1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
82 #include <linux/slab.h>
85 #include <asm/system.h>
86 #include <asm/div64.h>
91 #include "s2io-regs.h"
93 #define DRV_VERSION "2.0.26.25"
95 /* S2io Driver name & version. */
96 static char s2io_driver_name
[] = "Neterion";
97 static char s2io_driver_version
[] = DRV_VERSION
;
99 static int rxd_size
[2] = {32, 48};
100 static int rxd_count
[2] = {127, 85};
102 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
106 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
107 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
125 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
127 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
139 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
141 {"tmac_data_octets"},
145 {"tmac_pause_ctrl_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
218 {"new_rd_req_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
223 {"new_wr_req_rtry_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
236 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
255 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
323 {"prc_pcix_err_cnt"},
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
352 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
353 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
354 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
355 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
356 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
357 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
361 static void s2io_vlan_rx_register(struct net_device
*dev
,
362 struct vlan_group
*grp
)
365 struct s2io_nic
*nic
= netdev_priv(dev
);
366 unsigned long flags
[MAX_TX_FIFOS
];
367 struct config_param
*config
= &nic
->config
;
368 struct mac_info
*mac_control
= &nic
->mac_control
;
370 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
371 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
373 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
378 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
379 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
381 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
389 struct s2io_nic
*nic
= netdev_priv(dev
);
390 unsigned long flags
[MAX_TX_FIFOS
];
391 struct config_param
*config
= &nic
->config
;
392 struct mac_info
*mac_control
= &nic
->mac_control
;
394 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
395 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
397 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
401 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
403 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
404 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
406 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
411 * Constants to be programmed into the Xena's registers, to configure
416 static const u64 herc_act_dtx_cfg
[] = {
418 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
420 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
422 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
424 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
426 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
428 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
430 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
432 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
437 static const u64 xena_dtx_cfg
[] = {
439 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
441 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
443 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
445 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
447 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
449 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
454 * Constants for Fixing the MacAddress problem seen mostly on
457 static const u64 fix_mac
[] = {
458 0x0060000000000000ULL
, 0x0060600000000000ULL
,
459 0x0040600000000000ULL
, 0x0000600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0060600000000000ULL
,
470 0x0020600000000000ULL
, 0x0000600000000000ULL
,
471 0x0040600000000000ULL
, 0x0060600000000000ULL
,
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION
);
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
481 S2IO_PARM_INT(rx_ring_num
, 1);
482 S2IO_PARM_INT(multiq
, 0);
483 S2IO_PARM_INT(rx_ring_mode
, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
485 S2IO_PARM_INT(rmac_pause_time
, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
488 S2IO_PARM_INT(shared_splits
, 0);
489 S2IO_PARM_INT(tmac_util_period
, 5);
490 S2IO_PARM_INT(rmac_util_period
, 5);
491 S2IO_PARM_INT(l3l4hdr_size
, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency
, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type
, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable
;
500 module_param_named(lro
, lro_enable
, uint
, 0);
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
505 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts
, 0);
508 S2IO_PARM_INT(napi
, 1);
509 S2IO_PARM_INT(ufo
, 0);
510 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
512 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
513 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
514 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
515 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
516 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
517 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
519 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
520 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
521 module_param_array(rts_frm_len
, uint
, NULL
, 0);
525 * This table lists all the devices that this driver supports.
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
528 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
529 PCI_ANY_ID
, PCI_ANY_ID
},
530 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
531 PCI_ANY_ID
, PCI_ANY_ID
},
532 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
533 PCI_ANY_ID
, PCI_ANY_ID
},
534 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
535 PCI_ANY_ID
, PCI_ANY_ID
},
539 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
541 static struct pci_error_handlers s2io_err_handler
= {
542 .error_detected
= s2io_io_error_detected
,
543 .slot_reset
= s2io_io_slot_reset
,
544 .resume
= s2io_io_resume
,
547 static struct pci_driver s2io_driver
= {
549 .id_table
= s2io_tbl
,
550 .probe
= s2io_init_nic
,
551 .remove
= __devexit_p(s2io_rem_nic
),
552 .err_handler
= &s2io_err_handler
,
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
561 if (!sp
->config
.multiq
) {
564 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
565 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
567 netif_tx_stop_all_queues(sp
->dev
);
570 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
572 if (!sp
->config
.multiq
)
573 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
576 netif_tx_stop_all_queues(sp
->dev
);
579 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
581 if (!sp
->config
.multiq
) {
584 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
585 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
587 netif_tx_start_all_queues(sp
->dev
);
590 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
592 if (!sp
->config
.multiq
)
593 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
596 netif_tx_start_all_queues(sp
->dev
);
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
601 if (!sp
->config
.multiq
) {
604 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
605 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
607 netif_tx_wake_all_queues(sp
->dev
);
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
615 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
616 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
617 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
618 if (netif_queue_stopped(fifo
->dev
)) {
619 fifo
->queue_state
= FIFO_QUEUE_START
;
620 netif_wake_queue(fifo
->dev
);
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
633 static int init_shared_mem(struct s2io_nic
*nic
)
636 void *tmp_v_addr
, *tmp_v_addr_next
;
637 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
638 struct RxD_block
*pre_rxd_blk
= NULL
;
640 int lst_size
, lst_per_page
;
641 struct net_device
*dev
= nic
->dev
;
644 struct config_param
*config
= &nic
->config
;
645 struct mac_info
*mac_control
= &nic
->mac_control
;
646 unsigned long long mem_allocated
= 0;
648 /* Allocation and initialization of TXDLs in FIFOs */
650 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
651 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
653 size
+= tx_cfg
->fifo_len
;
655 if (size
> MAX_AVAILABLE_TXDS
) {
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size
, MAX_AVAILABLE_TXDS
);
663 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
664 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
666 size
= tx_cfg
->fifo_len
;
668 * Legal values are from 2 to 8192
671 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
678 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
679 lst_per_page
= PAGE_SIZE
/ lst_size
;
681 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
682 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
683 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
684 int fifo_len
= tx_cfg
->fifo_len
;
685 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
687 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
688 if (!fifo
->list_info
) {
689 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
692 mem_allocated
+= list_holder_size
;
694 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
695 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
697 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
698 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
700 fifo
->tx_curr_put_info
.offset
= 0;
701 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
702 fifo
->tx_curr_get_info
.offset
= 0;
703 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
706 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
709 for (j
= 0; j
< page_num
; j
++) {
713 tmp_v
= pci_alloc_consistent(nic
->pdev
,
717 "pci_alloc_consistent failed for TxDL\n");
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
726 mac_control
->zerodma_virt_addr
= tmp_v
;
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
731 tmp_v
= pci_alloc_consistent(nic
->pdev
,
735 "pci_alloc_consistent failed for TxDL\n");
738 mem_allocated
+= PAGE_SIZE
;
740 while (k
< lst_per_page
) {
741 int l
= (j
* lst_per_page
) + k
;
742 if (l
== tx_cfg
->fifo_len
)
744 fifo
->list_info
[l
].list_virt_addr
=
745 tmp_v
+ (k
* lst_size
);
746 fifo
->list_info
[l
].list_phy_addr
=
747 tmp_p
+ (k
* lst_size
);
753 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
754 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
755 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
757 size
= tx_cfg
->fifo_len
;
758 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
759 if (!fifo
->ufo_in_band_v
)
761 mem_allocated
+= (size
* sizeof(u64
));
764 /* Allocation and initialization of RXDs in Rings */
766 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
767 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
768 struct ring_info
*ring
= &mac_control
->rings
[i
];
770 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
771 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
776 size
+= rx_cfg
->num_rxd
;
777 ring
->block_count
= rx_cfg
->num_rxd
/
778 (rxd_count
[nic
->rxd_mode
] + 1);
779 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
781 if (nic
->rxd_mode
== RXD_MODE_1
)
782 size
= (size
* (sizeof(struct RxD1
)));
784 size
= (size
* (sizeof(struct RxD3
)));
786 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
787 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
788 struct ring_info
*ring
= &mac_control
->rings
[i
];
790 ring
->rx_curr_get_info
.block_index
= 0;
791 ring
->rx_curr_get_info
.offset
= 0;
792 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
793 ring
->rx_curr_put_info
.block_index
= 0;
794 ring
->rx_curr_put_info
.offset
= 0;
795 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
798 ring
->lro
= lro_enable
;
800 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
801 /* Allocating all the Rx blocks */
802 for (j
= 0; j
< blk_cnt
; j
++) {
803 struct rx_block_info
*rx_blocks
;
806 rx_blocks
= &ring
->rx_blocks
[j
];
807 size
= SIZE_OF_BLOCK
; /* size is always page size */
808 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
810 if (tmp_v_addr
== NULL
) {
812 * In case of failure, free_shared_mem()
813 * is called, which should free any
814 * memory that was alloced till the
817 rx_blocks
->block_virt_addr
= tmp_v_addr
;
820 mem_allocated
+= size
;
821 memset(tmp_v_addr
, 0, size
);
823 size
= sizeof(struct rxd_info
) *
824 rxd_count
[nic
->rxd_mode
];
825 rx_blocks
->block_virt_addr
= tmp_v_addr
;
826 rx_blocks
->block_dma_addr
= tmp_p_addr
;
827 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
828 if (!rx_blocks
->rxds
)
830 mem_allocated
+= size
;
831 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
832 rx_blocks
->rxds
[l
].virt_addr
=
833 rx_blocks
->block_virt_addr
+
834 (rxd_size
[nic
->rxd_mode
] * l
);
835 rx_blocks
->rxds
[l
].dma_addr
=
836 rx_blocks
->block_dma_addr
+
837 (rxd_size
[nic
->rxd_mode
] * l
);
840 /* Interlinking all Rx Blocks */
841 for (j
= 0; j
< blk_cnt
; j
++) {
842 int next
= (j
+ 1) % blk_cnt
;
843 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
844 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
845 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
846 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
848 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
849 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
850 (unsigned long)tmp_v_addr_next
;
851 pre_rxd_blk
->pNext_RxD_Blk_physical
=
852 (u64
)tmp_p_addr_next
;
855 if (nic
->rxd_mode
== RXD_MODE_3B
) {
857 * Allocation of Storages for buffer addresses in 2BUFF mode
858 * and the buffers as well.
