ALSA: hda - Fix pin-setup for Sony VAIO with STAC9872 codecs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / virt / kvm / kvm_main.c
blob764554350ed86f41b26f45eb840ad02138a55081
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
68 static cpumask_var_t cpus_hardware_enabled;
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
75 struct dentry *kvm_debugfs_dir;
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 unsigned long arg);
80 static bool kvm_rebooting;
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 int assigned_dev_id)
86 struct list_head *ptr;
87 struct kvm_assigned_dev_kernel *match;
89 list_for_each(ptr, head) {
90 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 if (match->assigned_dev_id == assigned_dev_id)
92 return match;
94 return NULL;
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 *assigned_dev, int irq)
100 int i, index;
101 struct msix_entry *host_msix_entries;
103 host_msix_entries = assigned_dev->host_msix_entries;
105 index = -1;
106 for (i = 0; i < assigned_dev->entries_nr; i++)
107 if (irq == host_msix_entries[i].vector) {
108 index = i;
109 break;
111 if (index < 0) {
112 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 return 0;
116 return index;
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
121 struct kvm_assigned_dev_kernel *assigned_dev;
122 struct kvm *kvm;
123 int irq, i;
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127 kvm = assigned_dev->kvm;
129 /* This is taken to safely inject irq inside the guest. When
130 * the interrupt injection (or the ioapic code) uses a
131 * finer-grained lock, update this
133 mutex_lock(&kvm->lock);
134 spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 struct kvm_guest_msix_entry *guest_entries =
137 assigned_dev->guest_msix_entries;
138 for (i = 0; i < assigned_dev->entries_nr; i++) {
139 if (!(guest_entries[i].flags &
140 KVM_ASSIGNED_MSIX_PENDING))
141 continue;
142 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 kvm_set_irq(assigned_dev->kvm,
144 assigned_dev->irq_source_id,
145 guest_entries[i].vector, 1);
146 irq = assigned_dev->host_msix_entries[i].vector;
147 if (irq != 0)
148 enable_irq(irq);
149 assigned_dev->host_irq_disabled = false;
151 } else {
152 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153 assigned_dev->guest_irq, 1);
154 if (assigned_dev->irq_requested_type &
155 KVM_DEV_IRQ_GUEST_MSI) {
156 enable_irq(assigned_dev->host_irq);
157 assigned_dev->host_irq_disabled = false;
161 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162 mutex_unlock(&assigned_dev->kvm->lock);
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
167 unsigned long flags;
168 struct kvm_assigned_dev_kernel *assigned_dev =
169 (struct kvm_assigned_dev_kernel *) dev_id;
171 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173 int index = find_index_from_host_irq(assigned_dev, irq);
174 if (index < 0)
175 goto out;
176 assigned_dev->guest_msix_entries[index].flags |=
177 KVM_ASSIGNED_MSIX_PENDING;
180 schedule_work(&assigned_dev->interrupt_work);
182 disable_irq_nosync(irq);
183 assigned_dev->host_irq_disabled = true;
185 out:
186 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187 return IRQ_HANDLED;
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
193 struct kvm_assigned_dev_kernel *dev;
194 unsigned long flags;
196 if (kian->gsi == -1)
197 return;
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 ack_notifier);
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
204 /* The guest irq may be shared so this ack may be
205 * from another device.
207 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208 if (dev->host_irq_disabled) {
209 enable_irq(dev->host_irq);
210 dev->host_irq_disabled = false;
212 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
215 static void deassign_guest_irq(struct kvm *kvm,
216 struct kvm_assigned_dev_kernel *assigned_dev)
218 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219 assigned_dev->ack_notifier.gsi = -1;
221 if (assigned_dev->irq_source_id != -1)
222 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223 assigned_dev->irq_source_id = -1;
224 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229 struct kvm_assigned_dev_kernel *assigned_dev)
232 * In kvm_free_device_irq, cancel_work_sync return true if:
233 * 1. work is scheduled, and then cancelled.
234 * 2. work callback is executed.
236 * The first one ensured that the irq is disabled and no more events
237 * would happen. But for the second one, the irq may be enabled (e.g.
238 * for MSI). So we disable irq here to prevent further events.
240 * Notice this maybe result in nested disable if the interrupt type is
241 * INTx, but it's OK for we are going to free it.
243 * If this function is a part of VM destroy, please ensure that till
244 * now, the kvm state is still legal for probably we also have to wait
245 * interrupt_work done.
247 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248 int i;
249 for (i = 0; i < assigned_dev->entries_nr; i++)
250 disable_irq_nosync(assigned_dev->
251 host_msix_entries[i].vector);
253 cancel_work_sync(&assigned_dev->interrupt_work);
255 for (i = 0; i < assigned_dev->entries_nr; i++)
256 free_irq(assigned_dev->host_msix_entries[i].vector,
257 (void *)assigned_dev);
259 assigned_dev->entries_nr = 0;
260 kfree(assigned_dev->host_msix_entries);
261 kfree(assigned_dev->guest_msix_entries);
262 pci_disable_msix(assigned_dev->dev);
263 } else {
264 /* Deal with MSI and INTx */
265 disable_irq_nosync(assigned_dev->host_irq);
266 cancel_work_sync(&assigned_dev->interrupt_work);
268 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
270 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271 pci_disable_msi(assigned_dev->dev);
274 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
277 static int kvm_deassign_irq(struct kvm *kvm,
278 struct kvm_assigned_dev_kernel *assigned_dev,
279 unsigned long irq_requested_type)
281 unsigned long guest_irq_type, host_irq_type;
283 if (!irqchip_in_kernel(kvm))
284 return -EINVAL;
285 /* no irq assignment to deassign */
286 if (!assigned_dev->irq_requested_type)
287 return -ENXIO;
289 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
292 if (host_irq_type)
293 deassign_host_irq(kvm, assigned_dev);
294 if (guest_irq_type)
295 deassign_guest_irq(kvm, assigned_dev);
297 return 0;
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301 struct kvm_assigned_dev_kernel *assigned_dev)
303 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
306 static void kvm_free_assigned_device(struct kvm *kvm,
307 struct kvm_assigned_dev_kernel
308 *assigned_dev)
310 kvm_free_assigned_irq(kvm, assigned_dev);
312 pci_reset_function(assigned_dev->dev);
314 pci_release_regions(assigned_dev->dev);
315 pci_disable_device(assigned_dev->dev);
316 pci_dev_put(assigned_dev->dev);
318 list_del(&assigned_dev->list);
319 kfree(assigned_dev);
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
324 struct list_head *ptr, *ptr2;
325 struct kvm_assigned_dev_kernel *assigned_dev;
327 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328 assigned_dev = list_entry(ptr,
329 struct kvm_assigned_dev_kernel,
330 list);
332 kvm_free_assigned_device(kvm, assigned_dev);
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337 struct kvm_assigned_dev_kernel *dev)
339 dev->host_irq = dev->dev->irq;
340 /* Even though this is PCI, we don't want to use shared
341 * interrupts. Sharing host devices with guest-assigned devices
342 * on the same interrupt line is not a happy situation: there
343 * are going to be long delays in accepting, acking, etc.
