2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum
= 8;
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum
= 32;
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
23 /* A workqueue to queue throttle related work */
24 static struct workqueue_struct
*kthrotld_workqueue
;
25 static void throtl_schedule_delayed_work(struct throtl_data
*td
,
28 struct throtl_rb_root
{
32 unsigned long min_disptime
;
35 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
36 .count = 0, .min_disptime = 0}
38 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
41 /* List of throtl groups on the request queue*/
42 struct hlist_node tg_node
;
44 /* active throtl group service_tree member */
45 struct rb_node rb_node
;
48 * Dispatch time in jiffies. This is the estimated time when group
49 * will unthrottle and is ready to dispatch more bio. It is used as
50 * key to sort active groups in service tree.
52 unsigned long disptime
;
54 struct blkio_group blkg
;
58 /* Two lists for READ and WRITE */
59 struct bio_list bio_lists
[2];
61 /* Number of queued bios on READ and WRITE lists */
62 unsigned int nr_queued
[2];
64 /* bytes per second rate limits */
70 /* Number of bytes disptached in current slice */
71 uint64_t bytes_disp
[2];
72 /* Number of bio's dispatched in current slice */
73 unsigned int io_disp
[2];
75 /* When did we start a new slice */
76 unsigned long slice_start
[2];
77 unsigned long slice_end
[2];
79 /* Some throttle limits got updated for the group */
85 /* List of throtl groups */
86 struct hlist_head tg_list
;
88 /* service tree for active throtl groups */
89 struct throtl_rb_root tg_service_tree
;
91 struct throtl_grp root_tg
;
92 struct request_queue
*queue
;
94 /* Total Number of queued bios on READ and WRITE lists */
95 unsigned int nr_queued
[2];
98 * number of total undestroyed groups
100 unsigned int nr_undestroyed_grps
;
102 /* Work for dispatching throttled bios */
103 struct delayed_work throtl_work
;
105 atomic_t limits_changed
;
108 enum tg_state_flags
{
109 THROTL_TG_FLAG_on_rr
= 0, /* on round-robin busy list */
112 #define THROTL_TG_FNS(name) \
113 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
115 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
117 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
119 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
121 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
123 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
126 THROTL_TG_FNS(on_rr
);
128 #define throtl_log_tg(td, tg, fmt, args...) \
129 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
130 blkg_path(&(tg)->blkg), ##args); \
132 #define throtl_log(td, fmt, args...) \
133 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
135 static inline struct throtl_grp
*tg_of_blkg(struct blkio_group
*blkg
)
138 return container_of(blkg
, struct throtl_grp
, blkg
);
143 static inline int total_nr_queued(struct throtl_data
*td
)
145 return (td
->nr_queued
[0] + td
->nr_queued
[1]);
148 static inline struct throtl_grp
*throtl_ref_get_tg(struct throtl_grp
*tg
)
150 atomic_inc(&tg
->ref
);
154 static void throtl_put_tg(struct throtl_grp
*tg
)
156 BUG_ON(atomic_read(&tg
->ref
) <= 0);
157 if (!atomic_dec_and_test(&tg
->ref
))
162 static struct throtl_grp
* throtl_find_alloc_tg(struct throtl_data
*td
,
163 struct cgroup
*cgroup
)
165 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
166 struct throtl_grp
*tg
= NULL
;
168 struct backing_dev_info
*bdi
= &td
->queue
->backing_dev_info
;
169 unsigned int major
, minor
;
172 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
173 * tree of blkg (instead of traversing through hash list all
178 * This is the common case when there are no blkio cgroups.
179 * Avoid lookup in this case
181 if (blkcg
== &blkio_root_cgroup
)
184 tg
= tg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
186 /* Fill in device details for root group */
187 if (tg
&& !tg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
188 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
189 tg
->blkg
.dev
= MKDEV(major
, minor
);
196 tg
= kzalloc_node(sizeof(*tg
), GFP_ATOMIC
, td
->queue
->node
);
200 INIT_HLIST_NODE(&tg
->tg_node
);
201 RB_CLEAR_NODE(&tg
->rb_node
);
202 bio_list_init(&tg
->bio_lists
[0]);
203 bio_list_init(&tg
->bio_lists
[1]);
206 * Take the initial reference that will be released on destroy
207 * This can be thought of a joint reference by cgroup and
208 * request queue which will be dropped by either request queue
209 * exit or cgroup deletion path depending on who is exiting first.