860 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
861 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
862 struct ring_info
*ring
= &mac_control
->rings
[i
];
864 blk_cnt
= rx_cfg
->num_rxd
/
865 (rxd_count
[nic
->rxd_mode
] + 1);
866 size
= sizeof(struct buffAdd
*) * blk_cnt
;
867 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
870 mem_allocated
+= size
;
871 for (j
= 0; j
< blk_cnt
; j
++) {
874 size
= sizeof(struct buffAdd
) *
875 (rxd_count
[nic
->rxd_mode
] + 1);
876 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
879 mem_allocated
+= size
;
880 while (k
!= rxd_count
[nic
->rxd_mode
]) {
881 ba
= &ring
->ba
[j
][k
];
882 size
= BUF0_LEN
+ ALIGN_SIZE
;
883 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
886 mem_allocated
+= size
;
887 tmp
= (unsigned long)ba
->ba_0_org
;
889 tmp
&= ~((unsigned long)ALIGN_SIZE
);
890 ba
->ba_0
= (void *)tmp
;
892 size
= BUF1_LEN
+ ALIGN_SIZE
;
893 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
896 mem_allocated
+= size
;
897 tmp
= (unsigned long)ba
->ba_1_org
;
899 tmp
&= ~((unsigned long)ALIGN_SIZE
);
900 ba
->ba_1
= (void *)tmp
;
907 /* Allocation and initialization of Statistics block */
908 size
= sizeof(struct stat_block
);
909 mac_control
->stats_mem
=
910 pci_alloc_consistent(nic
->pdev
, size
,
911 &mac_control
->stats_mem_phy
);
913 if (!mac_control
->stats_mem
) {
915 * In case of failure, free_shared_mem() is called, which
916 * should free any memory that was alloced till the
921 mem_allocated
+= size
;
922 mac_control
->stats_mem_sz
= size
;
924 tmp_v_addr
= mac_control
->stats_mem
;
925 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
926 memset(tmp_v_addr
, 0, size
);
927 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
928 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
929 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
934 * free_shared_mem - Free the allocated Memory
935 * @nic: Device private variable.
936 * Description: This function is to free all memory locations allocated by
937 * the init_shared_mem() function and return it to the kernel.
940 static void free_shared_mem(struct s2io_nic
*nic
)
942 int i
, j
, blk_cnt
, size
;
944 dma_addr_t tmp_p_addr
;
945 int lst_size
, lst_per_page
;
946 struct net_device
*dev
;
948 struct config_param
*config
;
949 struct mac_info
*mac_control
;
950 struct stat_block
*stats
;
951 struct swStat
*swstats
;
958 config
= &nic
->config
;
959 mac_control
= &nic
->mac_control
;
960 stats
= mac_control
->stats_info
;
961 swstats
= &stats
->sw_stat
;
963 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
964 lst_per_page
= PAGE_SIZE
/ lst_size
;
966 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
967 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
968 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
970 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
971 for (j
= 0; j
< page_num
; j
++) {
972 int mem_blks
= (j
* lst_per_page
);
973 struct list_info_hold
*fli
;
975 if (!fifo
->list_info
)
978 fli
= &fifo
->list_info
[mem_blks
];
979 if (!fli
->list_virt_addr
)
981 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
984 swstats
->mem_freed
+= PAGE_SIZE
;
986 /* If we got a zero DMA address during allocation,
989 if (mac_control
->zerodma_virt_addr
) {
990 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
991 mac_control
->zerodma_virt_addr
,
994 "%s: Freeing TxDL with zero DMA address. "
995 "Virtual address %p\n",
996 dev
->name
, mac_control
->zerodma_virt_addr
);
997 swstats
->mem_freed
+= PAGE_SIZE
;
999 kfree(fifo
->list_info
);
1000 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1001 sizeof(struct list_info_hold
);
1004 size
= SIZE_OF_BLOCK
;
1005 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1006 struct ring_info
*ring
= &mac_control
->rings
[i
];
1008 blk_cnt
= ring
->block_count
;
1009 for (j
= 0; j
< blk_cnt
; j
++) {
1010 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1011 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1012 if (tmp_v_addr
== NULL
)
1014 pci_free_consistent(nic
->pdev
, size
,
1015 tmp_v_addr
, tmp_p_addr
);
1016 swstats
->mem_freed
+= size
;
1017 kfree(ring
->rx_blocks
[j
].rxds
);
1018 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1019 rxd_count
[nic
->rxd_mode
];
1023 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1024 /* Freeing buffer storage addresses in 2BUFF mode. */
1025 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1026 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1027 struct ring_info
*ring
= &mac_control
->rings
[i
];
1029 blk_cnt
= rx_cfg
->num_rxd
/
1030 (rxd_count
[nic
->rxd_mode
] + 1);
1031 for (j
= 0; j
< blk_cnt
; j
++) {
1035 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1036 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1037 kfree(ba
->ba_0_org
);
1038 swstats
->mem_freed
+=
1039 BUF0_LEN
+ ALIGN_SIZE
;
1040 kfree(ba
->ba_1_org
);
1041 swstats
->mem_freed
+=
1042 BUF1_LEN
+ ALIGN_SIZE
;
1046 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1047 (rxd_count
[nic
->rxd_mode
] + 1);
1050 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1055 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1056 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1057 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1059 if (fifo
->ufo_in_band_v
) {
1060 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1062 kfree(fifo
->ufo_in_band_v
);
1066 if (mac_control
->stats_mem
) {
1067 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1068 pci_free_consistent(nic
->pdev
,
1069 mac_control
->stats_mem_sz
,
1070 mac_control
->stats_mem
,
1071 mac_control
->stats_mem_phy
);
1076 * s2io_verify_pci_mode -
1079 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1081 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1082 register u64 val64
= 0;
1085 val64
= readq(&bar0
->pci_mode
);
1086 mode
= (u8
)GET_PCI_MODE(val64
);
1088 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1089 return -1; /* Unknown PCI mode */
1093 #define NEC_VENID 0x1033
1094 #define NEC_DEVID 0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1097 struct pci_dev
*tdev
= NULL
;
1098 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1099 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1100 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1109 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1111 * s2io_print_pci_mode -
1113 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1115 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1116 register u64 val64