345 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346 0, "kvm_assigned_intx_device", (void *)dev))
347 return -EIO;
348 return 0;
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353 struct kvm_assigned_dev_kernel *dev)
355 int r;
357 if (!dev->dev->msi_enabled) {
358 r = pci_enable_msi(dev->dev);
359 if (r)
360 return r;
363 dev->host_irq = dev->dev->irq;
364 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365 "kvm_assigned_msi_device", (void *)dev)) {
366 pci_disable_msi(dev->dev);
367 return -EIO;
370 return 0;
372 #endif
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376 struct kvm_assigned_dev_kernel *dev)
378 int i, r = -EINVAL;
380 /* host_msix_entries and guest_msix_entries should have been
381 * initialized */
382 if (dev->entries_nr == 0)
383 return r;
385 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386 if (r)
387 return r;
389 for (i = 0; i < dev->entries_nr; i++) {
390 r = request_irq(dev->host_msix_entries[i].vector,
391 kvm_assigned_dev_intr, 0,
392 "kvm_assigned_msix_device",
393 (void *)dev);
394 /* FIXME: free requested_irq's on failure */
395 if (r)
396 return r;
399 return 0;
402 #endif
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405 struct kvm_assigned_dev_kernel *dev,
406 struct kvm_assigned_irq *irq)
408 dev->guest_irq = irq->guest_irq;
409 dev->ack_notifier.gsi = irq->guest_irq;
410 return 0;
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415 struct kvm_assigned_dev_kernel *dev,
416 struct kvm_assigned_irq *irq)
418 dev->guest_irq = irq->guest_irq;
419 dev->ack_notifier.gsi = -1;
420 return 0;
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 return 0;
432 #endif
434 static int assign_host_irq(struct kvm *kvm,
435 struct kvm_assigned_dev_kernel *dev,
436 __u32 host_irq_type)
438 int r = -EEXIST;
440 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441 return r;
443 switch (host_irq_type) {
444 case KVM_DEV_IRQ_HOST_INTX:
445 r = assigned_device_enable_host_intx(kvm, dev);
446 break;
447 #ifdef __KVM_HAVE_MSI
448 case KVM_DEV_IRQ_HOST_MSI:
449 r = assigned_device_enable_host_msi(kvm, dev);
450 break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453 case KVM_DEV_IRQ_HOST_MSIX:
454 r = assigned_device_enable_host_msix(kvm, dev);
455 break;
456 #endif
457 default:
458 r = -EINVAL;
461 if (!r)
462 dev->irq_requested_type |= host_irq_type;
464 return r;
467 static int assign_guest_irq(struct kvm *kvm,
468 struct kvm_assigned_dev_kernel *dev,
469 struct kvm_assigned_irq *irq,
470 unsigned long guest_irq_type)
472 int id;
473 int r = -EEXIST;
475 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476 return r;
478 id = kvm_request_irq_source_id(kvm);
479 if (id < 0)
480 return id;
482 dev->irq_source_id = id;
484 switch (guest_irq_type) {
485 case KVM_DEV_IRQ_GUEST_INTX:
486 r = assigned_device_enable_guest_intx(kvm, dev, irq);
487 break;
488 #ifdef __KVM_HAVE_MSI
489 case KVM_DEV_IRQ_GUEST_MSI:
490 r = assigned_device_enable_guest_msi(kvm, dev, irq);
491 break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494 case KVM_DEV_IRQ_GUEST_MSIX:
495 r = assigned_device_enable_guest_msix(kvm, dev, irq);
496 break;
497 #endif
498 default:
499 r = -EINVAL;
502 if (!r) {
503 dev->irq_requested_type |= guest_irq_type;
504 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505 } else
506 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508 return r;
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513 struct kvm_assigned_irq *assigned_irq)
515 int r = -EINVAL;
516 struct kvm_assigned_dev_kernel *match;
517 unsigned long host_irq_type, guest_irq_type;
519 if (!capable(CAP_SYS_RAWIO))
520 return -EPERM;
522 if (!irqchip_in_kernel(kvm))
523 return r;
525 mutex_lock(&kvm->lock);
526 r = -ENODEV;
527 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528 assigned_irq->assigned_dev_id);
529 if (!match)
530 goto out;
532 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535 r = -EINVAL;
536 /* can only assign one type at a time */
537 if (hweight_long(host_irq_type) > 1)
538 goto out;
539 if (hweight_long(guest_irq_type) > 1)
540 goto out;
541 if (host_irq_type == 0 && guest_irq_type == 0)
542 goto out;
544 r = 0;
545 if (host_irq_type)
546 r = assign_host_irq(kvm, match, host_irq_type);
547 if (r)
548 goto out;
550 if (guest_irq_type)
551 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553 mutex_unlock(&kvm->lock);
554 return r;
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558 struct kvm_assigned_irq
559 *assigned_irq)
561 int r = -ENODEV;
562 struct kvm_assigned_dev_kernel *match;
564 mutex_lock(&kvm->lock);
566 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567 assigned_irq->assigned_dev_id);
568 if (!match)
569 goto out;
571 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573 mutex_unlock(&kvm->lock);
574 return r;
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578 struct kvm_assigned_pci_dev *assigned_dev)
580 int r = 0;
581 struct kvm_assigned_dev_kernel *match;
582 struct pci_dev *dev;
584 down_read(&kvm->slots_lock);
585 mutex_lock(&kvm->lock);
587 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588 assigned_dev->assigned_dev_id);
589 if (match) {
590 /* device already assigned */
591 r = -EEXIST;
592 goto out;
595 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596 if (match == NULL) {
597 printk(KERN_INFO "%s: Couldn't allocate memory\n",
598 __func__);
599 r = -ENOMEM;
600 goto out;
602 dev = pci_get_bus_and_slot(assigned_dev->busnr,
603 assigned_dev->devfn);
604 if (!dev) {
605 printk(KERN_INFO "%s: host device not found\n", __func__);
606 r = -EINVAL;
607 goto out_free;
609 if (pci_enable_device(dev)) {
610 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611 r = -EBUSY;
612 goto out_put;
614 r = pci_request_regions(dev, "kvm_assigned_device");
615 if (r) {
616 printk(KERN_INFO "%s: Could not get access to device regions\n",
617 __func__);
618 goto out_disable;
621 pci_reset_function(dev);
623 match->assigned_dev_id = assigned_dev->assigned_dev_id;
624 match->host_busnr = assigned_dev->busnr;
625 match->host_devfn = assigned_dev->devfn;
626 match->flags = assigned_dev->flags;
627 match->dev = dev;
628 spin_lock_init(&match->assigned_dev_lock);
629 match->irq_source_id = -1;
630 match->kvm = kvm;
631 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632 INIT_WORK(&match->interrupt_work,
633 kvm_assigned_dev_interrupt_work_handler);
635 list_add(&match->list, &kvm->arch.assigned_dev_head);
637 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638 if (!kvm->arch.iommu_domain) {
639 r = kvm_iommu_map_guest(kvm);
640 if (r)
641 goto out_list_del;
643 r = kvm_assign_device(kvm, match);
644 if (r)
645 goto out_list_del;
648 out:
649 mutex_unlock(&kvm->lock);
650 up_read(&kvm->slots_lock);
651 return r;
652 out_list_del:
653 list_del(&match->list);
654 pci_release_regions(dev);
655 out_disable:
656 pci_disable_device(dev);
657 out_put:
658 pci_dev_put(dev);
659 out_free:
660 kfree(match);
661 mutex_unlock(&kvm->lock);
662 up_read(&kvm->slots_lock);
663 return r;
665 #endif
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669 struct kvm_assigned_pci_dev *assigned_dev)
671 int r = 0;
672 struct kvm_assigned_dev_kernel *match;
674 mutex_lock(&kvm->lock);
676 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677 assigned_dev->assigned_dev_id);
678 if (!match) {
679 printk(KERN_INFO "%s: device hasn't been assigned before, "
680 "so cannot be deassigned\n", __func__);
681 r = -EINVAL;
682 goto out;
685 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686 kvm_deassign_device(kvm, match);
688 kvm_free_assigned_device(kvm, match);
690 out:
691 mutex_unlock(&kvm->lock);
692 return r;
694 #endif
696 static inline int valid_vcpu(int n)
698 return likely(n >= 0 && n < KVM_MAX_VCPUS);
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
703 if (pfn_valid(pfn)) {
704 struct page *page = compound_head(pfn_to_page(pfn));
705 return PageReserved(page);
708 return true;
712 * Switches to specified vcpu, until a matching vcpu_put()
714 void vcpu_load(struct kvm_vcpu *vcpu)
716 int cpu;
718 mutex_lock(&vcpu->mutex);
719 cpu = get_cpu();
720 preempt_notifier_register(&vcpu->preempt_notifier);
721 kvm_arch_vcpu_load(vcpu, cpu);
722 put_cpu();
725 void vcpu_put(struct kvm_vcpu *vcpu)
727 preempt_disable();
728 kvm_arch_vcpu_put(vcpu);
729 preempt_notifier_unregister(&vcpu->preempt_notifier);
730 preempt_enable();
731 mutex_unlock(&vcpu->mutex);
734 static void ack_flush(void *_completed)
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
740 int i, cpu, me;
741 cpumask_var_t cpus;
742 bool called = true;
743 struct kvm_vcpu *vcpu;
745 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746 cpumask_clear(cpus);
748 me = get_cpu();
749 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
750 vcpu = kvm->vcpus[i];
751 if (!vcpu)
752 continue;
753 if (test_and_set_bit(req, &vcpu->requests))
754 continue;
755 cpu = vcpu->cpu;
756 if (cpus != NULL && cpu != -1 && cpu != me)
757 cpumask_set_cpu(cpu, cpus);
759 if (unlikely(cpus == NULL))
760 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
761 else if (!cpumask_empty(cpus))
762 smp_call_function_many(cpus, ack_flush, NULL, 1);
763 else
764 called = false;
765 put_cpu();
766 free_cpumask_var(cpus);
767 return called;
770 void kvm_flush_remote_tlbs(struct kvm *kvm)
772 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
773 ++kvm->stat.remote_tlb_flush;
776 void kvm_reload_remote_mmus(struct kvm *kvm)
778 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
781 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
783 struct page *page;
784 int r;
786 mutex_init(&vcpu->mutex);
787 vcpu->cpu = -1;
788 vcpu->kvm = kvm;
789 vcpu->vcpu_id = id;
790 init_waitqueue_head(&vcpu->wq);
792 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
793 if (!page) {
794 r = -ENOMEM;
795 goto fail;
797 vcpu->run = page_address(page);
799 r = kvm_arch_vcpu_init(vcpu);
800 if (r < 0)
801 goto fail_free_run;
802 return 0;
804 fail_free_run:
805 free_page((unsigned long)vcpu->run);
806 fail:
807 return r;
809 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
811 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
813 kvm_arch_vcpu_uninit(vcpu);
814 free_page((unsigned long)vcpu->run);
816 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
818 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
819 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
821 return container_of(mn, struct kvm, mmu_notifier);
824 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
825 struct mm_struct *mm,
826 unsigned long address)
828 struct kvm *kvm = mmu_notifier_to_kvm(mn);
829 int need_tlb_flush;
832 * When ->invalidate_page runs, the linux pte has been zapped
833 * already but the page is still allocated until
834 * ->invalidate_page returns. So if we increase the sequence
835 * here the kvm page fault will notice if the spte can't be
836 * established because the page is going to be freed. If
837 * instead the kvm page fault establishes the spte before
838 * ->invalidate_page runs, kvm_unmap_hva will release it
839 * before returning.
