acerhdf: add support for Aspire 1810TZ BIOS v1.3314
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_log.c
blob06ff8437ed8e4cab29048de38dfa15f165739b83
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
41 kmem_zone_t *xfs_log_ticket_zone;
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
70 /* local functions to manipulate grant head */
71 STATIC int xlog_grant_log_space(xlog_t *log,
72 xlog_ticket_t *xtic);
73 STATIC void xlog_grant_push_ail(struct log *log,
74 int need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
76 xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t *log,
78 xlog_ticket_t *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
82 #if defined(DEBUG)
83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void xlog_verify_grant_tail(struct log *log);
85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 int count, boolean_t syncing);
87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
96 STATIC int xlog_iclogs_empty(xlog_t *log);
98 static void
99 xlog_grant_sub_space(
100 struct log *log,
101 atomic64_t *head,
102 int bytes)
104 int64_t head_val = atomic64_read(head);
105 int64_t new, old;
107 do {
108 int cycle, space;
110 xlog_crack_grant_head_val(head_val, &cycle, &space);
112 space -= bytes;
113 if (space < 0) {
114 space += log->l_logsize;
115 cycle--;
118 old = head_val;
119 new = xlog_assign_grant_head_val(cycle, space);
120 head_val = atomic64_cmpxchg(head, old, new);
121 } while (head_val != old);
124 static void
125 xlog_grant_add_space(
126 struct log *log,
127 atomic64_t *head,
128 int bytes)
130 int64_t head_val = atomic64_read(head);
131 int64_t new, old;
133 do {
134 int tmp;
135 int cycle, space;
137 xlog_crack_grant_head_val(head_val, &cycle, &space);
139 tmp = log->l_logsize - space;
140 if (tmp > bytes)
141 space += bytes;
142 else {
143 space = bytes - tmp;
144 cycle++;
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
153 static void
154 xlog_tic_reset_res(xlog_ticket_t *tic)
156 tic->t_res_num = 0;
157 tic->t_res_arr_sum = 0;
158 tic->t_res_num_ophdrs = 0;
161 static void
162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
164 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 /* add to overflow and start again */
166 tic->t_res_o_flow += tic->t_res_arr_sum;
167 tic->t_res_num = 0;
168 tic->t_res_arr_sum = 0;
171 tic->t_res_arr[tic->t_res_num].r_len = len;
172 tic->t_res_arr[tic->t_res_num].r_type = type;
173 tic->t_res_arr_sum += len;
174 tic->t_res_num++;
178 * NOTES:
180 * 1. currblock field gets updated at startup and after in-core logs
181 * marked as with WANT_SYNC.
185 * This routine is called when a user of a log manager ticket is done with
186 * the reservation. If the ticket was ever used, then a commit record for
187 * the associated transaction is written out as a log operation header with
188 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
189 * a given ticket. If the ticket was one with a permanent reservation, then
190 * a few operations are done differently. Permanent reservation tickets by
191 * default don't release the reservation. They just commit the current
192 * transaction with the belief that the reservation is still needed. A flag
193 * must be passed in before permanent reservations are actually released.
194 * When these type of tickets are not released, they need to be set into
195 * the inited state again. By doing this, a start record will be written
196 * out when the next write occurs.
198 xfs_lsn_t
199 xfs_log_done(
200 struct xfs_mount *mp,
201 struct xlog_ticket *ticket,
202 struct xlog_in_core **iclog,
203 uint flags)
205 struct log *log = mp->m_log;
206 xfs_lsn_t lsn = 0;
208 if (XLOG_FORCED_SHUTDOWN(log) ||
210 * If nothing was ever written, don't write out commit record.
211 * If we get an error, just continue and give back the log ticket.
213 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 lsn = (xfs_lsn_t) -1;
216 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 flags |= XFS_LOG_REL_PERM_RESERV;
222 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 (flags & XFS_LOG_REL_PERM_RESERV)) {
224 trace_xfs_log_done_nonperm(log, ticket);
227 * Release ticket if not permanent reservation or a specific
228 * request has been made to release a permanent reservation.
230 xlog_ungrant_log_space(log, ticket);
231 xfs_log_ticket_put(ticket);
232 } else {
233 trace_xfs_log_done_perm(log, ticket);
235 xlog_regrant_reserve_log_space(log, ticket);
236 /* If this ticket was a permanent reservation and we aren't
237 * trying to release it, reset the inited flags; so next time
238 * we write, a start record will be written out.
240 ticket->t_flags |= XLOG_TIC_INITED;
243 return lsn;
247 * Attaches a new iclog I/O completion callback routine during
248 * transaction commit. If the log is in error state, a non-zero
249 * return code is handed back and the caller is responsible for
250 * executing the callback at an appropriate time.
253 xfs_log_notify(
254 struct xfs_mount *mp,
255 struct xlog_in_core *iclog,
256 xfs_log_callback_t *cb)
258 int abortflg;
260 spin_lock(&iclog->ic_callback_lock);
261 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 if (!abortflg) {
263 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 cb->cb_next = NULL;
266 *(iclog->ic_callback_tail) = cb;
267 iclog->ic_callback_tail = &(cb->cb_next);
269 spin_unlock(&iclog->ic_callback_lock);
270 return abortflg;
274 xfs_log_release_iclog(
275 struct xfs_mount *mp,
276 struct xlog_in_core *iclog)
278 if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 return EIO;
283 return 0;
287 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
288 * to the reservation.
289 * 2. Potentially, push buffers at tail of log to disk.
291 * Each reservation is going to reserve extra space for a log record header.
292 * When writes happen to the on-disk log, we don't subtract the length of the
293 * log record header from any reservation. By wasting space in each
294 * reservation, we prevent over allocation problems.
297 xfs_log_reserve(
298 struct xfs_mount *mp,
299 int unit_bytes,
300 int cnt,
301 struct xlog_ticket **ticket,
302 __uint8_t client,
303 uint flags,
304 uint t_type)
306 struct log *log = mp->m_log;
307 struct xlog_ticket *internal_ticket;
308 int retval = 0;
310 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
312 if (XLOG_FORCED_SHUTDOWN(log))
313 return XFS_ERROR(EIO);
315 XFS_STATS_INC(xs_try_logspace);
318 if (*ticket != NULL) {
319 ASSERT(flags & XFS_LOG_PERM_RESERV);
320 internal_ticket = *ticket;
323 * this is a new transaction on the ticket, so we need to
324 * change the transaction ID so that the next transaction has a
325 * different TID in the log. Just add one to the existing tid
326 * so that we can see chains of rolling transactions in the log
327 * easily.
329 internal_ticket->t_tid++;
331 trace_xfs_log_reserve(log, internal_ticket);
333 xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 retval = xlog_regrant_write_log_space(log, internal_ticket);
335 } else {
336 /* may sleep if need to allocate more tickets */
337 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 client, flags,
339 KM_SLEEP|KM_MAYFAIL);
340 if (!internal_ticket)
341 return XFS_ERROR(ENOMEM);
342 internal_ticket->t_trans_type = t_type;
343 *ticket = internal_ticket;
345 trace_xfs_log_reserve(log, internal_ticket);
347 xlog_grant_push_ail(log,
348 (internal_ticket->t_unit_res *
349 internal_ticket->t_cnt));
350 retval = xlog_grant_log_space(log, internal_ticket);
353 return retval;
354 } /* xfs_log_reserve */
358 * Mount a log filesystem
360 * mp - ubiquitous xfs mount point structure
361 * log_target - buftarg of on-disk log device
362 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
363 * num_bblocks - Number of BBSIZE blocks in on-disk log
365 * Return error or zero.
368 xfs_log_mount(
369 xfs_mount_t *mp,
370 xfs_buftarg_t *log_target,
371 xfs_daddr_t blk_offset,
372 int num_bblks)
374 int error;
376 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 xfs_notice(mp, "Mounting Filesystem");
378 else {
379 xfs_notice(mp,
380 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
381 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
384 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
385 if (IS_ERR(mp->m_log)) {
386 error = -PTR_ERR(mp->m_log);
387 goto out;
391 * Initialize the AIL now we have a log.
393 error = xfs_trans_ail_init(mp);
394 if (error) {
395 xfs_warn(mp, "AIL initialisation failed: error %d", error);
396 goto out_free_log;
398 mp->m_log->l_ailp = mp->m_ail;
401 * skip log recovery on a norecovery mount. pretend it all
402 * just worked.
404 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
405 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
407 if (readonly)
408 mp->m_flags &= ~XFS_MOUNT_RDONLY;
410 error = xlog_recover(mp->m_log);
412 if (readonly)
413 mp->m_flags |= XFS_MOUNT_RDONLY;
414 if (error) {
415 xfs_warn(mp, "log mount/recovery failed: error %d",
416 error);
417 goto out_destroy_ail;
421 /* Normal transactions can now occur */
422 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
425 * Now the log has been fully initialised and we know were our
426 * space grant counters are, we can initialise the permanent ticket
427 * needed for delayed logging to work.
429 xlog_cil_init_post_recovery(mp->m_log);
431 return 0;
433 out_destroy_ail:
434 xfs_trans_ail_destroy(mp);
435 out_free_log:
436 xlog_dealloc_log(mp->m_log);
437 out:
438 return error;
442 * Finish the recovery of the file system. This is separate from
443 * the xfs_log_mount() call, because it depends on the code in
444 * xfs_mountfs() to read in the root and real-time bitmap inodes
445 * between calling xfs_log_mount() and here.
447 * mp - ubiquitous xfs mount point structure
450 xfs_log_mount_finish(xfs_mount_t *mp)
452 int error;
454 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 error = xlog_recover_finish(mp->m_log);
456 else {
457 error = 0;
458 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
461 return error;
465 * Final log writes as part of unmount.
467 * Mark the filesystem clean as unmount happens. Note that during relocation
468 * this routine needs to be executed as part of source-bag while the
469 * deallocation must not be done until source-end.
473 * Unmount record used to have a string "Unmount filesystem--" in the
474 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475 * We just write the magic number now since that particular field isn't
476 * currently architecture converted and "nUmount" is a bit foo.
477 * As far as I know, there weren't any dependencies on the old behaviour.
481 xfs_log_unmount_write(xfs_mount_t *mp)
483 xlog_t *log = mp->m_log;
484 xlog_in_core_t *iclog;
485 #ifdef DEBUG
486 xlog_in_core_t *first_iclog;
487 #endif
488 xlog_ticket_t *tic = NULL;
489 xfs_lsn_t lsn;
490 int error;
493 * Don't write out unmount record on read-only mounts.
494 * Or, if we are doing a forced umount (typically because of IO errors).
496 if (mp->m_flags & XFS_MOUNT_RDONLY)
497 return 0;
499 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
502 #ifdef DEBUG
503 first_iclog = iclog = log->l_iclog;
504 do {
505 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 ASSERT(iclog->ic_offset == 0);
509 iclog = iclog->ic_next;
510 } while (iclog != first_iclog);
511 #endif
512 if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 error = xfs_log_reserve(mp, 600, 1, &tic,
514 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 if (!error) {
516 /* the data section must be 32 bit size aligned */
517 struct {
518 __uint16_t magic;
519 __uint16_t pad1;
520 __uint32_t pad2; /* may as well make it 64 bits */
521 } magic = {
522 .magic = XLOG_UNMOUNT_TYPE,
524 struct xfs_log_iovec reg = {
525 .i_addr = &magic,
526 .i_len = sizeof(magic),
527 .i_type = XLOG_REG_TYPE_UNMOUNT,
529 struct xfs_log_vec vec = {
530 .lv_niovecs = 1,
531 .lv_iovecp = &reg,
534 /* remove inited flag */
535 tic->t_flags = 0;
536 error = xlog_write(log, &vec, tic, &lsn,
537 NULL, XLOG_UNMOUNT_TRANS);
539 * At this point, we're umounting anyway,
540 * so there's no point in transitioning log state
541 * to IOERROR. Just continue...
545 if (error)
546 xfs_alert(mp, "%s: unmount record failed", __func__);
549 spin_lock(&log->l_icloglock);
550 iclog = log->l_iclog;
551 atomic_inc(&iclog->ic_refcnt);
552 xlog_state_want_sync(log, iclog);
553 spin_unlock(&log->l_icloglock);
554 error = xlog_state_release_iclog(log, iclog);
556 spin_lock(&log->l_icloglock);
557 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
558 iclog->ic_state == XLOG_STATE_DIRTY)) {
559 if (!XLOG_FORCED_SHUTDOWN(log)) {
560 xlog_wait(&iclog->ic_force_wait,
561 &log->l_icloglock);
562 } else {
563 spin_unlock(&log->l_icloglock);
565 } else {
566 spin_unlock(&log->l_icloglock);
568 if (tic) {
569 trace_xfs_log_umount_write(log, tic);
570 xlog_ungrant_log_space(log, tic);
571 xfs_log_ticket_put(tic);
573 } else {
575 * We're already in forced_shutdown mode, couldn't
576 * even attempt to write out the unmount transaction.
578 * Go through the motions of sync'ing and releasing
579 * the iclog, even though no I/O will actually happen,
580 * we need to wait for other log I/Os that may already
581 * be in progress. Do this as a separate section of
582 * code so we'll know if we ever get stuck here that
583 * we're in this odd situation of trying to unmount
584 * a file system that went into forced_shutdown as
585 * the result of an unmount..