= 0;
1118 struct config_param
*config
= &nic
->config
;
1119 const char *pcimode
;
1121 val64
= readq(&bar0
->pci_mode
);
1122 mode
= (u8
)GET_PCI_MODE(val64
);
1124 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1125 return -1; /* Unknown PCI mode */
1127 config
->bus_speed
= bus_speed
[mode
];
1129 if (s2io_on_nec_bridge(nic
->pdev
)) {
1130 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1136 case PCI_MODE_PCI_33
:
1137 pcimode
= "33MHz PCI bus";
1139 case PCI_MODE_PCI_66
:
1140 pcimode
= "66MHz PCI bus";
1142 case PCI_MODE_PCIX_M1_66
:
1143 pcimode
= "66MHz PCIX(M1) bus";
1145 case PCI_MODE_PCIX_M1_100
:
1146 pcimode
= "100MHz PCIX(M1) bus";
1148 case PCI_MODE_PCIX_M1_133
:
1149 pcimode
= "133MHz PCIX(M1) bus";
1151 case PCI_MODE_PCIX_M2_66
:
1152 pcimode
= "133MHz PCIX(M2) bus";
1154 case PCI_MODE_PCIX_M2_100
:
1155 pcimode
= "200MHz PCIX(M2) bus";
1157 case PCI_MODE_PCIX_M2_133
:
1158 pcimode
= "266MHz PCIX(M2) bus";
1161 pcimode
= "unsupported bus!";
1165 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1166 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1172 * init_tti - Initialization transmit traffic interrupt scheme
1173 * @nic: device private variable
1174 * @link: link status (UP/DOWN) used to enable/disable continuous
1175 * transmit interrupts
1176 * Description: The function configures transmit traffic interrupts
1177 * Return Value: SUCCESS on success and
1181 static int init_tti(struct s2io_nic
*nic
, int link
)
1183 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1184 register u64 val64
= 0;
1186 struct config_param
*config
= &nic
->config
;
1188 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1190 * TTI Initialization. Default Tx timer gets us about
1191 * 250 interrupts per sec. Continuous interrupts are enabled
1194 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1195 int count
= (nic
->config
.bus_speed
* 125)/2;
1196 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1198 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1200 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1205 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1206 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1207 writeq(val64
, &bar0
->tti_data1_mem
);
1209 if (nic
->config
.intr_type
== MSI_X
) {
1210 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x300);
1215 if ((nic
->config
.tx_steering_type
==
1216 TX_DEFAULT_STEERING
) &&
1217 (config
->tx_fifo_num
> 1) &&
1218 (i
>= nic
->udp_fifo_idx
) &&
1219 (i
< (nic
->udp_fifo_idx
+
1220 nic
->total_udp_fifos
)))
1221 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x120);
1226 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232 writeq(val64
, &bar0
->tti_data2_mem
);
1234 val64
= TTI_CMD_MEM_WE
|
1235 TTI_CMD_MEM_STROBE_NEW_CMD
|
1236 TTI_CMD_MEM_OFFSET(i
);
1237 writeq(val64
, &bar0
->tti_command_mem
);
1239 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1240 TTI_CMD_MEM_STROBE_NEW_CMD
,
1241 S2IO_BIT_RESET
) != SUCCESS
)
1249 * init_nic - Initialization of hardware
1250 * @nic: device private variable
1251 * Description: The function sequentially configures every block
1252 * of the H/W from their reset values.
1253 * Return Value: SUCCESS on success and
1254 * '-1' on failure (endian settings incorrect).
1257 static int init_nic(struct s2io_nic
*nic
)
1259 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1260 struct net_device
*dev
= nic
->dev
;
1261 register u64 val64
= 0;
1266 unsigned long long mem_share
;
1268 struct config_param
*config
= &nic
->config
;
1269 struct mac_info
*mac_control
= &nic
->mac_control
;
1271 /* to set the swapper controle on the card */
1272 if (s2io_set_swapper(nic
)) {
1273 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1278 * Herc requires EOI to be removed from reset before XGXS, so..
1280 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1281 val64
= 0xA500000000ULL
;
1282 writeq(val64
, &bar0
->sw_reset
);
1284 val64
= readq(&bar0
->sw_reset
);
1287 /* Remove XGXS from reset state */
1289 writeq(val64
, &bar0
->sw_reset
);
1291 val64
= readq(&bar0
->sw_reset
);
1293 /* Ensure that it's safe to access registers by checking
1294 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1296 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1297 for (i
= 0; i
< 50; i
++) {
1298 val64
= readq(&bar0
->adapter_status
);
1299 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1307 /* Enable Receiving broadcasts */
1308 add
= &bar0
->mac_cfg
;
1309 val64
= readq(&bar0
->mac_cfg
);
1310 val64
|= MAC_RMAC_BCAST_ENABLE
;
1311 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1312 writel((u32
)val64
, add
);
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1314 writel((u32
) (val64
>> 32), (add
+ 4));
1316 /* Read registers in all blocks */
1317 val64
= readq(&bar0
->mac_int_mask
);
1318 val64
= readq(&bar0
->mc_int_mask
);
1319 val64
= readq(&bar0
->xgxs_int_mask
);
1323 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1325 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1326 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1327 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1328 &bar0
->dtx_control
, UF
);
1330 msleep(1); /* Necessary!! */
1334 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1335 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1336 &bar0
->dtx_control
, UF
);
1337 val64
= readq(&bar0
->dtx_control
);
1342 /* Tx DMA Initialization */
1344 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1345 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1346 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1347 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1349 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1350 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1352 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1353 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1355 if (i
== (config
->tx_fifo_num
- 1)) {
1362 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1372 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1377 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1388 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1391 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1392 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1394 val64
= readq(&bar0
->tx_fifo_partition_0
);
1395 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1396 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1399 * Initialization of Tx_PA_CONFIG register to ignore packet
1400 * integrity checking.