841 * The sequence increase only need to be seen at spin_unlock
842 * time, and not at spin_lock time.
844 * Increasing the sequence after the spin_unlock would be
845 * unsafe because the kvm page fault could then establish the
846 * pte after kvm_unmap_hva returned, without noticing the page
847 * is going to be freed.
849 spin_lock(&kvm->mmu_lock);
850 kvm->mmu_notifier_seq++;
851 need_tlb_flush = kvm_unmap_hva(kvm, address);
852 spin_unlock(&kvm->mmu_lock);
854 /* we've to flush the tlb before the pages can be freed */
855 if (need_tlb_flush)
856 kvm_flush_remote_tlbs(kvm);
860 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
861 struct mm_struct *mm,
862 unsigned long start,
863 unsigned long end)
865 struct kvm *kvm = mmu_notifier_to_kvm(mn);
866 int need_tlb_flush = 0;
868 spin_lock(&kvm->mmu_lock);
870 * The count increase must become visible at unlock time as no
871 * spte can be established without taking the mmu_lock and
872 * count is also read inside the mmu_lock critical section.
874 kvm->mmu_notifier_count++;
875 for (; start < end; start += PAGE_SIZE)
876 need_tlb_flush |= kvm_unmap_hva(kvm, start);
877 spin_unlock(&kvm->mmu_lock);
879 /* we've to flush the tlb before the pages can be freed */
880 if (need_tlb_flush)
881 kvm_flush_remote_tlbs(kvm);
884 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
885 struct mm_struct *mm,
886 unsigned long start,
887 unsigned long end)
889 struct kvm *kvm = mmu_notifier_to_kvm(mn);
891 spin_lock(&kvm->mmu_lock);
893 * This sequence increase will notify the kvm page fault that
894 * the page that is going to be mapped in the spte could have
895 * been freed.
897 kvm->mmu_notifier_seq++;
899 * The above sequence increase must be visible before the
900 * below count decrease but both values are read by the kvm
901 * page fault under mmu_lock spinlock so we don't need to add
902 * a smb_wmb() here in between the two.
904 kvm->mmu_notifier_count--;
905 spin_unlock(&kvm->mmu_lock);
907 BUG_ON(kvm->mmu_notifier_count < 0);
910 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
911 struct mm_struct *mm,
912 unsigned long address)
914 struct kvm *kvm = mmu_notifier_to_kvm(mn);
915 int young;
917 spin_lock(&kvm->mmu_lock);
918 young = kvm_age_hva(kvm, address);
919 spin_unlock(&kvm->mmu_lock);
921 if (young)
922 kvm_flush_remote_tlbs(kvm);
924 return young;
927 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
928 struct mm_struct *mm)
930 struct kvm *kvm = mmu_notifier_to_kvm(mn);
931 kvm_arch_flush_shadow(kvm);
934 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
935 .invalidate_page = kvm_mmu_notifier_invalidate_page,
936 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
937 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
938 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
939 .release = kvm_mmu_notifier_release,
941 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
943 static struct kvm *kvm_create_vm(void)
945 struct kvm *kvm = kvm_arch_create_vm();
946 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
947 struct page *page;
948 #endif
950 if (IS_ERR(kvm))
951 goto out;
952 #ifdef CONFIG_HAVE_KVM_IRQCHIP
953 INIT_LIST_HEAD(&kvm->irq_routing);
954 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
955 #endif
957 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
958 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
959 if (!page) {
960 kfree(kvm);
961 return ERR_PTR(-ENOMEM);
963 kvm->coalesced_mmio_ring =
964 (struct kvm_coalesced_mmio_ring *)page_address(page);
965 #endif
967 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
969 int err;
970 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
971 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
972 if (err) {
973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
974 put_page(page);
975 #endif
976 kfree(kvm);
977 return ERR_PTR(err);
980 #endif
982 kvm->mm = current->mm;
983 atomic_inc(&kvm->mm->mm_count);
984 spin_lock_init(&kvm->mmu_lock);
985 kvm_io_bus_init(&kvm->pio_bus);
986 mutex_init(&kvm->lock);
987 kvm_io_bus_init(&kvm->mmio_bus);
988 init_rwsem(&kvm->slots_lock);
989 atomic_set(&kvm->users_count, 1);
990 spin_lock(&kvm_lock);
991 list_add(&kvm->vm_list, &vm_list);
992 spin_unlock(&kvm_lock);
993 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
994 kvm_coalesced_mmio_init(kvm);
995 #endif
996 out:
997 return kvm;
1001 * Free any memory in @free but not in @dont.
1003 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1004 struct kvm_memory_slot *dont)
1006 if (!dont || free->rmap != dont->rmap)
1007 vfree(free->rmap);
1009 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1010 vfree(free->dirty_bitmap);
1012 if (!dont || free->lpage_info != dont->lpage_info)
1013 vfree(free->lpage_info);
1015 free->npages = 0;
1016 free->dirty_bitmap = NULL;
1017 free->rmap = NULL;
1018 free->lpage_info = NULL;
1021 void kvm_free_physmem(struct kvm *kvm)
1023 int i;
1025 for (i = 0; i < kvm->nmemslots; ++i)
1026 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1029 static void kvm_destroy_vm(struct kvm *kvm)
1031 struct mm_struct *mm = kvm->mm;
1033 kvm_arch_sync_events(kvm);
1034 spin_lock(&kvm_lock);
1035 list_del(&kvm->vm_list);
1036 spin_unlock(&kvm_lock);
1037 kvm_free_irq_routing(kvm);
1038 kvm_io_bus_destroy(&kvm->pio_bus);
1039 kvm_io_bus_destroy(&kvm->mmio_bus);
1040 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1041 if (kvm->coalesced_mmio_ring != NULL)
1042 free_page((unsigned long)kvm->coalesced_mmio_ring);
1043 #endif
1044 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1045 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1046 #else
1047 kvm_arch_flush_shadow(kvm);
1048 #endif
1049 kvm_arch_destroy_vm(kvm);
1050 mmdrop(mm);
1053 void kvm_get_kvm(struct kvm *kvm)
1055 atomic_inc(&kvm->users_count);
1057 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1059 void kvm_put_kvm(struct kvm *kvm)
1061 if (atomic_dec_and_test(&kvm->users_count))
1062 kvm_destroy_vm(kvm);
1064 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1067 static int kvm_vm_release(struct inode *inode, struct file *filp)
1069 struct kvm *kvm = filp->private_data;
1071 kvm_put_kvm(kvm);
1072 return 0;
1076 * Allocate some memory and give it an address in the guest physical address
1077 * space.