587 spin_lock(&log->l_icloglock);
588 iclog = log->l_iclog;
589 atomic_inc(&iclog->ic_refcnt);
591 xlog_state_want_sync(log, iclog);
592 spin_unlock(&log->l_icloglock);
593 error = xlog_state_release_iclog(log, iclog);
595 spin_lock(&log->l_icloglock);
597 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
598 || iclog->ic_state == XLOG_STATE_DIRTY
599 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
601 xlog_wait(&iclog->ic_force_wait,
602 &log->l_icloglock);
603 } else {
604 spin_unlock(&log->l_icloglock);
608 return error;
609 } /* xfs_log_unmount_write */
612 * Deallocate log structures for unmount/relocation.
614 * We need to stop the aild from running before we destroy
615 * and deallocate the log as the aild references the log.
617 void
618 xfs_log_unmount(xfs_mount_t *mp)
620 xfs_trans_ail_destroy(mp);
621 xlog_dealloc_log(mp->m_log);
624 void
625 xfs_log_item_init(
626 struct xfs_mount *mp,
627 struct xfs_log_item *item,
628 int type,
629 struct xfs_item_ops *ops)
631 item->li_mountp = mp;
632 item->li_ailp = mp->m_ail;
633 item->li_type = type;
634 item->li_ops = ops;
635 item->li_lv = NULL;
637 INIT_LIST_HEAD(&item->li_ail);
638 INIT_LIST_HEAD(&item->li_cil);
642 * Write region vectors to log. The write happens using the space reservation
643 * of the ticket (tic). It is not a requirement that all writes for a given
644 * transaction occur with one call to xfs_log_write(). However, it is important
645 * to note that the transaction reservation code makes an assumption about the
646 * number of log headers a transaction requires that may be violated if you
647 * don't pass all the transaction vectors in one call....
650 xfs_log_write(
651 struct xfs_mount *mp,
652 struct xfs_log_iovec reg[],
653 int nentries,
654 struct xlog_ticket *tic,
655 xfs_lsn_t *start_lsn)
657 struct log *log = mp->m_log;
658 int error;
659 struct xfs_log_vec vec = {
660 .lv_niovecs = nentries,
661 .lv_iovecp = reg,
664 if (XLOG_FORCED_SHUTDOWN(log))
665 return XFS_ERROR(EIO);
667 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
668 if (error)
669 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
670 return error;
673 void
674 xfs_log_move_tail(xfs_mount_t *mp,
675 xfs_lsn_t tail_lsn)
677 xlog_ticket_t *tic;
678 xlog_t *log = mp->m_log;
679 int need_bytes, free_bytes;
681 if (XLOG_FORCED_SHUTDOWN(log))
682 return;
684 if (tail_lsn == 0)
685 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
687 /* tail_lsn == 1 implies that we weren't passed a valid value. */
688 if (tail_lsn != 1)
689 atomic64_set(&log->l_tail_lsn, tail_lsn);
691 if (!list_empty_careful(&log->l_writeq)) {
692 #ifdef DEBUG
693 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
694 panic("Recovery problem");
695 #endif
696 spin_lock(&log->l_grant_write_lock);
697 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
698 list_for_each_entry(tic, &log->l_writeq, t_queue) {
699 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
701 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
702 break;
703 tail_lsn = 0;
704 free_bytes -= tic->t_unit_res;
705 trace_xfs_log_regrant_write_wake_up(log, tic);
706 wake_up(&tic->t_wait);
708 spin_unlock(&log->l_grant_write_lock);
711 if (!list_empty_careful(&log->l_reserveq)) {
712 #ifdef DEBUG
713 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
714 panic("Recovery problem");
715 #endif
716 spin_lock(&log->l_grant_reserve_lock);
717 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
718 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
719 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
720 need_bytes = tic->t_unit_res*tic->t_cnt;
721 else
722 need_bytes = tic->t_unit_res;
723 if (free_bytes < need_bytes && tail_lsn != 1)
724 break;
725 tail_lsn = 0;
726 free_bytes -= need_bytes;
727 trace_xfs_log_grant_wake_up(log, tic);
728 wake_up(&tic->t_wait);
730 spin_unlock(&log->l_grant_reserve_lock);
735 * Determine if we have a transaction that has gone to disk
736 * that needs to be covered. To begin the transition to the idle state
737 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738 * If we are then in a state where covering is needed, the caller is informed
739 * that dummy transactions are required to move the log into the idle state.
741 * Because this is called as part of the sync process, we should also indicate
742 * that dummy transactions should be issued in anything but the covered or
743 * idle states. This ensures that the log tail is accurately reflected in
744 * the log at the end of the sync, hence if a crash occurrs avoids replay
745 * of transactions where the metadata is already on disk.
748 xfs_log_need_covered(xfs_mount_t *mp)
750 int needed = 0;
751 xlog_t *log = mp->m_log;
753 if (!xfs_fs_writable(mp))
754 return 0;
756 spin_lock(&log->l_icloglock);
757 switch (log->l_covered_state) {
758 case XLOG_STATE_COVER_DONE:
759 case XLOG_STATE_COVER_DONE2:
760 case XLOG_STATE_COVER_IDLE:
761 break;
762 case XLOG_STATE_COVER_NEED:
763 case XLOG_STATE_COVER_NEED2:
764 if (!xfs_ail_min_lsn(log->l_ailp) &&
765 xlog_iclogs_empty(log)) {
766 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
767 log->l_covered_state = XLOG_STATE_COVER_DONE;
768 else
769 log->l_covered_state = XLOG_STATE_COVER_DONE2;
771 /* FALLTHRU */
772 default:
773 needed = 1;
774 break;
776 spin_unlock(&log->l_icloglock);
777 return needed;
780 /******************************************************************************
782 * local routines
784 ******************************************************************************
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788 * The log manager must keep track of the last LR which was committed
789 * to disk. The lsn of this LR will become the new tail_lsn whenever
790 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
791 * the situation where stuff could be written into the log but nothing
792 * was ever in the AIL when asked. Eventually, we panic since the
793 * tail hits the head.
795 * We may be holding the log iclog lock upon entering this routine.
797 xfs_lsn_t
798 xlog_assign_tail_lsn(
799 struct xfs_mount *mp)
801 xfs_lsn_t tail_lsn;
802 struct log *log = mp->m_log;
804 tail_lsn = xfs_ail_min_lsn(mp->m_ail);
805 if (!tail_lsn)
806 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
808 atomic64_set(&log->l_tail_lsn, tail_lsn);
809 return tail_lsn;
813 * Return the space in the log between the tail and the head. The head
814 * is passed in the cycle/bytes formal parms. In the special case where
815 * the reserve head has wrapped passed the tail, this calculation is no
816 * longer valid. In this case, just return 0 which means there is no space
817 * in the log. This works for all places where this function is called
818 * with the reserve head. Of course, if the write head were to ever
819 * wrap the tail, we should blow up. Rather than catch this case here,
820 * we depend on other ASSERTions in other parts of the code. XXXmiken
822 * This code also handles the case where the reservation head is behind
823 * the tail. The details of this case are described below, but the end
824 * result is that we return the size of the log as the amount of space left.
826 STATIC int
827 xlog_space_left(
828 struct log *log,
829 atomic64_t *head)
831 int free_bytes;
832 int tail_bytes;
833 int tail_cycle;
834 int head_cycle;
835 int head_bytes;
837 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
838 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
839 tail_bytes = BBTOB(tail_bytes);
840 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
841 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
842 else if (tail_cycle + 1 < head_cycle)
843 return 0;
844 else if (tail_cycle < head_cycle) {
845 ASSERT(tail_cycle == (head_cycle - 1));
846 free_bytes = tail_bytes - head_bytes;
847 } else {
849 * The reservation head is behind the tail.
850 * In this case we just want to return the size of the
851 * log as the amount of space left.
853 xfs_alert(log->l_mp,
854 "xlog_space_left: head behind tail\n"
855 " tail_cycle = %d, tail_bytes = %d\n"
856 " GH cycle = %d, GH bytes = %d",
857 tail_cycle, tail_bytes, head_cycle, head_bytes);
858 ASSERT(0);
859 free_bytes = log->l_logsize;
861 return free_bytes;
866 * Log function which is called when an io completes.
868 * The log manager needs its own routine, in order to control what
869 * happens with the buffer after the write completes.
871 void
872 xlog_iodone(xfs_buf_t *bp)
874 xlog_in_core_t *iclog = bp->b_fspriv;
875 xlog_t *l = iclog->ic_log;
876 int aborted = 0;
879 * Race to shutdown the filesystem if we see an error.
881 if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
882 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
883 xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
884 XFS_BUF_STALE(bp);
885 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
887 * This flag will be propagated to the trans-committed
888 * callback routines to let them know that the log-commit
889 * didn't succeed.
891 aborted = XFS_LI_ABORTED;
892 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
893 aborted = XFS_LI_ABORTED;
896 /* log I/O is always issued ASYNC */
897 ASSERT(XFS_BUF_ISASYNC(bp));
898 xlog_state_done_syncing(iclog, aborted);
900 * do not reference the buffer (bp) here as we could race
901 * with it being freed after writing the unmount record to the
902 * log.
905 } /* xlog_iodone */
908 * Return size of each in-core log record buffer.
910 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
912 * If the filesystem blocksize is too large, we may need to choose a
913 * larger size since the directory code currently logs entire blocks.
916 STATIC void
917 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
918 xlog_t *log)
920 int size;
921 int xhdrs;
923 if (mp->m_logbufs <= 0)
924 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
925 else
926 log->l_iclog_bufs = mp->m_logbufs;
929 * Buffer size passed in from mount system call.
931 if (mp->m_logbsize > 0) {
932 size = log->l_iclog_size = mp->m_logbsize;
933 log->l_iclog_size_log = 0;
934 while (size != 1) {
935 log->l_iclog_size_log++;
936 size >>= 1;
939 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
940 /* # headers = size / 32k
941 * one header holds cycles from 32k of data
944 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
945 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
946 xhdrs++;
947 log->l_iclog_hsize = xhdrs << BBSHIFT;
948 log->l_iclog_heads = xhdrs;
949 } else {
950 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
951 log->l_iclog_hsize = BBSIZE;
952 log->l_iclog_heads = 1;
954 goto done;
957 /* All machines use 32kB buffers by default. */
958 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
959 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
961 /* the default log size is 16k or 32k which is one header sector */
962 log->l_iclog_hsize = BBSIZE;
963 log->l_iclog_heads = 1;
965 done:
966 /* are we being asked to make the sizes selected above visible? */
967 if (mp->m_logbufs == 0)
968 mp->m_logbufs = log->l_iclog_bufs;
969 if (mp->m_logbsize == 0)
970 mp->m_logbsize = log->l_iclog_size;
971 } /* xlog_get_iclog_buffer_size */
975 * This routine initializes some of the log structure for a given mount point.
976 * Its primary purpose is to fill in enough, so recovery can occur. However,
977 * some other stuff may be filled in too.
979 STATIC xlog_t *
980 xlog_alloc_log(xfs_mount_t *mp,
981 xfs_buftarg_t *log_target,
982 xfs_daddr_t blk_offset,
983 int num_bblks)
985 xlog_t *log;
986 xlog_rec_header_t *head;
987 xlog_in_core_t **iclogp;
988 xlog_in_core_t *iclog, *prev_iclog=NULL;
989 xfs_buf_t *bp;
990 int i;
991 int error = ENOMEM;
992 uint log2_size = 0;
994 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
995 if (!log) {
996 xfs_warn(mp, "Log allocation failed: No memory!");
997 goto out;
1000 log->l_mp = mp;
1001 log->l_targ = log_target;
1002 log->l_logsize = BBTOB(num_bblks);
1003 log->l_logBBstart = blk_offset;
1004 log->l_logBBsize = num_bblks;
1005 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1006 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1008 log->l_prev_block = -1;
1009 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1010 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1011 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1012 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1013 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1014 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1015 INIT_LIST_HEAD(&log->l_reserveq);
1016 INIT_LIST_HEAD(&log->l_writeq);
1017 spin_lock_init(&log->l_grant_reserve_lock);
1018 spin_lock_init(&log->l_grant_write_lock);
1020 error = EFSCORRUPTED;
1021 if (xfs_sb_version_hassector(&mp->m_sb)) {
1022 log2_size = mp->m_sb.sb_logsectlog;
1023 if (log2_size < BBSHIFT) {
1024 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1025 log2_size, BBSHIFT);
1026 goto out_free_log;
1029 log2_size -= BBSHIFT;
1030 if (log2_size > mp->m_sectbb_log) {
1031 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1032 log2_size, mp->m_sectbb_log);
1033 goto out_free_log;
1036 /* for larger sector sizes, must have v2 or external log */
1037 if (log2_size && log->l_logBBstart > 0 &&
1038 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1039 xfs_warn(mp,
1040 "log sector size (0x%x) invalid for configuration.",
1041 log2_size);
1042 goto out_free_log;
1045 log->l_sectBBsize = 1 << log2_size;
1047 xlog_get_iclog_buffer_size(mp, log);
1049 error = ENOMEM;
1050 bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1051 if (!bp)
1052 goto out_free_log;
1053 bp->b_iodone = xlog_iodone;
1054 ASSERT(XFS_BUF_ISBUSY(bp));
1055 ASSERT(xfs_buf_islocked(bp));
1056 log->l_xbuf = bp;
1058 spin_lock_init(&log->l_icloglock);
1059 init_waitqueue_head(&log->l_flush_wait);
1061 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1062 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1064 iclogp = &log->l_iclog;
1066 * The amount of memory to allocate for the iclog structure is
1067 * rather funky due to the way the structure is defined. It is
1068 * done this way so that we can use different sizes for machines
1069 * with different amounts of memory. See the definition of
1070 * xlog_in_core_t in xfs_log_priv.h for details.