1402 val64
= readq(&bar0
->tx_pa_cfg
);
1403 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1404 TX_PA_CFG_IGNORE_SNAP_OUI
|
1405 TX_PA_CFG_IGNORE_LLC_CTRL
|
1406 TX_PA_CFG_IGNORE_L2_ERR
;
1407 writeq(val64
, &bar0
->tx_pa_cfg
);
1409 /* Rx DMA intialization. */
1411 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1412 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1414 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1416 writeq(val64
, &bar0
->rx_queue_priority
);
1419 * Allocating equal share of memory to all the
1423 if (nic
->device_type
& XFRAME_II_DEVICE
)
1428 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1431 mem_share
= (mem_size
/ config
->rx_ring_num
+
1432 mem_size
% config
->rx_ring_num
);
1433 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1436 mem_share
= (mem_size
/ config
->rx_ring_num
);
1437 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1440 mem_share
= (mem_size
/ config
->rx_ring_num
);
1441 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1444 mem_share
= (mem_size
/ config
->rx_ring_num
);
1445 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1448 mem_share
= (mem_size
/ config
->rx_ring_num
);
1449 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1452 mem_share
= (mem_size
/ config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1456 mem_share
= (mem_size
/ config
->rx_ring_num
);
1457 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1460 mem_share
= (mem_size
/ config
->rx_ring_num
);
1461 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1465 writeq(val64
, &bar0
->rx_queue_cfg
);
1468 * Filling Tx round robin registers
1469 * as per the number of FIFOs for equal scheduling priority
1471 switch (config
->tx_fifo_num
) {
1474 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1475 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1481 val64
= 0x0001000100010001ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1483 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1484 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1485 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1486 val64
= 0x0001000100000000ULL
;
1487 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1490 val64
= 0x0001020001020001ULL
;
1491 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1492 val64
= 0x0200010200010200ULL
;
1493 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1494 val64
= 0x0102000102000102ULL
;
1495 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1496 val64
= 0x0001020001020001ULL
;
1497 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1498 val64
= 0x0200010200000000ULL
;
1499 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1502 val64
= 0x0001020300010203ULL
;
1503 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1506 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1507 val64
= 0x0001020300000000ULL
;
1508 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1511 val64
= 0x0001020304000102ULL
;
1512 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1513 val64
= 0x0304000102030400ULL
;
1514 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1515 val64
= 0x0102030400010203ULL
;
1516 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1517 val64
= 0x0400010203040001ULL
;
1518 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1519 val64
= 0x0203040000000000ULL
;
1520 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1523 val64
= 0x0001020304050001ULL
;
1524 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1525 val64
= 0x0203040500010203ULL
;
1526 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1527 val64
= 0x0405000102030405ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1529 val64
= 0x0001020304050001ULL
;
1530 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1531 val64
= 0x0203040500000000ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1535 val64
= 0x0001020304050600ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1537 val64
= 0x0102030405060001ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1539 val64
= 0x0203040506000102ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1541 val64
= 0x0304050600010203ULL
;
1542 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1543 val64
= 0x0405060000000000ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1547 val64
= 0x0001020304050607ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1549 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1550 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1551 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1552 val64
= 0x0001020300000000ULL
;
1553 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1557 /* Enable all configured Tx FIFO partitions */
1558 val64
= readq(&bar0
->tx_fifo_partition_0
);
1559 val64
|= (TX_FIFO_PARTITION_EN
);
1560 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1562 /* Filling the Rx round robin registers as per the
1563 * number of Rings and steering based on QoS with
1566 switch (config
->rx_ring_num
) {
1569 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1570 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1573 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1575 val64
= 0x8080808080808080ULL
;
1576 writeq(val64
, &bar0
->rts_qos_steering
);
1579 val64
= 0x0001000100010001ULL
;
1580 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1581 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1582 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1583 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1584 val64
= 0x0001000100000000ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1587 val64
= 0x8080808040404040ULL
;
1588 writeq(val64
, &bar0
->rts_qos_steering
);
1591 val64
= 0x0001020001020001ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1593 val64
= 0x0200010200010200ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1595 val64
= 0x0102000102000102ULL
;
1596 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1597 val64
= 0x0001020001020001ULL
;
1598 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1599 val64
= 0x0200010200000000ULL
;
1600 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1602 val64
= 0x8080804040402020ULL
;
1603 writeq(val64
, &bar0
->rts_qos_steering
);
1606 val64
= 0x0001020300010203ULL
;
1607 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1608 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1609 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1610 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1611 val64
= 0x0001020300000000ULL
;
1612 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1614 val64
= 0x8080404020201010ULL
;
1615 writeq(val64
, &bar0
->rts_qos_steering
);
1618 val64
= 0x0001020304000102ULL
;
1619 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1620 val64
= 0x0304000102030400ULL
;
1621 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1622 val64
= 0x0102030400010203ULL
;
1623 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1624 val64
= 0x0400010203040001ULL
;
1625 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1626 val64
= 0x0203040000000000ULL
;
1627 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1629 val64
= 0x8080404020201008ULL
;
1630 writeq(val64
, &bar0
->rts_qos_steering
);
1633 val64
= 0x0001020304050001ULL
;
1634 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1635 val64
= 0x0203040500010203ULL
;
1636 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1637 val64
= 0x0405000102030405ULL
;
1638 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1639 val64
= 0x0001020304050001ULL
;
1640 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1641 val64
= 0x0203040500000000ULL
;
1642 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1644 val64
= 0x8080404020100804ULL
;
1645 writeq(val64
, &bar0
->rts_qos_steering
);
1648 val64
= 0x0001020304050600ULL
;
1649 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1650 val64
= 0x0102030405060001ULL
;
1651 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1652 val64
= 0x0203040506000102ULL
;
1653 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1654 val64
= 0x0304050600010203ULL
;
1655 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1656 val64
= 0x0405060000000000ULL
;
1657 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1659 val64
= 0x8080402010080402ULL
;
1660 writeq(val64
, &bar0
->rts_qos_steering
);
1663 val64
= 0x0001020304050607ULL
;
1664 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1665 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1666 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1667 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1668 val64
= 0x0001020300000000ULL
;
1669 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1671 val64
= 0x8040201008040201ULL
;
1672 writeq(val64
, &bar0
->rts_qos_steering
);
1678 for (i
= 0; i
< 8; i
++)
1679 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1681 /* Set the default rts frame length for the rings configured */
1682 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1683 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1684 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1686 /* Set the frame length for the configured rings
1687 * desired by the user
1689 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1690 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691 * specified frame length steering.
1692 * If the user provides the frame length then program
1693 * the rts_frm_len register for those values or else
1694 * leave it as it is.
1696 if (rts_frm_len
[i
] != 0) {
1697 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1698 &bar0
->rts_frm_len_n
[i
]);
1702 /* Disable differentiated services steering logic */
1703 for (i
= 0; i
< 64; i
++) {
1704 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1706 "%s: rts_ds_steer failed on codepoint %d\n",
1712 /* Program statistics memory */
1713 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1715 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1716 val64
= STAT_BC(0x320);
1717 writeq(val64
, &bar0
->stat_byte_cnt
);
1721 * Initializing the sampling rate for the device to calculate the
1722 * bandwidth utilization.
1724 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1725 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1726 writeq(val64
, &bar0
->mac_link_util
);
1729 * Initializing the Transmit and Receive Traffic Interrupt
1733 /* Initialize TTI */
1734 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1737 /* RTI Initialization */
1738 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1740 * Programmed to generate Apprx 500 Intrs per
1743 int count
= (nic
->config
.bus_speed
* 125)/4;
1744 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1746 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1752 writeq(val64
, &bar0
->rti_data1_mem
);
1754 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic
->config
.intr_type
== MSI_X
)
1757 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64
, &bar0
->rti_data2_mem
);
1764 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1765 val64
= RTI_CMD_MEM_WE
|
1766 RTI_CMD_MEM_STROBE_NEW_CMD
|
1767 RTI_CMD_MEM_OFFSET(i
);
1768 writeq(val64
, &bar0
->rti_command_mem
);
1771 * Once the operation completes, the Strobe bit of the
1772 * command register will be reset. We poll for this
1773 * particular condition. We wait for a maximum of 500ms
1774 * for the operation to complete, if it's not complete
1775 * by then we return error.
1779 val64
= readq(&bar0
->rti_command_mem
);
1780 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1784 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1794 * Initializing proper values as Pause threshold into all
1795 * the 8 Queues on Rx side.
1797 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1798 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1800 /* Disable RMAC PAD STRIPPING */
1801 add
= &bar0
->mac_cfg
;
1802 val64
= readq(&bar0
->mac_cfg
);
1803 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1805 writel((u32
) (val64
), add
);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1807 writel((u32
) (val64
>> 32), (add
+ 4));
1808 val64
= readq(&bar0
->mac_cfg
);
1810 /* Enable FCS stripping by adapter */
1811 add
= &bar0
->mac_cfg
;
1812 val64
= readq(&bar0
->mac_cfg
);
1813 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1814 if (nic
->device_type
== XFRAME_II_DEVICE
)
1815 writeq(val64
, &bar0
->mac_cfg
);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1818 writel((u32
) (val64
), add
);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1820 writel((u32
) (val64
>> 32), (add
+ 4));
1824 * Set the time value to be inserted in the pause frame
1825 * generated by xena.
1827 val64
= readq(&bar0
->rmac_pause_cfg
);
1828 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1830 writeq(val64
, &bar0
->rmac_pause_cfg
);
1833 * Set the Threshold Limit for Generating the pause frame
1834 * If the amount of data in any Queue exceeds ratio of
1835 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836 * pause frame is generated
1839 for (i
= 0; i
< 4; i
++) {
1840 val64
|= (((u64
)0xFF00 |
1841 nic
->mac_control
.mc_pause_threshold_q0q3
)
1844 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1847 for (i
= 0; i
< 4; i
++) {
1848 val64
|= (((u64
)0xFF00 |
1849 nic
->mac_control
.mc_pause_threshold_q4q7
)
1852 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1855 * TxDMA will stop Read request if the number of read split has
1856 * exceeded the limit pointed by shared_splits
1858 val64
= readq(&bar0
->pic_control
);
1859 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1860 writeq(val64
, &bar0
->pic_control
);
1862 if (nic
->config
.bus_speed
== 266) {
1863 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1864 writeq(0x0, &bar0
->read_retry_delay
);
1865 writeq(0x0, &bar0
->write_retry_delay
);
1869 * Programming the Herc to split every write transaction
1870 * that does not start on an ADB to reduce disconnects.