1079 * Discontiguous memory is allowed, mostly for framebuffers.
1081 * Must be called holding mmap_sem for write.
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem,
1085 int user_alloc)
1087 int r;
1088 gfn_t base_gfn;
1089 unsigned long npages, ugfn;
1090 unsigned long largepages, i;
1091 struct kvm_memory_slot *memslot;
1092 struct kvm_memory_slot old, new;
1094 r = -EINVAL;
1095 /* General sanity checks */
1096 if (mem->memory_size & (PAGE_SIZE - 1))
1097 goto out;
1098 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1099 goto out;
1100 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1101 goto out;
1102 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1103 goto out;
1104 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1105 goto out;
1107 memslot = &kvm->memslots[mem->slot];
1108 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1109 npages = mem->memory_size >> PAGE_SHIFT;
1111 if (!npages)
1112 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1114 new = old = *memslot;
1116 new.base_gfn = base_gfn;
1117 new.npages = npages;
1118 new.flags = mem->flags;
1120 /* Disallow changing a memory slot's size. */
1121 r = -EINVAL;
1122 if (npages && old.npages && npages != old.npages)
1123 goto out_free;
1125 /* Check for overlaps */
1126 r = -EEXIST;
1127 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1128 struct kvm_memory_slot *s = &kvm->memslots[i];
1130 if (s == memslot || !s->npages)
1131 continue;
1132 if (!((base_gfn + npages <= s->base_gfn) ||
1133 (base_gfn >= s->base_gfn + s->npages)))
1134 goto out_free;
1137 /* Free page dirty bitmap if unneeded */
1138 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1139 new.dirty_bitmap = NULL;
1141 r = -ENOMEM;
1143 /* Allocate if a slot is being created */
1144 #ifndef CONFIG_S390
1145 if (npages && !new.rmap) {
1146 new.rmap = vmalloc(npages * sizeof(struct page *));
1148 if (!new.rmap)
1149 goto out_free;
1151 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1153 new.user_alloc = user_alloc;
1155 * hva_to_rmmap() serialzies with the mmu_lock and to be
1156 * safe it has to ignore memslots with !user_alloc &&
1157 * !userspace_addr.
1159 if (user_alloc)
1160 new.userspace_addr = mem->userspace_addr;
1161 else
1162 new.userspace_addr = 0;
1164 if (npages && !new.lpage_info) {
1165 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1166 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1168 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1170 if (!new.lpage_info)
1171 goto out_free;
1173 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1175 if (base_gfn % KVM_PAGES_PER_HPAGE)
1176 new.lpage_info[0].write_count = 1;
1177 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1178 new.lpage_info[largepages-1].write_count = 1;
1179 ugfn = new.userspace_addr >> PAGE_SHIFT;
1181 * If the gfn and userspace address are not aligned wrt each
1182 * other, disable large page support for this slot
1184 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1185 for (i = 0; i < largepages; ++i)
1186 new.lpage_info[i].write_count = 1;
1189 /* Allocate page dirty bitmap if needed */
1190 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1191 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1193 new.dirty_bitmap = vmalloc(dirty_bytes);
1194 if (!new.dirty_bitmap)
1195 goto out_free;
1196 memset(new.dirty_bitmap, 0, dirty_bytes);
1198 #endif /* not defined CONFIG_S390 */
1200 if (!npages)
1201 kvm_arch_flush_shadow(kvm);
1203 spin_lock(&kvm->mmu_lock);
1204 if (mem->slot >= kvm->nmemslots)
1205 kvm->nmemslots = mem->slot + 1;
1207 *memslot = new;
1208 spin_unlock(&kvm->mmu_lock);
1210 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1211 if (r) {
1212 spin_lock(&kvm->mmu_lock);
1213 *memslot = old;
1214 spin_unlock(&kvm->mmu_lock);
1215 goto out_free;
1218 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1219 /* Slot deletion case: we have to update the current slot */
1220 spin_lock(&kvm->mmu_lock);
1221 if (!npages)
1222 *memslot = old;
1223 spin_unlock(&kvm->mmu_lock);
1224 #ifdef CONFIG_DMAR
1225 /* map the pages in iommu page table */
1226 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1227 if (r)
1228 goto out;
1229 #endif
1230 return 0;
1232 out_free:
1233 kvm_free_physmem_slot(&new, &old);
1234 out:
1235 return r;
1238 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1240 int kvm_set_memory_region(struct kvm *kvm,
1241 struct kvm_userspace_memory_region *mem,
1242 int user_alloc)
1244 int r;
1246 down_write(&kvm->slots_lock);
1247 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1248 up_write(&kvm->slots_lock);
1249 return r;
1251 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1253 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1254 struct
1255 kvm_userspace_memory_region *mem,
1256 int user_alloc)
1258 if (mem->slot >= KVM_MEMORY_SLOTS)
1259 return -EINVAL;
1260 return kvm_set_memory_region(kvm, mem, user_alloc);
1263 int kvm_get_dirty_log(struct kvm *kvm,
1264 struct kvm_dirty_log *log, int *is_dirty)
1266 struct kvm_memory_slot *memslot;
1267 int r, i;
1268 int n;
1269 unsigned long any = 0;
1271 r = -EINVAL;
1272 if (log->slot >= KVM_MEMORY_SLOTS)
1273 goto out;
1275 memslot = &kvm->memslots[log->slot];
1276 r = -ENOENT;
1277 if (!memslot->dirty_bitmap)
1278 goto out;
1280 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1282 for (i = 0; !any && i < n/sizeof(long); ++i)
1283 any = memslot->dirty_bitmap[i];
1285 r = -EFAULT;
1286 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1287 goto out;
1289 if (any)
1290 *is_dirty = 1;
1292 r = 0;
1293 out:
1294 return r;
1297 int is_error_page(struct page *page)
1299 return page == bad_page;
1301 EXPORT_SYMBOL_GPL(is_error_page);
1303 int is_error_pfn(pfn_t pfn)
1305 return pfn == bad_pfn;
1307 EXPORT_SYMBOL_GPL(is_error_pfn);
1309 static inline unsigned long bad_hva(void)
1311 return PAGE_OFFSET;
1314 int kvm_is_error_hva(unsigned long addr)
1316 return addr == bad_hva();
1318 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1320 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1322 int i;
1324 for (i = 0; i < kvm->nmemslots; ++i) {
1325 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1327 if (gfn >= memslot->base_gfn
1328 && gfn < memslot->base_gfn + memslot->npages)
1329 return memslot;
1331 return NULL;
1333 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1335 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1337 gfn = unalias_gfn(kvm, gfn);
1338 return gfn_to_memslot_unaliased(kvm, gfn);
1341 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1343 int i;
1345 gfn = unalias_gfn(kvm, gfn);
1346 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1347 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1349 if (gfn >= memslot->base_gfn
1350 && gfn < memslot->base_gfn + memslot->npages)
1351 return 1;
1353 return 0;
1355 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1357 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1359 struct kvm_memory_slot *slot;
1361 gfn = unalias_gfn(kvm, gfn);
1362 slot = gfn_to_memslot_unaliased(kvm, gfn);
1363 if (!slot)
1364 return bad_hva();
1365 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1367 EXPORT_SYMBOL_GPL(gfn_to_hva);
1369 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1371 struct page *page[1];
1372 unsigned long addr;
1373 int npages;
1374 pfn_t pfn;
1376 might_sleep();
1378 addr = gfn_to_hva(kvm, gfn);
1379 if (kvm_is_error_hva(addr)) {
1380 get_page(bad_page);
1381 return page_to_pfn(bad_page);
1384 npages = get_user_pages_fast(addr, 1, 1, page);
1386 if (unlikely(npages != 1)) {
1387 struct vm_area_struct *vma;
