dma40: fix DMA API usage for LLIs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / slub_def.h
blob8b6e8ae5d5cabcd6f267405a1007d56de0070b64
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
14 #include <linux/kmemleak.h>
16 enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK, /* Number of times fallback was necessary */
35 NR_SLUB_STAT_ITEMS };
37 struct kmem_cache_cpu {
38 void **freelist; /* Pointer to first free per cpu object */
39 struct page *page; /* The slab from which we are allocating */
40 int node; /* The node of the page (or -1 for debug) */
41 #ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43 #endif
46 struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
49 struct list_head partial;
50 #ifdef CONFIG_SLUB_DEBUG
51 atomic_long_t nr_slabs;
52 atomic_long_t total_objects;
53 struct list_head full;
54 #endif
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
62 struct kmem_cache_order_objects {
63 unsigned long x;
67 * Slab cache management.
69 struct kmem_cache {
70 struct kmem_cache_cpu __percpu *cpu_slab;
71 /* Used for retriving partial slabs etc */
72 unsigned long flags;
73 int size; /* The size of an object including meta data */
74 int objsize; /* The size of an object without meta data */
75 int offset; /* Free pointer offset. */
76 struct kmem_cache_order_objects oo;
78 /* Allocation and freeing of slabs */
79 struct kmem_cache_order_objects max;
80 struct kmem_cache_order_objects min;
81 gfp_t allocflags; /* gfp flags to use on each alloc */
82 int refcount; /* Refcount for slab cache destroy */
83 void (*ctor)(void *);
84 int inuse; /* Offset to metadata */
85 int align; /* Alignment */
86 unsigned long min_partial;
87 const char *name; /* Name (only for display!) */
88 struct list_head list; /* List of slab caches */
89 #ifdef CONFIG_SYSFS
90 struct kobject kobj; /* For sysfs */
91 #endif
93 #ifdef CONFIG_NUMA
95 * Defragmentation by allocating from a remote node.
97 int remote_node_defrag_ratio;
98 #endif
99 struct kmem_cache_node *node[MAX_NUMNODES];
103 * Kmalloc subsystem.
105 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
106 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
107 #else
108 #define KMALLOC_MIN_SIZE 8
109 #endif
111 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
113 #ifdef ARCH_DMA_MINALIGN
114 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
115 #else
116 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
117 #endif
119 #ifndef ARCH_SLAB_MINALIGN
120 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
121 #endif
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
134 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
136 #ifdef CONFIG_ZONE_DMA
137 #define SLUB_DMA __GFP_DMA
138 #else
139 /* Disable DMA functionality */
140 #define SLUB_DMA (__force gfp_t)0
141 #endif
144 * We keep the general caches in an array of slab caches that are used for
145 * 2^x bytes of allocations.
147 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
150 * Sorry that the following has to be that ugly but some versions of GCC
151 * have trouble with constant propagation and loops.
153 static __always_inline int kmalloc_index(size_t size)
155 if (!size)
156 return 0;
158 if (size <= KMALLOC_MIN_SIZE)
159 return KMALLOC_SHIFT_LOW;
161 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
162 return 1;
163 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
164 return 2;
165 if (size <= 8) return 3;
166 if (size <= 16) return 4;
167 if (size <= 32) return 5;
168 if (size <= 64) return 6;
169 if (size <= 128) return 7;
170 if (size <= 256) return 8;
171 if (size <= 512) return 9;
172 if (size <= 1024) return 10;
173 if (size <= 2 * 1024) return 11;
174 if (size <= 4 * 1024) return 12;
176 * The following is only needed to support architectures with a larger page
177 * size than 4k.
179 if (size <= 8 * 1024) return 13;
180 if (size <= 16 * 1024) return 14;
181 if (size <= 32 * 1024) return 15;
182 if (size <= 64 * 1024) return 16;
183 if (size <= 128 * 1024) return 17;
184 if (size <= 256 * 1024) return 18;
185 if (size <= 512 * 1024) return 19;
186 if (size <= 1024 * 1024) return 20;
187 if (size <= 2 * 1024 * 1024) return 21;
188 return -1;
191 * What we really wanted to do and cannot do because of compiler issues is:
192 * int i;
193 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
194 * if (size <= (1 << i))
195 * return i;
200 * Find the slab cache for a given combination of allocation flags and size.
202 * This ought to end up with a global pointer to the right cache
203 * in kmalloc_caches.
205 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
207 int index = kmalloc_index(size);
209 if (index == 0)
210 return NULL;
212 return kmalloc_caches[index];
215 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
216 void *__kmalloc(size_t size, gfp_t flags);
218 static __always_inline void *
219 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
221 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
222 kmemleak_alloc(ret, size, 1, flags);
223 return ret;
226 #ifdef CONFIG_TRACING
227 extern void *
228 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
229 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
230 #else
231 static __always_inline void *
232 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
234 return kmem_cache_alloc(s, gfpflags);
237 static __always_inline void *
238 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
240 return kmalloc_order(size, flags, order);
242 #endif
244 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
246 unsigned int order = get_order(size);
247 return kmalloc_order_trace(size, flags, order);
250 static __always_inline void *kmalloc(size_t size, gfp_t flags)
252 if (__builtin_constant_p(size)) {
253 if (size > SLUB_MAX_SIZE)
254 return kmalloc_large(size, flags);
256 if (!(flags & SLUB_DMA)) {
257 struct kmem_cache *s = kmalloc_slab(size);
259 if (!s)
260 return ZERO_SIZE_PTR;
262 return kmem_cache_alloc_trace(s, flags, size);
265 return __kmalloc(size, flags);
268 #ifdef CONFIG_NUMA
269 void *__kmalloc_node(size_t size, gfp_t flags, int node);
270 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
272 #ifdef CONFIG_TRACING
273 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
274 gfp_t gfpflags,
275 int node, size_t size);
276 #else
277 static __always_inline void *
278 kmem_cache_alloc_node_trace(struct kmem_cache *s,
279 gfp_t gfpflags,
280 int node, size_t size)
282 return kmem_cache_alloc_node(s, gfpflags, node);
284 #endif
286 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
288 if (__builtin_constant_p(size) &&
289 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
290 struct kmem_cache *s = kmalloc_slab(size);
292 if (!s)
293 return ZERO_SIZE_PTR;
295 return kmem_cache_alloc_node_trace(s, flags, node, size);
297 return __kmalloc_node(size, flags, node);
299 #endif
301 #endif /* _LINUX_SLUB_DEF_H */