 0);
1920 * each time an IO finishes, we do a fast check in the IO failure tree
1921 * to see if we need to process or clean up an io_failure_record
1923 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1926 u64 private_failure
;
1927 struct io_failure_record
*failure
;
1931 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1932 (u64
)-1, 1, EXTENT_DIRTY
, 0)) {
1933 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1934 start
, &private_failure
);
1936 failure
= (struct io_failure_record
*)(unsigned long)
1938 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1940 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1942 failure
->start
+ failure
->len
- 1,
1943 EXTENT_DIRTY
| EXTENT_LOCKED
,
1952 * when reads are done, we need to check csums to verify the data is correct
1953 * if there's a match, we allow the bio to finish. If not, we go through
1954 * the io_failure_record routines to find good copies
1956 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1957 struct extent_state
*state
)
1959 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1960 struct inode
*inode
= page
->mapping
->host
;
1961 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1963 u64
private = ~(u32
)0;
1965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1968 if (PageChecked(page
)) {
1969 ClearPageChecked(page
);
1973 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1976 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1977 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1978 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1983 if (state
&& state
->start
== start
) {
1984 private = state
->private;
1987 ret
= get_state_private(io_tree
, start
, &private);
1989 kaddr
= kmap_atomic(page
, KM_USER0
);
1993 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1994 btrfs_csum_final(csum
, (char *)&csum
);
1995 if (csum
!= private)
1998 kunmap_atomic(kaddr
, KM_USER0
);
2000 /* if the io failure tree for this inode is non-empty,
2001 * check to see if we've recovered from a failed IO
2003 btrfs_clean_io_failures(inode
, start
);
2007 if (printk_ratelimit()) {
2008 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
2009 "private %llu\n", page
->mapping
->host
->i_ino
,
2010 (unsigned long long)start
, csum
,
2011 (unsigned long long)private);
2013 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2014 flush_dcache_page(page
);
2015 kunmap_atomic(kaddr
, KM_USER0
);
2021 struct delayed_iput
{
2022 struct list_head list
;
2023 struct inode
*inode
;
2026 void btrfs_add_delayed_iput(struct inode
*inode
)
2028 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2029 struct delayed_iput
*delayed
;
2031 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2034 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2035 delayed
->inode
= inode
;
2037 spin_lock(&fs_info
->delayed_iput_lock
);
2038 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2039 spin_unlock(&fs_info
->delayed_iput_lock
);
2042 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2045 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2046 struct delayed_iput
*delayed
;
2049 spin_lock(&fs_info
->delayed_iput_lock
);
2050 empty
= list_empty(&fs_info
->delayed_iputs
);
2051 spin_unlock(&fs_info
->delayed_iput_lock
);
2055 down_read(&root
->fs_info
->cleanup_work_sem
);
2056 spin_lock(&fs_info
->delayed_iput_lock
);
2057 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2058 spin_unlock(&fs_info
->delayed_iput_lock
);
2060 while (!list_empty(&list
)) {
2061 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2062 list_del(&delayed
->list
);
2063 iput(delayed
->inode
);
2066 up_read(&root
->fs_info
->cleanup_work_sem
);
2070 * calculate extra metadata reservation when snapshotting a subvolume
2071 * contains orphan files.
2073 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2074 struct btrfs_pending_snapshot
*pending
,
2075 u64
*bytes_to_reserve
)
2077 struct btrfs_root
*root
;
2078 struct btrfs_block_rsv
*block_rsv
;
2082 root
= pending
->root
;
2083 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2086 block_rsv
= root
->orphan_block_rsv
;
2088 /* orphan block reservation for the snapshot */
2089 num_bytes
= block_rsv
->size
;
2092 * after the snapshot is created, COWing tree blocks may use more
2093 * space than it frees. So we should make sure there is enough
2096 index
= trans
->transid
& 0x1;
2097 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2098 num_bytes
+= block_rsv
->size
-
2099 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2102 *bytes_to_reserve
+= num_bytes
;
2105 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2106 struct btrfs_pending_snapshot
*pending
)
2108 struct btrfs_root
*root
= pending
->root
;
2109 struct btrfs_root
*snap
= pending
->snap
;
2110 struct btrfs_block_rsv
*block_rsv
;
2115 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2118 /* refill source subvolume's orphan block reservation */
2119 block_rsv
= root
->orphan_block_rsv
;
2120 index
= trans
->transid
& 0x1;
2121 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2122 num_bytes
= block_rsv
->size
-
2123 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2124 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2125 root
->orphan_block_rsv
,
2130 /* setup orphan block reservation for the snapshot */
2131 block_rsv
= btrfs_alloc_block_rsv(snap
);
2134 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2135 snap
->orphan_block_rsv
= block_rsv
;
2137 num_bytes
= root
->orphan_block_rsv
->size
;
2138 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2139 block_rsv
, num_bytes
);
2143 /* insert orphan item for the snapshot */
2144 WARN_ON(!root
->orphan_item_inserted
);
2145 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2146 snap
->root_key
.objectid
);
2148 snap
->orphan_item_inserted
= 1;
2152 enum btrfs_orphan_cleanup_state
{
2153 ORPHAN_CLEANUP_STARTED
= 1,
2154 ORPHAN_CLEANUP_DONE
= 2,
2158 * This is called in transaction commmit time. If there are no orphan
2159 * files in the subvolume, it removes orphan item and frees block_rsv
2162 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2163 struct btrfs_root
*root
)
2167 if (!list_empty(&root
->orphan_list
) ||
2168 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2171 if (root
->orphan_item_inserted
&&
2172 btrfs_root_refs(&root
->root_item
) > 0) {
2173 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2174 root
->root_key
.objectid
);
2176 root
->orphan_item_inserted
= 0;
2179 if (root
->orphan_block_rsv
) {
2180 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2181 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2182 root
->orphan_block_rsv
= NULL
;
2187 * This creates an orphan entry for the given inode in case something goes
2188 * wrong in the middle of an unlink/truncate.
2190 * NOTE: caller of this function should reserve 5 units of metadata for
2193 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2195 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2196 struct btrfs_block_rsv
*block_rsv
= NULL
;
2201 if (!root
->orphan_block_rsv
) {
2202 block_rsv
= btrfs_alloc_block_rsv(root
);
2206 spin_lock(&root
->orphan_lock
);
2207 if (!root
->orphan_block_rsv
) {
2208 root
->orphan_block_rsv
= block_rsv
;
2209 } else if (block_rsv
) {
2210 btrfs_free_block_rsv(root
, block_rsv
);
2214 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2215 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2218 * For proper ENOSPC handling, we should do orphan
2219 * cleanup when mounting. But this introduces backward
2220 * compatibility issue.
2222 if (!xchg(&root
->orphan_item_inserted
, 1))
2230 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2231 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2234 spin_unlock(&root
->orphan_lock
);
2237 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2239 /* grab metadata reservation from transaction handle */
2241 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2245 /* insert an orphan item to track this unlinked/truncated file */
2247 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2251 /* insert an orphan item to track subvolume contains orphan files */
2253 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2254 root
->root_key
.objectid
);
2261 * We have done the truncate/delete so we can go ahead and remove the orphan
2262 * item for this particular inode.
2264 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2266 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2267 int delete_item
= 0;
2268 int release_rsv
= 0;
2271 spin_lock(&root
->orphan_lock
);
2272 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2273 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2277 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2278 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2281 spin_unlock(&root
->orphan_lock
);
2283 if (trans
&& delete_item
) {
2284 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2289 btrfs_orphan_release_metadata(inode
);
2295 * this cleans up any orphans that may be left on the list from the last use
2298 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2300 struct btrfs_path
*path
;
2301 struct extent_buffer
*leaf
;
2302 struct btrfs_key key
, found_key
;
2303 struct btrfs_trans_handle
*trans
;
2304 struct inode
*inode
;
2305 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2307 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2310 path
= btrfs_alloc_path();
2317 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2318 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2319 key
.offset
= (u64
)-1;
2322 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2327 * if ret == 0 means we found what we were searching for, which
2328 * is weird, but possible, so only screw with path if we didn't
2329 * find the key and see if we have stuff that matches
2333 if (path
->slots
[0] == 0)
2338 /* pull out the item */
2339 leaf
= path
->nodes
[0];
2340 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2342 /* make sure the item matches what we want */
2343 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2345 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2348 /* release the path since we're done with it */
2349 btrfs_release_path(root
, path
);
2352 * this is where we are basically btrfs_lookup, without the
2353 * crossing root thing. we store the inode number in the
2354 * offset of the orphan item.
2356 found_key
.objectid
= found_key
.offset
;
2357 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2358 found_key
.offset
= 0;
2359 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2360 if (IS_ERR(inode
)) {
2361 ret
= PTR_ERR(inode
);
2366 * add this inode to the orphan list so btrfs_orphan_del does
2367 * the proper thing when we hit it
2369 spin_lock(&root
->orphan_lock
);
2370 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2371 spin_unlock(&root
->orphan_lock
);
2374 * if this is a bad inode, means we actually succeeded in
2375 * removing the inode, but not the orphan record, which means
2376 * we need to manually delete the orphan since iput will just
2377 * do a destroy_inode
2379 if (is_bad_inode(inode
)) {
2380 trans
= btrfs_start_transaction(root
, 0);
2381 if (IS_ERR(trans
)) {
2382 ret
= PTR_ERR(trans
);
2385 btrfs_orphan_del(trans
, inode
);
2386 btrfs_end_transaction(trans
, root
);
2391 /* if we have links, this was a truncate, lets do that */
2392 if (inode
->i_nlink
) {
2393 if (!S_ISREG(inode
->i_mode
)) {
2399 ret
= btrfs_truncate(inode
);
2404 /* this will do delete_inode and everything for us */
2409 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2411 if (root
->orphan_block_rsv
)
2412 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2415 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2416 trans
= btrfs_join_transaction(root
, 1);
2418 btrfs_end_transaction(trans
, root
);
2422 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2424 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2428 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2429 btrfs_free_path(path
);
2434 * very simple check to peek ahead in the leaf looking for xattrs. If we
2435 * don't find any xattrs, we know there can't be any acls.
2437 * slot is the slot the inode is in, objectid is the objectid of the inode
2439 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2440 int slot
, u64 objectid
)
2442 u32 nritems
= btrfs_header_nritems(leaf
);
2443 struct btrfs_key found_key
;
2447 while (slot
< nritems
) {
2448 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2450 /* we found a different objectid, there must not be acls */
2451 if (found_key
.objectid
!= objectid
)
2454 /* we found an xattr, assume we've got an acl */
2455 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2459 * we found a key greater than an xattr key, there can't
2460 * be any acls later on
2462 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2469 * it goes inode, inode backrefs, xattrs, extents,
2470 * so if there are a ton of hard links to an inode there can
2471 * be a lot of backrefs. Don't waste time searching too hard,
2472 * this is just an optimization
2477 /* we hit the end of the leaf before we found an xattr or
2478 * something larger than an xattr. We have to assume the inode
2485 * read an inode from the btree into the in-memory inode
2487 static void btrfs_read_locked_inode(struct inode
*inode
)
2489 struct btrfs_path
*path
;
2490 struct extent_buffer
*leaf
;
2491 struct btrfs_inode_item
*inode_item
;
2492 struct btrfs_timespec
*tspec
;
2493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2494 struct btrfs_key location
;
2496 u64 alloc_group_block
;
2500 path
= btrfs_alloc_path();
2502 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2504 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2508 leaf
= path
->nodes
[0];
2509 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2510 struct btrfs_inode_item
);
2512 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2513 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2514 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2515 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2516 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2518 tspec
= btrfs_inode_atime(inode_item
);
2519 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2520 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2522 tspec
= btrfs_inode_mtime(inode_item
);
2523 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2524 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2526 tspec
= btrfs_inode_ctime(inode_item
);
2527 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2528 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2530 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2531 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2532 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2533 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2535 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2537 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2538 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2540 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2543 * try to precache a NULL acl entry for files that don't have
2544 * any xattrs or acls
2546 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2548 cache_no_acl(inode
);
2550 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2551 alloc_group_block
, 0);
2552 btrfs_free_path(path
);
2555 switch (inode
->i_mode
& S_IFMT
) {
2557 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2558 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2559 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2560 inode
->i_fop
= &btrfs_file_operations
;
2561 inode
->i_op
= &btrfs_file_inode_operations
;
2564 inode
->i_fop
= &btrfs_dir_file_operations
;
2565 if (root
== root
->fs_info
->tree_root
)
2566 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2568 inode
->i_op
= &btrfs_dir_inode_operations
;
2571 inode
->i_op
= &btrfs_symlink_inode_operations
;
2572 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2573 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2576 inode
->i_op
= &btrfs_special_inode_operations
;
2577 init_special_inode(inode
, inode
->i_mode
, rdev
);
2581 btrfs_update_iflags(inode
);
2585 btrfs_free_path(path
);
2586 make_bad_inode(inode
);
2590 * given a leaf and an inode, copy the inode fields into the leaf
2592 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2593 struct extent_buffer
*leaf
,
2594 struct btrfs_inode_item
*item
,
2595 struct inode
*inode
)
2597 if (!leaf
->map_token
)
2598 map_private_extent_buffer(leaf
, (unsigned long)item
,
2599 sizeof(struct btrfs_inode_item
),
2600 &leaf
->map_token
, &leaf
->kaddr
,
2601 &leaf
->map_start
, &leaf
->map_len
,
2604 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2605 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2606 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2607 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2608 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2610 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2611 inode
->i_atime
.tv_sec
);
2612 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2613 inode
->i_atime
.tv_nsec
);
2615 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2616 inode
->i_mtime
.tv_sec
);
2617 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2618 inode
->i_mtime
.tv_nsec
);
2620 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2621 inode
->i_ctime
.tv_sec
);
2622 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2623 inode
->i_ctime
.tv_nsec
);
2625 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2626 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2627 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2628 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2629 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2630 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2631 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2633 if (leaf
->map_token
) {
2634 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
2635 leaf
->map_token
= NULL
;
2640 * copy everything in the in-memory inode into the btree.