1872 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1873 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1874 MISC_LINK_STABILITY_PRD(3);
1875 writeq(val64
, &bar0
->misc_control
);
1876 val64
= readq(&bar0
->pic_control2
);
1877 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878 writeq(val64
, &bar0
->pic_control2
);
1880 if (strstr(nic
->product_name
, "CX4")) {
1881 val64
= TMAC_AVG_IPG(0x17);
1882 writeq(val64
, &bar0
->tmac_avg_ipg
);
1887 #define LINK_UP_DOWN_INTERRUPT 1
1888 #define MAC_RMAC_ERR_TIMER 2
1890 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1892 if (nic
->device_type
== XFRAME_II_DEVICE
)
1893 return LINK_UP_DOWN_INTERRUPT
;
1895 return MAC_RMAC_ERR_TIMER
;
1899 * do_s2io_write_bits - update alarm bits in alarm register
1900 * @value: alarm bits
1901 * @flag: interrupt status
1902 * @addr: address value
1903 * Description: update alarm bits in alarm register
1907 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1911 temp64
= readq(addr
);
1913 if (flag
== ENABLE_INTRS
)
1914 temp64
&= ~((u64
)value
);
1916 temp64
|= ((u64
)value
);
1917 writeq(temp64
, addr
);
1920 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1922 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1923 register u64 gen_int_mask
= 0;
1926 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1927 if (mask
& TX_DMA_INTR
) {
1928 gen_int_mask
|= TXDMA_INT_M
;
1930 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1931 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1932 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1933 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1935 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1936 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1937 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1938 &bar0
->pfc_err_mask
);
1940 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1941 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1942 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1944 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1945 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1946 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1947 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1948 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1950 flag
, &bar0
->pcc_err_mask
);
1952 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1953 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1955 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1956 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1957 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1958 flag
, &bar0
->lso_err_mask
);
1960 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1961 flag
, &bar0
->tpa_err_mask
);
1963 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1966 if (mask
& TX_MAC_INTR
) {
1967 gen_int_mask
|= TXMAC_INT_M
;
1968 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1969 &bar0
->mac_int_mask
);
1970 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1971 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1972 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1973 flag
, &bar0
->mac_tmac_err_mask
);
1976 if (mask
& TX_XGXS_INTR
) {
1977 gen_int_mask
|= TXXGXS_INT_M
;
1978 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1979 &bar0
->xgxs_int_mask
);
1980 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1981 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1982 flag
, &bar0
->xgxs_txgxs_err_mask
);
1985 if (mask
& RX_DMA_INTR
) {
1986 gen_int_mask
|= RXDMA_INT_M
;
1987 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1988 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1989 flag
, &bar0
->rxdma_int_mask
);
1990 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1991 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1992 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1993 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1994 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1995 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1996 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1997 &bar0
->prc_pcix_err_mask
);
1998 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1999 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2000 &bar0
->rpa_err_mask
);
2001 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2002 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2003 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2004 RDA_FRM_ECC_SG_ERR
|
2005 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2006 flag
, &bar0
->rda_err_mask
);
2007 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2008 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2009 flag
, &bar0
->rti_err_mask
);
2012 if (mask
& RX_MAC_INTR
) {
2013 gen_int_mask
|= RXMAC_INT_M
;
2014 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2015 &bar0
->mac_int_mask
);
2016 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2017 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2018 RMAC_DOUBLE_ECC_ERR
);
2019 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2020 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2021 do_s2io_write_bits(interruptible
,
2022 flag
, &bar0
->mac_rmac_err_mask
);
2025 if (mask
& RX_XGXS_INTR
) {
2026 gen_int_mask
|= RXXGXS_INT_M
;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2028 &bar0
->xgxs_int_mask
);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2030 &bar0
->xgxs_rxgxs_err_mask
);
2033 if (mask
& MC_INTR
) {
2034 gen_int_mask
|= MC_INT_M
;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2036 flag
, &bar0
->mc_int_mask
);
2037 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2038 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2039 &bar0
->mc_err_mask
);
2041 nic
->general_int_mask
= gen_int_mask
;
2043 /* Remove this line when alarm interrupts are enabled */
2044 nic
->general_int_mask
= 0;
2048 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2049 * @nic: device private variable,
2050 * @mask: A mask indicating which Intr block must be modified and,
2051 * @flag: A flag indicating whether to enable or disable the Intrs.
2052 * Description: This function will either disable or enable the interrupts
2053 * depending on the flag argument. The mask argument can be used to
2054 * enable/disable any Intr block.
2055 * Return Value: NONE.
2058 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2060 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2061 register u64 temp64
= 0, intr_mask
= 0;
2063 intr_mask
= nic
->general_int_mask
;
2065 /* Top level interrupt classification */
2066 /* PIC Interrupts */
2067 if (mask
& TX_PIC_INTR
) {
2068 /* Enable PIC Intrs in the general intr mask register */
2069 intr_mask
|= TXPIC_INT_M
;
2070 if (flag
== ENABLE_INTRS
) {
2072 * If Hercules adapter enable GPIO otherwise
2073 * disable all PCIX, Flash, MDIO, IIC and GPIO
2074 * interrupts for now.
2077 if (s2io_link_fault_indication(nic
) ==
2078 LINK_UP_DOWN_INTERRUPT
) {
2079 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2080 &bar0
->pic_int_mask
);
2081 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2082 &bar0
->gpio_int_mask
);
2084 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2085 } else if (flag
== DISABLE_INTRS
) {
2087 * Disable PIC Intrs in the general
2088 * intr mask register
2090 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2094 /* Tx traffic interrupts */
2095 if (mask
& TX_TRAFFIC_INTR
) {
2096 intr_mask
|= TXTRAFFIC_INT_M
;
2097 if (flag
== ENABLE_INTRS
) {
2099 * Enable all the Tx side interrupts
2100 * writing 0 Enables all 64 TX interrupt levels
2102 writeq(0x0, &bar0
->tx_traffic_mask
);
2103 } else if (flag
== DISABLE_INTRS
) {
2105 * Disable Tx Traffic Intrs in the general intr mask
2108 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2112 /* Rx traffic interrupts */
2113 if (mask
& RX_TRAFFIC_INTR
) {
2114 intr_mask
|= RXTRAFFIC_INT_M
;
2115 if (flag
== ENABLE_INTRS
) {
2116 /* writing 0 Enables all 8 RX interrupt levels */
2117 writeq(0x0, &bar0
->rx_traffic_mask
);
2118 } else if (flag
== DISABLE_INTRS
) {
2120 * Disable Rx Traffic Intrs in the general intr mask
2123 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2127 temp64
= readq(&bar0
->general_int_mask
);
2128 if (flag
== ENABLE_INTRS
)
2129 temp64
&= ~((u64
)intr_mask
);
2131 temp64
= DISABLE_ALL_INTRS
;
2132 writeq(temp64
, &bar0
->general_int_mask
);
2134 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2138 * verify_pcc_quiescent- Checks for PCC quiescent state
2139 * Return: 1 If PCC is quiescence
2140 * 0 If PCC is not quiescence
2142 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2145 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2146 u64 val64
= readq(&bar0
->adapter_status
);
2148 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2150 if (flag
== false) {
2151 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2152 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2155 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2159 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2160 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2161 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2164 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2165 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2173 * verify_xena_quiescence - Checks whether the H/W is ready
2174 * Description: Returns whether the H/W is ready to go or not. Depending
2175 * on whether adapter enable bit was written or not the comparison
2176 * differs and the calling function passes the input argument flag to
2178 * Return: 1 If xena is quiescence
2179 * 0 If Xena is not quiescence
2182 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2185 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2186 u64 val64
= readq(&bar0
->adapter_status
);
2187 mode
= s2io_verify_pci_mode(sp
);
2189 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2190 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2193 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2194 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2197 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2198 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2201 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2202 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2205 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2206 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2209 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2210 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2213 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2214 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2217 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2218 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2223 * In PCI 33 mode, the P_PLL is not used, and therefore,
2224 * the the P_PLL_LOCK bit in the adapter_status register will
2227 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2228 sp
->device_type
== XFRAME_II_DEVICE
&&
2229 mode
!= PCI_MODE_PCI_33
) {
2230 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2233 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2234 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2235 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2242 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2243 * @sp: Pointer to device specifc structure
2245 * New procedure to clear mac address reading problems on Alpha platforms
2249 static void fix_mac_address(struct s2io_nic
*sp
)
2251 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2255 while (fix_mac
[i
] != END_SIGN
) {
2256 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2258 val64
= readq(&bar0
->gpio_control
);
2263 * start_nic - Turns the device on
2264 * @nic : device private variable.