1072 ASSERT(log->l_iclog_size >= 4096);
1073 for (i=0; i < log->l_iclog_bufs; i++) {
1074 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1075 if (!*iclogp)
1076 goto out_free_iclog;
1078 iclog = *iclogp;
1079 iclog->ic_prev = prev_iclog;
1080 prev_iclog = iclog;
1082 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1083 log->l_iclog_size, 0);
1084 if (!bp)
1085 goto out_free_iclog;
1087 bp->b_iodone = xlog_iodone;
1088 iclog->ic_bp = bp;
1089 iclog->ic_data = bp->b_addr;
1090 #ifdef DEBUG
1091 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1092 #endif
1093 head = &iclog->ic_header;
1094 memset(head, 0, sizeof(xlog_rec_header_t));
1095 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1096 head->h_version = cpu_to_be32(
1097 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1098 head->h_size = cpu_to_be32(log->l_iclog_size);
1099 /* new fields */
1100 head->h_fmt = cpu_to_be32(XLOG_FMT);
1101 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1103 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1104 iclog->ic_state = XLOG_STATE_ACTIVE;
1105 iclog->ic_log = log;
1106 atomic_set(&iclog->ic_refcnt, 0);
1107 spin_lock_init(&iclog->ic_callback_lock);
1108 iclog->ic_callback_tail = &(iclog->ic_callback);
1109 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1111 ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1112 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1113 init_waitqueue_head(&iclog->ic_force_wait);
1114 init_waitqueue_head(&iclog->ic_write_wait);
1116 iclogp = &iclog->ic_next;
1118 *iclogp = log->l_iclog; /* complete ring */
1119 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1121 error = xlog_cil_init(log);
1122 if (error)
1123 goto out_free_iclog;
1124 return log;
1126 out_free_iclog:
1127 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1128 prev_iclog = iclog->ic_next;
1129 if (iclog->ic_bp)
1130 xfs_buf_free(iclog->ic_bp);
1131 kmem_free(iclog);
1133 spinlock_destroy(&log->l_icloglock);
1134 xfs_buf_free(log->l_xbuf);
1135 out_free_log:
1136 kmem_free(log);
1137 out:
1138 return ERR_PTR(-error);
1139 } /* xlog_alloc_log */
1143 * Write out the commit record of a transaction associated with the given
1144 * ticket. Return the lsn of the commit record.
1146 STATIC int
1147 xlog_commit_record(
1148 struct log *log,
1149 struct xlog_ticket *ticket,
1150 struct xlog_in_core **iclog,
1151 xfs_lsn_t *commitlsnp)
1153 struct xfs_mount *mp = log->l_mp;
1154 int error;
1155 struct xfs_log_iovec reg = {
1156 .i_addr = NULL,
1157 .i_len = 0,
1158 .i_type = XLOG_REG_TYPE_COMMIT,
1160 struct xfs_log_vec vec = {
1161 .lv_niovecs = 1,
1162 .lv_iovecp = &reg,
1165 ASSERT_ALWAYS(iclog);
1166 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1167 XLOG_COMMIT_TRANS);
1168 if (error)
1169 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1170 return error;
1174 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1175 * log space. This code pushes on the lsn which would supposedly free up
1176 * the 25% which we want to leave free. We may need to adopt a policy which
1177 * pushes on an lsn which is further along in the log once we reach the high
1178 * water mark. In this manner, we would be creating a low water mark.
1180 STATIC void
1181 xlog_grant_push_ail(
1182 struct log *log,
1183 int need_bytes)
1185 xfs_lsn_t threshold_lsn = 0;
1186 xfs_lsn_t last_sync_lsn;
1187 int free_blocks;
1188 int free_bytes;
1189 int threshold_block;
1190 int threshold_cycle;
1191 int free_threshold;
1193 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1195 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1196 free_blocks = BTOBBT(free_bytes);
1199 * Set the threshold for the minimum number of free blocks in the
1200 * log to the maximum of what the caller needs, one quarter of the
1201 * log, and 256 blocks.
1203 free_threshold = BTOBB(need_bytes);
1204 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1205 free_threshold = MAX(free_threshold, 256);
1206 if (free_blocks >= free_threshold)
1207 return;
1209 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1210 &threshold_block);
1211 threshold_block += free_threshold;
1212 if (threshold_block >= log->l_logBBsize) {
1213 threshold_block -= log->l_logBBsize;
1214 threshold_cycle += 1;
1216 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1217 threshold_block);
1219 * Don't pass in an lsn greater than the lsn of the last
1220 * log record known to be on disk. Use a snapshot of the last sync lsn
1221 * so that it doesn't change between the compare and the set.
1223 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1224 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1225 threshold_lsn = last_sync_lsn;
1228 * Get the transaction layer to kick the dirty buffers out to
1229 * disk asynchronously. No point in trying to do this if
1230 * the filesystem is shutting down.
1232 if (!XLOG_FORCED_SHUTDOWN(log))
1233 xfs_ail_push(log->l_ailp, threshold_lsn);
1237 * The bdstrat callback function for log bufs. This gives us a central
1238 * place to trap bufs in case we get hit by a log I/O error and need to
1239 * shutdown. Actually, in practice, even when we didn't get a log error,
1240 * we transition the iclogs to IOERROR state *after* flushing all existing
1241 * iclogs to disk. This is because we don't want anymore new transactions to be
1242 * started or completed afterwards.
1244 STATIC int
1245 xlog_bdstrat(
1246 struct xfs_buf *bp)
1248 struct xlog_in_core *iclog = bp->b_fspriv;
1250 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1251 XFS_BUF_ERROR(bp, EIO);
1252 XFS_BUF_STALE(bp);
1253 xfs_buf_ioend(bp, 0);
1255 * It would seem logical to return EIO here, but we rely on
1256 * the log state machine to propagate I/O errors instead of
1257 * doing it here.
1259 return 0;
1262 xfs_buf_iorequest(bp);
1263 return 0;
1267 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1268 * fashion. Previously, we should have moved the current iclog
1269 * ptr in the log to point to the next available iclog. This allows further
1270 * write to continue while this code syncs out an iclog ready to go.
1271 * Before an in-core log can be written out, the data section must be scanned
1272 * to save away the 1st word of each BBSIZE block into the header. We replace
1273 * it with the current cycle count. Each BBSIZE block is tagged with the
1274 * cycle count because there in an implicit assumption that drives will
1275 * guarantee that entire 512 byte blocks get written at once. In other words,
1276 * we can't have part of a 512 byte block written and part not written. By
1277 * tagging each block, we will know which blocks are valid when recovering
1278 * after an unclean shutdown.
1280 * This routine is single threaded on the iclog. No other thread can be in
1281 * this routine with the same iclog. Changing contents of iclog can there-
1282 * fore be done without grabbing the state machine lock. Updating the global
1283 * log will require grabbing the lock though.
1285 * The entire log manager uses a logical block numbering scheme. Only
1286 * log_sync (and then only bwrite()) know about the fact that the log may
1287 * not start with block zero on a given device. The log block start offset
1288 * is added immediately before calling bwrite().
1291 STATIC int
1292 xlog_sync(xlog_t *log,
1293 xlog_in_core_t *iclog)
1295 xfs_caddr_t dptr; /* pointer to byte sized element */
1296 xfs_buf_t *bp;
1297 int i;
1298 uint count; /* byte count of bwrite */
1299 uint count_init; /* initial count before roundup */
1300 int roundoff; /* roundoff to BB or stripe */
1301 int split = 0; /* split write into two regions */
1302 int error;
1303 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1305 XFS_STATS_INC(xs_log_writes);
1306 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1308 /* Add for LR header */
1309 count_init = log->l_iclog_hsize + iclog->ic_offset;
1311 /* Round out the log write size */
1312 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1313 /* we have a v2 stripe unit to use */
1314 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1315 } else {
1316 count = BBTOB(BTOBB(count_init));
1318 roundoff = count - count_init;
1319 ASSERT(roundoff >= 0);
1320 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1321 roundoff < log->l_mp->m_sb.sb_logsunit)
1323 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1324 roundoff < BBTOB(1)));
1326 /* move grant heads by roundoff in sync */
1327 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1328 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1330 /* put cycle number in every block */
1331 xlog_pack_data(log, iclog, roundoff);
1333 /* real byte length */
1334 if (v2) {
1335 iclog->ic_header.h_len =
1336 cpu_to_be32(iclog->ic_offset + roundoff);
1337 } else {
1338 iclog->ic_header.h_len =
1339 cpu_to_be32(iclog->ic_offset);
1342 bp = iclog->ic_bp;
1343 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1345 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1347 /* Do we need to split this write into 2 parts? */
1348 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1349 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1350 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1351 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1352 } else {
1353 iclog->ic_bwritecnt = 1;
1355 XFS_BUF_SET_COUNT(bp, count);
1356 bp->b_fspriv = iclog;
1357 XFS_BUF_ZEROFLAGS(bp);
1358 XFS_BUF_BUSY(bp);
1359 XFS_BUF_ASYNC(bp);
1360 bp->b_flags |= XBF_SYNCIO;
1362 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1363 bp->b_flags |= XBF_FUA;
1366 * Flush the data device before flushing the log to make
1367 * sure all meta data written back from the AIL actually made
1368 * it to disk before stamping the new log tail LSN into the
1369 * log buffer. For an external log we need to issue the
1370 * flush explicitly, and unfortunately synchronously here;
1371 * for an internal log we can simply use the block layer
1372 * state machine for preflushes.
1374 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1375 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1376 else
1377 bp->b_flags |= XBF_FLUSH;
1380 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1381 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1383 xlog_verify_iclog(log, iclog, count, B_TRUE);
1385 /* account for log which doesn't start at block #0 */
1386 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1388 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1389 * is shutting down.
1391 XFS_BUF_WRITE(bp);
1393 if ((error = xlog_bdstrat(bp))) {
1394 xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1395 XFS_BUF_ADDR(bp));
1396 return error;
1398 if (split) {
1399 bp = iclog->ic_log->l_xbuf;
1400 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1401 XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1402 (__psint_t)count), split);
1403 bp->b_fspriv = iclog;
1404 XFS_BUF_ZEROFLAGS(bp);
1405 XFS_BUF_BUSY(bp);
1406 XFS_BUF_ASYNC(bp);
1407 bp->b_flags |= XBF_SYNCIO;
1408 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1409 bp->b_flags |= XBF_FUA;
1410 dptr = XFS_BUF_PTR(bp);
1412 * Bump the cycle numbers at the start of each block
1413 * since this part of the buffer is at the start of
1414 * a new cycle. Watch out for the header magic number
1415 * case, though.
1417 for (i = 0; i < split; i += BBSIZE) {
1418 be32_add_cpu((__be32 *)dptr, 1);
1419 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1420 be32_add_cpu((__be32 *)dptr, 1);
1421 dptr += BBSIZE;
1424 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1425 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1427 /* account for internal log which doesn't start at block #0 */
1428 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1429 XFS_BUF_WRITE(bp);
1430 if ((error = xlog_bdstrat(bp))) {
1431 xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1432 bp, XFS_BUF_ADDR(bp));
1433 return error;
1436 return 0;
1437 } /* xlog_sync */
1441 * Deallocate a log structure
1443 STATIC void
1444 xlog_dealloc_log(xlog_t *log)
1446 xlog_in_core_t *iclog, *next_iclog;
1447 int i;
1449 xlog_cil_destroy(log);
1452 * always need to ensure that the extra buffer does not point to memory
1453 * owned by another log buffer before we free it.
1455 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1456 xfs_buf_free(log->l_xbuf);
1458 iclog = log->l_iclog;
1459 for (i=0; i<log->l_iclog_bufs; i++) {
1460 xfs_buf_free(iclog->ic_bp);
1461 next_iclog = iclog->ic_next;
1462 kmem_free(iclog);
1463 iclog = next_iclog;
1465 spinlock_destroy(&log->l_icloglock);
1467 log->l_mp->m_log = NULL;
1468 kmem_free(log);
1469 } /* xlog_dealloc_log */
1472 * Update counters atomically now that memcpy is done.