211 atomic_set(&tg
->ref
, 1);
213 /* Add group onto cgroup list */
214 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
215 blkiocg_add_blkio_group(blkcg
, &tg
->blkg
, (void *)td
,
216 MKDEV(major
, minor
), BLKIO_POLICY_THROTL
);
218 tg
->bps
[READ
] = blkcg_get_read_bps(blkcg
, tg
->blkg
.dev
);
219 tg
->bps
[WRITE
] = blkcg_get_write_bps(blkcg
, tg
->blkg
.dev
);
220 tg
->iops
[READ
] = blkcg_get_read_iops(blkcg
, tg
->blkg
.dev
);
221 tg
->iops
[WRITE
] = blkcg_get_write_iops(blkcg
, tg
->blkg
.dev
);
223 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
224 td
->nr_undestroyed_grps
++;
229 static struct throtl_grp
* throtl_get_tg(struct throtl_data
*td
)
231 struct cgroup
*cgroup
;
232 struct throtl_grp
*tg
= NULL
;
235 cgroup
= task_cgroup(current
, blkio_subsys_id
);
236 tg
= throtl_find_alloc_tg(td
, cgroup
);
243 static struct throtl_grp
*throtl_rb_first(struct throtl_rb_root
*root
)
245 /* Service tree is empty */
250 root
->left
= rb_first(&root
->rb
);
253 return rb_entry_tg(root
->left
);
258 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
264 static void throtl_rb_erase(struct rb_node
*n
, struct throtl_rb_root
*root
)
268 rb_erase_init(n
, &root
->rb
);
272 static void update_min_dispatch_time(struct throtl_rb_root
*st
)
274 struct throtl_grp
*tg
;
276 tg
= throtl_rb_first(st
);
280 st
->min_disptime
= tg
->disptime
;
284 tg_service_tree_add(struct throtl_rb_root
*st
, struct throtl_grp
*tg
)
286 struct rb_node
**node
= &st
->rb
.rb_node
;
287 struct rb_node
*parent
= NULL
;
288 struct throtl_grp
*__tg
;
289 unsigned long key
= tg
->disptime
;
292 while (*node
!= NULL
) {
294 __tg
= rb_entry_tg(parent
);
296 if (time_before(key
, __tg
->disptime
))
297 node
= &parent
->rb_left
;
299 node
= &parent
->rb_right
;
305 st
->left
= &tg
->rb_node
;
307 rb_link_node(&tg
->rb_node
, parent
, node
);
308 rb_insert_color(&tg
->rb_node
, &st
->rb
);
311 static void __throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
313 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
315 tg_service_tree_add(st
, tg
);
316 throtl_mark_tg_on_rr(tg
);
320 static void throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
322 if (!throtl_tg_on_rr(tg
))
323 __throtl_enqueue_tg(td
, tg
);
326 static void __throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
328 throtl_rb_erase(&tg
->rb_node
, &td
->tg_service_tree
);
329 throtl_clear_tg_on_rr(tg
);
332 static void throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
334 if (throtl_tg_on_rr(tg
))
335 __throtl_dequeue_tg(td
, tg
);
338 static void throtl_schedule_next_dispatch(struct throtl_data
*td
)
340 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
343 * If there are more bios pending, schedule more work.