2266 * This function actually turns the device on. Before this function is
2267 * called,all Registers are configured from their reset states
2268 * and shared memory is allocated but the NIC is still quiescent. On
2269 * calling this function, the device interrupts are cleared and the NIC is
2270 * literally switched on by writing into the adapter control register.
2272 * SUCCESS on success and -1 on failure.
2275 static int start_nic(struct s2io_nic
*nic
)
2277 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2278 struct net_device
*dev
= nic
->dev
;
2279 register u64 val64
= 0;
2281 struct config_param
*config
= &nic
->config
;
2282 struct mac_info
*mac_control
= &nic
->mac_control
;
2284 /* PRC Initialization and configuration */
2285 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2286 struct ring_info
*ring
= &mac_control
->rings
[i
];
2288 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2289 &bar0
->prc_rxd0_n
[i
]);
2291 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2292 if (nic
->rxd_mode
== RXD_MODE_1
)
2293 val64
|= PRC_CTRL_RC_ENABLED
;
2295 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2296 if (nic
->device_type
== XFRAME_II_DEVICE
)
2297 val64
|= PRC_CTRL_GROUP_READS
;
2298 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2303 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2304 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305 val64
= readq(&bar0
->rx_pa_cfg
);
2306 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2307 writeq(val64
, &bar0
->rx_pa_cfg
);
2310 if (vlan_tag_strip
== 0) {
2311 val64
= readq(&bar0
->rx_pa_cfg
);
2312 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2313 writeq(val64
, &bar0
->rx_pa_cfg
);
2314 nic
->vlan_strip_flag
= 0;
2318 * Enabling MC-RLDRAM. After enabling the device, we timeout
2319 * for around 100ms, which is approximately the time required
2320 * for the device to be ready for operation.
2322 val64
= readq(&bar0
->mc_rldram_mrs
);
2323 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2324 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2325 val64
= readq(&bar0
->mc_rldram_mrs
);
2327 msleep(100); /* Delay by around 100 ms. */
2329 /* Enabling ECC Protection. */
2330 val64
= readq(&bar0
->adapter_control
);
2331 val64
&= ~ADAPTER_ECC_EN
;
2332 writeq(val64
, &bar0
->adapter_control
);
2335 * Verify if the device is ready to be enabled, if so enable
2338 val64
= readq(&bar0
->adapter_status
);
2339 if (!verify_xena_quiescence(nic
)) {
2340 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2341 "Adapter status reads: 0x%llx\n",
2342 dev
->name
, (unsigned long long)val64
);
2347 * With some switches, link might be already up at this point.
2348 * Because of this weird behavior, when we enable laser,
2349 * we may not get link. We need to handle this. We cannot
2350 * figure out which switch is misbehaving. So we are forced to
2351 * make a global change.
2354 /* Enabling Laser. */
2355 val64
= readq(&bar0
->adapter_control
);
2356 val64
|= ADAPTER_EOI_TX_ON
;
2357 writeq(val64
, &bar0
->adapter_control
);
2359 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2361 * Dont see link state interrupts initally on some switches,
2362 * so directly scheduling the link state task here.
2364 schedule_work(&nic
->set_link_task
);
2366 /* SXE-002: Initialize link and activity LED */
2367 subid
= nic
->pdev
->subsystem_device
;
2368 if (((subid
& 0xFF) >= 0x07) &&
2369 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2370 val64
= readq(&bar0
->gpio_control
);
2371 val64
|= 0x0000800000000000ULL
;
2372 writeq(val64
, &bar0
->gpio_control
);
2373 val64
= 0x0411040400000000ULL
;
2374 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2380 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2382 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2383 struct TxD
*txdlp
, int get_off
)
2385 struct s2io_nic
*nic
= fifo_data
->nic
;
2386 struct sk_buff
*skb
;
2391 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2392 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2393 sizeof(u64
), PCI_DMA_TODEVICE
);
2397 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2399 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2402 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2403 skb
->len
- skb
->data_len
, PCI_DMA_TODEVICE
);
2404 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2407 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2408 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2409 if (!txds
->Buffer_Pointer
)
2411 pci_unmap_page(nic
->pdev
,
2412 (dma_addr_t
)txds
->Buffer_Pointer
,
2413 frag
->size
, PCI_DMA_TODEVICE
);
2416 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2421 * free_tx_buffers - Free all queued Tx buffers
2422 * @nic : device private variable.
2424 * Free all queued Tx buffers.
2425 * Return Value: void
2428 static void free_tx_buffers(struct s2io_nic
*nic
)
2430 struct net_device
*dev
= nic
->dev
;
2431 struct sk_buff
*skb
;
2435 struct config_param
*config
= &nic
->config
;
2436 struct mac_info
*mac_control
= &nic
->mac_control
;
2437 struct stat_block
*stats
= mac_control
->stats_info
;
2438 struct swStat
*swstats
= &stats
->sw_stat
;
2440 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2441 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2442 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2443 unsigned long flags
;
2445 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2446 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2447 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2448 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2450 swstats
->mem_freed
+= skb
->truesize
;
2456 "%s: forcibly freeing %d skbs on FIFO%d\n",
2458 fifo
->tx_curr_get_info
.offset
= 0;
2459 fifo
->tx_curr_put_info
.offset
= 0;
2460 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2465 * stop_nic - To stop the nic
2466 * @nic ; device private variable.
2468 * This function does exactly the opposite of what the start_nic()
2469 * function does. This function is called to stop the device.
2474 static void stop_nic(struct s2io_nic
*nic
)
2476 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2477 register u64 val64
= 0;
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2482 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2483 interruptible
|= TX_PIC_INTR
;
2484 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64
= readq(&bar0
->adapter_control
);
2488 val64
&= ~(ADAPTER_CNTL_EN
);
2489 writeq(val64
, &bar0
->adapter_control
);
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2512 * SUCCESS on success or an appropriate -ve value on failure.
2514 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2517 struct sk_buff
*skb
;
2519 int off
, size
, block_no
, block_no1
;
2524 struct RxD_t
*first_rxdp
= NULL
;
2525 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2529 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2531 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2533 block_no1
= ring
->rx_curr_get_info
.block_index
;
2534 while (alloc_tab
< alloc_cnt
) {
2535 block_no
= ring
->rx_curr_put_info
.block_index
;
2537 off
= ring
->rx_curr_put_info
.offset
;
2539 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2541 rxd_index
= off
+ 1;
2543 rxd_index
+= (block_no
* ring
->rxd_count
);
2545 if ((block_no
== block_no1
) &&
2546 (off
== ring
->rx_curr_get_info
.offset
) &&
2547 (rxdp
->Host_Control
)) {
2548 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2552 if (off
&& (off
== ring
->rxd_count
)) {
2553 ring
->rx_curr_put_info
.block_index
++;
2554 if (ring
->rx_curr_put_info
.block_index
==
2556 ring
->rx_curr_put_info
.block_index
= 0;
2557 block_no
= ring
->rx_curr_put_info
.block_index
;
2559 ring
->rx_curr_put_info
.offset
= off
;
2560 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2561 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2562 ring
->dev
->name
, rxdp
);
2566 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2567 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2568 (rxdp
->Control_2
& s2BIT(0)))) {
2569 ring
->rx_curr_put_info
.offset
= off
;
2572 /* calculate size of skb based on ring mode */
2574 HEADER_ETHERNET_II_802_3_SIZE
+
2575 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2576 if (ring
->rxd_mode
== RXD_MODE_1
)
2577 size
+= NET_IP_ALIGN
;
2579 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2582 skb
= dev_alloc_skb(size
);
2584 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2588 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2590 swstats
->mem_alloc_fail_cnt
++;
2594 swstats
->mem_allocated
+= skb
->truesize
;
2596 if (ring
->rxd_mode
== RXD_MODE_1
) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1
= (struct RxD1
*)rxdp
;
2599 memset(rxdp
, 0, sizeof(struct RxD1
));
2600 skb_reserve(skb
, NET_IP_ALIGN
);
2601 rxdp1
->Buffer0_ptr
=
2602 pci_map_single(ring
->pdev
, skb
->data
,
2603 size
- NET_IP_ALIGN
,
2604 PCI_DMA_FROMDEVICE
);
2605 if (pci_dma_mapping_error(nic
->pdev
,
2606 rxdp1
->Buffer0_ptr
))
2607 goto pci_map_failed
;
2610 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2611 rxdp
->Host_Control
= (unsigned long)skb
;
2612 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2615 * 2 buffer mode provides 128
2616 * byte aligned receive buffers.