2642 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2643 struct btrfs_root
*root
, struct inode
*inode
)
2645 struct btrfs_inode_item
*inode_item
;
2646 struct btrfs_path
*path
;
2647 struct extent_buffer
*leaf
;
2650 path
= btrfs_alloc_path();
2652 path
->leave_spinning
= 1;
2653 ret
= btrfs_lookup_inode(trans
, root
, path
,
2654 &BTRFS_I(inode
)->location
, 1);
2661 btrfs_unlock_up_safe(path
, 1);
2662 leaf
= path
->nodes
[0];
2663 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2664 struct btrfs_inode_item
);
2666 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2667 btrfs_mark_buffer_dirty(leaf
);
2668 btrfs_set_inode_last_trans(trans
, inode
);
2671 btrfs_free_path(path
);
2677 * unlink helper that gets used here in inode.c and in the tree logging
2678 * recovery code. It remove a link in a directory with a given name, and
2679 * also drops the back refs in the inode to the directory
2681 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2682 struct btrfs_root
*root
,
2683 struct inode
*dir
, struct inode
*inode
,
2684 const char *name
, int name_len
)
2686 struct btrfs_path
*path
;
2688 struct extent_buffer
*leaf
;
2689 struct btrfs_dir_item
*di
;
2690 struct btrfs_key key
;
2693 path
= btrfs_alloc_path();
2699 path
->leave_spinning
= 1;
2700 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2701 name
, name_len
, -1);
2710 leaf
= path
->nodes
[0];
2711 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2712 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2715 btrfs_release_path(root
, path
);
2717 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2719 dir
->i_ino
, &index
);
2721 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2722 "inode %lu parent %lu\n", name_len
, name
,
2723 inode
->i_ino
, dir
->i_ino
);
2727 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2728 index
, name
, name_len
, -1);
2737 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2738 btrfs_release_path(root
, path
);
2740 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2742 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2744 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2749 btrfs_free_path(path
);
2753 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2754 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2755 btrfs_update_inode(trans
, root
, dir
);
2760 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2761 struct btrfs_root
*root
,
2762 struct inode
*dir
, struct inode
*inode
,
2763 const char *name
, int name_len
)
2766 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2768 btrfs_drop_nlink(inode
);
2769 ret
= btrfs_update_inode(trans
, root
, inode
);
2775 /* helper to check if there is any shared block in the path */
2776 static int check_path_shared(struct btrfs_root
*root
,
2777 struct btrfs_path
*path
)
2779 struct extent_buffer
*eb
;
2783 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2786 if (!path
->nodes
[level
])
2788 eb
= path
->nodes
[level
];
2789 if (!btrfs_block_can_be_shared(root
, eb
))
2791 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2800 * helper to start transaction for unlink and rmdir.
2802 * unlink and rmdir are special in btrfs, they do not always free space.
2803 * so in enospc case, we should make sure they will free space before
2804 * allowing them to use the global metadata reservation.
2806 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2807 struct dentry
*dentry
)
2809 struct btrfs_trans_handle
*trans
;
2810 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2811 struct btrfs_path
*path
;
2812 struct btrfs_inode_ref
*ref
;
2813 struct btrfs_dir_item
*di
;
2814 struct inode
*inode
= dentry
->d_inode
;
2820 trans
= btrfs_start_transaction(root
, 10);
2821 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2824 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2825 return ERR_PTR(-ENOSPC
);
2827 /* check if there is someone else holds reference */
2828 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2829 return ERR_PTR(-ENOSPC
);
2831 if (atomic_read(&inode
->i_count
) > 2)
2832 return ERR_PTR(-ENOSPC
);
2834 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2835 return ERR_PTR(-ENOSPC
);
2837 path
= btrfs_alloc_path();
2839 root
->fs_info
->enospc_unlink
= 0;
2840 return ERR_PTR(-ENOMEM
);
2843 trans
= btrfs_start_transaction(root
, 0);
2844 if (IS_ERR(trans
)) {
2845 btrfs_free_path(path
);
2846 root
->fs_info
->enospc_unlink
= 0;
2850 path
->skip_locking
= 1;
2851 path
->search_commit_root
= 1;
2853 ret
= btrfs_lookup_inode(trans
, root
, path
,
2854 &BTRFS_I(dir
)->location
, 0);
2860 if (check_path_shared(root
, path
))
2865 btrfs_release_path(root
, path
);
2867 ret
= btrfs_lookup_inode(trans
, root
, path
,
2868 &BTRFS_I(inode
)->location
, 0);
2874 if (check_path_shared(root
, path
))
2879 btrfs_release_path(root
, path
);
2881 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2882 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2883 inode
->i_ino
, (u64
)-1, 0);
2889 if (check_path_shared(root
, path
))
2891 btrfs_release_path(root
, path
);
2899 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2900 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2906 if (check_path_shared(root
, path
))
2912 btrfs_release_path(root
, path
);
2914 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2915 dentry
->d_name
.name
, dentry
->d_name
.len
,
2916 inode
->i_ino
, dir
->i_ino
, 0);
2922 if (check_path_shared(root
, path
))
2924 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2925 btrfs_release_path(root
, path
);
2927 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2928 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2933 BUG_ON(ret
== -ENOENT
);
2934 if (check_path_shared(root
, path
))
2939 btrfs_free_path(path
);
2941 btrfs_end_transaction(trans
, root
);
2942 root
->fs_info
->enospc_unlink
= 0;
2943 return ERR_PTR(err
);
2946 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2950 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2951 struct btrfs_root
*root
)
2953 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2954 BUG_ON(!root
->fs_info
->enospc_unlink
);
2955 root
->fs_info
->enospc_unlink
= 0;
2957 btrfs_end_transaction_throttle(trans
, root
);
2960 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2962 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2963 struct btrfs_trans_handle
*trans
;
2964 struct inode
*inode
= dentry
->d_inode
;
2966 unsigned long nr
= 0;
2968 trans
= __unlink_start_trans(dir
, dentry
);
2970 return PTR_ERR(trans
);
2972 btrfs_set_trans_block_group(trans
, dir
);
2974 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2976 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2977 dentry
->d_name
.name
, dentry
->d_name
.len
);
2980 if (inode
->i_nlink
== 0) {
2981 ret
= btrfs_orphan_add(trans
, inode
);
2985 nr
= trans
->blocks_used
;
2986 __unlink_end_trans(trans
, root
);
2987 btrfs_btree_balance_dirty(root
, nr
);
2991 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2992 struct btrfs_root
*root
,
2993 struct inode
*dir
, u64 objectid
,
2994 const char *name
, int name_len
)
2996 struct btrfs_path
*path
;
2997 struct extent_buffer
*leaf
;
2998 struct btrfs_dir_item
*di
;
2999 struct btrfs_key key
;
3003 path
= btrfs_alloc_path();
3007 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
3008 name
, name_len
, -1);
3009 BUG_ON(!di
|| IS_ERR(di
));
3011 leaf
= path
->nodes
[0];
3012 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3013 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3014 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3016 btrfs_release_path(root
, path
);
3018 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3019 objectid
, root
->root_key
.objectid
,
3020 dir
->i_ino
, &index
, name
, name_len
);
3022 BUG_ON(ret
!= -ENOENT
);
3023 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
3025 BUG_ON(!di
|| IS_ERR(di
));
3027 leaf
= path
->nodes
[0];
3028 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3029 btrfs_release_path(root
, path
);
3033 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
3034 index
, name
, name_len
, -1);
3035 BUG_ON(!di
|| IS_ERR(di
));
3037 leaf
= path
->nodes
[0];
3038 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3039 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3040 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3042 btrfs_release_path(root
, path
);
3044 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3045 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3046 ret
= btrfs_update_inode(trans
, root
, dir
);
3049 btrfs_free_path(path
);
3053 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3055 struct inode
*inode
= dentry
->d_inode
;
3057 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3058 struct btrfs_trans_handle
*trans
;
3059 unsigned long nr
= 0;
3061 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3062 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
3065 trans
= __unlink_start_trans(dir
, dentry
);
3067 return PTR_ERR(trans
);
3069 btrfs_set_trans_block_group(trans
, dir
);
3071 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3072 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3073 BTRFS_I(inode
)->location
.objectid
,
3074 dentry
->d_name
.name
,
3075 dentry
->d_name
.len
);
3079 err
= btrfs_orphan_add(trans
, inode
);
3083 /* now the directory is empty */
3084 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3085 dentry
->d_name
.name
, dentry
->d_name
.len
);
3087 btrfs_i_size_write(inode
, 0);
3089 nr
= trans
->blocks_used
;
3090 __unlink_end_trans(trans
, root
);
3091 btrfs_btree_balance_dirty(root
, nr
);
3098 * when truncating bytes in a file, it is possible to avoid reading
3099 * the leaves that contain only checksum items. This can be the
3100 * majority of the IO required to delete a large file, but it must
3101 * be done carefully.
3103 * The keys in the level just above the leaves are checked to make sure
3104 * the lowest key in a given leaf is a csum key, and starts at an offset
3105 * after the new size.
3107 * Then the key for the next leaf is checked to make sure it also has
3108 * a checksum item for the same file. If it does, we know our target leaf
3109 * contains only checksum items, and it can be safely freed without reading
3112 * This is just an optimization targeted at large files. It may do
3113 * nothing. It will return 0 unless things went badly.
3115 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3116 struct btrfs_root
*root
,
3117 struct btrfs_path
*path
,
3118 struct inode
*inode
, u64 new_size
)
3120 struct btrfs_key key
;
3123 struct btrfs_key found_key
;
3124 struct btrfs_key other_key
;
3125 struct btrfs_leaf_ref
*ref
;
3129 path
->lowest_level
= 1;
3130 key
.objectid
= inode
->i_ino
;
3131 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3132 key
.offset
= new_size
;
3134 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3138 if (path
->nodes
[1] == NULL
) {
3143 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3144 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3149 if (path
->slots
[1] >= nritems
)
3152 /* did we find a key greater than anything we want to delete? */
3153 if (found_key
.objectid
> inode
->i_ino
||
3154 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3157 /* we check the next key in the node to make sure the leave contains
3158 * only checksum items. This comparison doesn't work if our
3159 * leaf is the last one in the node
3161 if (path
->slots
[1] + 1 >= nritems
) {
3163 /* search forward from the last key in the node, this
3164 * will bring us into the next node in the tree
3166 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3168 /* unlikely, but we inc below, so check to be safe */
3169 if (found_key
.offset
== (u64
)-1)
3172 /* search_forward needs a path with locks held, do the
3173 * search again for the original key. It is possible
3174 * this will race with a balance and return a path that
3175 * we could modify, but this drop is just an optimization
3176 * and is allowed to miss some leaves.
3178 btrfs_release_path(root
, path
);
3181 /* setup a max key for search_forward */
3182 other_key
.offset
= (u64
)-1;
3183 other_key
.type
= key
.type
;
3184 other_key
.objectid
= key
.objectid
;
3186 path
->keep_locks
= 1;
3187 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3189 path
->keep_locks
= 0;
3190 if (ret
|| found_key
.objectid
!= key
.objectid
||
3191 found_key
.type
!= key
.type
) {
3196 key
.offset
= found_key
.offset
;
3197 btrfs_release_path(root
, path
);
3202 /* we know there's one more slot after us in the tree,
3203 * read that key so we can verify it is also a checksum item
3205 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3207 if (found_key
.objectid
< inode
->i_ino
)
3210 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3214 * if the key for the next leaf isn't a csum key from this objectid,
3215 * we can't be sure there aren't good items inside this leaf.
3218 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3221 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3222 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3224 * it is safe to delete this leaf, it contains only
3225 * csum items from this inode at an offset >= new_size
3227 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3230 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3231 ref
= btrfs_alloc_leaf_ref(root
, 0);
3233 ref
->root_gen
= root
->root_key
.offset
;
3234 ref
->bytenr
= leaf_start
;
3236 ref
->generation
= leaf_gen
;
3239 btrfs_sort_leaf_ref(ref
);
3241 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3243 btrfs_free_leaf_ref(root
, ref
);
3249 btrfs_release_path(root
, path
);
3251 if (other_key
.objectid
== inode
->i_ino
&&
3252 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3253 key
.offset
= other_key
.offset
;
3259 /* fixup any changes we've made to the path */
3260 path
->lowest_level
= 0;
3261 path
->keep_locks
= 0;
3262 btrfs_release_path(root
, path
);
3269 * this can truncate away extent items, csum items and directory items.
3270 * It starts at a high offset and removes keys until it can't find
3271 * any higher than new_size
3273 * csum items that cross the new i_size are truncated to the new size
3276 * min_type is the minimum key type to truncate down to. If set to 0, this
3277 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3279 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3280 struct btrfs_root
*root
,
3281 struct inode
*inode
,
3282 u64 new_size
, u32 min_type
)
3284 struct btrfs_path
*path
;
3285 struct extent_buffer
*leaf
;
3286 struct btrfs_file_extent_item
*fi
;
3287 struct btrfs_key key
;
3288 struct btrfs_key found_key
;
3289 u64 extent_start
= 0;
3290 u64 extent_num_bytes
= 0;
3291 u64 extent_offset
= 0;
3293 u64 mask
= root
->sectorsize
- 1;
3294 u32 found_type
= (u8
)-1;
3297 int pending_del_nr
= 0;
3298 int pending_del_slot
= 0;
3299 int extent_type
= -1;
3304 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3306 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3307 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3309 path
= btrfs_alloc_path();
3313 key
.objectid
= inode
->i_ino
;
3314 key
.offset
= (u64
)-1;
3318 path
->leave_spinning
= 1;
3319 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3326 /* there are no items in the tree for us to truncate, we're
3329 if (path
->slots
[0] == 0)
3336 leaf
= path
->nodes
[0];
3337 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3338 found_type
= btrfs_key_type(&found_key
);
3341 if (found_key
.objectid
!= inode
->i_ino
)
3344 if (found_type
< min_type
)
3347 item_end
= found_key
.offset
;
3348 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3349 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3350 struct btrfs_file_extent_item
);
3351 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3352 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3353 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3354 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3356 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3358 btrfs_file_extent_num_bytes(leaf
, fi
);
3359 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3360 item_end
+= btrfs_file_extent_inline_len(leaf
,
3365 if (found_type
> min_type
) {
3368 if (item_end
< new_size
)
3370 if (found_key
.offset
>= new_size
)
3376 /* FIXME, shrink the extent if the ref count is only 1 */
3377 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3380 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3382 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3383 if (!del_item
&& !encoding
) {
3384 u64 orig_num_bytes
=
3385 btrfs_file_extent_num_bytes(leaf
, fi
);
3386 extent_num_bytes
= new_size
-
3387 found_key
.offset
+ root
->sectorsize
- 1;
3388 extent_num_bytes
= extent_num_bytes
&
3389 ~((u64
)root
->sectorsize
- 1);
3390 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3392 num_dec
= (orig_num_bytes
-
3394 if (root
->ref_cows
&& extent_start
!= 0)
3395 inode_sub_bytes(inode
, num_dec
);
3396 btrfs_mark_buffer_dirty(leaf
);
3399 btrfs_file_extent_disk_num_bytes(leaf
,
3401 extent_offset
= found_key
.offset
-
3402 btrfs_file_extent_offset(leaf
, fi
);
3404 /* FIXME blocksize != 4096 */
3405 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3406 if (extent_start
!= 0) {
3409 inode_sub_bytes(inode
, num_dec
);
3412 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3414 * we can't truncate inline items that have had
3418 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3419 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3420 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3421 u32 size
= new_size
- found_key
.offset
;
3423 if (root
->ref_cows
) {
3424 inode_sub_bytes(inode
, item_end
+ 1 -
3428 btrfs_file_extent_calc_inline_size(size
);
3429 ret
= btrfs_truncate_item(trans
, root
, path
,
3431 } else if (root
->ref_cows
) {
3432 inode_sub_bytes(inode
, item_end
+ 1 -
3438 if (!pending_del_nr
) {
3439 /* no pending yet, add ourselves */
3440 pending_del_slot
= path
->slots
[0];
3442 } else if (pending_del_nr
&&
3443 path
->slots
[0] + 1 == pending_del_slot
) {
3444 /* hop on the pending chunk */
3446 pending_del_slot
= path
->slots
[0];
3453 if (found_extent
&& (root
->ref_cows
||
3454 root
== root
->fs_info
->tree_root
)) {
3455 btrfs_set_path_blocking(path
);
3456 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3457 extent_num_bytes
, 0,
3458 btrfs_header_owner(leaf
),
3459 inode
->i_ino
, extent_offset
);
3463 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3466 if (path
->slots
[0] == 0 ||
3467 path
->slots
[0] != pending_del_slot
) {
3468 if (root
->ref_cows
) {
3472 if (pending_del_nr
) {
3473 ret
= btrfs_del_items(trans
, root
, path
,
3479 btrfs_release_path(root
, path
);
3486 if (pending_del_nr
) {
3487 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3491 btrfs_free_path(path
);
3496 * taken from block_truncate_page, but does cow as it zeros out
3497 * any bytes left in the last page in the file.