345 if (!total_nr_queued(td
))
350 update_min_dispatch_time(st
);
352 if (time_before_eq(st
->min_disptime
, jiffies
))
353 throtl_schedule_delayed_work(td
, 0);
355 throtl_schedule_delayed_work(td
, (st
->min_disptime
- jiffies
));
359 throtl_start_new_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
361 tg
->bytes_disp
[rw
] = 0;
363 tg
->slice_start
[rw
] = jiffies
;
364 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
365 throtl_log_tg(td
, tg
, "[%c] new slice start=%lu end=%lu jiffies=%lu",
366 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
367 tg
->slice_end
[rw
], jiffies
);
370 static inline void throtl_set_slice_end(struct throtl_data
*td
,
371 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
373 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
376 static inline void throtl_extend_slice(struct throtl_data
*td
,
377 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
379 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
380 throtl_log_tg(td
, tg
, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
381 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
382 tg
->slice_end
[rw
], jiffies
);
385 /* Determine if previously allocated or extended slice is complete or not */
387 throtl_slice_used(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
389 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
395 /* Trim the used slices and adjust slice start accordingly */
397 throtl_trim_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
399 unsigned long nr_slices
, time_elapsed
, io_trim
;
402 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
405 * If bps are unlimited (-1), then time slice don't get
406 * renewed. Don't try to trim the slice if slice is used. A new
407 * slice will start when appropriate.
409 if (throtl_slice_used(td
, tg
, rw
))
413 * A bio has been dispatched. Also adjust slice_end. It might happen
414 * that initially cgroup limit was very low resulting in high
415 * slice_end, but later limit was bumped up and bio was dispached
416 * sooner, then we need to reduce slice_end. A high bogus slice_end
417 * is bad because it does not allow new slice to start.
420 throtl_set_slice_end(td
, tg
, rw
, jiffies
+ throtl_slice
);
422 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
424 nr_slices
= time_elapsed
/ throtl_slice
;
428 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
432 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
434 if (!bytes_trim
&& !io_trim
)
437 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
438 tg
->bytes_disp
[rw
] -= bytes_trim
;
440 tg
->bytes_disp
[rw
] = 0;
442 if (tg
->io_disp
[rw
] >= io_trim
)
443 tg
->io_disp
[rw
] -= io_trim
;
447 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
449 throtl_log_tg(td
, tg
, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
450 " start=%lu end=%lu jiffies=%lu",
451 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
452 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
455 static bool tg_with_in_iops_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
456 struct bio
*bio
, unsigned long *wait
)
458 bool rw
= bio_data_dir(bio
);
459 unsigned int io_allowed
;
460 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
463 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
465 /* Slice has just started. Consider one slice interval */
467 jiffy_elapsed_rnd
= throtl_slice
;
469 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
472 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
473 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
474 * will allow dispatch after 1 second and after that slice should
478 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
482 io_allowed
= UINT_MAX
;
486 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
492 /* Calc approx time to dispatch */
493 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
495 if (jiffy_wait
> jiffy_elapsed
)
496 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
505 static bool tg_with_in_bps_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
506 struct bio
*bio
, unsigned long *wait
)
508 bool rw
= bio_data_dir(bio
);
509 u64 bytes_allowed
, extra_bytes
, tmp
;
510 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
512 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
514 /* Slice has just started. Consider one slice interval */
516 jiffy_elapsed_rnd
= throtl_slice
;
518 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
520 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
524 if (tg
->bytes_disp
[rw
] + bio
->bi_size
<= bytes_allowed
) {
530 /* Calc approx time to dispatch */
531 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_size
- bytes_allowed
;
532 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
538 * This wait time is without taking into consideration the rounding
539 * up we did. Add that time also.
541 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
548 * Returns whether one can dispatch a bio or not. Also returns approx number
549 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
551 static bool tg_may_dispatch(struct throtl_data
*td
, struct throtl_grp
*tg
,
552 struct bio
*bio
, unsigned long *wait
)
554 bool rw
= bio_data_dir(bio
);
555 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
558 * Currently whole state machine of group depends on first bio
559 * queued in the group bio list. So one should not be calling
560 * this function with a different bio if there are other bios
563 BUG_ON(tg
->nr_queued
[rw
] && bio
!= bio_list_peek(&tg
->bio_lists
[rw
]));
565 /* If tg->bps = -1, then BW is unlimited */
566 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
573 * If previous slice expired, start a new one otherwise renew/extend
574 * existing slice to make sure it is at least throtl_slice interval
577 if (throtl_slice_used(td
, tg
, rw
))
578 throtl_start_new_slice(td
, tg
, rw
);
580 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
581 throtl_extend_slice(td
, tg
, rw
, jiffies
+ throtl_slice
);
584 if (tg_with_in_bps_limit(td
, tg
, bio
, &bps_wait
)
585 && tg_with_in_iops_limit(td
, tg
, bio
, &iops_wait
)) {
591 max_wait
= max(bps_wait
, iops_wait
);
596 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
597 throtl_extend_slice(td
, tg
, rw
, jiffies
+ max_wait
);
602 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
604 bool rw
= bio_data_dir(bio
);
605 bool sync
= bio
->bi_rw
& REQ_SYNC
;
607 /* Charge the bio to the group */
608 tg
->bytes_disp
[rw
] += bio
->bi_size
;
612 * TODO: This will take blkg->stats_lock. Figure out a way
613 * to avoid this cost.