1389 down_read(&current->mm->mmap_sem);
1390 vma = find_vma(current->mm, addr);
1392 if (vma == NULL || addr < vma->vm_start ||
1393 !(vma->vm_flags & VM_PFNMAP)) {
1394 up_read(&current->mm->mmap_sem);
1395 get_page(bad_page);
1396 return page_to_pfn(bad_page);
1399 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1400 up_read(&current->mm->mmap_sem);
1401 BUG_ON(!kvm_is_mmio_pfn(pfn));
1402 } else
1403 pfn = page_to_pfn(page[0]);
1405 return pfn;
1408 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1410 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1412 pfn_t pfn;
1414 pfn = gfn_to_pfn(kvm, gfn);
1415 if (!kvm_is_mmio_pfn(pfn))
1416 return pfn_to_page(pfn);
1418 WARN_ON(kvm_is_mmio_pfn(pfn));
1420 get_page(bad_page);
1421 return bad_page;
1424 EXPORT_SYMBOL_GPL(gfn_to_page);
1426 void kvm_release_page_clean(struct page *page)
1428 kvm_release_pfn_clean(page_to_pfn(page));
1430 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1432 void kvm_release_pfn_clean(pfn_t pfn)
1434 if (!kvm_is_mmio_pfn(pfn))
1435 put_page(pfn_to_page(pfn));
1437 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1439 void kvm_release_page_dirty(struct page *page)
1441 kvm_release_pfn_dirty(page_to_pfn(page));
1443 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1445 void kvm_release_pfn_dirty(pfn_t pfn)
1447 kvm_set_pfn_dirty(pfn);
1448 kvm_release_pfn_clean(pfn);
1450 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1452 void kvm_set_page_dirty(struct page *page)
1454 kvm_set_pfn_dirty(page_to_pfn(page));
1456 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1458 void kvm_set_pfn_dirty(pfn_t pfn)
1460 if (!kvm_is_mmio_pfn(pfn)) {
1461 struct page *page = pfn_to_page(pfn);
1462 if (!PageReserved(page))
1463 SetPageDirty(page);
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1468 void kvm_set_pfn_accessed(pfn_t pfn)
1470 if (!kvm_is_mmio_pfn(pfn))
1471 mark_page_accessed(pfn_to_page(pfn));
1473 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1475 void kvm_get_pfn(pfn_t pfn)
1477 if (!kvm_is_mmio_pfn(pfn))
1478 get_page(pfn_to_page(pfn));
1480 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1482 static int next_segment(unsigned long len, int offset)
1484 if (len > PAGE_SIZE - offset)
1485 return PAGE_SIZE - offset;
1486 else
1487 return len;
1490 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1491 int len)
1493 int r;
1494 unsigned long addr;
1496 addr = gfn_to_hva(kvm, gfn);
1497 if (kvm_is_error_hva(addr))
1498 return -EFAULT;
1499 r = copy_from_user(data, (void __user *)addr + offset, len);
1500 if (r)
1501 return -EFAULT;
1502 return 0;
1504 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1506 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1508 gfn_t gfn = gpa >> PAGE_SHIFT;
1509 int seg;
1510 int offset = offset_in_page(gpa);
1511 int ret;
1513 while ((seg = next_segment(len, offset)) != 0) {
1514 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1515 if (ret < 0)
1516 return ret;
1517 offset = 0;
1518 len -= seg;
1519 data += seg;
1520 ++gfn;
1522 return 0;
1524 EXPORT_SYMBOL_GPL(kvm_read_guest);
1526 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1527 unsigned long len)
1529 int r;
1530 unsigned long addr;
1531 gfn_t gfn = gpa >> PAGE_SHIFT;
1532 int offset = offset_in_page(gpa);
1534 addr = gfn_to_hva(kvm, gfn);
1535 if (kvm_is_error_hva(addr))
1536 return -EFAULT;
1537 pagefault_disable();
1538 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1539 pagefault_enable();
1540 if (r)
1541 return -EFAULT;
1542 return 0;
1544 EXPORT_SYMBOL(kvm_read_guest_atomic);
1546 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1547 int offset, int len)
1549 int r;
1550 unsigned long addr;
1552 addr = gfn_to_hva(kvm, gfn);
1553 if (kvm_is_error_hva(addr))
1554 return -EFAULT;
1555 r = copy_to_user((void __user *)addr + offset, data, len);
1556 if (r)
1557 return -EFAULT;
1558 mark_page_dirty(kvm, gfn);
1559 return 0;
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1563 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1564 unsigned long len)
1566 gfn_t gfn = gpa >> PAGE_SHIFT;
1567 int seg;
1568 int offset = offset_in_page(gpa);
1569 int ret;
1571 while ((seg = next_segment(len, offset)) != 0) {
1572 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1573 if (ret < 0)
1574 return ret;
1575 offset = 0;
1576 len -= seg;
1577 data += seg;
1578 ++gfn;
1580 return 0;
1583 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1585 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1587 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1589 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1591 gfn_t gfn = gpa >> PAGE_SHIFT;
1592 int seg;
1593 int offset = offset_in_page(gpa);
1594 int ret;
1596 while ((seg = next_segment(len, offset)) != 0) {
1597 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1598 if (ret < 0)
1599 return ret;
1600 offset = 0;
1601 len -= seg;
1602 ++gfn;
1604 return 0;
1606 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1608 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1610 struct kvm_memory_slot *memslot;
1612 gfn = unalias_gfn(kvm, gfn);
1613 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1614 if (memslot && memslot->dirty_bitmap) {
1615 unsigned long rel_gfn = gfn - memslot->base_gfn;
1617 /* avoid RMW */
1618 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1619 set_bit(rel_gfn, memslot->dirty_bitmap);
1624 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1626 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1628 DEFINE_WAIT(wait);
1630 for (;;) {
1631 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1633 if ((kvm_arch_interrupt_allowed(vcpu) &&
1634 kvm_cpu_has_interrupt(vcpu)) ||
1635 kvm_arch_vcpu_runnable(vcpu)) {
1636 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1637 break;
1639 if (kvm_cpu_has_pending_timer(vcpu))
1640 break;
1641 if (signal_pending(current))
1642 break;
1644 vcpu_put(vcpu);
1645 schedule();
1646 vcpu_load(vcpu);
1649 finish_wait(&vcpu->wq, &wait);
1652 void kvm_resched(struct kvm_vcpu *vcpu)
1654 if (!need_resched())
1655 return;
1656 cond_resched();
1658 EXPORT_SYMBOL_GPL(kvm_resched);
1660 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1662 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1663 struct page *page;
1665 if (vmf->pgoff == 0)
1666 page = virt_to_page(vcpu->run);
1667 #ifdef CONFIG_X86
1668 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1669 page = virt_to_page(vcpu->arch.pio_data);
1670 #endif
1671 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1672 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1673 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1674 #endif
1675 else
1676 return VM_FAULT_SIGBUS;
1677 get_page(page);
1678 vmf->page = page;
1679 return 0;
1682 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1683 .fault = kvm_vcpu_fault,
1686 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1688 vma->vm_ops = &kvm_vcpu_vm_ops;
1689 return 0;
1692 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1694 struct kvm_vcpu *vcpu = filp->private_data;
1696 kvm_put_kvm(vcpu->kvm);
1697 return 0;
1700 static struct file_operations kvm_vcpu_fops = {
1701 .release = kvm_vcpu_release,
1702 .unlocked_ioctl = kvm_vcpu_ioctl,
1703 .compat_ioctl = kvm_vcpu_ioctl,
1704 .mmap = kvm_vcpu_mmap,
1708 * Allocates an inode for the vcpu.
1710 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1712 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1713 if (fd < 0)
1714 kvm_put_kvm(vcpu->kvm);
1715 return fd;
1719 * Creates some virtual cpus. Good luck creating more than one.