3499 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3501 struct inode
*inode
= mapping
->host
;
3502 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3503 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3504 struct btrfs_ordered_extent
*ordered
;
3505 struct extent_state
*cached_state
= NULL
;
3507 u32 blocksize
= root
->sectorsize
;
3508 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3509 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3515 if ((offset
& (blocksize
- 1)) == 0)
3517 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3523 page
= grab_cache_page(mapping
, index
);
3525 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3529 page_start
= page_offset(page
);
3530 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3532 if (!PageUptodate(page
)) {
3533 ret
= btrfs_readpage(NULL
, page
);
3535 if (page
->mapping
!= mapping
) {
3537 page_cache_release(page
);
3540 if (!PageUptodate(page
)) {
3545 wait_on_page_writeback(page
);
3547 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3549 set_page_extent_mapped(page
);
3551 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3553 unlock_extent_cached(io_tree
, page_start
, page_end
,
3554 &cached_state
, GFP_NOFS
);
3556 page_cache_release(page
);
3557 btrfs_start_ordered_extent(inode
, ordered
, 1);
3558 btrfs_put_ordered_extent(ordered
);
3562 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3563 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3564 0, 0, &cached_state
, GFP_NOFS
);
3566 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3569 unlock_extent_cached(io_tree
, page_start
, page_end
,
3570 &cached_state
, GFP_NOFS
);
3575 if (offset
!= PAGE_CACHE_SIZE
) {
3577 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3578 flush_dcache_page(page
);
3581 ClearPageChecked(page
);
3582 set_page_dirty(page
);
3583 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3588 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3590 page_cache_release(page
);
3596 * This function puts in dummy file extents for the area we're creating a hole
3597 * for. So if we are truncating this file to a larger size we need to insert
3598 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599 * the range between oldsize and size
3601 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3603 struct btrfs_trans_handle
*trans
;
3604 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3605 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3606 struct extent_map
*em
= NULL
;
3607 struct extent_state
*cached_state
= NULL
;
3608 u64 mask
= root
->sectorsize
- 1;
3609 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3610 u64 block_end
= (size
+ mask
) & ~mask
;
3616 if (size
<= hole_start
)
3620 struct btrfs_ordered_extent
*ordered
;
3621 btrfs_wait_ordered_range(inode
, hole_start
,
3622 block_end
- hole_start
);
3623 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3624 &cached_state
, GFP_NOFS
);
3625 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3628 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3629 &cached_state
, GFP_NOFS
);
3630 btrfs_put_ordered_extent(ordered
);
3633 cur_offset
= hole_start
;
3635 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3636 block_end
- cur_offset
, 0);
3637 BUG_ON(IS_ERR(em
) || !em
);
3638 last_byte
= min(extent_map_end(em
), block_end
);
3639 last_byte
= (last_byte
+ mask
) & ~mask
;
3640 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3642 hole_size
= last_byte
- cur_offset
;
3644 trans
= btrfs_start_transaction(root
, 2);
3645 if (IS_ERR(trans
)) {
3646 err
= PTR_ERR(trans
);
3649 btrfs_set_trans_block_group(trans
, inode
);
3651 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3652 cur_offset
+ hole_size
,
3657 err
= btrfs_insert_file_extent(trans
, root
,
3658 inode
->i_ino
, cur_offset
, 0,
3659 0, hole_size
, 0, hole_size
,
3664 btrfs_drop_extent_cache(inode
, hole_start
,
3667 btrfs_end_transaction(trans
, root
);
3669 free_extent_map(em
);
3671 cur_offset
= last_byte
;
3672 if (cur_offset
>= block_end
)
3676 free_extent_map(em
);
3677 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3682 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3684 loff_t oldsize
= i_size_read(inode
);
3687 if (newsize
== oldsize
)
3690 if (newsize
> oldsize
) {
3691 i_size_write(inode
, newsize
);
3692 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3693 truncate_pagecache(inode
, oldsize
, newsize
);
3694 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3696 btrfs_setsize(inode
, oldsize
);
3700 mark_inode_dirty(inode
);
3704 * We're truncating a file that used to have good data down to
3705 * zero. Make sure it gets into the ordered flush list so that
3706 * any new writes get down to disk quickly.
3709 BTRFS_I(inode
)->ordered_data_close
= 1;
3711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712 truncate_setsize(inode
, newsize
);
3713 ret
= btrfs_truncate(inode
);
3719 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3721 struct inode
*inode
= dentry
->d_inode
;
3722 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3725 if (btrfs_root_readonly(root
))
3728 err
= inode_change_ok(inode
, attr
);
3732 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3733 err
= btrfs_setsize(inode
, attr
->ia_size
);
3738 if (attr
->ia_valid
) {
3739 setattr_copy(inode
, attr
);
3740 mark_inode_dirty(inode
);
3742 if (attr
->ia_valid
& ATTR_MODE
)
3743 err
= btrfs_acl_chmod(inode
);
3749 void btrfs_evict_inode(struct inode
*inode
)
3751 struct btrfs_trans_handle
*trans
;
3752 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3756 trace_btrfs_inode_evict(inode
);
3758 truncate_inode_pages(&inode
->i_data
, 0);
3759 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3760 root
== root
->fs_info
->tree_root
))
3763 if (is_bad_inode(inode
)) {
3764 btrfs_orphan_del(NULL
, inode
);
3767 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3768 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3770 if (root
->fs_info
->log_root_recovering
) {
3771 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3775 if (inode
->i_nlink
> 0) {
3776 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3780 btrfs_i_size_write(inode
, 0);
3783 trans
= btrfs_start_transaction(root
, 0);
3784 BUG_ON(IS_ERR(trans
));
3785 btrfs_set_trans_block_group(trans
, inode
);
3786 trans
->block_rsv
= root
->orphan_block_rsv
;
3788 ret
= btrfs_block_rsv_check(trans
, root
,
3789 root
->orphan_block_rsv
, 0, 5);
3791 BUG_ON(ret
!= -EAGAIN
);
3792 ret
= btrfs_commit_transaction(trans
, root
);
3797 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3801 nr
= trans
->blocks_used
;
3802 btrfs_end_transaction(trans
, root
);
3804 btrfs_btree_balance_dirty(root
, nr
);
3809 ret
= btrfs_orphan_del(trans
, inode
);
3813 nr
= trans
->blocks_used
;
3814 btrfs_end_transaction(trans
, root
);
3815 btrfs_btree_balance_dirty(root
, nr
);
3817 end_writeback(inode
);
3822 * this returns the key found in the dir entry in the location pointer.
3823 * If no dir entries were found, location->objectid is 0.
3825 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3826 struct btrfs_key
*location
)
3828 const char *name
= dentry
->d_name
.name
;
3829 int namelen
= dentry
->d_name
.len
;
3830 struct btrfs_dir_item
*di
;
3831 struct btrfs_path
*path
;
3832 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3835 path
= btrfs_alloc_path();
3838 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3843 if (!di
|| IS_ERR(di
))
3846 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3848 btrfs_free_path(path
);
3851 location
->objectid
= 0;
3856 * when we hit a tree root in a directory, the btrfs part of the inode
3857 * needs to be changed to reflect the root directory of the tree root. This
3858 * is kind of like crossing a mount point.
3860 static int fixup_tree_root_location(struct btrfs_root
*root
,
3862 struct dentry
*dentry
,
3863 struct btrfs_key
*location
,
3864 struct btrfs_root
**sub_root
)
3866 struct btrfs_path
*path
;
3867 struct btrfs_root
*new_root
;
3868 struct btrfs_root_ref
*ref
;
3869 struct extent_buffer
*leaf
;
3873 path
= btrfs_alloc_path();
3880 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3881 BTRFS_I(dir
)->root
->root_key
.objectid
,
3882 location
->objectid
);
3889 leaf
= path
->nodes
[0];
3890 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3891 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3892 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3895 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3896 (unsigned long)(ref
+ 1),
3897 dentry
->d_name
.len
);
3901 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3903 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3904 if (IS_ERR(new_root
)) {
3905 err
= PTR_ERR(new_root
);
3909 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3914 *sub_root
= new_root
;
3915 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3916 location
->type
= BTRFS_INODE_ITEM_KEY
;
3917 location
->offset
= 0;
3920 btrfs_free_path(path
);
3924 static void inode_tree_add(struct inode
*inode
)
3926 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3927 struct btrfs_inode
*entry
;
3929 struct rb_node
*parent
;
3931 p
= &root
->inode_tree
.rb_node
;
3934 if (inode_unhashed(inode
))
3937 spin_lock(&root
->inode_lock
);
3940 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3942 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3943 p
= &parent
->rb_left
;
3944 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3945 p
= &parent
->rb_right
;
3947 WARN_ON(!(entry
->vfs_inode
.i_state
&
3948 (I_WILL_FREE
| I_FREEING
)));
3949 rb_erase(parent
, &root
->inode_tree
);
3950 RB_CLEAR_NODE(parent
);
3951 spin_unlock(&root
->inode_lock
);
3955 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3956 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3957 spin_unlock(&root
->inode_lock
);
3960 static void inode_tree_del(struct inode
*inode
)
3962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3965 spin_lock(&root
->inode_lock
);
3966 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3967 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3968 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3969 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3971 spin_unlock(&root
->inode_lock
);
3974 * Free space cache has inodes in the tree root, but the tree root has a
3975 * root_refs of 0, so this could end up dropping the tree root as a
3976 * snapshot, so we need the extra !root->fs_info->tree_root check to
3977 * make sure we don't drop it.
3979 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3980 root
!= root
->fs_info
->tree_root
) {
3981 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3982 spin_lock(&root
->inode_lock
);
3983 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3984 spin_unlock(&root
->inode_lock
);
3986 btrfs_add_dead_root(root
);
3990 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3992 struct rb_node
*node
;
3993 struct rb_node
*prev
;
3994 struct btrfs_inode
*entry
;
3995 struct inode
*inode
;
3998 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4000 spin_lock(&root
->inode_lock
);
4002 node
= root
->inode_tree
.rb_node
;
4006 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4008 if (objectid
< entry
->vfs_inode
.i_ino
)
4009 node
= node
->rb_left
;
4010 else if (objectid
> entry
->vfs_inode
.i_ino
)
4011 node
= node
->rb_right
;
4017 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4018 if (objectid
<= entry
->vfs_inode
.i_ino
) {
4022 prev
= rb_next(prev
);
4026 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4027 objectid
= entry
->vfs_inode
.i_ino
+ 1;
4028 inode
= igrab(&entry
->vfs_inode
);
4030 spin_unlock(&root
->inode_lock
);
4031 if (atomic_read(&inode
->i_count
) > 1)
4032 d_prune_aliases(inode
);
4034 * btrfs_drop_inode will have it removed from
4035 * the inode cache when its usage count
4040 spin_lock(&root
->inode_lock
);
4044 if (cond_resched_lock(&root
->inode_lock
))
4047 node
= rb_next(node
);
4049 spin_unlock(&root
->inode_lock
);
4053 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4055 struct btrfs_iget_args
*args
= p
;
4056 inode
->i_ino
= args
->ino
;
4057 BTRFS_I(inode
)->root
= args
->root
;
4058 btrfs_set_inode_space_info(args
->root
, inode
);
4062 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4064 struct btrfs_iget_args
*args
= opaque
;
4065 return args
->ino
== inode
->i_ino
&&
4066 args
->root
== BTRFS_I(inode
)->root
;
4069 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4071 struct btrfs_root
*root
)
4073 struct inode
*inode
;
4074 struct btrfs_iget_args args
;
4075 args
.ino
= objectid
;
4078 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4079 btrfs_init_locked_inode
,
4084 /* Get an inode object given its location and corresponding root.