615 blkiocg_update_dispatch_stats(&tg
->blkg
, bio
->bi_size
, rw
, sync
);
618 static void throtl_add_bio_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
621 bool rw
= bio_data_dir(bio
);
623 bio_list_add(&tg
->bio_lists
[rw
], bio
);
624 /* Take a bio reference on tg */
625 throtl_ref_get_tg(tg
);
628 throtl_enqueue_tg(td
, tg
);
631 static void tg_update_disptime(struct throtl_data
*td
, struct throtl_grp
*tg
)
633 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
636 if ((bio
= bio_list_peek(&tg
->bio_lists
[READ
])))
637 tg_may_dispatch(td
, tg
, bio
, &read_wait
);
639 if ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
])))
640 tg_may_dispatch(td
, tg
, bio
, &write_wait
);
642 min_wait
= min(read_wait
, write_wait
);
643 disptime
= jiffies
+ min_wait
;
645 /* Update dispatch time */
646 throtl_dequeue_tg(td
, tg
);
647 tg
->disptime
= disptime
;
648 throtl_enqueue_tg(td
, tg
);
651 static void tg_dispatch_one_bio(struct throtl_data
*td
, struct throtl_grp
*tg
,
652 bool rw
, struct bio_list
*bl
)
656 bio
= bio_list_pop(&tg
->bio_lists
[rw
]);
658 /* Drop bio reference on tg */
661 BUG_ON(td
->nr_queued
[rw
] <= 0);
664 throtl_charge_bio(tg
, bio
);
665 bio_list_add(bl
, bio
);
666 bio
->bi_rw
|= REQ_THROTTLED
;
668 throtl_trim_slice(td
, tg
, rw
);
671 static int throtl_dispatch_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
674 unsigned int nr_reads
= 0, nr_writes
= 0;
675 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
676 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
679 /* Try to dispatch 75% READS and 25% WRITES */
681 while ((bio
= bio_list_peek(&tg
->bio_lists
[READ
]))
682 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
684 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
687 if (nr_reads
>= max_nr_reads
)
691 while ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
]))
692 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
694 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
697 if (nr_writes
>= max_nr_writes
)
701 return nr_reads
+ nr_writes
;
704 static int throtl_select_dispatch(struct throtl_data
*td
, struct bio_list
*bl
)
706 unsigned int nr_disp
= 0;
707 struct throtl_grp
*tg
;
708 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
711 tg
= throtl_rb_first(st
);
716 if (time_before(jiffies
, tg
->disptime
))
719 throtl_dequeue_tg(td
, tg
);
721 nr_disp
+= throtl_dispatch_tg(td
, tg
, bl
);
723 if (tg
->nr_queued
[0] || tg
->nr_queued
[1]) {
724 tg_update_disptime(td
, tg
);
725 throtl_enqueue_tg(td
, tg
);
728 if (nr_disp
>= throtl_quantum
)
735 static void throtl_process_limit_change(struct throtl_data
*td
)
737 struct throtl_grp
*tg
;
738 struct hlist_node
*pos
, *n
;
740 if (!atomic_read(&td
->limits_changed
))
743 throtl_log(td
, "limit changed =%d", atomic_read(&td
->limits_changed
));
746 * Make sure updates from throtl_update_blkio_group_read_bps() group
747 * of functions to tg->limits_changed are visible. We do not
748 * want update td->limits_changed to be visible but update to
749 * tg->limits_changed not being visible yet on this cpu. Hence
754 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
755 if (throtl_tg_on_rr(tg
) && tg
->limits_changed
) {
756 throtl_log_tg(td