1721 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1723 int r;
1724 struct kvm_vcpu *vcpu;
1726 if (!valid_vcpu(n))
1727 return -EINVAL;
1729 vcpu = kvm_arch_vcpu_create(kvm, n);
1730 if (IS_ERR(vcpu))
1731 return PTR_ERR(vcpu);
1733 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1735 r = kvm_arch_vcpu_setup(vcpu);
1736 if (r)
1737 return r;
1739 mutex_lock(&kvm->lock);
1740 if (kvm->vcpus[n]) {
1741 r = -EEXIST;
1742 goto vcpu_destroy;
1744 kvm->vcpus[n] = vcpu;
1745 mutex_unlock(&kvm->lock);
1747 /* Now it's all set up, let userspace reach it */
1748 kvm_get_kvm(kvm);
1749 r = create_vcpu_fd(vcpu);
1750 if (r < 0)
1751 goto unlink;
1752 return r;
1754 unlink:
1755 mutex_lock(&kvm->lock);
1756 kvm->vcpus[n] = NULL;
1757 vcpu_destroy:
1758 mutex_unlock(&kvm->lock);
1759 kvm_arch_vcpu_destroy(vcpu);
1760 return r;
1763 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1765 if (sigset) {
1766 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1767 vcpu->sigset_active = 1;
1768 vcpu->sigset = *sigset;
1769 } else
1770 vcpu->sigset_active = 0;
1771 return 0;
1774 #ifdef __KVM_HAVE_MSIX
1775 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1776 struct kvm_assigned_msix_nr *entry_nr)
1778 int r = 0;
1779 struct kvm_assigned_dev_kernel *adev;
1781 mutex_lock(&kvm->lock);
1783 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1784 entry_nr->assigned_dev_id);
1785 if (!adev) {
1786 r = -EINVAL;
1787 goto msix_nr_out;
1790 if (adev->entries_nr == 0) {
1791 adev->entries_nr = entry_nr->entry_nr;
1792 if (adev->entries_nr == 0 ||
1793 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1794 r = -EINVAL;
1795 goto msix_nr_out;
1798 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1799 entry_nr->entry_nr,
1800 GFP_KERNEL);
1801 if (!adev->host_msix_entries) {
1802 r = -ENOMEM;
1803 goto msix_nr_out;
1805 adev->guest_msix_entries = kzalloc(
1806 sizeof(struct kvm_guest_msix_entry) *
1807 entry_nr->entry_nr, GFP_KERNEL);
1808 if (!adev->guest_msix_entries) {
1809 kfree(adev->host_msix_entries);
1810 r = -ENOMEM;
1811 goto msix_nr_out;
1813 } else /* Not allowed set MSI-X number twice */
1814 r = -EINVAL;
1815 msix_nr_out:
1816 mutex_unlock(&kvm->lock);
1817 return r;
1820 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1821 struct kvm_assigned_msix_entry *entry)
1823 int r = 0, i;
1824 struct kvm_assigned_dev_kernel *adev;
1826 mutex_lock(&kvm->lock);
1828 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1829 entry->assigned_dev_id);
1831 if (!adev) {
1832 r = -EINVAL;
1833 goto msix_entry_out;
1836 for (i = 0; i < adev->entries_nr; i++)
1837 if (adev->guest_msix_entries[i].vector == 0 ||
1838 adev->guest_msix_entries[i].entry == entry->entry) {
1839 adev->guest_msix_entries[i].entry = entry->entry;
1840 adev->guest_msix_entries[i].vector = entry->gsi;
1841 adev->host_msix_entries[i].entry = entry->entry;
1842 break;
1844 if (i == adev->entries_nr) {
1845 r = -ENOSPC;
1846 goto msix_entry_out;
1849 msix_entry_out:
1850 mutex_unlock(&kvm->lock);
1852 return r;
1854 #endif
1856 static long kvm_vcpu_ioctl(struct file *filp,
1857 unsigned int ioctl, unsigned long arg)
1859 struct kvm_vcpu *vcpu = filp->private_data;
1860 void __user *argp = (void __user *)arg;
1861 int r;
1862 struct kvm_fpu *fpu = NULL;
1863 struct kvm_sregs *kvm_sregs = NULL;
1865 if (vcpu->kvm->mm != current->mm)
1866 return -EIO;
1867 switch (ioctl) {
1868 case KVM_RUN:
1869 r = -EINVAL;
1870 if (arg)
1871 goto out;
1872 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1873 break;
1874 case KVM_GET_REGS: {
1875 struct kvm_regs *kvm_regs;
1877 r = -ENOMEM;
1878 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1879 if (!kvm_regs)
1880 goto out;
1881 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1882 if (r)
1883 goto out_free1;
1884 r = -EFAULT;
1885 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1886 goto out_free1;
1887 r = 0;
1888 out_free1:
1889 kfree(kvm_regs);
1890 break;
1892 case KVM_SET_REGS: {
1893 struct kvm_regs *kvm_regs;
1895 r = -ENOMEM;
1896 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1897 if (!kvm_regs)
1898 goto out;
1899 r = -EFAULT;
1900 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1901 goto out_free2;
1902 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1903 if (r)
1904 goto out_free2;
1905 r = 0;
1906 out_free2:
1907 kfree(kvm_regs);
1908 break;
1910 case KVM_GET_SREGS: {
1911 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1912 r = -ENOMEM;
1913 if (!kvm_sregs)
1914 goto out;
1915 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1916 if (r)
1917 goto out;
1918 r = -EFAULT;
1919 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1920 goto out;
1921 r = 0;
1922 break;
1924 case KVM_SET_SREGS: {
1925 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1926 r = -ENOMEM;
1927 if (!kvm_sregs)
1928 goto out;
1929 r = -EFAULT;
1930 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1931 goto out;
1932 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1933 if (r)
1934 goto out;
1935 r = 0;
1936 break;
1938 case KVM_GET_MP_STATE: {
1939 struct kvm_mp_state mp_state;
1941 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1942 if (r)
1943 goto out;
1944 r = -EFAULT;
1945 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1946 goto out;
1947 r = 0;
1948 break;
1950 case KVM_SET_MP_STATE: {
1951 struct kvm_mp_state mp_state;
1953 r = -EFAULT;
1954 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1955 goto out;
1956 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1957 if (r)
1958 goto out;
1959 r = 0;
1960 break;
1962 case KVM_TRANSLATE: {
1963 struct kvm_translation tr;
1965 r = -EFAULT;
1966 if (copy_from_user(&tr, argp, sizeof tr))
1967 goto out;
1968 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1969 if (r)
1970 goto out;
1971 r = -EFAULT;
1972 if (copy_to_user(argp, &tr, sizeof tr))
1973 goto out;
1974 r = 0;
1975 break;
1977 case KVM_SET_GUEST_DEBUG: {
1978 struct kvm_guest_debug dbg;
1980 r = -EFAULT;
1981 if (copy_from_user(&dbg, argp, sizeof dbg))
1982 goto out;
1983 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1984 if (r)
1985 goto out;
1986 r = 0;
1987 break;
1989 case KVM_SET_SIGNAL_MASK: {
1990 struct kvm_signal_mask __user *sigmask_arg = argp;
1991 struct kvm_signal_mask kvm_sigmask;
1992 sigset_t sigset, *p;
1994 p = NULL;
1995 if (argp) {
1996 r = -EFAULT;
1997 if (copy_from_user(&kvm_sigmask, argp,
1998 sizeof kvm_sigmask))
1999 goto out;
2000 r = -EINVAL;
2001 if (kvm_sigmask.len != sizeof sigset)
2002 goto out;
2003 r = -EFAULT;
2004 if (copy_from_user(&sigset, sigmask_arg->sigset,
2005 sizeof sigset))
2006 goto out;
2007 p = &sigset;
2009 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2010 break;
2012 case KVM_GET_FPU: {
2013 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2014 r = -ENOMEM;
2015 if (!fpu)
2016 goto out;
2017 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2018 if (r)
2019 goto out;
2020 r = -EFAULT;
2021 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2022 goto out;
2023 r = 0;
2024 break;
2026 case KVM_SET_FPU: {
2027 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2028 r = -ENOMEM;
2029 if (!fpu)
2030 goto out;
2031 r = -EFAULT;
2032 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2033 goto out;
2034 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2035 if (r)
2036 goto out;
2037 r = 0;
2038 break;
2040 default:
2041 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2043 out:
2044 kfree(fpu);
2045 kfree(kvm_sregs);
2046 return r;
2049 static long kvm_vm_ioctl(struct file *filp,
2050 unsigned int ioctl, unsigned long arg)
2052 struct kvm *kvm = filp->private_data;
2053 void __user *argp = (void __user *)arg;
2054 int r;
2056 if (kvm->mm != current->mm)
2057 return -EIO;
2058 switch (ioctl) {
2059 case KVM_CREATE_VCPU:
2060 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2061 if (r < 0)
2062 goto out;
2063 break;
2064 case KVM_SET_USER_MEMORY_REGION: {
2065 struct kvm_userspace_memory_region kvm_userspace_mem;
2067 r = -EFAULT;
2068 if (copy_from_user(&kvm_userspace_mem, argp,
2069 sizeof kvm_userspace_mem))
2070 goto out;
2072 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2073 if (r)