1474 /* ARGSUSED */
1475 static inline void
1476 xlog_state_finish_copy(xlog_t *log,
1477 xlog_in_core_t *iclog,
1478 int record_cnt,
1479 int copy_bytes)
1481 spin_lock(&log->l_icloglock);
1483 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1484 iclog->ic_offset += copy_bytes;
1486 spin_unlock(&log->l_icloglock);
1487 } /* xlog_state_finish_copy */
1493 * print out info relating to regions written which consume
1494 * the reservation
1496 void
1497 xlog_print_tic_res(
1498 struct xfs_mount *mp,
1499 struct xlog_ticket *ticket)
1501 uint i;
1502 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1504 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1505 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1506 "bformat",
1507 "bchunk",
1508 "efi_format",
1509 "efd_format",
1510 "iformat",
1511 "icore",
1512 "iext",
1513 "ibroot",
1514 "ilocal",
1515 "iattr_ext",
1516 "iattr_broot",
1517 "iattr_local",
1518 "qformat",
1519 "dquot",
1520 "quotaoff",
1521 "LR header",
1522 "unmount",
1523 "commit",
1524 "trans header"
1526 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1527 "SETATTR_NOT_SIZE",
1528 "SETATTR_SIZE",
1529 "INACTIVE",
1530 "CREATE",
1531 "CREATE_TRUNC",
1532 "TRUNCATE_FILE",
1533 "REMOVE",
1534 "LINK",
1535 "RENAME",
1536 "MKDIR",
1537 "RMDIR",
1538 "SYMLINK",
1539 "SET_DMATTRS",
1540 "GROWFS",
1541 "STRAT_WRITE",
1542 "DIOSTRAT",
1543 "WRITE_SYNC",
1544 "WRITEID",
1545 "ADDAFORK",
1546 "ATTRINVAL",
1547 "ATRUNCATE",
1548 "ATTR_SET",
1549 "ATTR_RM",
1550 "ATTR_FLAG",
1551 "CLEAR_AGI_BUCKET",
1552 "QM_SBCHANGE",
1553 "DUMMY1",
1554 "DUMMY2",
1555 "QM_QUOTAOFF",
1556 "QM_DQALLOC",
1557 "QM_SETQLIM",
1558 "QM_DQCLUSTER",
1559 "QM_QINOCREATE",
1560 "QM_QUOTAOFF_END",
1561 "SB_UNIT",
1562 "FSYNC_TS",
1563 "GROWFSRT_ALLOC",
1564 "GROWFSRT_ZERO",
1565 "GROWFSRT_FREE",
1566 "SWAPEXT"
1569 xfs_warn(mp,
1570 "xfs_log_write: reservation summary:\n"
1571 " trans type = %s (%u)\n"
1572 " unit res = %d bytes\n"
1573 " current res = %d bytes\n"
1574 " total reg = %u bytes (o/flow = %u bytes)\n"
1575 " ophdrs = %u (ophdr space = %u bytes)\n"
1576 " ophdr + reg = %u bytes\n"
1577 " num regions = %u\n",
1578 ((ticket->t_trans_type <= 0 ||
1579 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1580 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1581 ticket->t_trans_type,
1582 ticket->t_unit_res,
1583 ticket->t_curr_res,
1584 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1585 ticket->t_res_num_ophdrs, ophdr_spc,
1586 ticket->t_res_arr_sum +
1587 ticket->t_res_o_flow + ophdr_spc,
1588 ticket->t_res_num);
1590 for (i = 0; i < ticket->t_res_num; i++) {
1591 uint r_type = ticket->t_res_arr[i].r_type;
1592 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1593 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1594 "bad-rtype" : res_type_str[r_type-1]),
1595 ticket->t_res_arr[i].r_len);
1598 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1599 "xfs_log_write: reservation ran out. Need to up reservation");
1600 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1604 * Calculate the potential space needed by the log vector. Each region gets
1605 * its own xlog_op_header_t and may need to be double word aligned.
1607 static int
1608 xlog_write_calc_vec_length(
1609 struct xlog_ticket *ticket,
1610 struct xfs_log_vec *log_vector)
1612 struct xfs_log_vec *lv;
1613 int headers = 0;
1614 int len = 0;
1615 int i;
1617 /* acct for start rec of xact */
1618 if (ticket->t_flags & XLOG_TIC_INITED)
1619 headers++;
1621 for (lv = log_vector; lv; lv = lv->lv_next) {
1622 headers += lv->lv_niovecs;
1624 for (i = 0; i < lv->lv_niovecs; i++) {
1625 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1627 len += vecp->i_len;
1628 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1632 ticket->t_res_num_ophdrs += headers;
1633 len += headers * sizeof(struct xlog_op_header);
1635 return len;
1639 * If first write for transaction, insert start record We can't be trying to
1640 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1642 static int
1643 xlog_write_start_rec(
1644 struct xlog_op_header *ophdr,
1645 struct xlog_ticket *ticket)
1647 if (!(ticket->t_flags & XLOG_TIC_INITED))
1648 return 0;
1650 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1651 ophdr->oh_clientid = ticket->t_clientid;
1652 ophdr->oh_len = 0;
1653 ophdr->oh_flags = XLOG_START_TRANS;
1654 ophdr->oh_res2 = 0;
1656 ticket->t_flags &= ~XLOG_TIC_INITED;
1658 return sizeof(struct xlog_op_header);
1661 static xlog_op_header_t *
1662 xlog_write_setup_ophdr(
1663 struct log *log,
1664 struct xlog_op_header *ophdr,
1665 struct xlog_ticket *ticket,
1666 uint flags)
1668 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1669 ophdr->oh_clientid = ticket->t_clientid;
1670 ophdr->oh_res2 = 0;
1672 /* are we copying a commit or unmount record? */
1673 ophdr->oh_flags = flags;
1676 * We've seen logs corrupted with bad transaction client ids. This
1677 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1678 * and shut down the filesystem.
1680 switch (ophdr->oh_clientid) {
1681 case XFS_TRANSACTION:
1682 case XFS_VOLUME:
1683 case XFS_LOG:
1684 break;
1685 default:
1686 xfs_warn(log->l_mp,
1687 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1688 ophdr->oh_clientid, ticket);
1689 return NULL;
1692 return ophdr;
1696 * Set up the parameters of the region copy into the log. This has
1697 * to handle region write split across multiple log buffers - this
1698 * state is kept external to this function so that this code can
1699 * can be written in an obvious, self documenting manner.
1701 static int
1702 xlog_write_setup_copy(
1703 struct xlog_ticket *ticket,
1704 struct xlog_op_header *ophdr,
1705 int space_available,
1706 int space_required,
1707 int *copy_off,
1708 int *copy_len,
1709 int *last_was_partial_copy,
1710 int *bytes_consumed)
1712 int still_to_copy;
1714 still_to_copy = space_required - *bytes_consumed;
1715 *copy_off = *bytes_consumed;
1717 if (still_to_copy <= space_available) {
1718 /* write of region completes here */
1719 *copy_len = still_to_copy;
1720 ophdr->oh_len = cpu_to_be32(*copy_len);
1721 if (*last_was_partial_copy)
1722 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1723 *last_was_partial_copy = 0;
1724 *bytes_consumed = 0;
1725 return 0;
1728 /* partial write of region, needs extra log op header reservation */
1729 *copy_len = space_available;
1730 ophdr->oh_len = cpu_to_be32(*copy_len);
1731 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1732 if (*last_was_partial_copy)
1733 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1734 *bytes_consumed += *copy_len;
1735 (*last_was_partial_copy)++;
1737 /* account for new log op header */
1738 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1739 ticket->t_res_num_ophdrs++;
1741 return sizeof(struct xlog_op_header);
1744 static int
1745 xlog_write_copy_finish(
1746 struct log *log,
1747 struct xlog_in_core *iclog,
1748 uint flags,
1749 int *record_cnt,
1750 int *data_cnt,
1751 int *partial_copy,
1752 int *partial_copy_len,
1753 int log_offset,
1754 struct xlog_in_core **commit_iclog)
1756 if (*partial_copy) {
1758 * This iclog has already been marked WANT_SYNC by
1759 * xlog_state_get_iclog_space.
1761 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1762 *record_cnt = 0;
1763 *data_cnt = 0;
1764 return xlog_state_release_iclog(log, iclog);
1767 *partial_copy = 0;
1768 *partial_copy_len = 0;
1770 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1771 /* no more space in this iclog - push it. */
1772 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1773 *record_cnt = 0;
1774 *data_cnt = 0;
1776 spin_lock(&log->l_icloglock);
1777 xlog_state_want_sync(log, iclog);
1778 spin_unlock(&log->l_icloglock);
1780 if (!commit_iclog)
1781 return xlog_state_release_iclog(log, iclog);
1782 ASSERT(flags & XLOG_COMMIT_TRANS);
1783 *commit_iclog = iclog;
1786 return 0;
1790 * Write some region out to in-core log
1792 * This will be called when writing externally provided regions or when
1793 * writing out a commit record for a given transaction.
1795 * General algorithm:
1796 * 1. Find total length of this write. This may include adding to the
1797 * lengths passed in.
1798 * 2. Check whether we violate the tickets reservation.
1799 * 3. While writing to this iclog
1800 * A. Reserve as much space in this iclog as can get
1801 * B. If this is first write, save away start lsn
1802 * C. While writing this region:
1803 * 1. If first write of transaction, write start record
1804 * 2. Write log operation header (header per region)
1805 * 3. Find out if we can fit entire region into this iclog
1806 * 4. Potentially, verify destination memcpy ptr
1807 * 5. Memcpy (partial) region
1808 * 6. If partial copy, release iclog; otherwise, continue
1809 * copying more regions into current iclog
1810 * 4. Mark want sync bit (in simulation mode)
1811 * 5. Release iclog for potential flush to on-disk log.
1813 * ERRORS:
1814 * 1. Panic if reservation is overrun. This should never happen since
1815 * reservation amounts are generated internal to the filesystem.
1816 * NOTES:
1817 * 1. Tickets are single threaded data structures.
1818 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1819 * syncing routine. When a single log_write region needs to span
1820 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1821 * on all log operation writes which don't contain the end of the
1822 * region. The XLOG_END_TRANS bit is used for the in-core log
1823 * operation which contains the end of the continued log_write region.
1824 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1825 * we don't really know exactly how much space will be used. As a result,
1826 * we don't update ic_offset until the end when we know exactly how many
1827 * bytes have been written out.
1830 xlog_write(
1831 struct log *log,
1832 struct xfs_log_vec *log_vector,
1833 struct xlog_ticket *ticket,
1834 xfs_lsn_t *start_lsn,
1835 struct xlog_in_core **commit_iclog,
1836 uint flags)
1838 struct xlog_in_core *iclog = NULL;
1839 struct xfs_log_iovec *vecp;
1840 struct xfs_log_vec *lv;
1841 int len;
1842 int index;
1843 int partial_copy = 0;
1844 int partial_copy_len = 0;
1845 int contwr = 0;
1846 int record_cnt = 0;
1847 int data_cnt = 0;
1848 int error;
1850 *start_lsn = 0;
1852 len = xlog_write_calc_vec_length(ticket, log_vector);
1853 if (log->l_cilp) {
1855 * Region headers and bytes are already accounted for.
1856 * We only need to take into account start records and
1857 * split regions in this function.
1859 if (ticket->t_flags & XLOG_TIC_INITED)
1860 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1863 * Commit record headers need to be accounted for. These
1864 * come in as separate writes so are easy to detect.
1866 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1867 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1868 } else
1869 ticket->t_curr_res -= len;
1871 if (ticket->t_curr_res < 0)
1872 xlog_print_tic_res(log->l_mp, ticket);
1874 index = 0;
1875 lv = log_vector;
1876 vecp = lv->lv_iovecp;
1877 while (lv && index < lv->lv_niovecs) {
1878 void *ptr;
1879 int log_offset;
1881 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1882 &contwr, &log_offset);
1883 if (error)
1884 return error;
1886 ASSERT(log_offset <= iclog->ic_size - 1);
1887 ptr = iclog->ic_datap + log_offset;
1889 /* start_lsn is the first lsn written to. That's all we need. */
1890 if (!*start_lsn)
1891 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1894 * This loop writes out as many regions as can fit in the amount
1895 * of space which was allocated by xlog_state_get_iclog_space().
1897 while (lv && index < lv->lv_niovecs) {
1898 struct xfs_log_iovec *reg = &vecp[index];
1899 struct xlog_op_header *ophdr;
1900 int start_rec_copy;
1901 int copy_len;
1902 int copy_off;
1904 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1905 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1907 start_rec_copy = xlog_write_start_rec(ptr, ticket);
1908 if (start_rec_copy) {
1909 record_cnt++;
1910 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1911 start_rec_copy);
1914 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1915 if (!ophdr)
1916 return XFS_ERROR(EIO);
1918 xlog_write_adv_cnt(&ptr, &len, &log_offset,
1919 sizeof(struct xlog_op_header));
1921 len += xlog_write_setup_copy(ticket, ophdr,
1922 iclog->ic_size-log_offset,
1923 reg->i_len,
1924 &copy_off, &copy_len,
1925 &partial_copy,
1926 &partial_copy_len);
1927 xlog_verify_dest_ptr(log, ptr);
1929 /* copy region */
1930 ASSERT(copy_len >= 0);
1931 memcpy(ptr, reg->i_addr + copy_off, copy_len);
1932 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1934 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1935 record_cnt++;
1936 data_cnt += contwr ? copy_len : 0;
1938 error = xlog_write_copy_finish(log, iclog, flags,
1939 &record_cnt, &data_cnt,
1940 &partial_copy,
1941 &partial_copy_len,
1942 log_offset,
1943 commit_iclog);
1944 if (error)
1945 return error;
1948 * if we had a partial copy, we need to get more iclog
1949 * space but we don't want to increment the region
1950 * index because there is still more is this region to
1951 * write.