4085 * Returns in *is_new if the inode was read from disk
4087 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4088 struct btrfs_root
*root
, int *new)
4090 struct inode
*inode
;
4092 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4094 return ERR_PTR(-ENOMEM
);
4096 if (inode
->i_state
& I_NEW
) {
4097 BTRFS_I(inode
)->root
= root
;
4098 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4099 btrfs_read_locked_inode(inode
);
4100 inode_tree_add(inode
);
4101 unlock_new_inode(inode
);
4109 static struct inode
*new_simple_dir(struct super_block
*s
,
4110 struct btrfs_key
*key
,
4111 struct btrfs_root
*root
)
4113 struct inode
*inode
= new_inode(s
);
4116 return ERR_PTR(-ENOMEM
);
4118 BTRFS_I(inode
)->root
= root
;
4119 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4120 BTRFS_I(inode
)->dummy_inode
= 1;
4122 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4123 inode
->i_op
= &simple_dir_inode_operations
;
4124 inode
->i_fop
= &simple_dir_operations
;
4125 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4126 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4131 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4133 struct inode
*inode
;
4134 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4135 struct btrfs_root
*sub_root
= root
;
4136 struct btrfs_key location
;
4140 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4141 return ERR_PTR(-ENAMETOOLONG
);
4143 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4146 return ERR_PTR(ret
);
4148 if (location
.objectid
== 0)
4151 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4152 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4156 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4158 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4159 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4160 &location
, &sub_root
);
4163 inode
= ERR_PTR(ret
);
4165 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4167 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4169 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4171 if (!IS_ERR(inode
) && root
!= sub_root
) {
4172 down_read(&root
->fs_info
->cleanup_work_sem
);
4173 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4174 ret
= btrfs_orphan_cleanup(sub_root
);
4175 up_read(&root
->fs_info
->cleanup_work_sem
);
4177 inode
= ERR_PTR(ret
);
4183 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4185 struct btrfs_root
*root
;
4187 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4188 dentry
= dentry
->d_parent
;
4190 if (dentry
->d_inode
) {
4191 root
= BTRFS_I(dentry
->d_inode
)->root
;
4192 if (btrfs_root_refs(&root
->root_item
) == 0)
4198 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4199 struct nameidata
*nd
)
4201 struct inode
*inode
;
4203 inode
= btrfs_lookup_dentry(dir
, dentry
);
4205 return ERR_CAST(inode
);
4207 return d_splice_alias(inode
, dentry
);
4210 static unsigned char btrfs_filetype_table
[] = {
4211 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4214 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4217 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4218 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4219 struct btrfs_item
*item
;
4220 struct btrfs_dir_item
*di
;
4221 struct btrfs_key key
;
4222 struct btrfs_key found_key
;
4223 struct btrfs_path
*path
;
4225 struct extent_buffer
*leaf
;
4227 unsigned char d_type
;
4232 int key_type
= BTRFS_DIR_INDEX_KEY
;
4237 /* FIXME, use a real flag for deciding about the key type */
4238 if (root
->fs_info
->tree_root
== root
)
4239 key_type
= BTRFS_DIR_ITEM_KEY
;
4241 /* special case for "." */
4242 if (filp
->f_pos
== 0) {
4243 over
= filldir(dirent
, ".", 1,
4250 /* special case for .., just use the back ref */
4251 if (filp
->f_pos
== 1) {
4252 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4253 over
= filldir(dirent
, "..", 2,
4259 path
= btrfs_alloc_path();
4262 btrfs_set_key_type(&key
, key_type
);
4263 key
.offset
= filp
->f_pos
;
4264 key
.objectid
= inode
->i_ino
;
4266 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4271 leaf
= path
->nodes
[0];
4272 slot
= path
->slots
[0];
4273 if (slot
>= btrfs_header_nritems(leaf
)) {
4274 ret
= btrfs_next_leaf(root
, path
);
4282 item
= btrfs_item_nr(leaf
, slot
);
4283 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4285 if (found_key
.objectid
!= key
.objectid
)
4287 if (btrfs_key_type(&found_key
) != key_type
)
4289 if (found_key
.offset
< filp
->f_pos
)
4292 filp
->f_pos
= found_key
.offset
;
4294 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4296 di_total
= btrfs_item_size(leaf
, item
);
4298 while (di_cur
< di_total
) {
4299 struct btrfs_key location
;
4301 if (verify_dir_item(root
, leaf
, di
))
4304 name_len
= btrfs_dir_name_len(leaf
, di
);
4305 if (name_len
<= sizeof(tmp_name
)) {
4306 name_ptr
= tmp_name
;
4308 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4314 read_extent_buffer(leaf
, name_ptr
,
4315 (unsigned long)(di
+ 1), name_len
);
4317 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4318 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4320 /* is this a reference to our own snapshot? If so
4323 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4324 location
.objectid
== root
->root_key
.objectid
) {
4328 over
= filldir(dirent
, name_ptr
, name_len
,
4329 found_key
.offset
, location
.objectid
,
4333 if (name_ptr
!= tmp_name
)
4338 di_len
= btrfs_dir_name_len(leaf
, di
) +
4339 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4341 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4347 /* Reached end of directory/root. Bump pos past the last item. */
4348 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4350 * 32-bit glibc will use getdents64, but then strtol -
4351 * so the last number we can serve is this.
4353 filp
->f_pos
= 0x7fffffff;
4359 btrfs_free_path(path
);
4363 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4365 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4366 struct btrfs_trans_handle
*trans
;
4368 bool nolock
= false;
4370 if (BTRFS_I(inode
)->dummy_inode
)
4374 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4376 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4378 trans
= btrfs_join_transaction_nolock(root
, 1);
4380 trans
= btrfs_join_transaction(root
, 1);
4382 return PTR_ERR(trans
);
4383 btrfs_set_trans_block_group(trans
, inode
);
4385 ret
= btrfs_end_transaction_nolock(trans
, root
);
4387 ret
= btrfs_commit_transaction(trans
, root
);
4393 * This is somewhat expensive, updating the tree every time the
4394 * inode changes. But, it is most likely to find the inode in cache.
4395 * FIXME, needs more benchmarking...there are no reasons other than performance
4396 * to keep or drop this code.
4398 void btrfs_dirty_inode(struct inode
*inode
)
4400 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4401 struct btrfs_trans_handle
*trans
;
4404 if (BTRFS_I(inode
)->dummy_inode
)
4407 trans
= btrfs_join_transaction(root
, 1);
4408 BUG_ON(IS_ERR(trans
));
4409 btrfs_set_trans_block_group(trans
, inode
);
4411 ret
= btrfs_update_inode(trans
, root
, inode
);
4412 if (ret
&& ret
== -ENOSPC
) {
4413 /* whoops, lets try again with the full transaction */
4414 btrfs_end_transaction(trans
, root
);
4415 trans
= btrfs_start_transaction(root
, 1);
4416 if (IS_ERR(trans
)) {
4417 if (printk_ratelimit()) {
4418 printk(KERN_ERR
"btrfs: fail to "
4419 "dirty inode %lu error %ld\n",
4420 inode
->i_ino
, PTR_ERR(trans
));
4424 btrfs_set_trans_block_group(trans
, inode
);
4426 ret
= btrfs_update_inode(trans
, root
, inode
);
4428 if (printk_ratelimit()) {
4429 printk(KERN_ERR
"btrfs: fail to "
4430 "dirty inode %lu error %d\n",
4435 btrfs_end_transaction(trans
, root
);
4439 * find the highest existing sequence number in a directory
4440 * and then set the in-memory index_cnt variable to reflect
4441 * free sequence numbers
4443 static int btrfs_set_inode_index_count(struct inode
*inode
)
4445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4446 struct btrfs_key key
, found_key
;
4447 struct btrfs_path
*path
;
4448 struct extent_buffer
*leaf
;
4451 key
.objectid
= inode
->i_ino
;
4452 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4453 key
.offset
= (u64
)-1;
4455 path
= btrfs_alloc_path();
4459 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4462 /* FIXME: we should be able to handle this */
4468 * MAGIC NUMBER EXPLANATION:
4469 * since we search a directory based on f_pos we have to start at 2
4470 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4471 * else has to start at 2
4473 if (path
->slots
[0] == 0) {
4474 BTRFS_I(inode
)->index_cnt
= 2;
4480 leaf
= path
->nodes
[0];
4481 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4483 if (found_key
.objectid
!= inode
->i_ino
||
4484 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4485 BTRFS_I(inode
)->index_cnt
= 2;
4489 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4491 btrfs_free_path(path
);
4496 * helper to find a free sequence number in a given directory. This current
4497 * code is very simple, later versions will do smarter things in the btree
4499 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4503 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4504 ret
= btrfs_set_inode_index_count(dir
);
4509 *index
= BTRFS_I(dir
)->index_cnt
;
4510 BTRFS_I(dir
)->index_cnt
++;
4515 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4516 struct btrfs_root
*root
,
4518 const char *name
, int name_len
,
4519 u64 ref_objectid
, u64 objectid
,
4520 u64 alloc_hint
, int mode
, u64
*index
)
4522 struct inode
*inode
;
4523 struct btrfs_inode_item
*inode_item
;
4524 struct btrfs_key
*location
;
4525 struct btrfs_path
*path
;
4526 struct btrfs_inode_ref
*ref
;
4527 struct btrfs_key key
[2];
4533 path
= btrfs_alloc_path();
4536 inode
= new_inode(root
->fs_info
->sb
);
4538 btrfs_free_path(path
);
4539 return ERR_PTR(-ENOMEM
);
4543 trace_btrfs_inode_request(dir
);
4545 ret
= btrfs_set_inode_index(dir
, index
);
4547 btrfs_free_path(path
);
4549 return ERR_PTR(ret
);
4553 * index_cnt is ignored for everything but a dir,
4554 * btrfs_get_inode_index_count has an explanation for the magic
4557 BTRFS_I(inode
)->index_cnt
= 2;
4558 BTRFS_I(inode
)->root
= root
;
4559 BTRFS_I(inode
)->generation
= trans
->transid
;
4560 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4561 btrfs_set_inode_space_info(root
, inode
);
4567 BTRFS_I(inode
)->block_group
=
4568 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4570 key
[0].objectid
= objectid
;
4571 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4574 key
[1].objectid
= objectid
;
4575 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4576 key
[1].offset
= ref_objectid
;
4578 sizes
[0] = sizeof(struct btrfs_inode_item
);
4579 sizes
[1] = name_len
+ sizeof(*ref
);
4581 path
->leave_spinning
= 1;
4582 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4586 inode_init_owner(inode
, dir
, mode
);
4587 inode
->i_ino
= objectid
;
4588 inode_set_bytes(inode
, 0);
4589 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4590 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4591 struct btrfs_inode_item
);
4592 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4594 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4595 struct btrfs_inode_ref
);
4596 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4597 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4598 ptr
= (unsigned long)(ref
+ 1);
4599 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4601 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4602 btrfs_free_path(path
);
4604 location
= &BTRFS_I(inode
)->location
;
4605 location
->objectid
= objectid
;
4606 location
->offset
= 0;
4607 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4609 btrfs_inherit_iflags(inode
, dir
);
4611 if ((mode
& S_IFREG
)) {
4612 if (btrfs_test_opt(root
, NODATASUM
))
4613 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4614 if (btrfs_test_opt(root
, NODATACOW
) ||
4615 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4616 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4619 insert_inode_hash(inode
);
4620 inode_tree_add(inode
);
4622 trace_btrfs_inode_new(inode
);
4627 BTRFS_I(dir
)->index_cnt
--;
4628 btrfs_free_path(path
);
4630 return ERR_PTR(ret
);
4633 static inline u8
btrfs_inode_type(struct inode
*inode
)
4635 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4639 * utility function to add 'inode' into 'parent_inode' with
4640 * a give name and a given sequence number.
4641 * if 'add_backref' is true, also insert a backref from the
4642 * inode to the parent directory.
4644 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4645 struct inode
*parent_inode
, struct inode
*inode
,
4646 const char *name
, int name_len
, int add_backref
, u64 index
)
4649 struct btrfs_key key
;
4650 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4652 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4653 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4655 key
.objectid
= inode
->i_ino
;
4656 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4660 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4661 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4662 key
.objectid
, root
->root_key
.objectid
,
4663 parent_inode
->i_ino
,
4664 index
, name
, name_len
);
4665 } else if (add_backref
) {
4666 ret
= btrfs_insert_inode_ref(trans
, root
,
4667 name
, name_len
, inode
->i_ino
,
4668 parent_inode
->i_ino
, index
);
4672 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4673 parent_inode
->i_ino
, &key
,
4674 btrfs_inode_type(inode
), index
);
4677 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4679 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4680 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4685 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4686 struct inode
*dir
, struct dentry
*dentry
,
4687 struct inode
*inode
, int backref
, u64 index
)
4689 int err
= btrfs_add_link(trans
, dir
, inode
,
4690 dentry
->d_name
.name
, dentry
->d_name
.len
,
4693 d_instantiate(dentry
, inode
);
4701 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4702 int mode
, dev_t rdev
)
4704 struct btrfs_trans_handle
*trans
;
4705 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4706 struct inode
*inode
= NULL
;
4710 unsigned long nr
= 0;
4713 if (!new_valid_dev(rdev
))
4716 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4721 * 2 for inode item and ref
4723 * 1 for xattr if selinux is on
4725 trans
= btrfs_start_transaction(root
, 5);
4727 return PTR_ERR(trans
);
4729 btrfs_set_trans_block_group(trans
, dir
);
4731 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4732 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4733 BTRFS_I(dir
)->block_group
, mode
, &index
);
4734 if (IS_ERR(inode
)) {
4735 err
= PTR_ERR(inode
);
4739 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4745 btrfs_set_trans_block_group(trans
, inode
);
4746 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4750 inode
->i_op
= &btrfs_special_inode_operations
;
4751 init_special_inode(inode
, inode
->i_mode
, rdev
);
4752 btrfs_update_inode(trans
, root
, inode
);
4754 btrfs_update_inode_block_group(trans
, inode
);
4755 btrfs_update_inode_block_group(trans
, dir
);
4757 nr
= trans
->blocks_used
;
4758 btrfs_end_transaction_throttle(trans
, root
);
4759 btrfs_btree_balance_dirty(root
, nr
);
4761 inode_dec_link_count(inode
);
4767 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4768 int mode
, struct nameidata
*nd
)
4770 struct btrfs_trans_handle
*trans
;
4771 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4772 struct inode
*inode
= NULL
;
4775 unsigned long nr
= 0;
4779 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4783 * 2 for inode item and ref
4785 * 1 for xattr if selinux is on
4787 trans
= btrfs_start_transaction(root
, 5);
4789 return PTR_ERR(trans
);
4791 btrfs_set_trans_block_group(trans
, dir
);
4793 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4794 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4795 BTRFS_I(dir
)->block_group
, mode
, &index
);
4796 if (IS_ERR(inode
)) {
4797 err
= PTR_ERR(inode
);
4801 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4807 btrfs_set_trans_block_group(trans
, inode
);
4808 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4812 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4813 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4814 inode
->i_fop
= &btrfs_file_operations
;
4815 inode
->i_op
= &btrfs_file_inode_operations
;
4816 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4818 btrfs_update_inode_block_group(trans
, inode
);
4819 btrfs_update_inode_block_group(trans
, dir
);
4821 nr
= trans
->blocks_used
;
4822 btrfs_end_transaction_throttle(trans
, root
);
4824 inode_dec_link_count(inode
);
4827 btrfs_btree_balance_dirty(root
, nr
);
4831 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4832 struct dentry
*dentry
)
4834 struct btrfs_trans_handle
*trans
;
4835 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4836 struct inode
*inode
= old_dentry
->d_inode
;
4838 unsigned long nr
= 0;
4842 /* do not allow sys_link's with other subvols of the same device */
4843 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4846 if (inode
->i_nlink
== ~0U)
4849 err
= btrfs_set_inode_index(dir
, &index
);
4854 * 2 items for inode and inode ref
4855 * 2 items for dir items
4856 * 1 item for parent inode
4858 trans
= btrfs_start_transaction(root
, 5);
4859 if (IS_ERR(trans
)) {
4860 err
= PTR_ERR(trans
);
4864 btrfs_inc_nlink(inode
);
4865 inode
->i_ctime
= CURRENT_TIME
;
4867 btrfs_set_trans_block_group(trans
, dir
);
4870 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4875 struct dentry
*parent
= dget_parent(dentry
);
4876 btrfs_update_inode_block_group(trans
, dir
);
4877 err
= btrfs_update_inode(trans
, root
, inode
);
4879 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4883 nr
= trans
->blocks_used
;
4884 btrfs_end_transaction_throttle(trans
, root
);
4887 inode_dec_link_count(inode
);
4890 btrfs_btree_balance_dirty(root
, nr
);
4894 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4896 struct inode
*inode
= NULL
;
4897 struct btrfs_trans_handle
*trans
;
4898 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4900 int drop_on_err
= 0;
4903 unsigned long nr
= 1;
4905 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4910 * 2 items for inode and ref
4911 * 2 items for dir items
4912 * 1 for xattr if selinux is on
4914 trans
= btrfs_start_transaction(root
, 5);
4916 return PTR_ERR(trans
);
4917 btrfs_set_trans_block_group(trans
, dir
);
4919 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4920 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4921 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4923 if (IS_ERR(inode
)) {
4924 err
= PTR_ERR(inode
);
4930 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4934 inode
->i_op
= &btrfs_dir_inode_operations
;
4935 inode
->i_fop
= &btrfs_dir_file_operations
;
4936 btrfs_set_trans_block_group(trans
, inode
);
4938 btrfs_i_size_write(inode
, 0);
4939 err
= btrfs_update_inode(trans
, root
, inode
);
4943 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4944 dentry
->d_name
.len
, 0, index
);
4948 d_instantiate(dentry
, inode
);
4950 btrfs_update_inode_block_group(trans
, inode
);
4951 btrfs_update_inode_block_group(trans
, dir
);
4954 nr
= trans
->blocks_used
;
4955 btrfs_end_transaction_throttle(trans
, root
);
4958 btrfs_btree_balance_dirty(root
, nr
);
4962 /* helper for btfs_get_extent. Given an existing extent in the tree,
4963 * and an extent that you want to insert, deal with overlap and insert
4964 * the new extent into the tree.