, tg
, "limit change rbps=%llu wbps=%llu"
757 " riops=%u wiops=%u", tg
->bps
[READ
],
758 tg
->bps
[WRITE
], tg
->iops
[READ
],
760 tg_update_disptime(td
, tg
);
761 tg
->limits_changed
= false;
765 smp_mb__before_atomic_dec();
766 atomic_dec(&td
->limits_changed
);
767 smp_mb__after_atomic_dec();
770 /* Dispatch throttled bios. Should be called without queue lock held. */
771 static int throtl_dispatch(struct request_queue
*q
)
773 struct throtl_data
*td
= q
->td
;
774 unsigned int nr_disp
= 0;
775 struct bio_list bio_list_on_stack
;
778 spin_lock_irq(q
->queue_lock
);
780 throtl_process_limit_change(td
);
782 if (!total_nr_queued(td
))
785 bio_list_init(&bio_list_on_stack
);
787 throtl_log(td
, "dispatch nr_queued=%lu read=%u write=%u",
788 total_nr_queued(td
), td
->nr_queued
[READ
],
789 td
->nr_queued
[WRITE
]);
791 nr_disp
= throtl_select_dispatch(td
, &bio_list_on_stack
);
794 throtl_log(td
, "bios disp=%u", nr_disp
);
796 throtl_schedule_next_dispatch(td
);
798 spin_unlock_irq(q
->queue_lock
);
801 * If we dispatched some requests, unplug the queue to make sure
805 while((bio
= bio_list_pop(&bio_list_on_stack
)))
806 generic_make_request(bio
);
812 void blk_throtl_work(struct work_struct
*work
)
814 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
816 struct request_queue
*q
= td
->queue
;
821 /* Call with queue lock held */
823 throtl_schedule_delayed_work(struct throtl_data
*td
, unsigned long delay
)
826 struct delayed_work
*dwork
= &td
->throtl_work
;
828 if (total_nr_queued(td
) > 0) {
830 * We might have a work scheduled to be executed in future.
831 * Cancel that and schedule a new one.
833 __cancel_delayed_work(dwork
);
834 queue_delayed_work(kthrotld_workqueue
, dwork
, delay
);
835 throtl_log(td
, "schedule work. delay=%lu jiffies=%lu",
841 throtl_destroy_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
843 /* Something wrong if we are trying to remove same group twice */
844 BUG_ON(hlist_unhashed(&tg
->tg_node
));
846 hlist_del_init(&tg
->tg_node
);
849 * Put the reference taken at the time of creation so that when all
850 * queues are gone, group can be destroyed.
853 td
->nr_undestroyed_grps
--;
856 static void throtl_release_tgs(struct throtl_data
*td
)
858 struct hlist_node
*pos
, *n
;
859 struct throtl_grp
*tg
;
861 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
863 * If cgroup removal path got to blk_group first and removed
864 * it from cgroup list, then it will take care of destroying
867 if (!blkiocg_del_blkio_group(&tg
->blkg
))
868 throtl_destroy_tg(td
, tg
);
872 static void throtl_td_free(struct throtl_data
*td
)
878 * Blk cgroup controller notification saying that blkio_group object is being
879 * delinked as associated cgroup object is going away. That also means that
880 * no new IO will come in this group. So get rid of this group as soon as
881 * any pending IO in the group is finished.
883 * This function is called under rcu_read_lock(). key is the rcu protected
884 * pointer. That means "key" is a valid throtl_data pointer as long as we are
887 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
888 * it should not be NULL as even if queue was going away, cgroup deltion
889 * path got to it first.