1953 * If we completed writing this region, and we flushed
1954 * the iclog (indicated by resetting of the record
1955 * count), then we also need to get more log space. If
1956 * this was the last record, though, we are done and
1957 * can just return.
1959 if (partial_copy)
1960 break;
1962 if (++index == lv->lv_niovecs) {
1963 lv = lv->lv_next;
1964 index = 0;
1965 if (lv)
1966 vecp = lv->lv_iovecp;
1968 if (record_cnt == 0) {
1969 if (!lv)
1970 return 0;
1971 break;
1976 ASSERT(len == 0);
1978 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1979 if (!commit_iclog)
1980 return xlog_state_release_iclog(log, iclog);
1982 ASSERT(flags & XLOG_COMMIT_TRANS);
1983 *commit_iclog = iclog;
1984 return 0;
1988 /*****************************************************************************
1990 * State Machine functions
1992 *****************************************************************************
1995 /* Clean iclogs starting from the head. This ordering must be
1996 * maintained, so an iclog doesn't become ACTIVE beyond one that
1997 * is SYNCING. This is also required to maintain the notion that we use
1998 * a ordered wait queue to hold off would be writers to the log when every
1999 * iclog is trying to sync to disk.
2001 * State Change: DIRTY -> ACTIVE
2003 STATIC void
2004 xlog_state_clean_log(xlog_t *log)
2006 xlog_in_core_t *iclog;
2007 int changed = 0;
2009 iclog = log->l_iclog;
2010 do {
2011 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2012 iclog->ic_state = XLOG_STATE_ACTIVE;
2013 iclog->ic_offset = 0;
2014 ASSERT(iclog->ic_callback == NULL);
2016 * If the number of ops in this iclog indicate it just
2017 * contains the dummy transaction, we can
2018 * change state into IDLE (the second time around).
2019 * Otherwise we should change the state into
2020 * NEED a dummy.
2021 * We don't need to cover the dummy.
2023 if (!changed &&
2024 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2025 XLOG_COVER_OPS)) {
2026 changed = 1;
2027 } else {
2029 * We have two dirty iclogs so start over
2030 * This could also be num of ops indicates
2031 * this is not the dummy going out.
2033 changed = 2;
2035 iclog->ic_header.h_num_logops = 0;
2036 memset(iclog->ic_header.h_cycle_data, 0,
2037 sizeof(iclog->ic_header.h_cycle_data));
2038 iclog->ic_header.h_lsn = 0;
2039 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2040 /* do nothing */;
2041 else
2042 break; /* stop cleaning */
2043 iclog = iclog->ic_next;
2044 } while (iclog != log->l_iclog);
2046 /* log is locked when we are called */
2048 * Change state for the dummy log recording.
2049 * We usually go to NEED. But we go to NEED2 if the changed indicates
2050 * we are done writing the dummy record.
2051 * If we are done with the second dummy recored (DONE2), then
2052 * we go to IDLE.
2054 if (changed) {
2055 switch (log->l_covered_state) {
2056 case XLOG_STATE_COVER_IDLE:
2057 case XLOG_STATE_COVER_NEED:
2058 case XLOG_STATE_COVER_NEED2:
2059 log->l_covered_state = XLOG_STATE_COVER_NEED;
2060 break;
2062 case XLOG_STATE_COVER_DONE:
2063 if (changed == 1)
2064 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2065 else
2066 log->l_covered_state = XLOG_STATE_COVER_NEED;
2067 break;
2069 case XLOG_STATE_COVER_DONE2:
2070 if (changed == 1)
2071 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2072 else
2073 log->l_covered_state = XLOG_STATE_COVER_NEED;
2074 break;
2076 default:
2077 ASSERT(0);
2080 } /* xlog_state_clean_log */
2082 STATIC xfs_lsn_t
2083 xlog_get_lowest_lsn(
2084 xlog_t *log)
2086 xlog_in_core_t *lsn_log;
2087 xfs_lsn_t lowest_lsn, lsn;
2089 lsn_log = log->l_iclog;
2090 lowest_lsn = 0;
2091 do {
2092 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2093 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2094 if ((lsn && !lowest_lsn) ||
2095 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2096 lowest_lsn = lsn;
2099 lsn_log = lsn_log->ic_next;
2100 } while (lsn_log != log->l_iclog);
2101 return lowest_lsn;
2105 STATIC void
2106 xlog_state_do_callback(
2107 xlog_t *log,
2108 int aborted,
2109 xlog_in_core_t *ciclog)
2111 xlog_in_core_t *iclog;
2112 xlog_in_core_t *first_iclog; /* used to know when we've
2113 * processed all iclogs once */
2114 xfs_log_callback_t *cb, *cb_next;
2115 int flushcnt = 0;
2116 xfs_lsn_t lowest_lsn;
2117 int ioerrors; /* counter: iclogs with errors */
2118 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2119 int funcdidcallbacks; /* flag: function did callbacks */
2120 int repeats; /* for issuing console warnings if
2121 * looping too many times */
2122 int wake = 0;
2124 spin_lock(&log->l_icloglock);
2125 first_iclog = iclog = log->l_iclog;
2126 ioerrors = 0;
2127 funcdidcallbacks = 0;
2128 repeats = 0;
2130 do {
2132 * Scan all iclogs starting with the one pointed to by the
2133 * log. Reset this starting point each time the log is
2134 * unlocked (during callbacks).
2136 * Keep looping through iclogs until one full pass is made
2137 * without running any callbacks.
2139 first_iclog = log->l_iclog;
2140 iclog = log->l_iclog;
2141 loopdidcallbacks = 0;
2142 repeats++;
2144 do {
2146 /* skip all iclogs in the ACTIVE & DIRTY states */
2147 if (iclog->ic_state &
2148 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2149 iclog = iclog->ic_next;
2150 continue;
2154 * Between marking a filesystem SHUTDOWN and stopping
2155 * the log, we do flush all iclogs to disk (if there
2156 * wasn't a log I/O error). So, we do want things to
2157 * go smoothly in case of just a SHUTDOWN w/o a
2158 * LOG_IO_ERROR.
2160 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2162 * Can only perform callbacks in order. Since
2163 * this iclog is not in the DONE_SYNC/
2164 * DO_CALLBACK state, we skip the rest and
2165 * just try to clean up. If we set our iclog
2166 * to DO_CALLBACK, we will not process it when
2167 * we retry since a previous iclog is in the
2168 * CALLBACK and the state cannot change since
2169 * we are holding the l_icloglock.
2171 if (!(iclog->ic_state &
2172 (XLOG_STATE_DONE_SYNC |
2173 XLOG_STATE_DO_CALLBACK))) {
2174 if (ciclog && (ciclog->ic_state ==
2175 XLOG_STATE_DONE_SYNC)) {
2176 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2178 break;
2181 * We now have an iclog that is in either the
2182 * DO_CALLBACK or DONE_SYNC states. The other
2183 * states (WANT_SYNC, SYNCING, or CALLBACK were
2184 * caught by the above if and are going to
2185 * clean (i.e. we aren't doing their callbacks)
2186 * see the above if.
2190 * We will do one more check here to see if we
2191 * have chased our tail around.
2194 lowest_lsn = xlog_get_lowest_lsn(log);
2195 if (lowest_lsn &&
2196 XFS_LSN_CMP(lowest_lsn,
2197 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2198 iclog = iclog->ic_next;
2199 continue; /* Leave this iclog for
2200 * another thread */
2203 iclog->ic_state = XLOG_STATE_CALLBACK;
2207 * update the last_sync_lsn before we drop the
2208 * icloglock to ensure we are the only one that
2209 * can update it.
2211 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2212 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2213 atomic64_set(&log->l_last_sync_lsn,
2214 be64_to_cpu(iclog->ic_header.h_lsn));
2216 } else
2217 ioerrors++;
2219 spin_unlock(&log->l_icloglock);
2222 * Keep processing entries in the callback list until
2223 * we come around and it is empty. We need to
2224 * atomically see that the list is empty and change the
2225 * state to DIRTY so that we don't miss any more
2226 * callbacks being added.
2228 spin_lock(&iclog->ic_callback_lock);
2229 cb = iclog->ic_callback;
2230 while (cb) {
2231 iclog->ic_callback_tail = &(iclog->ic_callback);
2232 iclog->ic_callback = NULL;
2233 spin_unlock(&iclog->ic_callback_lock);
2235 /* perform callbacks in the order given */
2236 for (; cb; cb = cb_next) {
2237 cb_next = cb->cb_next;
2238 cb->cb_func(cb->cb_arg, aborted);
2240 spin_lock(&iclog->ic_callback_lock);
2241 cb = iclog->ic_callback;
2244 loopdidcallbacks++;
2245 funcdidcallbacks++;
2247 spin_lock(&log->l_icloglock);
2248 ASSERT(iclog->ic_callback == NULL);
2249 spin_unlock(&iclog->ic_callback_lock);
2250 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2251 iclog->ic_state = XLOG_STATE_DIRTY;
2254 * Transition from DIRTY to ACTIVE if applicable.
2255 * NOP if STATE_IOERROR.
2257 xlog_state_clean_log(log);
2259 /* wake up threads waiting in xfs_log_force() */
2260 wake_up_all(&iclog->ic_force_wait);
2262 iclog = iclog->ic_next;
2263 } while (first_iclog != iclog);
2265 if (repeats > 5000) {
2266 flushcnt += repeats;
2267 repeats = 0;
2268 xfs_warn(log->l_mp,
2269 "%s: possible infinite loop (%d iterations)",
2270 __func__, flushcnt);
2272 } while (!ioerrors && loopdidcallbacks);
2275 * make one last gasp attempt to see if iclogs are being left in
2276 * limbo..
2278 #ifdef DEBUG
2279 if (funcdidcallbacks) {
2280 first_iclog = iclog = log->l_iclog;
2281 do {
2282 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2284 * Terminate the loop if iclogs are found in states
2285 * which will cause other threads to clean up iclogs.
2287 * SYNCING - i/o completion will go through logs
2288 * DONE_SYNC - interrupt thread should be waiting for
2289 * l_icloglock
2290 * IOERROR - give up hope all ye who enter here
2292 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2293 iclog->ic_state == XLOG_STATE_SYNCING ||
2294 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2295 iclog->ic_state == XLOG_STATE_IOERROR )
2296 break;
2297 iclog = iclog->ic_next;
2298 } while (first_iclog != iclog);
2300 #endif
2302 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2303 wake = 1;
2304 spin_unlock(&log->l_icloglock);
2306 if (wake)
2307 wake_up_all(&log->l_flush_wait);
2312 * Finish transitioning this iclog to the dirty state.
2314 * Make sure that we completely execute this routine only when this is
2315 * the last call to the iclog. There is a good chance that iclog flushes,
2316 * when we reach the end of the physical log, get turned into 2 separate
2317 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2318 * routine. By using the reference count bwritecnt, we guarantee that only
2319 * the second completion goes through.
2321 * Callbacks could take time, so they are done outside the scope of the
2322 * global state machine log lock.
2324 STATIC void
2325 xlog_state_done_syncing(
2326 xlog_in_core_t *iclog,
2327 int aborted)
2329 xlog_t *log = iclog->ic_log;
2331 spin_lock(&log->l_icloglock);
2333 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2334 iclog->ic_state == XLOG_STATE_IOERROR);
2335 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2336 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2340 * If we got an error, either on the first buffer, or in the case of
2341 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2342 * and none should ever be attempted to be written to disk
2343 * again.
2345 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2346 if (--iclog->ic_bwritecnt == 1) {
2347 spin_unlock(&log->l_icloglock);
2348 return;
2350 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2354 * Someone could be sleeping prior to writing out the next
2355 * iclog buffer, we wake them all, one will get to do the
2356 * I/O, the others get to wait for the result.
2358 wake_up_all(&iclog->ic_write_wait);
2359 spin_unlock(&log->l_icloglock);
2360 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2361 } /* xlog_state_done_syncing */
2365 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2366 * sleep. We wait on the flush queue on the head iclog as that should be
2367 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2368 * we will wait here and all new writes will sleep until a sync completes.
2370 * The in-core logs are used in a circular fashion. They are not used
2371 * out-of-order even when an iclog past the head is free.
2373 * return:
2374 * * log_offset where xlog_write() can start writing into the in-core
2375 * log's data space.
2376 * * in-core log pointer to which xlog_write() should write.
2377 * * boolean indicating this is a continued write to an in-core log.
2378 * If this is the last write, then the in-core log's offset field
2379 * needs to be incremented, depending on the amount of data which
2380 * is copied.
2382 STATIC int
2383 xlog_state_get_iclog_space(xlog_t *log,
2384 int len,
2385 xlog_in_core_t **iclogp,
2386 xlog_ticket_t *ticket,
2387 int *continued_write,
2388 int *logoffsetp)
2390 int log_offset;
2391 xlog_rec_header_t *head;
2392 xlog_in_core_t *iclog;
2393 int error;
2395 restart:
2396 spin_lock(&log->l_icloglock);
2397 if (XLOG_FORCED_SHUTDOWN(log)) {
2398 spin_unlock(&log->l_icloglock);
2399 return XFS_ERROR(EIO);
2402 iclog = log->l_iclog;
2403 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2404 XFS_STATS_INC(xs_log_noiclogs);
2406 /* Wait for log writes to have flushed */
2407 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2408 goto restart;
2411 head = &iclog->ic_header;
2413 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2414 log_offset = iclog->ic_offset;
2416 /* On the 1st write to an iclog, figure out lsn. This works
2417 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2418 * committing to. If the offset is set, that's how many blocks
2419 * must be written.