4966 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4967 struct extent_map
*existing
,
4968 struct extent_map
*em
,
4969 u64 map_start
, u64 map_len
)
4973 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4974 start_diff
= map_start
- em
->start
;
4975 em
->start
= map_start
;
4977 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4978 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4979 em
->block_start
+= start_diff
;
4980 em
->block_len
-= start_diff
;
4982 return add_extent_mapping(em_tree
, em
);
4985 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4986 struct inode
*inode
, struct page
*page
,
4987 size_t pg_offset
, u64 extent_offset
,
4988 struct btrfs_file_extent_item
*item
)
4991 struct extent_buffer
*leaf
= path
->nodes
[0];
4994 unsigned long inline_size
;
4998 WARN_ON(pg_offset
!= 0);
4999 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5000 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
5001 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5002 btrfs_item_nr(leaf
, path
->slots
[0]));
5003 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5006 ptr
= btrfs_file_extent_inline_start(item
);
5008 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5010 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5011 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5012 extent_offset
, inline_size
, max_size
);
5014 char *kaddr
= kmap_atomic(page
, KM_USER0
);
5015 unsigned long copy_size
= min_t(u64
,
5016 PAGE_CACHE_SIZE
- pg_offset
,
5017 max_size
- extent_offset
);
5018 memset(kaddr
+ pg_offset
, 0, copy_size
);
5019 kunmap_atomic(kaddr
, KM_USER0
);
5026 * a bit scary, this does extent mapping from logical file offset to the disk.
5027 * the ugly parts come from merging extents from the disk with the in-ram
5028 * representation. This gets more complex because of the data=ordered code,
5029 * where the in-ram extents might be locked pending data=ordered completion.
5031 * This also copies inline extents directly into the page.
5034 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5035 size_t pg_offset
, u64 start
, u64 len
,
5041 u64 extent_start
= 0;
5043 u64 objectid
= inode
->i_ino
;
5045 struct btrfs_path
*path
= NULL
;
5046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5047 struct btrfs_file_extent_item
*item
;
5048 struct extent_buffer
*leaf
;
5049 struct btrfs_key found_key
;
5050 struct extent_map
*em
= NULL
;
5051 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5052 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5053 struct btrfs_trans_handle
*trans
= NULL
;
5057 read_lock(&em_tree
->lock
);
5058 em
= lookup_extent_mapping(em_tree
, start
, len
);
5060 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5061 read_unlock(&em_tree
->lock
);
5064 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5065 free_extent_map(em
);
5066 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5067 free_extent_map(em
);
5071 em
= alloc_extent_map(GFP_NOFS
);
5076 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5077 em
->start
= EXTENT_MAP_HOLE
;
5078 em
->orig_start
= EXTENT_MAP_HOLE
;
5080 em
->block_len
= (u64
)-1;
5083 path
= btrfs_alloc_path();
5087 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5088 objectid
, start
, trans
!= NULL
);
5095 if (path
->slots
[0] == 0)
5100 leaf
= path
->nodes
[0];
5101 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5102 struct btrfs_file_extent_item
);
5103 /* are we inside the extent that was found? */
5104 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5105 found_type
= btrfs_key_type(&found_key
);
5106 if (found_key
.objectid
!= objectid
||
5107 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5111 found_type
= btrfs_file_extent_type(leaf
, item
);
5112 extent_start
= found_key
.offset
;
5113 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5114 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5115 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5116 extent_end
= extent_start
+
5117 btrfs_file_extent_num_bytes(leaf
, item
);
5118 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5120 size
= btrfs_file_extent_inline_len(leaf
, item
);
5121 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5122 ~((u64
)root
->sectorsize
- 1);
5125 if (start
>= extent_end
) {
5127 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5128 ret
= btrfs_next_leaf(root
, path
);
5135 leaf
= path
->nodes
[0];
5137 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5138 if (found_key
.objectid
!= objectid
||
5139 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5141 if (start
+ len
<= found_key
.offset
)
5144 em
->len
= found_key
.offset
- start
;
5148 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5149 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5150 em
->start
= extent_start
;
5151 em
->len
= extent_end
- extent_start
;
5152 em
->orig_start
= extent_start
-
5153 btrfs_file_extent_offset(leaf
, item
);
5154 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5156 em
->block_start
= EXTENT_MAP_HOLE
;
5159 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5160 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5161 em
->compress_type
= compress_type
;
5162 em
->block_start
= bytenr
;
5163 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5166 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5167 em
->block_start
= bytenr
;
5168 em
->block_len
= em
->len
;
5169 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5170 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5173 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5177 size_t extent_offset
;
5180 em
->block_start
= EXTENT_MAP_INLINE
;
5181 if (!page
|| create
) {
5182 em
->start
= extent_start
;
5183 em
->len
= extent_end
- extent_start
;
5187 size
= btrfs_file_extent_inline_len(leaf
, item
);
5188 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5189 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5190 size
- extent_offset
);
5191 em
->start
= extent_start
+ extent_offset
;
5192 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5193 ~((u64
)root
->sectorsize
- 1);
5194 em
->orig_start
= EXTENT_MAP_INLINE
;
5195 if (compress_type
) {
5196 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5197 em
->compress_type
= compress_type
;
5199 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5200 if (create
== 0 && !PageUptodate(page
)) {
5201 if (btrfs_file_extent_compression(leaf
, item
) !=
5202 BTRFS_COMPRESS_NONE
) {
5203 ret
= uncompress_inline(path
, inode
, page
,
5205 extent_offset
, item
);
5209 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5211 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5212 memset(map
+ pg_offset
+ copy_size
, 0,
5213 PAGE_CACHE_SIZE
- pg_offset
-
5218 flush_dcache_page(page
);
5219 } else if (create
&& PageUptodate(page
)) {
5223 free_extent_map(em
);
5225 btrfs_release_path(root
, path
);
5226 trans
= btrfs_join_transaction(root
, 1);
5228 return ERR_CAST(trans
);
5232 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5235 btrfs_mark_buffer_dirty(leaf
);
5237 set_extent_uptodate(io_tree
, em
->start
,
5238 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5241 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5248 em
->block_start
= EXTENT_MAP_HOLE
;
5249 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5251 btrfs_release_path(root
, path
);
5252 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5253 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5254 "[%llu %llu]\n", (unsigned long long)em
->start
,
5255 (unsigned long long)em
->len
,
5256 (unsigned long long)start
,
5257 (unsigned long long)len
);
5263 write_lock(&em_tree
->lock
);
5264 ret
= add_extent_mapping(em_tree
, em
);
5265 /* it is possible that someone inserted the extent into the tree
5266 * while we had the lock dropped. It is also possible that
5267 * an overlapping map exists in the tree
5269 if (ret
== -EEXIST
) {
5270 struct extent_map
*existing
;
5274 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5275 if (existing
&& (existing
->start
> start
||
5276 existing
->start
+ existing
->len
<= start
)) {
5277 free_extent_map(existing
);
5281 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5284 err
= merge_extent_mapping(em_tree
, existing
,
5287 free_extent_map(existing
);
5289 free_extent_map(em
);
5294 free_extent_map(em
);
5298 free_extent_map(em
);
5303 write_unlock(&em_tree
->lock
);
5306 trace_btrfs_get_extent(root
, em
);
5309 btrfs_free_path(path
);
5311 ret
= btrfs_end_transaction(trans
, root
);
5316 free_extent_map(em
);
5317 return ERR_PTR(err
);
5322 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5323 size_t pg_offset
, u64 start
, u64 len
,
5326 struct extent_map
*em
;
5327 struct extent_map
*hole_em
= NULL
;
5328 u64 range_start
= start
;
5334 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5339 * if our em maps to a hole, there might
5340 * actually be delalloc bytes behind it
5342 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5348 /* check to see if we've wrapped (len == -1 or similar) */
5357 /* ok, we didn't find anything, lets look for delalloc */
5358 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5359 end
, len
, EXTENT_DELALLOC
, 1);
5360 found_end
= range_start
+ found
;
5361 if (found_end
< range_start
)
5362 found_end
= (u64
)-1;
5365 * we didn't find anything useful, return
5366 * the original results from get_extent()
5368 if (range_start
> end
|| found_end
<= start
) {
5374 /* adjust the range_start to make sure it doesn't
5375 * go backwards from the start they passed in
5377 range_start
= max(start
,range_start
);
5378 found
= found_end
- range_start
;
5381 u64 hole_start
= start
;
5384 em
= alloc_extent_map(GFP_NOFS
);
5390 * when btrfs_get_extent can't find anything it
5391 * returns one huge hole
5393 * make sure what it found really fits our range, and
5394 * adjust to make sure it is based on the start from
5398 u64 calc_end
= extent_map_end(hole_em
);
5400 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5401 free_extent_map(hole_em
);
5404 hole_start
= max(hole_em
->start
, start
);
5405 hole_len
= calc_end
- hole_start
;
5409 if (hole_em
&& range_start
> hole_start
) {
5410 /* our hole starts before our delalloc, so we
5411 * have to return just the parts of the hole
5412 * that go until the delalloc starts
5414 em
->len
= min(hole_len
,
5415 range_start
- hole_start
);
5416 em
->start
= hole_start
;
5417 em
->orig_start
= hole_start
;
5419 * don't adjust block start at all,
5420 * it is fixed at EXTENT_MAP_HOLE
5422 em
->block_start
= hole_em
->block_start
;
5423 em
->block_len
= hole_len
;
5425 em
->start
= range_start
;
5427 em
->orig_start
= range_start
;
5428 em
->block_start
= EXTENT_MAP_DELALLOC
;
5429 em
->block_len
= found
;
5431 } else if (hole_em
) {
5436 free_extent_map(hole_em
);
5438 free_extent_map(em
);
5439 return ERR_PTR(err
);
5444 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5445 struct extent_map
*em
,
5448 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5449 struct btrfs_trans_handle
*trans
;
5450 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5451 struct btrfs_key ins
;
5454 bool insert
= false;
5457 * Ok if the extent map we looked up is a hole and is for the exact
5458 * range we want, there is no reason to allocate a new one, however if
5459 * it is not right then we need to free this one and drop the cache for
5462 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5464 free_extent_map(em
);
5467 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5470 trans
= btrfs_join_transaction(root
, 0);
5472 return ERR_CAST(trans
);
5474 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5476 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5477 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5478 alloc_hint
, (u64
)-1, &ins
, 1);
5485 em
= alloc_extent_map(GFP_NOFS
);
5487 em
= ERR_PTR(-ENOMEM
);
5493 em
->orig_start
= em
->start
;
5494 em
->len
= ins
.offset
;
5496 em
->block_start
= ins
.objectid
;
5497 em
->block_len
= ins
.offset
;
5498 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5501 * We need to do this because if we're using the original em we searched
5502 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5505 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5508 write_lock(&em_tree
->lock
);
5509 ret
= add_extent_mapping(em_tree
, em
);
5510 write_unlock(&em_tree
->lock
);
5513 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5516 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5517 ins
.offset
, ins
.offset
, 0);
5519 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5523 btrfs_end_transaction(trans
, root
);
5528 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5529 * block must be cow'd
5531 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5532 struct inode
*inode
, u64 offset
, u64 len
)
5534 struct btrfs_path
*path
;
5536 struct extent_buffer
*leaf
;
5537 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5538 struct btrfs_file_extent_item
*fi
;
5539 struct btrfs_key key
;
5547 path
= btrfs_alloc_path();
5551 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5556 slot
= path
->slots
[0];
5559 /* can't find the item, must cow */
5566 leaf
= path
->nodes
[0];
5567 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5568 if (key
.objectid
!= inode
->i_ino
||
5569 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5570 /* not our file or wrong item type, must cow */
5574 if (key
.offset
> offset
) {
5575 /* Wrong offset, must cow */
5579 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5580 found_type
= btrfs_file_extent_type(leaf
, fi
);
5581 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5582 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5583 /* not a regular extent, must cow */
5586 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5587 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5589 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5590 if (extent_end
< offset
+ len
) {
5591 /* extent doesn't include our full range, must cow */
5595 if (btrfs_extent_readonly(root
, disk_bytenr
))
5599 * look for other files referencing this extent, if we
5600 * find any we must cow
5602 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5603 key
.offset
- backref_offset
, disk_bytenr
))
5607 * adjust disk_bytenr and num_bytes to cover just the bytes
5608 * in this extent we are about to write. If there
5609 * are any csums in that range we have to cow in order
5610 * to keep the csums correct
5612 disk_bytenr
+= backref_offset
;
5613 disk_bytenr
+= offset
- key
.offset
;
5614 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5615 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5618 * all of the above have passed, it is safe to overwrite this extent
5623 btrfs_free_path(path
);
5627 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5628 struct buffer_head
*bh_result
, int create
)
5630 struct extent_map
*em
;
5631 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5632 u64 start
= iblock
<< inode
->i_blkbits
;
5633 u64 len
= bh_result
->b_size
;
5634 struct btrfs_trans_handle
*trans
;
5636 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5641 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5642 * io. INLINE is special, and we could probably kludge it in here, but
5643 * it's still buffered so for safety lets just fall back to the generic
5646 * For COMPRESSED we _have_ to read the entire extent in so we can
5647 * decompress it, so there will be buffering required no matter what we
5648 * do, so go ahead and fallback to buffered.