2074 goto out;
2075 break;
2077 case KVM_GET_DIRTY_LOG: {
2078 struct kvm_dirty_log log;
2080 r = -EFAULT;
2081 if (copy_from_user(&log, argp, sizeof log))
2082 goto out;
2083 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2084 if (r)
2085 goto out;
2086 break;
2088 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2089 case KVM_REGISTER_COALESCED_MMIO: {
2090 struct kvm_coalesced_mmio_zone zone;
2091 r = -EFAULT;
2092 if (copy_from_user(&zone, argp, sizeof zone))
2093 goto out;
2094 r = -ENXIO;
2095 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2096 if (r)
2097 goto out;
2098 r = 0;
2099 break;
2101 case KVM_UNREGISTER_COALESCED_MMIO: {
2102 struct kvm_coalesced_mmio_zone zone;
2103 r = -EFAULT;
2104 if (copy_from_user(&zone, argp, sizeof zone))
2105 goto out;
2106 r = -ENXIO;
2107 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2108 if (r)
2109 goto out;
2110 r = 0;
2111 break;
2113 #endif
2114 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2115 case KVM_ASSIGN_PCI_DEVICE: {
2116 struct kvm_assigned_pci_dev assigned_dev;
2118 r = -EFAULT;
2119 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2120 goto out;
2121 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2122 if (r)
2123 goto out;
2124 break;
2126 case KVM_ASSIGN_IRQ: {
2127 r = -EOPNOTSUPP;
2128 break;
2130 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2131 case KVM_ASSIGN_DEV_IRQ: {
2132 struct kvm_assigned_irq assigned_irq;
2134 r = -EFAULT;
2135 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2136 goto out;
2137 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2138 if (r)
2139 goto out;
2140 break;
2142 case KVM_DEASSIGN_DEV_IRQ: {
2143 struct kvm_assigned_irq assigned_irq;
2145 r = -EFAULT;
2146 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2147 goto out;
2148 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2149 if (r)
2150 goto out;
2151 break;
2153 #endif
2154 #endif
2155 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2156 case KVM_DEASSIGN_PCI_DEVICE: {
2157 struct kvm_assigned_pci_dev assigned_dev;
2159 r = -EFAULT;
2160 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2161 goto out;
2162 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2163 if (r)
2164 goto out;
2165 break;
2167 #endif
2168 #ifdef KVM_CAP_IRQ_ROUTING
2169 case KVM_SET_GSI_ROUTING: {
2170 struct kvm_irq_routing routing;
2171 struct kvm_irq_routing __user *urouting;
2172 struct kvm_irq_routing_entry *entries;
2174 r = -EFAULT;
2175 if (copy_from_user(&routing, argp, sizeof(routing)))
2176 goto out;
2177 r = -EINVAL;
2178 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2179 goto out;
2180 if (routing.flags)
2181 goto out;
2182 r = -ENOMEM;
2183 entries = vmalloc(routing.nr * sizeof(*entries));
2184 if (!entries)
2185 goto out;
2186 r = -EFAULT;
2187 urouting = argp;
2188 if (copy_from_user(entries, urouting->entries,
2189 routing.nr * sizeof(*entries)))
2190 goto out_free_irq_routing;
2191 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2192 routing.flags);
2193 out_free_irq_routing:
2194 vfree(entries);
2195 break;
2197 #ifdef __KVM_HAVE_MSIX
2198 case KVM_ASSIGN_SET_MSIX_NR: {
2199 struct kvm_assigned_msix_nr entry_nr;
2200 r = -EFAULT;
2201 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2202 goto out;
2203 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2204 if (r)
2205 goto out;
2206 break;
2208 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2209 struct kvm_assigned_msix_entry entry;
2210 r = -EFAULT;
2211 if (copy_from_user(&entry, argp, sizeof entry))
2212 goto out;
2213 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2214 if (r)
2215 goto out;
2216 break;
2218 #endif
2219 #endif /* KVM_CAP_IRQ_ROUTING */
2220 default:
2221 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2223 out:
2224 return r;
2227 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2229 struct page *page[1];
2230 unsigned long addr;
2231 int npages;
2232 gfn_t gfn = vmf->pgoff;
2233 struct kvm *kvm = vma->vm_file->private_data;
2235 addr = gfn_to_hva(kvm, gfn);
2236 if (kvm_is_error_hva(addr))
2237 return VM_FAULT_SIGBUS;
2239 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2240 NULL);
2241 if (unlikely(npages != 1))
2242 return VM_FAULT_SIGBUS;
2244 vmf->page = page[0];
2245 return 0;
2248 static struct vm_operations_struct kvm_vm_vm_ops = {
2249 .fault = kvm_vm_fault,
2252 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2254 vma->vm_ops = &kvm_vm_vm_ops;
2255 return 0;
2258 static struct file_operations kvm_vm_fops = {
2259 .release = kvm_vm_release,
2260 .unlocked_ioctl = kvm_vm_ioctl,
2261 .compat_ioctl = kvm_vm_ioctl,
2262 .mmap = kvm_vm_mmap,
2265 static int kvm_dev_ioctl_create_vm(void)
2267 int fd;
2268 struct kvm *kvm;
2270 kvm = kvm_create_vm();
2271 if (IS_ERR(kvm))
2272 return PTR_ERR(kvm);
2273 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2274 if (fd < 0)
2275 kvm_put_kvm(kvm);
2277 return fd;
2280 static long kvm_dev_ioctl_check_extension_generic(long arg)
2282 switch (arg) {
2283 case KVM_CAP_USER_MEMORY:
2284 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2285 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2286 return 1;
2287 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2288 case KVM_CAP_IRQ_ROUTING:
2289 return KVM_MAX_IRQ_ROUTES;
2290 #endif
2291 default:
2292 break;
2294 return kvm_dev_ioctl_check_extension(arg);
2297 static long kvm_dev_ioctl(struct file *filp,
2298 unsigned int ioctl, unsigned long arg)
2300 long r = -EINVAL;
2302 switch (ioctl) {
2303 case KVM_GET_API_VERSION:
2304 r = -EINVAL;
2305 if (arg)
2306 goto out;
2307 r = KVM_API_VERSION;
2308 break;
2309 case KVM_CREATE_VM:
2310 r = -EINVAL;
2311 if (arg)
2312 goto out;
2313 r = kvm_dev_ioctl_create_vm();
2314 break;
2315 case KVM_CHECK_EXTENSION:
2316 r = kvm_dev_ioctl_check_extension_generic(arg);
2317 break;
2318 case KVM_GET_VCPU_MMAP_SIZE:
2319 r = -EINVAL;
2320 if (arg)
2321 goto out;
2322 r = PAGE_SIZE; /* struct kvm_run */
2323 #ifdef CONFIG_X86
2324 r += PAGE_SIZE; /* pio data page */
2325 #endif
2326 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2327 r += PAGE_SIZE; /* coalesced mmio ring page */
2328 #endif
2329 break;
2330 case KVM_TRACE_ENABLE:
2331 case KVM_TRACE_PAUSE:
2332 case KVM_TRACE_DISABLE:
2333 r = kvm_trace_ioctl(ioctl, arg);
2334 break;
2335 default:
2336 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2338 out:
2339 return r;
2342 static struct file_operations kvm_chardev_ops = {
2343 .unlocked_ioctl = kvm_dev_ioctl,
2344 .compat_ioctl = kvm_dev_ioctl,
2347 static struct miscdevice kvm_dev = {
2348 KVM_MINOR,
2349 "kvm",
2350 &kvm_chardev_ops,
2353 static void hardware_enable(void *junk)
2355 int cpu = raw_smp_processor_id();
2357 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2358 return;
2359 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2360 kvm_arch_hardware_enable(NULL);
2363 static void hardware_disable(void *junk)
2365 int cpu = raw_smp_processor_id();
2367 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2368 return;
2369 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2370 kvm_arch_hardware_disable(NULL);
2373 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2374 void *v)
2376 int cpu = (long)v;
2378 val &= ~CPU_TASKS_FROZEN;
2379 switch (val) {
2380 case CPU_DYING:
2381 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2382 cpu);
2383 hardware_disable(NULL);
2384 break;
2385 case CPU_UP_CANCELED:
2386 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 cpu);
2388 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2389 break;
2390 case CPU_ONLINE:
2391 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2392 cpu);
2393 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2394 break;
2396 return NOTIFY_OK;
2400 asmlinkage void kvm_handle_fault_on_reboot(void)
2402 if (kvm_rebooting)
2403 /* spin while reset goes on */
2404 while (true)
2406 /* Fault while not rebooting. We want the trace. */
2407 BUG();
2409 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2411 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2412 void *v)
2415 * Some (well, at least mine) BIOSes hang on reboot if
2416 * in vmx root mode.