2421 if (log_offset == 0) {
2422 ticket->t_curr_res -= log->l_iclog_hsize;
2423 xlog_tic_add_region(ticket,
2424 log->l_iclog_hsize,
2425 XLOG_REG_TYPE_LRHEADER);
2426 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2427 head->h_lsn = cpu_to_be64(
2428 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2429 ASSERT(log->l_curr_block >= 0);
2432 /* If there is enough room to write everything, then do it. Otherwise,
2433 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2434 * bit is on, so this will get flushed out. Don't update ic_offset
2435 * until you know exactly how many bytes get copied. Therefore, wait
2436 * until later to update ic_offset.
2438 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2439 * can fit into remaining data section.
2441 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2442 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2445 * If I'm the only one writing to this iclog, sync it to disk.
2446 * We need to do an atomic compare and decrement here to avoid
2447 * racing with concurrent atomic_dec_and_lock() calls in
2448 * xlog_state_release_iclog() when there is more than one
2449 * reference to the iclog.
2451 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2452 /* we are the only one */
2453 spin_unlock(&log->l_icloglock);
2454 error = xlog_state_release_iclog(log, iclog);
2455 if (error)
2456 return error;
2457 } else {
2458 spin_unlock(&log->l_icloglock);
2460 goto restart;
2463 /* Do we have enough room to write the full amount in the remainder
2464 * of this iclog? Or must we continue a write on the next iclog and
2465 * mark this iclog as completely taken? In the case where we switch
2466 * iclogs (to mark it taken), this particular iclog will release/sync
2467 * to disk in xlog_write().
2469 if (len <= iclog->ic_size - iclog->ic_offset) {
2470 *continued_write = 0;
2471 iclog->ic_offset += len;
2472 } else {
2473 *continued_write = 1;
2474 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2476 *iclogp = iclog;
2478 ASSERT(iclog->ic_offset <= iclog->ic_size);
2479 spin_unlock(&log->l_icloglock);
2481 *logoffsetp = log_offset;
2482 return 0;
2483 } /* xlog_state_get_iclog_space */
2486 * Atomically get the log space required for a log ticket.
2488 * Once a ticket gets put onto the reserveq, it will only return after
2489 * the needed reservation is satisfied.
2491 * This function is structured so that it has a lock free fast path. This is
2492 * necessary because every new transaction reservation will come through this
2493 * path. Hence any lock will be globally hot if we take it unconditionally on
2494 * every pass.
2496 * As tickets are only ever moved on and off the reserveq under the
2497 * l_grant_reserve_lock, we only need to take that lock if we are going
2498 * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2499 * ticket was never added to the reserveq because the t_queue list head will be
2500 * empty and we hold the only reference to it so it can safely be checked
2501 * unlocked.
2503 STATIC int
2504 xlog_grant_log_space(xlog_t *log,
2505 xlog_ticket_t *tic)
2507 int free_bytes;
2508 int need_bytes;
2510 #ifdef DEBUG
2511 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2512 panic("grant Recovery problem");
2513 #endif
2515 trace_xfs_log_grant_enter(log, tic);
2517 need_bytes = tic->t_unit_res;
2518 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2519 need_bytes *= tic->t_ocnt;
2521 /* something is already sleeping; insert new transaction at end */
2522 if (!list_empty_careful(&log->l_reserveq)) {
2523 spin_lock(&log->l_grant_reserve_lock);
2524 /* recheck the queue now we are locked */
2525 if (list_empty(&log->l_reserveq)) {
2526 spin_unlock(&log->l_grant_reserve_lock);
2527 goto redo;
2529 list_add_tail(&tic->t_queue, &log->l_reserveq);
2531 trace_xfs_log_grant_sleep1(log, tic);
2534 * Gotta check this before going to sleep, while we're
2535 * holding the grant lock.
2537 if (XLOG_FORCED_SHUTDOWN(log))
2538 goto error_return;
2540 XFS_STATS_INC(xs_sleep_logspace);
2541 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2544 * If we got an error, and the filesystem is shutting down,
2545 * we'll catch it down below. So just continue...
2547 trace_xfs_log_grant_wake1(log, tic);
2550 redo:
2551 if (XLOG_FORCED_SHUTDOWN(log))
2552 goto error_return_unlocked;
2554 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2555 if (free_bytes < need_bytes) {
2556 spin_lock(&log->l_grant_reserve_lock);
2557 if (list_empty(&tic->t_queue))
2558 list_add_tail(&tic->t_queue, &log->l_reserveq);
2560 trace_xfs_log_grant_sleep2(log, tic);
2562 if (XLOG_FORCED_SHUTDOWN(log))
2563 goto error_return;
2565 xlog_grant_push_ail(log, need_bytes);
2567 XFS_STATS_INC(xs_sleep_logspace);
2568 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2570 trace_xfs_log_grant_wake2(log, tic);
2571 goto redo;
2574 if (!list_empty(&tic->t_queue)) {
2575 spin_lock(&log->l_grant_reserve_lock);
2576 list_del_init(&tic->t_queue);
2577 spin_unlock(&log->l_grant_reserve_lock);
2580 /* we've got enough space */
2581 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2582 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2583 trace_xfs_log_grant_exit(log, tic);
2584 xlog_verify_grant_tail(log);
2585 return 0;
2587 error_return_unlocked:
2588 spin_lock(&log->l_grant_reserve_lock);
2589 error_return:
2590 list_del_init(&tic->t_queue);
2591 spin_unlock(&log->l_grant_reserve_lock);
2592 trace_xfs_log_grant_error(log, tic);
2595 * If we are failing, make sure the ticket doesn't have any
2596 * current reservations. We don't want to add this back when
2597 * the ticket/transaction gets cancelled.
2599 tic->t_curr_res = 0;
2600 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2601 return XFS_ERROR(EIO);
2602 } /* xlog_grant_log_space */
2606 * Replenish the byte reservation required by moving the grant write head.
2608 * Similar to xlog_grant_log_space, the function is structured to have a lock
2609 * free fast path.
2611 STATIC int
2612 xlog_regrant_write_log_space(xlog_t *log,
2613 xlog_ticket_t *tic)
2615 int free_bytes, need_bytes;
2617 tic->t_curr_res = tic->t_unit_res;
2618 xlog_tic_reset_res(tic);
2620 if (tic->t_cnt > 0)
2621 return 0;
2623 #ifdef DEBUG
2624 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2625 panic("regrant Recovery problem");
2626 #endif
2628 trace_xfs_log_regrant_write_enter(log, tic);
2629 if (XLOG_FORCED_SHUTDOWN(log))
2630 goto error_return_unlocked;
2632 /* If there are other waiters on the queue then give them a
2633 * chance at logspace before us. Wake up the first waiters,
2634 * if we do not wake up all the waiters then go to sleep waiting
2635 * for more free space, otherwise try to get some space for
2636 * this transaction.
2638 need_bytes = tic->t_unit_res;
2639 if (!list_empty_careful(&log->l_writeq)) {
2640 struct xlog_ticket *ntic;
2642 spin_lock(&log->l_grant_write_lock);
2643 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2644 list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2645 ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2647 if (free_bytes < ntic->t_unit_res)
2648 break;
2649 free_bytes -= ntic->t_unit_res;
2650 wake_up(&ntic->t_wait);
2653 if (ntic != list_first_entry(&log->l_writeq,
2654 struct xlog_ticket, t_queue)) {
2655 if (list_empty(&tic->t_queue))
2656 list_add_tail(&tic->t_queue, &log->l_writeq);
2657 trace_xfs_log_regrant_write_sleep1(log, tic);
2659 xlog_grant_push_ail(log, need_bytes);
2661 XFS_STATS_INC(xs_sleep_logspace);
2662 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2663 trace_xfs_log_regrant_write_wake1(log, tic);
2664 } else
2665 spin_unlock(&log->l_grant_write_lock);
2668 redo:
2669 if (XLOG_FORCED_SHUTDOWN(log))
2670 goto error_return_unlocked;
2672 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2673 if (free_bytes < need_bytes) {
2674 spin_lock(&log->l_grant_write_lock);
2675 if (list_empty(&tic->t_queue))
2676 list_add_tail(&tic->t_queue, &log->l_writeq);
2678 if (XLOG_FORCED_SHUTDOWN(log))
2679 goto error_return;
2681 xlog_grant_push_ail(log, need_bytes);
2683 XFS_STATS_INC(xs_sleep_logspace);
2684 trace_xfs_log_regrant_write_sleep2(log, tic);
2685 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2687 trace_xfs_log_regrant_write_wake2(log, tic);
2688 goto redo;
2691 if (!list_empty(&tic->t_queue)) {
2692 spin_lock(&log->l_grant_write_lock);
2693 list_del_init(&tic->t_queue);
2694 spin_unlock(&log->l_grant_write_lock);
2697 /* we've got enough space */
2698 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2699 trace_xfs_log_regrant_write_exit(log, tic);
2700 xlog_verify_grant_tail(log);
2701 return 0;
2704 error_return_unlocked:
2705 spin_lock(&log->l_grant_write_lock);
2706 error_return:
2707 list_del_init(&tic->t_queue);
2708 spin_unlock(&log->l_grant_write_lock);
2709 trace_xfs_log_regrant_write_error(log, tic);
2712 * If we are failing, make sure the ticket doesn't have any
2713 * current reservations. We don't want to add this back when
2714 * the ticket/transaction gets cancelled.
2716 tic->t_curr_res = 0;
2717 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2718 return XFS_ERROR(EIO);
2719 } /* xlog_regrant_write_log_space */
2722 /* The first cnt-1 times through here we don't need to
2723 * move the grant write head because the permanent
2724 * reservation has reserved cnt times the unit amount.
2725 * Release part of current permanent unit reservation and
2726 * reset current reservation to be one units worth. Also
2727 * move grant reservation head forward.
2729 STATIC void
2730 xlog_regrant_reserve_log_space(xlog_t *log,
2731 xlog_ticket_t *ticket)
2733 trace_xfs_log_regrant_reserve_enter(log, ticket);
2735 if (ticket->t_cnt > 0)
2736 ticket->t_cnt--;
2738 xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2739 ticket->t_curr_res);
2740 xlog_grant_sub_space(log, &log->l_grant_write_head,
2741 ticket->t_curr_res);
2742 ticket->t_curr_res = ticket->t_unit_res;
2743 xlog_tic_reset_res(ticket);
2745 trace_xfs_log_regrant_reserve_sub(log, ticket);
2747 /* just return if we still have some of the pre-reserved space */
2748 if (ticket->t_cnt > 0)
2749 return;
2751 xlog_grant_add_space(log, &log->l_grant_reserve_head,
2752 ticket->t_unit_res);
2754 trace_xfs_log_regrant_reserve_exit(log, ticket);
2756 ticket->t_curr_res = ticket->t_unit_res;
2757 xlog_tic_reset_res(ticket);
2758 } /* xlog_regrant_reserve_log_space */
2762 * Give back the space left from a reservation.
2764 * All the information we need to make a correct determination of space left
2765 * is present. For non-permanent reservations, things are quite easy. The
2766 * count should have been decremented to zero. We only need to deal with the
2767 * space remaining in the current reservation part of the ticket. If the
2768 * ticket contains a permanent reservation, there may be left over space which
2769 * needs to be released. A count of N means that N-1 refills of the current
2770 * reservation can be done before we need to ask for more space. The first
2771 * one goes to fill up the first current reservation. Once we run out of
2772 * space, the count will stay at zero and the only space remaining will be
2773 * in the current reservation field.
2775 STATIC void
2776 xlog_ungrant_log_space(xlog_t *log,
2777 xlog_ticket_t *ticket)
2779 int bytes;
2781 if (ticket->t_cnt > 0)
2782 ticket->t_cnt--;
2784 trace_xfs_log_ungrant_enter(log, ticket);
2785 trace_xfs_log_ungrant_sub(log, ticket);
2788 * If this is a permanent reservation ticket, we may be able to free
2789 * up more space based on the remaining count.
2791 bytes = ticket->t_curr_res;
2792 if (ticket->t_cnt > 0) {
2793 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2794 bytes += ticket->t_unit_res*ticket->t_cnt;
2797 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2798 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2800 trace_xfs_log_ungrant_exit(log, ticket);
2802 xfs_log_move_tail(log->l_mp, 1);
2803 } /* xlog_ungrant_log_space */
2807 * Flush iclog to disk if this is the last reference to the given iclog and
2808 * the WANT_SYNC bit is set.
2810 * When this function is entered, the iclog is not necessarily in the
2811 * WANT_SYNC state. It may be sitting around waiting to get filled.