5650 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5651 * to buffered IO. Don't blame me, this is the price we pay for using
5654 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5655 em
->block_start
== EXTENT_MAP_INLINE
) {
5656 free_extent_map(em
);
5660 /* Just a good old fashioned hole, return */
5661 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5662 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5663 free_extent_map(em
);
5664 /* DIO will do one hole at a time, so just unlock a sector */
5665 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5666 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5671 * We don't allocate a new extent in the following cases
5673 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5675 * 2) The extent is marked as PREALLOC. We're good to go here and can
5676 * just use the extent.
5680 len
= em
->len
- (start
- em
->start
);
5684 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5685 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5686 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5691 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5692 type
= BTRFS_ORDERED_PREALLOC
;
5694 type
= BTRFS_ORDERED_NOCOW
;
5695 len
= min(len
, em
->len
- (start
- em
->start
));
5696 block_start
= em
->block_start
+ (start
- em
->start
);
5699 * we're not going to log anything, but we do need
5700 * to make sure the current transaction stays open
5701 * while we look for nocow cross refs
5703 trans
= btrfs_join_transaction(root
, 0);
5707 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5708 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5709 block_start
, len
, len
, type
);
5710 btrfs_end_transaction(trans
, root
);
5712 free_extent_map(em
);
5717 btrfs_end_transaction(trans
, root
);
5721 * this will cow the extent, reset the len in case we changed
5724 len
= bh_result
->b_size
;
5725 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5728 len
= min(len
, em
->len
- (start
- em
->start
));
5730 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5731 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5734 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5736 bh_result
->b_size
= len
;
5737 bh_result
->b_bdev
= em
->bdev
;
5738 set_buffer_mapped(bh_result
);
5739 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5740 set_buffer_new(bh_result
);
5742 free_extent_map(em
);
5747 struct btrfs_dio_private
{
5748 struct inode
*inode
;
5755 /* number of bios pending for this dio */
5756 atomic_t pending_bios
;
5761 struct bio
*orig_bio
;
5764 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5766 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5767 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5768 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5769 struct inode
*inode
= dip
->inode
;
5770 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5772 u32
*private = dip
->csums
;
5774 start
= dip
->logical_offset
;
5776 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5777 struct page
*page
= bvec
->bv_page
;
5780 unsigned long flags
;
5782 local_irq_save(flags
);
5783 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5784 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5785 csum
, bvec
->bv_len
);
5786 btrfs_csum_final(csum
, (char *)&csum
);
5787 kunmap_atomic(kaddr
, KM_IRQ0
);
5788 local_irq_restore(flags
);
5790 flush_dcache_page(bvec
->bv_page
);
5791 if (csum
!= *private) {
5792 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5793 " %llu csum %u private %u\n",
5794 inode
->i_ino
, (unsigned long long)start
,
5800 start
+= bvec
->bv_len
;
5803 } while (bvec
<= bvec_end
);
5805 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5806 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5807 bio
->bi_private
= dip
->private;
5812 /* If we had a csum failure make sure to clear the uptodate flag */
5814 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5815 dio_end_io(bio
, err
);
5818 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5820 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5821 struct inode
*inode
= dip
->inode
;
5822 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5823 struct btrfs_trans_handle
*trans
;
5824 struct btrfs_ordered_extent
*ordered
= NULL
;
5825 struct extent_state
*cached_state
= NULL
;
5826 u64 ordered_offset
= dip
->logical_offset
;
5827 u64 ordered_bytes
= dip
->bytes
;
5833 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5841 trans
= btrfs_join_transaction(root
, 1);
5842 if (IS_ERR(trans
)) {
5846 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5848 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5849 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5851 ret
= btrfs_update_inode(trans
, root
, inode
);
5856 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5857 ordered
->file_offset
+ ordered
->len
- 1, 0,
5858 &cached_state
, GFP_NOFS
);
5860 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5861 ret
= btrfs_mark_extent_written(trans
, inode
,
5862 ordered
->file_offset
,
5863 ordered
->file_offset
+
5870 ret
= insert_reserved_file_extent(trans
, inode
,
5871 ordered
->file_offset
,
5877 BTRFS_FILE_EXTENT_REG
);
5878 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5879 ordered
->file_offset
, ordered
->len
);
5887 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5888 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5890 btrfs_update_inode(trans
, root
, inode
);
5893 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5894 ordered
->file_offset
+ ordered
->len
- 1,
5895 &cached_state
, GFP_NOFS
);
5897 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5898 btrfs_end_transaction(trans
, root
);
5899 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5900 btrfs_put_ordered_extent(ordered
);
5901 btrfs_put_ordered_extent(ordered
);
5905 * our bio might span multiple ordered extents. If we haven't
5906 * completed the accounting for the whole dio, go back and try again
5908 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5909 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5914 bio
->bi_private
= dip
->private;
5919 /* If we had an error make sure to clear the uptodate flag */
5921 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5922 dio_end_io(bio
, err
);
5925 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5926 struct bio
*bio
, int mirror_num
,
5927 unsigned long bio_flags
, u64 offset
)
5930 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5931 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5936 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5938 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5941 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5942 "sector %#Lx len %u err no %d\n",
5943 dip
->inode
->i_ino
, bio
->bi_rw
,
5944 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5948 * before atomic variable goto zero, we must make sure
5949 * dip->errors is perceived to be set.
5951 smp_mb__before_atomic_dec();
5954 /* if there are more bios still pending for this dio, just exit */
5955 if (!atomic_dec_and_test(&dip
->pending_bios
))
5959 bio_io_error(dip
->orig_bio
);
5961 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5962 bio_endio(dip
->orig_bio
, 0);
5968 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5969 u64 first_sector
, gfp_t gfp_flags
)
5971 int nr_vecs
= bio_get_nr_vecs(bdev
);
5972 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5975 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5976 int rw
, u64 file_offset
, int skip_sum
,
5977 u32
*csums
, int async_submit
)
5979 int write
= rw
& REQ_WRITE
;
5980 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5984 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5991 if (write
&& async_submit
) {
5992 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5993 inode
, rw
, bio
, 0, 0,
5995 __btrfs_submit_bio_start_direct_io
,
5996 __btrfs_submit_bio_done
);
6000 * If we aren't doing async submit, calculate the csum of the
6003 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6006 } else if (!skip_sum
) {
6007 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
6008 file_offset
, csums
);
6014 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6020 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6023 struct inode
*inode
= dip
->inode
;
6024 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6025 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6027 struct bio
*orig_bio
= dip
->orig_bio
;
6028 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
6029 u64 start_sector
= orig_bio
->bi_sector
;
6030 u64 file_offset
= dip
->logical_offset
;
6034 u32
*csums
= dip
->csums
;
6036 int async_submit
= 0;
6037 int write
= rw
& REQ_WRITE
;
6039 map_length
= orig_bio
->bi_size
;
6040 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6041 &map_length
, NULL
, 0);
6047 if (map_length
>= orig_bio
->bi_size
) {
6053 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
6056 bio
->bi_private
= dip
;
6057 bio
->bi_end_io
= btrfs_end_dio_bio
;
6058 atomic_inc(&dip
->pending_bios
);
6060 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6061 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6062 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6063 bvec
->bv_offset
) < bvec
->bv_len
)) {
6065 * inc the count before we submit the bio so
6066 * we know the end IO handler won't happen before
6067 * we inc the count. Otherwise, the dip might get freed
6068 * before we're done setting it up
6070 atomic_inc(&dip
->pending_bios
);
6071 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6072 file_offset
, skip_sum
,
6073 csums
, async_submit
);
6076 atomic_dec(&dip
->pending_bios
);
6080 /* Write's use the ordered csums */
6081 if (!write
&& !skip_sum
)
6082 csums
= csums
+ nr_pages
;
6083 start_sector
+= submit_len
>> 9;
6084 file_offset
+= submit_len
;
6089 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6090 start_sector
, GFP_NOFS
);
6093 bio
->bi_private
= dip
;
6094 bio
->bi_end_io
= btrfs_end_dio_bio
;
6096 map_length
= orig_bio
->bi_size
;
6097 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6098 &map_length
, NULL
, 0);
6104 submit_len
+= bvec
->bv_len
;
6111 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6112 csums
, async_submit
);
6120 * before atomic variable goto zero, we must
6121 * make sure dip->errors is perceived to be set.
6123 smp_mb__before_atomic_dec();
6124 if (atomic_dec_and_test(&dip
->pending_bios
))
6125 bio_io_error(dip
->orig_bio
);
6127 /* bio_end_io() will handle error, so we needn't return it */
6131 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6134 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6135 struct btrfs_dio_private
*dip
;
6136 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6138 int write
= rw
& REQ_WRITE
;
6141 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6143 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6150 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6151 if (!write
&& !skip_sum
) {
6152 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6160 dip
->private = bio
->bi_private
;
6162 dip
->logical_offset
= file_offset
;
6166 dip
->bytes
+= bvec
->bv_len
;
6168 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6170 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6171 bio
->bi_private
= dip
;
6173 dip
->orig_bio
= bio
;
6174 atomic_set(&dip
->pending_bios
, 0);
6177 bio
->bi_end_io
= btrfs_endio_direct_write
;
6179 bio
->bi_end_io
= btrfs_endio_direct_read
;
6181 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6186 * If this is a write, we need to clean up the reserved space and kill
6187 * the ordered extent.
6190 struct btrfs_ordered_extent
*ordered
;
6191 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6192 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6193 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6194 btrfs_free_reserved_extent(root
, ordered
->start
,
6196 btrfs_put_ordered_extent(ordered
);
6197 btrfs_put_ordered_extent(ordered
);
6199 bio_endio(bio
, ret
);
6202 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6203 const struct iovec
*iov
, loff_t offset
,
6204 unsigned long nr_segs
)
6210 unsigned blocksize_mask
= root
->sectorsize
- 1;
6211 ssize_t retval
= -EINVAL
;
6212 loff_t end
= offset
;
6214 if (offset
& blocksize_mask
)
6217 /* Check the memory alignment. Blocks cannot straddle pages */
6218 for (seg
= 0; seg
< nr_segs
; seg
++) {
6219 addr
= (unsigned long)iov
[seg
].iov_base
;
6220 size
= iov
[seg
].iov_len
;
6222 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6225 /* If this is a write we don't need to check anymore */
6230 * Check to make sure we don't have duplicate iov_base's in this
6231 * iovec, if so return EINVAL, otherwise we'll get csum errors
6232 * when reading back.
6234 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6235 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6243 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6244 const struct iovec
*iov
, loff_t offset
,
6245 unsigned long nr_segs
)
6247 struct file
*file
= iocb
->ki_filp
;
6248 struct inode
*inode
= file
->f_mapping
->host
;
6249 struct btrfs_ordered_extent
*ordered
;
6250 struct extent_state
*cached_state
= NULL
;
6251 u64 lockstart
, lockend
;
6253 int writing
= rw
& WRITE
;
6255 size_t count
= iov_length(iov
, nr_segs
);
6257 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6263 lockend
= offset
+ count
- 1;
6266 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6272 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6273 0, &cached_state
, GFP_NOFS
);
6275 * We're concerned with the entire range that we're going to be
6276 * doing DIO to, so we need to make sure theres no ordered
6277 * extents in this range.
6279 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6280 lockend
- lockstart
+ 1);
6283 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6284 &cached_state
, GFP_NOFS
);
6285 btrfs_start_ordered_extent(inode
, ordered
, 1);
6286 btrfs_put_ordered_extent(ordered
);
6291 * we don't use btrfs_set_extent_delalloc because we don't want
6292 * the dirty or uptodate bits
6295 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6296 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6297 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6300 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6301 lockend
, EXTENT_LOCKED
| write_bits
,
6302 1, 0, &cached_state
, GFP_NOFS
);
6307 free_extent_state(cached_state
);
6308 cached_state
= NULL
;
6310 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6311 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6312 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6313 btrfs_submit_direct
, 0);
6315 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6316 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6317 offset
+ iov_length(iov
, nr_segs
) - 1,
6318 EXTENT_LOCKED
| write_bits
, 1, 0,
6319 &cached_state
, GFP_NOFS
);
6320 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6322 * We're falling back to buffered, unlock the section we didn't
6325 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6326 offset
+ iov_length(iov
, nr_segs
) - 1,
6327 EXTENT_LOCKED
| write_bits
, 1, 0,
6328 &cached_state
, GFP_NOFS
);
6331 free_extent_state(cached_state
);
6335 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6336 __u64 start
, __u64 len
)
6338 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6341 int btrfs_readpage(struct file
*file
, struct page
*page
)
6343 struct extent_io_tree
*tree
;
6344 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6345 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6348 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6350 struct extent_io_tree
*tree
;
6353 if (current
->flags
& PF_MEMALLOC
) {
6354 redirty_page_for_writepage(wbc
, page
);
6358 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6359 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6362 int btrfs_writepages(struct address_space
*mapping
,
6363 struct writeback_control
*wbc
)
6365 struct extent_io_tree
*tree
;
6367 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6368 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6372 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6373 struct list_head
*pages
, unsigned nr_pages
)
6375 struct extent_io_tree
*tree
;
6376 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6377 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6380 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6382 struct extent_io_tree
*tree
;
6383 struct extent_map_tree
*map
;
6386 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6387 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6388 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6390 ClearPagePrivate(page
);
6391 set_page_private(page
, 0);
6392 page_cache_release(page
);
6397 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6399 if (PageWriteback(page
) || PageDirty(page
))
6401 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6404 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6406 struct extent_io_tree
*tree
;
6407 struct btrfs_ordered_extent
*ordered
;
6408 struct extent_state
*cached_state
= NULL
;
6409 u64 page_start
= page_offset(page
);
6410 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6414 * we have the page locked, so new writeback can't start,
6415 * and the dirty bit won't be cleared while we are here.