891 void throtl_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
894 struct throtl_data
*td
= key
;
896 spin_lock_irqsave(td
->queue
->queue_lock
, flags
);
897 throtl_destroy_tg(td
, tg_of_blkg(blkg
));
898 spin_unlock_irqrestore(td
->queue
->queue_lock
, flags
);
902 * For all update functions, key should be a valid pointer because these
903 * update functions are called under blkcg_lock, that means, blkg is
904 * valid and in turn key is valid. queue exit path can not race becuase
907 * Can not take queue lock in update functions as queue lock under blkcg_lock
908 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
910 static void throtl_update_blkio_group_read_bps(void *key
,
911 struct blkio_group
*blkg
, u64 read_bps
)
913 struct throtl_data
*td
= key
;
915 tg_of_blkg(blkg
)->bps
[READ
] = read_bps
;
916 /* Make sure read_bps is updated before setting limits_changed */
918 tg_of_blkg(blkg
)->limits_changed
= true;
920 /* Make sure tg->limits_changed is updated before td->limits_changed */
921 smp_mb__before_atomic_inc();
922 atomic_inc(&td
->limits_changed
);
923 smp_mb__after_atomic_inc();
925 /* Schedule a work now to process the limit change */
926 throtl_schedule_delayed_work(td
, 0);
929 static void throtl_update_blkio_group_write_bps(void *key
,
930 struct blkio_group
*blkg
, u64 write_bps
)
932 struct throtl_data
*td
= key
;
934 tg_of_blkg(blkg
)->bps
[WRITE
] = write_bps
;
936 tg_of_blkg(blkg
)->limits_changed
= true;
937 smp_mb__before_atomic_inc();
938 atomic_inc(&td
->limits_changed
);
939 smp_mb__after_atomic_inc();
940 throtl_schedule_delayed_work(td
, 0);
943 static void throtl_update_blkio_group_read_iops(void *key
,
944 struct blkio_group
*blkg
, unsigned int read_iops
)
946 struct throtl_data
*td
= key
;
948 tg_of_blkg(blkg
)->iops
[READ
] = read_iops
;
950 tg_of_blkg(blkg
)->limits_changed
= true;
951 smp_mb__before_atomic_inc();
952 atomic_inc(&td
->limits_changed
);
953 smp_mb__after_atomic_inc();
954 throtl_schedule_delayed_work(td
, 0);
957 static void throtl_update_blkio_group_write_iops(void *key
,
958 struct blkio_group
*blkg
, unsigned int write_iops
)
960 struct throtl_data
*td
= key
;
962 tg_of_blkg(blkg
)->iops
[WRITE
] = write_iops
;
964 tg_of_blkg(blkg
)->limits_changed
= true;
965 smp_mb__before_atomic_inc();
966 atomic_inc(&td
->limits_changed
);
967 smp_mb__after_atomic_inc();
968 throtl_schedule_delayed_work(td
, 0);
971 void throtl_shutdown_timer_wq(struct request_queue
*q
)
973 struct throtl_data
*td
= q
->td
;
975 cancel_delayed_work_sync(&td
->throtl_work
);
978 static struct blkio_policy_type blkio_policy_throtl
= {
980 .blkio_unlink_group_fn
= throtl_unlink_blkio_group
,
981 .blkio_update_group_read_bps_fn
=
982 throtl_update_blkio_group_read_bps
,
983 .blkio_update_group_write_bps_fn
=
984 throtl_update_blkio_group_write_bps
,
985 .blkio_update_group_read_iops_fn
=
986 throtl_update_blkio_group_read_iops
,
987 .blkio_update_group_write_iops_fn
=
988 throtl_update_blkio_group_write_iops
,
990 .plid
= BLKIO_POLICY_THROTL
,
993 int blk_throtl_bio(struct request_queue
*q
, struct bio
**biop
)
995 struct throtl_data
*td
= q
->td
;
996 struct throtl_grp
*tg
;
997 struct bio
*bio
= *biop
;
998 bool rw
= bio_data_dir(bio
), update_disptime
= true;
1000 if (bio
->bi_rw
& REQ_THROTTLED
) {
1001 bio
->bi_rw
&= ~REQ_THROTTLED
;
1005 spin_lock_irq(q
->queue_lock
);
1006 tg
= throtl_get_tg(td
);
1008 if (tg
->nr_queued
[rw
]) {
1010 * There is already another bio queued in same dir. No
1011 * need to update dispatch time.