2815 STATIC int
2816 xlog_state_release_iclog(
2817 xlog_t *log,
2818 xlog_in_core_t *iclog)
2820 int sync = 0; /* do we sync? */
2822 if (iclog->ic_state & XLOG_STATE_IOERROR)
2823 return XFS_ERROR(EIO);
2825 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2826 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2827 return 0;
2829 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2830 spin_unlock(&log->l_icloglock);
2831 return XFS_ERROR(EIO);
2833 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2834 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2836 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2837 /* update tail before writing to iclog */
2838 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2839 sync++;
2840 iclog->ic_state = XLOG_STATE_SYNCING;
2841 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2842 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2843 /* cycle incremented when incrementing curr_block */
2845 spin_unlock(&log->l_icloglock);
2848 * We let the log lock go, so it's possible that we hit a log I/O
2849 * error or some other SHUTDOWN condition that marks the iclog
2850 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2851 * this iclog has consistent data, so we ignore IOERROR
2852 * flags after this point.
2854 if (sync)
2855 return xlog_sync(log, iclog);
2856 return 0;
2857 } /* xlog_state_release_iclog */
2861 * This routine will mark the current iclog in the ring as WANT_SYNC
2862 * and move the current iclog pointer to the next iclog in the ring.
2863 * When this routine is called from xlog_state_get_iclog_space(), the
2864 * exact size of the iclog has not yet been determined. All we know is
2865 * that every data block. We have run out of space in this log record.
2867 STATIC void
2868 xlog_state_switch_iclogs(xlog_t *log,
2869 xlog_in_core_t *iclog,
2870 int eventual_size)
2872 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2873 if (!eventual_size)
2874 eventual_size = iclog->ic_offset;
2875 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2876 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2877 log->l_prev_block = log->l_curr_block;
2878 log->l_prev_cycle = log->l_curr_cycle;
2880 /* roll log?: ic_offset changed later */
2881 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2883 /* Round up to next log-sunit */
2884 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2885 log->l_mp->m_sb.sb_logsunit > 1) {
2886 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2887 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2890 if (log->l_curr_block >= log->l_logBBsize) {
2891 log->l_curr_cycle++;
2892 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2893 log->l_curr_cycle++;
2894 log->l_curr_block -= log->l_logBBsize;
2895 ASSERT(log->l_curr_block >= 0);
2897 ASSERT(iclog == log->l_iclog);
2898 log->l_iclog = iclog->ic_next;
2899 } /* xlog_state_switch_iclogs */
2902 * Write out all data in the in-core log as of this exact moment in time.
2904 * Data may be written to the in-core log during this call. However,
2905 * we don't guarantee this data will be written out. A change from past
2906 * implementation means this routine will *not* write out zero length LRs.
2908 * Basically, we try and perform an intelligent scan of the in-core logs.
2909 * If we determine there is no flushable data, we just return. There is no
2910 * flushable data if:
2912 * 1. the current iclog is active and has no data; the previous iclog
2913 * is in the active or dirty state.
2914 * 2. the current iclog is drity, and the previous iclog is in the
2915 * active or dirty state.
2917 * We may sleep if:
2919 * 1. the current iclog is not in the active nor dirty state.
2920 * 2. the current iclog dirty, and the previous iclog is not in the
2921 * active nor dirty state.
2922 * 3. the current iclog is active, and there is another thread writing
2923 * to this particular iclog.
2924 * 4. a) the current iclog is active and has no other writers
2925 * b) when we return from flushing out this iclog, it is still
2926 * not in the active nor dirty state.
2929 _xfs_log_force(
2930 struct xfs_mount *mp,
2931 uint flags,
2932 int *log_flushed)
2934 struct log *log = mp->m_log;
2935 struct xlog_in_core *iclog;
2936 xfs_lsn_t lsn;
2938 XFS_STATS_INC(xs_log_force);
2940 if (log->l_cilp)
2941 xlog_cil_force(log);
2943 spin_lock(&log->l_icloglock);
2945 iclog = log->l_iclog;
2946 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2947 spin_unlock(&log->l_icloglock);
2948 return XFS_ERROR(EIO);
2951 /* If the head iclog is not active nor dirty, we just attach
2952 * ourselves to the head and go to sleep.
2954 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2955 iclog->ic_state == XLOG_STATE_DIRTY) {
2957 * If the head is dirty or (active and empty), then
2958 * we need to look at the previous iclog. If the previous
2959 * iclog is active or dirty we are done. There is nothing
2960 * to sync out. Otherwise, we attach ourselves to the
2961 * previous iclog and go to sleep.
2963 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2964 (atomic_read(&iclog->ic_refcnt) == 0
2965 && iclog->ic_offset == 0)) {
2966 iclog = iclog->ic_prev;
2967 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2968 iclog->ic_state == XLOG_STATE_DIRTY)
2969 goto no_sleep;
2970 else
2971 goto maybe_sleep;
2972 } else {
2973 if (atomic_read(&iclog->ic_refcnt) == 0) {
2974 /* We are the only one with access to this
2975 * iclog. Flush it out now. There should
2976 * be a roundoff of zero to show that someone
2977 * has already taken care of the roundoff from
2978 * the previous sync.
2980 atomic_inc(&iclog->ic_refcnt);
2981 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2982 xlog_state_switch_iclogs(log, iclog, 0);
2983 spin_unlock(&log->l_icloglock);
2985 if (xlog_state_release_iclog(log, iclog))
2986 return XFS_ERROR(EIO);
2988 if (log_flushed)
2989 *log_flushed = 1;
2990 spin_lock(&log->l_icloglock);
2991 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2992 iclog->ic_state != XLOG_STATE_DIRTY)
2993 goto maybe_sleep;
2994 else
2995 goto no_sleep;
2996 } else {
2997 /* Someone else is writing to this iclog.
2998 * Use its call to flush out the data. However,
2999 * the other thread may not force out this LR,
3000 * so we mark it WANT_SYNC.
3002 xlog_state_switch_iclogs(log, iclog, 0);
3003 goto maybe_sleep;
3008 /* By the time we come around again, the iclog could've been filled
3009 * which would give it another lsn. If we have a new lsn, just
3010 * return because the relevant data has been flushed.
3012 maybe_sleep:
3013 if (flags & XFS_LOG_SYNC) {
3015 * We must check if we're shutting down here, before
3016 * we wait, while we're holding the l_icloglock.
3017 * Then we check again after waking up, in case our
3018 * sleep was disturbed by a bad news.
3020 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3021 spin_unlock(&log->l_icloglock);
3022 return XFS_ERROR(EIO);
3024 XFS_STATS_INC(xs_log_force_sleep);
3025 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3027 * No need to grab the log lock here since we're
3028 * only deciding whether or not to return EIO
3029 * and the memory read should be atomic.
3031 if (iclog->ic_state & XLOG_STATE_IOERROR)
3032 return XFS_ERROR(EIO);
3033 if (log_flushed)
3034 *log_flushed = 1;
3035 } else {
3037 no_sleep:
3038 spin_unlock(&log->l_icloglock);
3040 return 0;
3044 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3045 * about errors or whether the log was flushed or not. This is the normal
3046 * interface to use when trying to unpin items or move the log forward.
3048 void
3049 xfs_log_force(
3050 xfs_mount_t *mp,
3051 uint flags)
3053 int error;
3055 error = _xfs_log_force(mp, flags, NULL);
3056 if (error)
3057 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3061 * Force the in-core log to disk for a specific LSN.
3063 * Find in-core log with lsn.
3064 * If it is in the DIRTY state, just return.
3065 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3066 * state and go to sleep or return.
3067 * If it is in any other state, go to sleep or return.
3069 * Synchronous forces are implemented with a signal variable. All callers
3070 * to force a given lsn to disk will wait on a the sv attached to the
3071 * specific in-core log. When given in-core log finally completes its
3072 * write to disk, that thread will wake up all threads waiting on the
3073 * sv.
3076 _xfs_log_force_lsn(
3077 struct xfs_mount *mp,
3078 xfs_lsn_t lsn,
3079 uint flags,
3080 int *log_flushed)
3082 struct log *log = mp->m_log;
3083 struct xlog_in_core *iclog;
3084 int already_slept = 0;
3086 ASSERT(lsn != 0);
3088 XFS_STATS_INC(xs_log_force);
3090 if (log->l_cilp) {
3091 lsn = xlog_cil_force_lsn(log, lsn);
3092 if (lsn == NULLCOMMITLSN)
3093 return 0;
3096 try_again:
3097 spin_lock(&log->l_icloglock);
3098 iclog = log->l_iclog;
3099 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3100 spin_unlock(&log->l_icloglock);
3101 return XFS_ERROR(EIO);
3104 do {
3105 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3106 iclog = iclog->ic_next;
3107 continue;
3110 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3111 spin_unlock(&log->l_icloglock);
3112 return 0;
3115 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3117 * We sleep here if we haven't already slept (e.g.
3118 * this is the first time we've looked at the correct
3119 * iclog buf) and the buffer before us is going to
3120 * be sync'ed. The reason for this is that if we
3121 * are doing sync transactions here, by waiting for
3122 * the previous I/O to complete, we can allow a few
3123 * more transactions into this iclog before we close
3124 * it down.
3126 * Otherwise, we mark the buffer WANT_SYNC, and bump
3127 * up the refcnt so we can release the log (which
3128 * drops the ref count). The state switch keeps new
3129 * transaction commits from using this buffer. When
3130 * the current commits finish writing into the buffer,
3131 * the refcount will drop to zero and the buffer will
3132 * go out then.
3134 if (!already_slept &&
3135 (iclog->ic_prev->ic_state &
3136 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3137 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3139 XFS_STATS_INC(xs_log_force_sleep);
3141 xlog_wait(&iclog->ic_prev->ic_write_wait,
3142 &log->l_icloglock);
3143 if (log_flushed)
3144 *log_flushed = 1;
3145 already_slept = 1;
3146 goto try_again;
3148 atomic_inc(&iclog->ic_refcnt);
3149 xlog_state_switch_iclogs(log, iclog, 0);
3150 spin_unlock(&log->l_icloglock);
3151 if (xlog_state_release_iclog(log, iclog))
3152 return XFS_ERROR(EIO);
3153 if (log_flushed)
3154 *log_flushed = 1;
3155 spin_lock(&log->l_icloglock);
3158 if ((flags & XFS_LOG_SYNC) && /* sleep */
3159 !(iclog->ic_state &
3160 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3162 * Don't wait on completion if we know that we've
3163 * gotten a log write error.
3165 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3166 spin_unlock(&log->l_icloglock);
3167 return XFS_ERROR(EIO);
3169 XFS_STATS_INC(xs_log_force_sleep);
3170 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3172 * No need to grab the log lock here since we're
3173 * only deciding whether or not to return EIO
3174 * and the memory read should be atomic.
3176 if (iclog->ic_state & XLOG_STATE_IOERROR)
3177 return XFS_ERROR(EIO);
3179 if (log_flushed)
3180 *log_flushed = 1;
3181 } else { /* just return */
3182 spin_unlock(&log->l_icloglock);
3185 return 0;
3186 } while (iclog != log->l_iclog);
3188 spin_unlock(&log->l_icloglock);
3189 return 0;
3193 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3194 * about errors or whether the log was flushed or not. This is the normal
3195 * interface to use when trying to unpin items or move the log forward.
3197 void
3198 xfs_log_force_lsn(
3199 xfs_mount_t *mp,
3200 xfs_lsn_t lsn,
3201 uint flags)
3203 int error;
3205 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3206 if (error)
3207 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3211 * Called when we want to mark the current iclog as being ready to sync to
3212 * disk.
3214 STATIC void
3215 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3217 assert_spin_locked(&log->l_icloglock);
3219 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3220 xlog_state_switch_iclogs(log, iclog, 0);
3221 } else {
3222 ASSERT(iclog->ic_state &
3223 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3228 /*****************************************************************************
3230 * TICKET functions
3232 *****************************************************************************
3236 * Free a used ticket when its refcount falls to zero.
3238 void
3239 xfs_log_ticket_put(
3240 xlog_ticket_t *ticket)
3242 ASSERT(atomic_read(&ticket->t_ref) > 0);
3243 if (atomic_dec_and_test(&ticket->t_ref))
3244 kmem_zone_free(xfs_log_ticket_zone, ticket);
3247 xlog_ticket_t *
3248 xfs_log_ticket_get(
3249 xlog_ticket_t *ticket)
3251 ASSERT(atomic_read(&ticket->t_ref) > 0);
3252 atomic_inc(&ticket->t_ref);
3253 return ticket;
3257 * Allocate and initialise a new log ticket.
3259 xlog_ticket_t *
3260 xlog_ticket_alloc(
3261 struct log *log,
3262 int unit_bytes,
3263 int cnt,
3264 char client,
3265 uint xflags,
3266 int alloc_flags)
3268 struct xlog_ticket *tic;
3269 uint num_headers;
3270 int iclog_space;
3272 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3273 if (!tic)
3274 return NULL;
3277 * Permanent reservations have up to 'cnt'-1 active log operations
3278 * in the log. A unit in this case is the amount of space for one
3279 * of these log operations. Normal reservations have a cnt of 1
3280 * and their unit amount is the total amount of space required.
3282 * The following lines of code account for non-transaction data
3283 * which occupy space in the on-disk log.
3285 * Normal form of a transaction is:
3286 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3287 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3289 * We need to account for all the leadup data and trailer data
3290 * around the transaction data.
3291 * And then we need to account for the worst case in terms of using
3292 * more space.