6417 * Wait for IO on this page so that we can safely clear
6418 * the PagePrivate2 bit and do ordered accounting
6420 wait_on_page_writeback(page
);
6422 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6424 btrfs_releasepage(page
, GFP_NOFS
);
6427 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6429 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6433 * IO on this page will never be started, so we need
6434 * to account for any ordered extents now
6436 clear_extent_bit(tree
, page_start
, page_end
,
6437 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6438 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6439 &cached_state
, GFP_NOFS
);
6441 * whoever cleared the private bit is responsible
6442 * for the finish_ordered_io
6444 if (TestClearPagePrivate2(page
)) {
6445 btrfs_finish_ordered_io(page
->mapping
->host
,
6446 page_start
, page_end
);
6448 btrfs_put_ordered_extent(ordered
);
6449 cached_state
= NULL
;
6450 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6453 clear_extent_bit(tree
, page_start
, page_end
,
6454 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6455 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6456 __btrfs_releasepage(page
, GFP_NOFS
);
6458 ClearPageChecked(page
);
6459 if (PagePrivate(page
)) {
6460 ClearPagePrivate(page
);
6461 set_page_private(page
, 0);
6462 page_cache_release(page
);
6467 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6468 * called from a page fault handler when a page is first dirtied. Hence we must
6469 * be careful to check for EOF conditions here. We set the page up correctly
6470 * for a written page which means we get ENOSPC checking when writing into
6471 * holes and correct delalloc and unwritten extent mapping on filesystems that
6472 * support these features.
6474 * We are not allowed to take the i_mutex here so we have to play games to
6475 * protect against truncate races as the page could now be beyond EOF. Because
6476 * vmtruncate() writes the inode size before removing pages, once we have the
6477 * page lock we can determine safely if the page is beyond EOF. If it is not
6478 * beyond EOF, then the page is guaranteed safe against truncation until we
6481 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6483 struct page
*page
= vmf
->page
;
6484 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6485 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6486 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6487 struct btrfs_ordered_extent
*ordered
;
6488 struct extent_state
*cached_state
= NULL
;
6490 unsigned long zero_start
;
6496 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6500 else /* -ENOSPC, -EIO, etc */
6501 ret
= VM_FAULT_SIGBUS
;
6505 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6508 size
= i_size_read(inode
);
6509 page_start
= page_offset(page
);
6510 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6512 if ((page
->mapping
!= inode
->i_mapping
) ||
6513 (page_start
>= size
)) {
6514 /* page got truncated out from underneath us */
6517 wait_on_page_writeback(page
);
6519 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6521 set_page_extent_mapped(page
);
6524 * we can't set the delalloc bits if there are pending ordered
6525 * extents. Drop our locks and wait for them to finish
6527 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6529 unlock_extent_cached(io_tree
, page_start
, page_end
,
6530 &cached_state
, GFP_NOFS
);
6532 btrfs_start_ordered_extent(inode
, ordered
, 1);
6533 btrfs_put_ordered_extent(ordered
);
6538 * XXX - page_mkwrite gets called every time the page is dirtied, even
6539 * if it was already dirty, so for space accounting reasons we need to
6540 * clear any delalloc bits for the range we are fixing to save. There
6541 * is probably a better way to do this, but for now keep consistent with
6542 * prepare_pages in the normal write path.
6544 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6545 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6546 0, 0, &cached_state
, GFP_NOFS
);
6548 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6551 unlock_extent_cached(io_tree
, page_start
, page_end
,
6552 &cached_state
, GFP_NOFS
);
6553 ret
= VM_FAULT_SIGBUS
;
6558 /* page is wholly or partially inside EOF */
6559 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6560 zero_start
= size
& ~PAGE_CACHE_MASK
;
6562 zero_start
= PAGE_CACHE_SIZE
;
6564 if (zero_start
!= PAGE_CACHE_SIZE
) {
6566 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6567 flush_dcache_page(page
);
6570 ClearPageChecked(page
);
6571 set_page_dirty(page
);
6572 SetPageUptodate(page
);
6574 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6575 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6577 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6581 return VM_FAULT_LOCKED
;
6583 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6588 static int btrfs_truncate(struct inode
*inode
)
6590 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6593 struct btrfs_trans_handle
*trans
;
6595 u64 mask
= root
->sectorsize
- 1;
6597 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6601 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6602 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6604 trans
= btrfs_start_transaction(root
, 5);
6606 return PTR_ERR(trans
);
6608 btrfs_set_trans_block_group(trans
, inode
);
6610 ret
= btrfs_orphan_add(trans
, inode
);
6612 btrfs_end_transaction(trans
, root
);
6616 nr
= trans
->blocks_used
;
6617 btrfs_end_transaction(trans
, root
);
6618 btrfs_btree_balance_dirty(root
, nr
);
6620 /* Now start a transaction for the truncate */
6621 trans
= btrfs_start_transaction(root
, 0);
6623 return PTR_ERR(trans
);
6624 btrfs_set_trans_block_group(trans
, inode
);
6625 trans
->block_rsv
= root
->orphan_block_rsv
;
6628 * setattr is responsible for setting the ordered_data_close flag,
6629 * but that is only tested during the last file release. That
6630 * could happen well after the next commit, leaving a great big
6631 * window where new writes may get lost if someone chooses to write
6632 * to this file after truncating to zero
6634 * The inode doesn't have any dirty data here, and so if we commit
6635 * this is a noop. If someone immediately starts writing to the inode
6636 * it is very likely we'll catch some of their writes in this
6637 * transaction, and the commit will find this file on the ordered
6638 * data list with good things to send down.
6640 * This is a best effort solution, there is still a window where
6641 * using truncate to replace the contents of the file will
6642 * end up with a zero length file after a crash.
6644 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6645 btrfs_add_ordered_operation(trans
, root
, inode
);
6649 trans
= btrfs_start_transaction(root
, 0);
6651 return PTR_ERR(trans
);
6652 btrfs_set_trans_block_group(trans
, inode
);
6653 trans
->block_rsv
= root
->orphan_block_rsv
;
6656 ret
= btrfs_block_rsv_check(trans
, root
,
6657 root
->orphan_block_rsv
, 0, 5);
6658 if (ret
== -EAGAIN
) {
6659 ret
= btrfs_commit_transaction(trans
, root
);
6669 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6671 BTRFS_EXTENT_DATA_KEY
);
6672 if (ret
!= -EAGAIN
) {
6677 ret
= btrfs_update_inode(trans
, root
, inode
);
6683 nr
= trans
->blocks_used
;
6684 btrfs_end_transaction(trans
, root
);
6686 btrfs_btree_balance_dirty(root
, nr
);
6689 if (ret
== 0 && inode
->i_nlink
> 0) {
6690 ret
= btrfs_orphan_del(trans
, inode
);
6693 } else if (ret
&& inode
->i_nlink
> 0) {
6695 * Failed to do the truncate, remove us from the in memory
6698 ret
= btrfs_orphan_del(NULL
, inode
);
6701 ret
= btrfs_update_inode(trans
, root
, inode
);
6705 nr
= trans
->blocks_used
;
6706 ret
= btrfs_end_transaction_throttle(trans
, root
);
6709 btrfs_btree_balance_dirty(root
, nr
);
6715 * create a new subvolume directory/inode (helper for the ioctl).
6717 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6718 struct btrfs_root
*new_root
,
6719 u64 new_dirid
, u64 alloc_hint
)
6721 struct inode
*inode
;
6725 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6726 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6728 return PTR_ERR(inode
);
6729 inode
->i_op
= &btrfs_dir_inode_operations
;
6730 inode
->i_fop
= &btrfs_dir_file_operations
;
6733 btrfs_i_size_write(inode
, 0);
6735 err
= btrfs_update_inode(trans
, new_root
, inode
);
6742 /* helper function for file defrag and space balancing. This
6743 * forces readahead on a given range of bytes in an inode
6745 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6746 struct file_ra_state
*ra
, struct file
*file
,
6747 pgoff_t offset
, pgoff_t last_index
)
6749 pgoff_t req_size
= last_index
- offset
+ 1;
6751 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6752 return offset
+ req_size
;
6755 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6757 struct btrfs_inode
*ei
;
6758 struct inode
*inode
;
6760 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6765 ei
->space_info
= NULL
;
6769 ei
->last_sub_trans
= 0;
6770 ei
->logged_trans
= 0;
6771 ei
->delalloc_bytes
= 0;
6772 ei
->reserved_bytes
= 0;
6773 ei
->disk_i_size
= 0;
6775 ei
->index_cnt
= (u64
)-1;
6776 ei
->last_unlink_trans
= 0;
6778 atomic_set(&ei
->outstanding_extents
, 0);
6779 atomic_set(&ei
->reserved_extents
, 0);
6781 ei
->ordered_data_close
= 0;
6782 ei
->orphan_meta_reserved
= 0;
6783 ei
->dummy_inode
= 0;
6784 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6786 inode
= &ei
->vfs_inode
;
6787 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6788 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6789 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6790 mutex_init(&ei
->log_mutex
);
6791 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6792 INIT_LIST_HEAD(&ei
->i_orphan
);
6793 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6794 INIT_LIST_HEAD(&ei
->ordered_operations
);
6795 RB_CLEAR_NODE(&ei
->rb_node
);
6800 static void btrfs_i_callback(struct rcu_head
*head
)
6802 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6803 INIT_LIST_HEAD(&inode
->i_dentry
);
6804 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6807 void btrfs_destroy_inode(struct inode
*inode
)
6809 struct btrfs_ordered_extent
*ordered
;
6810 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6812 WARN_ON(!list_empty(&inode
->i_dentry
));
6813 WARN_ON(inode
->i_data
.nrpages
);
6814 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6815 WARN_ON(atomic_read(&BTRFS_I(inode
)->reserved_extents
));
6818 * This can happen where we create an inode, but somebody else also
6819 * created the same inode and we need to destroy the one we already
6826 * Make sure we're properly removed from the ordered operation
6830 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6831 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6832 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6833 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6836 if (root
== root
->fs_info
->tree_root
) {
6837 struct btrfs_block_group_cache
*block_group
;
6839 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6840 BTRFS_I(inode
)->block_group
);
6841 if (block_group
&& block_group
->inode
== inode
) {
6842 spin_lock(&block_group
->lock
);
6843 block_group
->inode
= NULL
;
6844 spin_unlock(&block_group
->lock
);
6845 btrfs_put_block_group(block_group
);
6846 } else if (block_group
) {
6847 btrfs_put_block_group(block_group
);
6851 spin_lock(&root
->orphan_lock
);
6852 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6853 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6855 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6857 spin_unlock(&root
->orphan_lock
);
6860 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6864 printk(KERN_ERR
"btrfs found ordered "
6865 "extent %llu %llu on inode cleanup\n",
6866 (unsigned long long)ordered
->file_offset
,
6867 (unsigned long long)ordered
->len
);
6868 btrfs_remove_ordered_extent(inode
, ordered
);
6869 btrfs_put_ordered_extent(ordered
);
6870 btrfs_put_ordered_extent(ordered
);
6873 inode_tree_del(inode
);
6874 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6876 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6879 int btrfs_drop_inode(struct inode
*inode
)
6881 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6883 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6884 root
!= root
->fs_info
->tree_root
)
6887 return generic_drop_inode(inode
);
6890 static void init_once(void *foo
)
6892 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6894 inode_init_once(&ei
->vfs_inode
);
6897 void btrfs_destroy_cachep(void)
6899 if (btrfs_inode_cachep
)
6900 kmem_cache_destroy(btrfs_inode_cachep
);
6901 if (btrfs_trans_handle_cachep
)
6902 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6903 if (btrfs_transaction_cachep
)
6904 kmem_cache_destroy(btrfs_transaction_cachep
);
6905 if (btrfs_path_cachep
)
6906 kmem_cache_destroy(btrfs_path_cachep
);
6907 if (btrfs_free_space_cachep
)
6908 kmem_cache_destroy(btrfs_free_space_cachep
);
6911 int btrfs_init_cachep(void)
6913 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6914 sizeof(struct btrfs_inode
), 0,
6915 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6916 if (!btrfs_inode_cachep
)
6919 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6920 sizeof(struct btrfs_trans_handle
), 0,
6921 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6922 if (!btrfs_trans_handle_cachep
)
6925 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6926 sizeof(struct btrfs_transaction
), 0,
6927 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6928 if (!btrfs_transaction_cachep
)
6931 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6932 sizeof(struct btrfs_path
), 0,
6933 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6934 if (!btrfs_path_cachep
)
6937 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6938 sizeof(struct btrfs_free_space
), 0,
6939 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6940 if (!btrfs_free_space_cachep
)
6945 btrfs_destroy_cachep();
6949 static int btrfs_getattr(struct vfsmount
*mnt
,
6950 struct dentry
*dentry
, struct kstat
*stat
)
6952 struct inode
*inode
= dentry
->d_inode
;
6953 generic_fillattr(inode
, stat
);
6954 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6955 stat
->blksize
= PAGE_CACHE_SIZE
;
6956 stat
->blocks
= (inode_get_bytes(inode
) +
6957 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6962 * If a file is moved, it will inherit the cow and compression flags of the new
6965 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6967 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6968 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6970 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6971 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6973 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6975 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6976 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6978 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6981 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6982 struct inode
*new_dir
, struct dentry
*new_dentry
)
6984 struct btrfs_trans_handle
*trans
;
6985 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6986 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6987 struct inode
*new_inode
= new_dentry
->d_inode
;
6988 struct inode
*old_inode
= old_dentry
->d_inode
;
6989 struct timespec ctime
= CURRENT_TIME
;
6994 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6997 /* we only allow rename subvolume link between subvolumes */
6998 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
7001 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
7002 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
7005 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
7006 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
7009 * we're using rename to replace one file with another.
7010 * and the replacement file is large. Start IO on it now so
7011 * we don't add too much work to the end of the transaction
7013 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7014 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7015 filemap_flush(old_inode
->i_mapping
);
7017 /* close the racy window with snapshot create/destroy ioctl */
7018 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7019 down_read(&root
->fs_info
->subvol_sem
);
7021 * We want to reserve the absolute worst case amount of items. So if
7022 * both inodes are subvols and we need to unlink them then that would
7023 * require 4 item modifications, but if they are both normal inodes it
7024 * would require 5 item modifications, so we'll assume their normal
7025 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7026 * should cover the worst case number of items we'll modify.