2619 rxdp3
= (struct RxD3
*)rxdp
;
2620 /* save buffer pointers to avoid frequent dma mapping */
2621 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2622 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2623 memset(rxdp
, 0, sizeof(struct RxD3
));
2624 /* restore the buffer pointers for dma sync*/
2625 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2626 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2628 ba
= &ring
->ba
[block_no
][off
];
2629 skb_reserve(skb
, BUF0_LEN
);
2630 tmp
= (u64
)(unsigned long)skb
->data
;
2633 skb
->data
= (void *) (unsigned long)tmp
;
2634 skb_reset_tail_pointer(skb
);
2637 rxdp3
->Buffer0_ptr
=
2638 pci_map_single(ring
->pdev
, ba
->ba_0
,
2640 PCI_DMA_FROMDEVICE
);
2641 if (pci_dma_mapping_error(nic
->pdev
,
2642 rxdp3
->Buffer0_ptr
))
2643 goto pci_map_failed
;
2645 pci_dma_sync_single_for_device(ring
->pdev
,
2646 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2648 PCI_DMA_FROMDEVICE
);
2650 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2651 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2652 /* Two buffer mode */
2655 * Buffer2 will have L3/L4 header plus
2658 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2661 PCI_DMA_FROMDEVICE
);
2663 if (pci_dma_mapping_error(nic
->pdev
,
2664 rxdp3
->Buffer2_ptr
))
2665 goto pci_map_failed
;
2668 rxdp3
->Buffer1_ptr
=
2669 pci_map_single(ring
->pdev
,
2672 PCI_DMA_FROMDEVICE
);
2674 if (pci_dma_mapping_error(nic
->pdev
,
2675 rxdp3
->Buffer1_ptr
)) {
2676 pci_unmap_single(ring
->pdev
,
2677 (dma_addr_t
)(unsigned long)
2680 PCI_DMA_FROMDEVICE
);
2681 goto pci_map_failed
;
2684 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2685 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2688 rxdp
->Control_2
|= s2BIT(0);
2689 rxdp
->Host_Control
= (unsigned long) (skb
);
2691 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2692 rxdp
->Control_1
|= RXD_OWN_XENA
;
2694 if (off
== (ring
->rxd_count
+ 1))
2696 ring
->rx_curr_put_info
.offset
= off
;
2698 rxdp
->Control_2
|= SET_RXD_MARKER
;
2699 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2702 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2706 ring
->rx_bufs_left
+= 1;
2711 /* Transfer ownership of first descriptor to adapter just before
2712 * exiting. Before that, use memory barrier so that ownership
2713 * and other fields are seen by adapter correctly.
2717 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2723 swstats
->pci_map_fail_cnt
++;
2724 swstats
->mem_freed
+= skb
->truesize
;
2725 dev_kfree_skb_irq(skb
);
2729 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2731 struct net_device
*dev
= sp
->dev
;
2733 struct sk_buff
*skb
;
2738 struct mac_info
*mac_control
= &sp
->mac_control
;
2739 struct stat_block
*stats
= mac_control
->stats_info
;
2740 struct swStat
*swstats
= &stats
->sw_stat
;
2742 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2743 rxdp
= mac_control
->rings
[ring_no
].
2744 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2745 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2748 if (sp
->rxd_mode
== RXD_MODE_1
) {
2749 rxdp1
= (struct RxD1
*)rxdp
;
2750 pci_unmap_single(sp
->pdev
,
2751 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2753 HEADER_ETHERNET_II_802_3_SIZE
+
2754 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2755 PCI_DMA_FROMDEVICE
);
2756 memset(rxdp
, 0, sizeof(struct RxD1
));
2757 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2758 rxdp3
= (struct RxD3
*)rxdp
;
2759 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2760 pci_unmap_single(sp
->pdev
,
2761 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2763 PCI_DMA_FROMDEVICE
);
2764 pci_unmap_single(sp
->pdev
,
2765 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2767 PCI_DMA_FROMDEVICE
);
2768 pci_unmap_single(sp
->pdev
,
2769 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2771 PCI_DMA_FROMDEVICE
);
2772 memset(rxdp
, 0, sizeof(struct RxD3
));
2774 swstats
->mem_freed
+= skb
->truesize
;
2776 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2781 * free_rx_buffers - Frees all Rx buffers
2782 * @sp: device private variable.
2784 * This function will free all Rx buffers allocated by host.
2789 static void free_rx_buffers(struct s2io_nic
*sp
)
2791 struct net_device
*dev
= sp
->dev
;
2792 int i
, blk
= 0, buf_cnt
= 0;
2793 struct config_param
*config
= &sp
->config
;
2794 struct mac_info
*mac_control
= &sp
->mac_control
;
2796 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2797 struct ring_info
*ring
= &mac_control
->rings
[i
];
2799 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2800 free_rxd_blk(sp
, i
, blk
);
2802 ring
->rx_curr_put_info
.block_index
= 0;
2803 ring
->rx_curr_get_info
.block_index
= 0;
2804 ring
->rx_curr_put_info
.offset
= 0;
2805 ring
->rx_curr_get_info
.offset
= 0;
2806 ring
->rx_bufs_left
= 0;
2807 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808 dev
->name
, buf_cnt
, i
);
2812 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2814 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2815 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2822 * s2io_poll - Rx interrupt handler for NAPI support
2823 * @napi : pointer to the napi structure.
2824 * @budget : The number of packets that were budgeted to be processed
2825 * during one pass through the 'Poll" function.
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2834 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2836 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2837 struct net_device
*dev
= ring
->dev
;
2838 int pkts_processed
= 0;
2839 u8 __iomem
*addr
= NULL
;
2841 struct s2io_nic
*nic
= netdev_priv(dev
);
2842 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2843 int budget_org
= budget
;
2845 if (unlikely(!is_s2io_card_up(nic
)))
2848 pkts_processed
= rx_intr_handler(ring
, budget
);
2849 s2io_chk_rx_buffers(nic
, ring
);
2851 if (pkts_processed
< budget_org
) {
2852 napi_complete(napi
);
2853 /*Re Enable MSI-Rx Vector*/
2854 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2855 addr
+= 7 - ring
->ring_no
;
2856 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2860 return pkts_processed
;
2863 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2865 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2866 int pkts_processed
= 0;
2867 int ring_pkts_processed
, i
;
2868 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2869 int budget_org
= budget
;
2870 struct config_param
*config
= &nic
->config
;
2871 struct mac_info
*mac_control
= &nic
->mac_control
;
2873 if (unlikely(!is_s2io_card_up(nic
)))
2876 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2877 struct ring_info
*ring
= &mac_control
->rings
[i
];
2878 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2879 s2io_chk_rx_buffers(nic
, ring
);
2880 pkts_processed
+= ring_pkts_processed
;
2881 budget
-= ring_pkts_processed
;
2885 if (pkts_processed
< budget_org
) {
2886 napi_complete(napi
);
2887 /* Re enable the Rx interrupts for the ring */
2888 writeq(0, &bar0
->rx_traffic_mask
);
2889 readl(&bar0
->rx_traffic_mask
);
2891 return pkts_processed
;
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2896 * s2io_netpoll - netpoll event handler entry point
2897 * @dev : pointer to the device structure.
2899 * This function will be called by upper layer to check for events on the
2900 * interface in situations where interrupts are disabled. It is used for
2901 * specific in-kernel networking tasks, such as remote consoles and kernel
2902 * debugging over the network (example netdump in RedHat).