2418 * And Intel TXT required VMX off for all cpu when system shutdown.
2420 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2421 kvm_rebooting = true;
2422 on_each_cpu(hardware_disable, NULL, 1);
2423 return NOTIFY_OK;
2426 static struct notifier_block kvm_reboot_notifier = {
2427 .notifier_call = kvm_reboot,
2428 .priority = 0,
2431 void kvm_io_bus_init(struct kvm_io_bus *bus)
2433 memset(bus, 0, sizeof(*bus));
2436 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2438 int i;
2440 for (i = 0; i < bus->dev_count; i++) {
2441 struct kvm_io_device *pos = bus->devs[i];
2443 kvm_iodevice_destructor(pos);
2447 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2448 gpa_t addr, int len, int is_write)
2450 int i;
2452 for (i = 0; i < bus->dev_count; i++) {
2453 struct kvm_io_device *pos = bus->devs[i];
2455 if (pos->in_range(pos, addr, len, is_write))
2456 return pos;
2459 return NULL;
2462 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2464 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2466 bus->devs[bus->dev_count++] = dev;
2469 static struct notifier_block kvm_cpu_notifier = {
2470 .notifier_call = kvm_cpu_hotplug,
2471 .priority = 20, /* must be > scheduler priority */
2474 static int vm_stat_get(void *_offset, u64 *val)
2476 unsigned offset = (long)_offset;
2477 struct kvm *kvm;
2479 *val = 0;
2480 spin_lock(&kvm_lock);
2481 list_for_each_entry(kvm, &vm_list, vm_list)
2482 *val += *(u32 *)((void *)kvm + offset);
2483 spin_unlock(&kvm_lock);
2484 return 0;
2487 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2489 static int vcpu_stat_get(void *_offset, u64 *val)
2491 unsigned offset = (long)_offset;
2492 struct kvm *kvm;
2493 struct kvm_vcpu *vcpu;
2494 int i;
2496 *val = 0;
2497 spin_lock(&kvm_lock);
2498 list_for_each_entry(kvm, &vm_list, vm_list)
2499 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2500 vcpu = kvm->vcpus[i];
2501 if (vcpu)
2502 *val += *(u32 *)((void *)vcpu + offset);
2504 spin_unlock(&kvm_lock);
2505 return 0;
2508 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2510 static struct file_operations *stat_fops[] = {
2511 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2512 [KVM_STAT_VM] = &vm_stat_fops,
2515 static void kvm_init_debug(void)
2517 struct kvm_stats_debugfs_item *p;
2519 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2520 for (p = debugfs_entries; p->name; ++p)
2521 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2522 (void *)(long)p->offset,
2523 stat_fops[p->kind]);
2526 static void kvm_exit_debug(void)
2528 struct kvm_stats_debugfs_item *p;
2530 for (p = debugfs_entries; p->name; ++p)
2531 debugfs_remove(p->dentry);
2532 debugfs_remove(kvm_debugfs_dir);
2535 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2537 hardware_disable(NULL);
2538 return 0;
2541 static int kvm_resume(struct sys_device *dev)
2543 hardware_enable(NULL);
2544 return 0;
2547 static struct sysdev_class kvm_sysdev_class = {
2548 .name = "kvm",
2549 .suspend = kvm_suspend,
2550 .resume = kvm_resume,
2553 static struct sys_device kvm_sysdev = {
2554 .id = 0,
2555 .cls = &kvm_sysdev_class,
2558 struct page *bad_page;
2559 pfn_t bad_pfn;
2561 static inline
2562 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2564 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2567 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2569 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2571 kvm_arch_vcpu_load(vcpu, cpu);
2574 static void kvm_sched_out(struct preempt_notifier *pn,
2575 struct task_struct *next)
2577 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2579 kvm_arch_vcpu_put(vcpu);
2582 int kvm_init(void *opaque, unsigned int vcpu_size,
2583 struct module *module)
2585 int r;
2586 int cpu;
2588 kvm_init_debug();
2590 r = kvm_arch_init(opaque);
2591 if (r)
2592 goto out_fail;
2594 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2596 if (bad_page == NULL) {
2597 r = -ENOMEM;
2598 goto out;
2601 bad_pfn = page_to_pfn(bad_page);
2603 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2604 r = -ENOMEM;
2605 goto out_free_0;
2608 r = kvm_arch_hardware_setup();
2609 if (r < 0)
2610 goto out_free_0a;
2612 for_each_online_cpu(cpu) {
2613 smp_call_function_single(cpu,
2614 kvm_arch_check_processor_compat,
2615 &r, 1);
2616 if (r < 0)
2617 goto out_free_1;
2620 on_each_cpu(hardware_enable, NULL, 1);
2621 r = register_cpu_notifier(&kvm_cpu_notifier);
2622 if (r)
2623 goto out_free_2;
2624 register_reboot_notifier(&kvm_reboot_notifier);
2626 r = sysdev_class_register(&kvm_sysdev_class);
2627 if (r)
2628 goto out_free_3;
2630 r = sysdev_register(&kvm_sysdev);
2631 if (r)
2632 goto out_free_4;
2634 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2635 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2636 __alignof__(struct kvm_vcpu),
2637 0, NULL);
2638 if (!kvm_vcpu_cache) {
2639 r = -ENOMEM;
2640 goto out_free_5;
2643 kvm_chardev_ops.owner = module;
2644 kvm_vm_fops.owner = module;
2645 kvm_vcpu_fops.owner = module;
2647 r = misc_register(&kvm_dev);
2648 if (r) {
2649 printk(KERN_ERR "kvm: misc device register failed\n");
2650 goto out_free;
2653 kvm_preempt_ops.sched_in = kvm_sched_in;
2654 kvm_preempt_ops.sched_out = kvm_sched_out;
2656 return 0;
2658 out_free:
2659 kmem_cache_destroy(kvm_vcpu_cache);
2660 out_free_5:
2661 sysdev_unregister(&kvm_sysdev);
2662 out_free_4:
2663 sysdev_class_unregister(&kvm_sysdev_class);
2664 out_free_3:
2665 unregister_reboot_notifier(&kvm_reboot_notifier);
2666 unregister_cpu_notifier(&kvm_cpu_notifier);
2667 out_free_2:
2668 on_each_cpu(hardware_disable, NULL, 1);
2669 out_free_1:
2670 kvm_arch_hardware_unsetup();
2671 out_free_0a:
2672 free_cpumask_var(cpus_hardware_enabled);
2673 out_free_0:
2674 __free_page(bad_page);
2675 out:
2676 kvm_arch_exit();
2677 kvm_exit_debug();
2678 out_fail:
2679 return r;
2681 EXPORT_SYMBOL_GPL(kvm_init);
2683 void kvm_exit(void)
2685 kvm_trace_cleanup();
2686 misc_deregister(&kvm_dev);
2687 kmem_cache_destroy(kvm_vcpu_cache);
2688 sysdev_unregister(&kvm_sysdev);
2689 sysdev_class_unregister(&kvm_sysdev_class);
2690 unregister_reboot_notifier(&kvm_reboot_notifier);
2691 unregister_cpu_notifier(&kvm_cpu_notifier);
2692 on_each_cpu(hardware_disable, NULL, 1);
2693 kvm_arch_hardware_unsetup();
2694 kvm_arch_exit();
2695 kvm_exit_debug();
2696 free_cpumask_var(cpus_hardware_enabled);
2697 __free_page(bad_page);
2699 EXPORT_SYMBOL_GPL(kvm_exit);