3293 * The worst case will happen if:
3294 * - the placement of the transaction happens to be such that the
3295 * roundoff is at its maximum
3296 * - the transaction data is synced before the commit record is synced
3297 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3298 * Therefore the commit record is in its own Log Record.
3299 * This can happen as the commit record is called with its
3300 * own region to xlog_write().
3301 * This then means that in the worst case, roundoff can happen for
3302 * the commit-rec as well.
3303 * The commit-rec is smaller than padding in this scenario and so it is
3304 * not added separately.
3307 /* for trans header */
3308 unit_bytes += sizeof(xlog_op_header_t);
3309 unit_bytes += sizeof(xfs_trans_header_t);
3311 /* for start-rec */
3312 unit_bytes += sizeof(xlog_op_header_t);
3315 * for LR headers - the space for data in an iclog is the size minus
3316 * the space used for the headers. If we use the iclog size, then we
3317 * undercalculate the number of headers required.
3319 * Furthermore - the addition of op headers for split-recs might
3320 * increase the space required enough to require more log and op
3321 * headers, so take that into account too.
3323 * IMPORTANT: This reservation makes the assumption that if this
3324 * transaction is the first in an iclog and hence has the LR headers
3325 * accounted to it, then the remaining space in the iclog is
3326 * exclusively for this transaction. i.e. if the transaction is larger
3327 * than the iclog, it will be the only thing in that iclog.
3328 * Fundamentally, this means we must pass the entire log vector to
3329 * xlog_write to guarantee this.
3331 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3332 num_headers = howmany(unit_bytes, iclog_space);
3334 /* for split-recs - ophdrs added when data split over LRs */
3335 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3337 /* add extra header reservations if we overrun */
3338 while (!num_headers ||
3339 howmany(unit_bytes, iclog_space) > num_headers) {
3340 unit_bytes += sizeof(xlog_op_header_t);
3341 num_headers++;
3343 unit_bytes += log->l_iclog_hsize * num_headers;
3345 /* for commit-rec LR header - note: padding will subsume the ophdr */
3346 unit_bytes += log->l_iclog_hsize;
3348 /* for roundoff padding for transaction data and one for commit record */
3349 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3350 log->l_mp->m_sb.sb_logsunit > 1) {
3351 /* log su roundoff */
3352 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3353 } else {
3354 /* BB roundoff */
3355 unit_bytes += 2*BBSIZE;
3358 atomic_set(&tic->t_ref, 1);
3359 INIT_LIST_HEAD(&tic->t_queue);
3360 tic->t_unit_res = unit_bytes;
3361 tic->t_curr_res = unit_bytes;
3362 tic->t_cnt = cnt;
3363 tic->t_ocnt = cnt;
3364 tic->t_tid = random32();
3365 tic->t_clientid = client;
3366 tic->t_flags = XLOG_TIC_INITED;
3367 tic->t_trans_type = 0;
3368 if (xflags & XFS_LOG_PERM_RESERV)
3369 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3370 init_waitqueue_head(&tic->t_wait);
3372 xlog_tic_reset_res(tic);
3374 return tic;
3378 /******************************************************************************
3380 * Log debug routines
3382 ******************************************************************************
3384 #if defined(DEBUG)
3386 * Make sure that the destination ptr is within the valid data region of
3387 * one of the iclogs. This uses backup pointers stored in a different
3388 * part of the log in case we trash the log structure.
3390 void
3391 xlog_verify_dest_ptr(
3392 struct log *log,
3393 char *ptr)
3395 int i;
3396 int good_ptr = 0;
3398 for (i = 0; i < log->l_iclog_bufs; i++) {
3399 if (ptr >= log->l_iclog_bak[i] &&
3400 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3401 good_ptr++;
3404 if (!good_ptr)
3405 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3409 * Check to make sure the grant write head didn't just over lap the tail. If
3410 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3411 * the cycles differ by exactly one and check the byte count.
3413 * This check is run unlocked, so can give false positives. Rather than assert
3414 * on failures, use a warn-once flag and a panic tag to allow the admin to
3415 * determine if they want to panic the machine when such an error occurs. For
3416 * debug kernels this will have the same effect as using an assert but, unlinke
3417 * an assert, it can be turned off at runtime.
3419 STATIC void
3420 xlog_verify_grant_tail(
3421 struct log *log)
3423 int tail_cycle, tail_blocks;
3424 int cycle, space;
3426 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3427 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3428 if (tail_cycle != cycle) {
3429 if (cycle - 1 != tail_cycle &&
3430 !(log->l_flags & XLOG_TAIL_WARN)) {
3431 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3432 "%s: cycle - 1 != tail_cycle", __func__);
3433 log->l_flags |= XLOG_TAIL_WARN;
3436 if (space > BBTOB(tail_blocks) &&
3437 !(log->l_flags & XLOG_TAIL_WARN)) {
3438 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3439 "%s: space > BBTOB(tail_blocks)", __func__);
3440 log->l_flags |= XLOG_TAIL_WARN;
3445 /* check if it will fit */
3446 STATIC void
3447 xlog_verify_tail_lsn(xlog_t *log,
3448 xlog_in_core_t *iclog,
3449 xfs_lsn_t tail_lsn)
3451 int blocks;
3453 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3454 blocks =
3455 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3456 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3457 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3458 } else {
3459 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3461 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3462 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3464 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3465 if (blocks < BTOBB(iclog->ic_offset) + 1)
3466 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3468 } /* xlog_verify_tail_lsn */
3471 * Perform a number of checks on the iclog before writing to disk.
3473 * 1. Make sure the iclogs are still circular
3474 * 2. Make sure we have a good magic number
3475 * 3. Make sure we don't have magic numbers in the data
3476 * 4. Check fields of each log operation header for:
3477 * A. Valid client identifier
3478 * B. tid ptr value falls in valid ptr space (user space code)
3479 * C. Length in log record header is correct according to the
3480 * individual operation headers within record.
3481 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3482 * log, check the preceding blocks of the physical log to make sure all
3483 * the cycle numbers agree with the current cycle number.
3485 STATIC void
3486 xlog_verify_iclog(xlog_t *log,
3487 xlog_in_core_t *iclog,
3488 int count,
3489 boolean_t syncing)
3491 xlog_op_header_t *ophead;
3492 xlog_in_core_t *icptr;
3493 xlog_in_core_2_t *xhdr;
3494 xfs_caddr_t ptr;
3495 xfs_caddr_t base_ptr;
3496 __psint_t field_offset;
3497 __uint8_t clientid;
3498 int len, i, j, k, op_len;
3499 int idx;
3501 /* check validity of iclog pointers */
3502 spin_lock(&log->l_icloglock);
3503 icptr = log->l_iclog;
3504 for (i=0; i < log->l_iclog_bufs; i++) {
3505 if (icptr == NULL)
3506 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3507 icptr = icptr->ic_next;
3509 if (icptr != log->l_iclog)
3510 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3511 spin_unlock(&log->l_icloglock);
3513 /* check log magic numbers */
3514 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3515 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3517 ptr = (xfs_caddr_t) &iclog->ic_header;
3518 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3519 ptr += BBSIZE) {
3520 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3521 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3522 __func__);
3525 /* check fields */
3526 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3527 ptr = iclog->ic_datap;
3528 base_ptr = ptr;
3529 ophead = (xlog_op_header_t *)ptr;
3530 xhdr = iclog->ic_data;
3531 for (i = 0; i < len; i++) {
3532 ophead = (xlog_op_header_t *)ptr;
3534 /* clientid is only 1 byte */
3535 field_offset = (__psint_t)
3536 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3537 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3538 clientid = ophead->oh_clientid;
3539 } else {
3540 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3541 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3542 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3543 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3544 clientid = xlog_get_client_id(
3545 xhdr[j].hic_xheader.xh_cycle_data[k]);
3546 } else {
3547 clientid = xlog_get_client_id(
3548 iclog->ic_header.h_cycle_data[idx]);
3551 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3552 xfs_warn(log->l_mp,
3553 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3554 __func__, clientid, ophead,
3555 (unsigned long)field_offset);
3557 /* check length */
3558 field_offset = (__psint_t)
3559 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3560 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3561 op_len = be32_to_cpu(ophead->oh_len);
3562 } else {
3563 idx = BTOBBT((__psint_t)&ophead->oh_len -
3564 (__psint_t)iclog->ic_datap);
3565 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3566 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3567 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3568 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3569 } else {
3570 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3573 ptr += sizeof(xlog_op_header_t) + op_len;
3575 } /* xlog_verify_iclog */
3576 #endif
3579 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3581 STATIC int
3582 xlog_state_ioerror(
3583 xlog_t *log)
3585 xlog_in_core_t *iclog, *ic;
3587 iclog = log->l_iclog;
3588 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3590 * Mark all the incore logs IOERROR.
3591 * From now on, no log flushes will result.
3593 ic = iclog;
3594 do {
3595 ic->ic_state = XLOG_STATE_IOERROR;
3596 ic = ic->ic_next;
3597 } while (ic != iclog);
3598 return 0;
3601 * Return non-zero, if state transition has already happened.
3603 return 1;
3607 * This is called from xfs_force_shutdown, when we're forcibly
3608 * shutting down the filesystem, typically because of an IO error.
3609 * Our main objectives here are to make sure that:
3610 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3611 * parties to find out, 'atomically'.
3612 * b. those who're sleeping on log reservations, pinned objects and
3613 * other resources get woken up, and be told the bad news.
3614 * c. nothing new gets queued up after (a) and (b) are done.
3615 * d. if !logerror, flush the iclogs to disk, then seal them off
3616 * for business.
3618 * Note: for delayed logging the !logerror case needs to flush the regions
3619 * held in memory out to the iclogs before flushing them to disk. This needs
3620 * to be done before the log is marked as shutdown, otherwise the flush to the
3621 * iclogs will fail.
3624 xfs_log_force_umount(
3625 struct xfs_mount *mp,
3626 int logerror)
3628 xlog_ticket_t *tic;
3629 xlog_t *log;
3630 int retval;
3632 log = mp->m_log;
3635 * If this happens during log recovery, don't worry about
3636 * locking; the log isn't open for business yet.
3638 if (!log ||
3639 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3640 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3641 if (mp->m_sb_bp)
3642 XFS_BUF_DONE(mp->m_sb_bp);
3643 return 0;
3647 * Somebody could've already done the hard work for us.
3648 * No need to get locks for this.
3650 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3651 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3652 return 1;
3654 retval = 0;
3657 * Flush the in memory commit item list before marking the log as
3658 * being shut down. We need to do it in this order to ensure all the
3659 * completed transactions are flushed to disk with the xfs_log_force()
3660 * call below.
3662 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3663 xlog_cil_force(log);
3666 * mark the filesystem and the as in a shutdown state and wake
3667 * everybody up to tell them the bad news.
3669 spin_lock(&log->l_icloglock);
3670 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3671 if (mp->m_sb_bp)
3672 XFS_BUF_DONE(mp->m_sb_bp);
3675 * This flag is sort of redundant because of the mount flag, but
3676 * it's good to maintain the separation between the log and the rest
3677 * of XFS.
3679 log->l_flags |= XLOG_IO_ERROR;
3682 * If we hit a log error, we want to mark all the iclogs IOERROR
3683 * while we're still holding the loglock.
3685 if (logerror)
3686 retval = xlog_state_ioerror(log);
3687 spin_unlock(&log->l_icloglock);
3690 * We don't want anybody waiting for log reservations after this. That
3691 * means we have to wake up everybody queued up on reserveq as well as
3692 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3693 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3694 * action is protected by the grant locks.
3696 spin_lock(&log->l_grant_reserve_lock);
3697 list_for_each_entry(tic, &log->l_reserveq, t_queue)
3698 wake_up(&tic->t_wait);
3699 spin_unlock(&log->l_grant_reserve_lock);
3701 spin_lock(&log->l_grant_write_lock);
3702 list_for_each_entry(tic, &log->l_writeq, t_queue)
3703 wake_up(&tic->t_wait);
3704 spin_unlock(&log->l_grant_write_lock);
3706 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3707 ASSERT(!logerror);
3709 * Force the incore logs to disk before shutting the
3710 * log down completely.
3712 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3714 spin_lock(&log->l_icloglock);
3715 retval = xlog_state_ioerror(log);
3716 spin_unlock(&log->l_icloglock);
3719 * Wake up everybody waiting on xfs_log_force.
3720 * Callback all log item committed functions as if the
3721 * log writes were completed.
3723 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3725 #ifdef XFSERRORDEBUG
3727 xlog_in_core_t *iclog;
3729 spin_lock(&log->l_icloglock);
3730 iclog = log->l_iclog;
3731 do {
3732 ASSERT(iclog->ic_callback == 0);
3733 iclog = iclog->ic_next;
3734 } while (iclog != log->l_iclog);
3735 spin_unlock(&log->l_icloglock);
3737 #endif
3738 /* return non-zero if log IOERROR transition had already happened */
3739 return retval;
3742 STATIC int
3743 xlog_iclogs_empty(xlog_t *log)
3745 xlog_in_core_t *iclog;
3747 iclog = log->l_iclog;
3748 do {
3749 /* endianness does not matter here, zero is zero in
3750 * any language.
3752 if (iclog->ic_header.h_num_logops)
3753 return 0;
3754 iclog = iclog->ic_next;
3755 } while (iclog != log->l_iclog);
3756 return 1;