1012 * Still update the disptime if rate limits on this group
1015 if (!tg
->limits_changed
)
1016 update_disptime
= false;
1018 tg
->limits_changed
= false;
1023 /* Bio is with-in rate limit of group */
1024 if (tg_may_dispatch(td
, tg
, bio
, NULL
)) {
1025 throtl_charge_bio(tg
, bio
);
1030 throtl_log_tg(td
, tg
, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1031 " iodisp=%u iops=%u queued=%d/%d",
1032 rw
== READ
? 'R' : 'W',
1033 tg
->bytes_disp
[rw
], bio
->bi_size
, tg
->bps
[rw
],
1034 tg
->io_disp
[rw
], tg
->iops
[rw
],
1035 tg
->nr_queued
[READ
], tg
->nr_queued
[WRITE
]);
1037 throtl_add_bio_tg(q
->td
, tg
, bio
);
1040 if (update_disptime
) {
1041 tg_update_disptime(td
, tg
);
1042 throtl_schedule_next_dispatch(td
);
1046 spin_unlock_irq(q
->queue_lock
);
1050 int blk_throtl_init(struct request_queue
*q
)
1052 struct throtl_data
*td
;
1053 struct throtl_grp
*tg
;
1055 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1059 INIT_HLIST_HEAD(&td
->tg_list
);
1060 td
->tg_service_tree
= THROTL_RB_ROOT
;
1061 atomic_set(&td
->limits_changed
, 0);
1063 /* Init root group */
1065 INIT_HLIST_NODE(&tg
->tg_node
);
1066 RB_CLEAR_NODE(&tg
->rb_node
);
1067 bio_list_init(&tg
->bio_lists
[0]);
1068 bio_list_init(&tg
->bio_lists
[1]);
1070 /* Practically unlimited BW */
1071 tg
->bps
[0] = tg
->bps
[1] = -1;
1072 tg
->iops
[0] = tg
->iops
[1] = -1;
1075 * Set root group reference to 2. One reference will be dropped when
1076 * all groups on tg_list are being deleted during queue exit. Other
1077 * reference will remain there as we don't want to delete this group
1078 * as it is statically allocated and gets destroyed when throtl_data
1081 atomic_set(&tg
->ref
, 2);
1082 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
1083 td
->nr_undestroyed_grps
++;
1085 INIT_DELAYED_WORK(&td
->throtl_work
, blk_throtl_work
);
1088 blkiocg_add_blkio_group(&blkio_root_cgroup
, &tg
->blkg
, (void *)td
,
1089 0, BLKIO_POLICY_THROTL
);
1092 /* Attach throtl data to request queue */
1098 void blk_throtl_exit(struct request_queue
*q
)
1100 struct throtl_data
*td
= q
->td
;
1105 throtl_shutdown_timer_wq(q
);
1107 spin_lock_irq(q
->queue_lock
);
1108 throtl_release_tgs(td
);
1110 /* If there are other groups */
1111 if (td
->nr_undestroyed_grps
> 0)
1114 spin_unlock_irq(q
->queue_lock
);
1117 * Wait for tg->blkg->key accessors to exit their grace periods.
1118 * Do this wait only if there are other undestroyed groups out
1119 * there (other than root group). This can happen if cgroup deletion
1120 * path claimed the responsibility of cleaning up a group before
1121 * queue cleanup code get to the group.
1123 * Do not call synchronize_rcu() unconditionally as there are drivers
1124 * which create/delete request queue hundreds of times during scan/boot
1125 * and synchronize_rcu() can take significant time and slow down boot.
1131 * Just being safe to make sure after previous flush if some body did
1132 * update limits through cgroup and another work got queued, cancel
1135 throtl_shutdown_timer_wq(q
);
1139 static int __init
throtl_init(void)
1141 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1142 if (!kthrotld_workqueue
)
1143 panic("Failed to create kthrotld\n");
1145 blkio_policy_register(&blkio_policy_throtl
);
1149 module_init(throtl_init
);