7028 trans
= btrfs_start_transaction(root
, 20);
7029 if (IS_ERR(trans
)) {
7030 ret
= PTR_ERR(trans
);
7034 btrfs_set_trans_block_group(trans
, new_dir
);
7037 btrfs_record_root_in_trans(trans
, dest
);
7039 ret
= btrfs_set_inode_index(new_dir
, &index
);
7043 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7044 /* force full log commit if subvolume involved. */
7045 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7047 ret
= btrfs_insert_inode_ref(trans
, dest
,
7048 new_dentry
->d_name
.name
,
7049 new_dentry
->d_name
.len
,
7051 new_dir
->i_ino
, index
);
7055 * this is an ugly little race, but the rename is required
7056 * to make sure that if we crash, the inode is either at the
7057 * old name or the new one. pinning the log transaction lets
7058 * us make sure we don't allow a log commit to come in after
7059 * we unlink the name but before we add the new name back in.
7061 btrfs_pin_log_trans(root
);
7064 * make sure the inode gets flushed if it is replacing
7067 if (new_inode
&& new_inode
->i_size
&&
7068 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
7069 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7072 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7073 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7074 old_inode
->i_ctime
= ctime
;
7076 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7077 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7079 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7080 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7081 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7082 old_dentry
->d_name
.name
,
7083 old_dentry
->d_name
.len
);
7085 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7086 old_dentry
->d_inode
,
7087 old_dentry
->d_name
.name
,
7088 old_dentry
->d_name
.len
);
7090 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7095 new_inode
->i_ctime
= CURRENT_TIME
;
7096 if (unlikely(new_inode
->i_ino
==
7097 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7098 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7099 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7101 new_dentry
->d_name
.name
,
7102 new_dentry
->d_name
.len
);
7103 BUG_ON(new_inode
->i_nlink
== 0);
7105 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7106 new_dentry
->d_inode
,
7107 new_dentry
->d_name
.name
,
7108 new_dentry
->d_name
.len
);
7111 if (new_inode
->i_nlink
== 0) {
7112 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7117 fixup_inode_flags(new_dir
, old_inode
);
7119 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7120 new_dentry
->d_name
.name
,
7121 new_dentry
->d_name
.len
, 0, index
);
7124 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7125 struct dentry
*parent
= dget_parent(new_dentry
);
7126 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7128 btrfs_end_log_trans(root
);
7131 btrfs_end_transaction_throttle(trans
, root
);
7133 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7134 up_read(&root
->fs_info
->subvol_sem
);
7140 * some fairly slow code that needs optimization. This walks the list
7141 * of all the inodes with pending delalloc and forces them to disk.
7143 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7145 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7146 struct btrfs_inode
*binode
;
7147 struct inode
*inode
;
7149 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7152 spin_lock(&root
->fs_info
->delalloc_lock
);
7153 while (!list_empty(head
)) {
7154 binode
= list_entry(head
->next
, struct btrfs_inode
,
7156 inode
= igrab(&binode
->vfs_inode
);
7158 list_del_init(&binode
->delalloc_inodes
);
7159 spin_unlock(&root
->fs_info
->delalloc_lock
);
7161 filemap_flush(inode
->i_mapping
);
7163 btrfs_add_delayed_iput(inode
);
7168 spin_lock(&root
->fs_info
->delalloc_lock
);
7170 spin_unlock(&root
->fs_info
->delalloc_lock
);
7172 /* the filemap_flush will queue IO into the worker threads, but
7173 * we have to make sure the IO is actually started and that
7174 * ordered extents get created before we return
7176 atomic_inc(&root
->fs_info
->async_submit_draining
);
7177 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7178 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7179 wait_event(root
->fs_info
->async_submit_wait
,
7180 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7181 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7183 atomic_dec(&root
->fs_info
->async_submit_draining
);
7187 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
7190 struct btrfs_inode
*binode
;
7191 struct inode
*inode
= NULL
;
7193 spin_lock(&root
->fs_info
->delalloc_lock
);
7194 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
7195 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
7196 struct btrfs_inode
, delalloc_inodes
);
7197 inode
= igrab(&binode
->vfs_inode
);
7199 list_move_tail(&binode
->delalloc_inodes
,
7200 &root
->fs_info
->delalloc_inodes
);
7204 list_del_init(&binode
->delalloc_inodes
);
7205 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
7207 spin_unlock(&root
->fs_info
->delalloc_lock
);
7211 filemap_write_and_wait(inode
->i_mapping
);
7213 * We have to do this because compression doesn't
7214 * actually set PG_writeback until it submits the pages
7215 * for IO, which happens in an async thread, so we could
7216 * race and not actually wait for any writeback pages
7217 * because they've not been submitted yet. Technically
7218 * this could still be the case for the ordered stuff
7219 * since the async thread may not have started to do its
7220 * work yet. If this becomes the case then we need to
7221 * figure out a way to make sure that in writepage we
7222 * wait for any async pages to be submitted before
7223 * returning so that fdatawait does what its supposed to
7226 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
7228 filemap_flush(inode
->i_mapping
);
7231 btrfs_add_delayed_iput(inode
);
7239 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7240 const char *symname
)
7242 struct btrfs_trans_handle
*trans
;
7243 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7244 struct btrfs_path
*path
;
7245 struct btrfs_key key
;
7246 struct inode
*inode
= NULL
;
7254 struct btrfs_file_extent_item
*ei
;
7255 struct extent_buffer
*leaf
;
7256 unsigned long nr
= 0;
7258 name_len
= strlen(symname
) + 1;
7259 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7260 return -ENAMETOOLONG
;
7262 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
7266 * 2 items for inode item and ref
7267 * 2 items for dir items
7268 * 1 item for xattr if selinux is on
7270 trans
= btrfs_start_transaction(root
, 5);
7272 return PTR_ERR(trans
);
7274 btrfs_set_trans_block_group(trans
, dir
);
7276 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7277 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
7278 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
7280 if (IS_ERR(inode
)) {
7281 err
= PTR_ERR(inode
);
7285 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7291 btrfs_set_trans_block_group(trans
, inode
);
7292 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7296 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7297 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7298 inode
->i_fop
= &btrfs_file_operations
;
7299 inode
->i_op
= &btrfs_file_inode_operations
;
7300 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7302 btrfs_update_inode_block_group(trans
, inode
);
7303 btrfs_update_inode_block_group(trans
, dir
);
7307 path
= btrfs_alloc_path();
7309 key
.objectid
= inode
->i_ino
;
7311 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7312 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7313 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7317 btrfs_free_path(path
);
7320 leaf
= path
->nodes
[0];
7321 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7322 struct btrfs_file_extent_item
);
7323 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7324 btrfs_set_file_extent_type(leaf
, ei
,
7325 BTRFS_FILE_EXTENT_INLINE
);
7326 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7327 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7328 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7329 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7331 ptr
= btrfs_file_extent_inline_start(ei
);
7332 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7333 btrfs_mark_buffer_dirty(leaf
);
7334 btrfs_free_path(path
);
7336 inode
->i_op
= &btrfs_symlink_inode_operations
;
7337 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7338 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7339 inode_set_bytes(inode
, name_len
);
7340 btrfs_i_size_write(inode
, name_len
- 1);
7341 err
= btrfs_update_inode(trans
, root
, inode
);
7346 nr
= trans
->blocks_used
;
7347 btrfs_end_transaction_throttle(trans
, root
);
7349 inode_dec_link_count(inode
);
7352 btrfs_btree_balance_dirty(root
, nr
);
7356 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7357 u64 start
, u64 num_bytes
, u64 min_size
,
7358 loff_t actual_len
, u64
*alloc_hint
,
7359 struct btrfs_trans_handle
*trans
)
7361 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7362 struct btrfs_key ins
;
7363 u64 cur_offset
= start
;
7366 bool own_trans
= true;
7370 while (num_bytes
> 0) {
7372 trans
= btrfs_start_transaction(root
, 3);
7373 if (IS_ERR(trans
)) {
7374 ret
= PTR_ERR(trans
);
7379 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7380 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7383 btrfs_end_transaction(trans
, root
);
7387 ret
= insert_reserved_file_extent(trans
, inode
,
7388 cur_offset
, ins
.objectid
,
7389 ins
.offset
, ins
.offset
,
7390 ins
.offset
, 0, 0, 0,
7391 BTRFS_FILE_EXTENT_PREALLOC
);
7393 btrfs_drop_extent_cache(inode
, cur_offset
,
7394 cur_offset
+ ins
.offset
-1, 0);
7396 num_bytes
-= ins
.offset
;
7397 cur_offset
+= ins
.offset
;
7398 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7400 inode
->i_ctime
= CURRENT_TIME
;
7401 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7402 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7403 (actual_len
> inode
->i_size
) &&
7404 (cur_offset
> inode
->i_size
)) {
7405 if (cur_offset
> actual_len
)
7406 i_size
= actual_len
;
7408 i_size
= cur_offset
;
7409 i_size_write(inode
, i_size
);
7410 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7413 ret
= btrfs_update_inode(trans
, root
, inode
);
7417 btrfs_end_transaction(trans
, root
);
7422 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7423 u64 start
, u64 num_bytes
, u64 min_size
,
7424 loff_t actual_len
, u64
*alloc_hint
)
7426 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7427 min_size
, actual_len
, alloc_hint
,
7431 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7432 struct btrfs_trans_handle
*trans
, int mode
,
7433 u64 start
, u64 num_bytes
, u64 min_size
,
7434 loff_t actual_len
, u64
*alloc_hint
)
7436 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7437 min_size
, actual_len
, alloc_hint
, trans
);
7440 static int btrfs_set_page_dirty(struct page
*page
)
7442 return __set_page_dirty_nobuffers(page
);
7445 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7449 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7451 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7453 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7456 static const struct inode_operations btrfs_dir_inode_operations
= {
7457 .getattr
= btrfs_getattr
,
7458 .lookup
= btrfs_lookup
,
7459 .create
= btrfs_create
,
7460 .unlink
= btrfs_unlink
,
7462 .mkdir
= btrfs_mkdir
,
7463 .rmdir
= btrfs_rmdir
,
7464 .rename
= btrfs_rename
,
7465 .symlink
= btrfs_symlink
,
7466 .setattr
= btrfs_setattr
,
7467 .mknod
= btrfs_mknod
,
7468 .setxattr
= btrfs_setxattr
,
7469 .getxattr
= btrfs_getxattr
,
7470 .listxattr
= btrfs_listxattr
,
7471 .removexattr
= btrfs_removexattr
,
7472 .permission
= btrfs_permission
,
7474 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7475 .lookup
= btrfs_lookup
,
7476 .permission
= btrfs_permission
,
7479 static const struct file_operations btrfs_dir_file_operations
= {
7480 .llseek
= generic_file_llseek
,
7481 .read
= generic_read_dir
,
7482 .readdir
= btrfs_real_readdir
,
7483 .unlocked_ioctl
= btrfs_ioctl
,
7484 #ifdef CONFIG_COMPAT
7485 .compat_ioctl
= btrfs_ioctl
,
7487 .release
= btrfs_release_file
,
7488 .fsync
= btrfs_sync_file
,
7491 static struct extent_io_ops btrfs_extent_io_ops
= {
7492 .fill_delalloc
= run_delalloc_range
,
7493 .submit_bio_hook
= btrfs_submit_bio_hook
,
7494 .merge_bio_hook
= btrfs_merge_bio_hook
,
7495 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7496 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7497 .writepage_start_hook
= btrfs_writepage_start_hook
,
7498 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7499 .set_bit_hook
= btrfs_set_bit_hook
,
7500 .clear_bit_hook
= btrfs_clear_bit_hook
,
7501 .merge_extent_hook
= btrfs_merge_extent_hook
,
7502 .split_extent_hook
= btrfs_split_extent_hook
,
7506 * btrfs doesn't support the bmap operation because swapfiles
7507 * use bmap to make a mapping of extents in the file. They assume
7508 * these extents won't change over the life of the file and they
7509 * use the bmap result to do IO directly to the drive.
7511 * the btrfs bmap call would return logical addresses that aren't
7512 * suitable for IO and they also will change frequently as COW
7513 * operations happen. So, swapfile + btrfs == corruption.
7515 * For now we're avoiding this by dropping bmap.
7517 static const struct address_space_operations btrfs_aops
= {
7518 .readpage
= btrfs_readpage
,
7519 .writepage
= btrfs_writepage
,
7520 .writepages
= btrfs_writepages
,
7521 .readpages
= btrfs_readpages
,
7522 .direct_IO
= btrfs_direct_IO
,
7523 .invalidatepage
= btrfs_invalidatepage
,
7524 .releasepage
= btrfs_releasepage
,
7525 .set_page_dirty
= btrfs_set_page_dirty
,
7526 .error_remove_page
= generic_error_remove_page
,
7529 static const struct address_space_operations btrfs_symlink_aops
= {
7530 .readpage
= btrfs_readpage
,
7531 .writepage
= btrfs_writepage
,
7532 .invalidatepage
= btrfs_invalidatepage
,
7533 .releasepage
= btrfs_releasepage
,
7536 static const struct inode_operations btrfs_file_inode_operations
= {
7537 .getattr
= btrfs_getattr
,
7538 .setattr
= btrfs_setattr
,
7539 .setxattr
= btrfs_setxattr
,
7540 .getxattr
= btrfs_getxattr
,
7541 .listxattr
= btrfs_listxattr
,
7542 .removexattr
= btrfs_removexattr
,
7543 .permission
= btrfs_permission
,
7544 .fiemap
= btrfs_fiemap
,
7546 static const struct inode_operations btrfs_special_inode_operations
= {
7547 .getattr
= btrfs_getattr
,
7548 .setattr
= btrfs_setattr
,
7549 .permission
= btrfs_permission
,
7550 .setxattr
= btrfs_setxattr
,
7551 .getxattr
= btrfs_getxattr
,
7552 .listxattr
= btrfs_listxattr
,
7553 .removexattr
= btrfs_removexattr
,
7555 static const struct inode_operations btrfs_symlink_inode_operations
= {
7556 .readlink
= generic_readlink
,
7557 .follow_link
= page_follow_link_light
,
7558 .put_link
= page_put_link
,
7559 .getattr
= btrfs_getattr
,
7560 .permission
= btrfs_permission
,
7561 .setxattr
= btrfs_setxattr
,
7562 .getxattr
= btrfs_getxattr
,
7563 .listxattr
= btrfs_listxattr
,
7564 .removexattr
= btrfs_removexattr
,
7567 const struct dentry_operations btrfs_dentry_operations
= {
7568 .d_delete
= btrfs_dentry_delete
,