2904 static void s2io_netpoll(struct net_device
*dev
)
2906 struct s2io_nic
*nic
= netdev_priv(dev
);
2907 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2908 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2910 struct config_param
*config
= &nic
->config
;
2911 struct mac_info
*mac_control
= &nic
->mac_control
;
2913 if (pci_channel_offline(nic
->pdev
))
2916 disable_irq(dev
->irq
);
2918 writeq(val64
, &bar0
->rx_traffic_int
);
2919 writeq(val64
, &bar0
->tx_traffic_int
);
2921 /* we need to free up the transmitted skbufs or else netpoll will
2922 * run out of skbs and will fail and eventually netpoll application such
2923 * as netdump will fail.
2925 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2926 tx_intr_handler(&mac_control
->fifos
[i
]);
2928 /* check for received packet and indicate up to network */
2929 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2930 struct ring_info
*ring
= &mac_control
->rings
[i
];
2932 rx_intr_handler(ring
, 0);
2935 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2936 struct ring_info
*ring
= &mac_control
->rings
[i
];
2938 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2940 "%s: Out of memory in Rx Netpoll!!\n",
2945 enable_irq(dev
->irq
);
2951 * rx_intr_handler - Rx interrupt handler
2952 * @ring_info: per ring structure.
2953 * @budget: budget for napi processing.
2955 * If the interrupt is because of a received frame or if the
2956 * receive ring contains fresh as yet un-processed frames,this function is
2957 * called. It picks out the RxD at which place the last Rx processing had
2958 * stopped and sends the skb to the OSM's Rx handler and then increments
2961 * No. of napi packets processed.
2963 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2965 int get_block
, put_block
;
2966 struct rx_curr_get_info get_info
, put_info
;
2968 struct sk_buff
*skb
;
2969 int pkt_cnt
= 0, napi_pkts
= 0;
2974 get_info
= ring_data
->rx_curr_get_info
;
2975 get_block
= get_info
.block_index
;
2976 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2977 put_block
= put_info
.block_index
;
2978 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2980 while (RXD_IS_UP2DT(rxdp
)) {
2982 * If your are next to put index then it's
2983 * FIFO full condition
2985 if ((get_block
== put_block
) &&
2986 (get_info
.offset
+ 1) == put_info
.offset
) {
2987 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2988 ring_data
->dev
->name
);
2991 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2993 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2994 ring_data
->dev
->name
);
2997 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2998 rxdp1
= (struct RxD1
*)rxdp
;
2999 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3002 HEADER_ETHERNET_II_802_3_SIZE
+
3005 PCI_DMA_FROMDEVICE
);
3006 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3007 rxdp3
= (struct RxD3
*)rxdp
;
3008 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3009 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3011 PCI_DMA_FROMDEVICE
);
3012 pci_unmap_single(ring_data
->pdev
,
3013 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3015 PCI_DMA_FROMDEVICE
);
3017 prefetch(skb
->data
);
3018 rx_osm_handler(ring_data
, rxdp
);
3020 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3021 rxdp
= ring_data
->rx_blocks
[get_block
].
3022 rxds
[get_info
.offset
].virt_addr
;
3023 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3024 get_info
.offset
= 0;
3025 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3027 if (get_block
== ring_data
->block_count
)
3029 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3030 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3033 if (ring_data
->nic
->config
.napi
) {
3040 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3043 if (ring_data
->lro
) {
3044 /* Clear all LRO sessions before exiting */
3045 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3046 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3048 update_L3L4_header(ring_data
->nic
, lro
);
3049 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3050 clear_lro_session(lro
);
3058 * tx_intr_handler - Transmit interrupt handler
3059 * @nic : device private variable
3061 * If an interrupt was raised to indicate DMA complete of the
3062 * Tx packet, this function is called. It identifies the last TxD
3063 * whose buffer was freed and frees all skbs whose data have already
3064 * DMA'ed into the NICs internal memory.
3069 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3071 struct s2io_nic
*nic
= fifo_data
->nic
;
3072 struct tx_curr_get_info get_info
, put_info
;
3073 struct sk_buff
*skb
= NULL
;
3076 unsigned long flags
= 0;
3078 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3079 struct swStat
*swstats
= &stats
->sw_stat
;
3081 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3084 get_info
= fifo_data
->tx_curr_get_info
;
3085 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3086 txdlp
= (struct TxD
*)
3087 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3088 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3089 (get_info
.offset
!= put_info
.offset
) &&
3090 (txdlp
->Host_Control
)) {
3091 /* Check for TxD errors */
3092 if (txdlp
->Control_1
& TXD_T_CODE
) {
3093 unsigned long long err
;
3094 err
= txdlp
->Control_1
& TXD_T_CODE
;
3096 swstats
->parity_err_cnt
++;
3099 /* update t_code statistics */
3100 err_mask
= err
>> 48;
3103 swstats
->tx_buf_abort_cnt
++;
3107 swstats
->tx_desc_abort_cnt
++;
3111 swstats
->tx_parity_err_cnt
++;
3115 swstats
->tx_link_loss_cnt
++;
3119 swstats
->tx_list_proc_err_cnt
++;
3124 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3126 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3127 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3133 /* Updating the statistics block */
3134 nic
->dev
->stats
.tx_bytes
+= skb
->len
;
3135 swstats
->mem_freed
+= skb
->truesize
;
3136 dev_kfree_skb_irq(skb
);
3139 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3140 get_info
.offset
= 0;
3141 txdlp
= (struct TxD
*)
3142 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3143 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3146 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3148 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3152 * s2io_mdio_write - Function to write in to MDIO registers
3153 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3154 * @addr : address value
3155 * @value : data value
3156 * @dev : pointer to net_device structure
3158 * This function is used to write values to the MDIO registers
3161 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3162 struct net_device
*dev
)
3165 struct s2io_nic
*sp
= netdev_priv(dev
);
3166 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3168 /* address transaction */
3169 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3170 MDIO_MMD_DEV_ADDR(mmd_type
) |
3171 MDIO_MMS_PRT_ADDR(0x0);
3172 writeq(val64
, &bar0
->mdio_control
);
3173 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3174 writeq(val64
, &bar0
->mdio_control
);
3177 /* Data transaction */
3178 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3179 MDIO_MMD_DEV_ADDR(mmd_type
) |
3180 MDIO_MMS_PRT_ADDR(0x0) |
3181 MDIO_MDIO_DATA(value
) |
3182 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3183 writeq(val64
, &bar0
->mdio_control
);
3184 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3185 writeq(val64
, &bar0
->mdio_control
);
3188 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3189 MDIO_MMD_DEV_ADDR(mmd_type
) |
3190 MDIO_MMS_PRT_ADDR(0x0) |
3191 MDIO_OP(MDIO_OP_READ_TRANS
);
3192 writeq(val64
, &bar0
->mdio_control
);
3193 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3194 writeq(val64
, &bar0
->mdio_control
);
3199 * s2io_mdio_read - Function to write in to MDIO registers
3200 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3201 * @addr : address value
3202 * @dev : pointer to net_device structure
3204 * This function is used to read values to the MDIO registers
3207 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3211 struct s2io_nic
*sp
= netdev_priv(dev
);
3212 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3214 /* address transaction */
3215 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3216 | MDIO_MMD_DEV_ADDR(mmd_type
)
3217 | MDIO_MMS_PRT_ADDR(0x0));
3218 writeq(val64
, &bar0
->mdio_control
);
3219 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3220 writeq(val64
, &bar0
->mdio_control
);
3223 /* Data transaction */
3224 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3225 MDIO_MMD_DEV_ADDR(mmd_type
) |
3226 MDIO_MMS_PRT_ADDR(0x0) |
3227 MDIO_OP(MDIO_OP_READ_TRANS
);
3228 writeq(val64
, &bar0
->mdio_control
);
3229 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3230 writeq(val64
, &bar0
->mdio_control
);
3233 /* Read the value from regs */
3234 rval64
= readq(&bar0
->mdio_control
);
3235 rval64
= rval64
& 0xFFFF0000;
3236 rval64
= rval64
>> 16;
3241 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3242 * @counter : counter value to be updated
3243 * @flag : flag to indicate the status
3244 * @type : counter type
3246 * This function is to check the status of the xpak counters value
3250 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3256 for (i
= 0; i
< index
; i
++)
3260 *counter
= *counter
+ 1;
3261 val64
= *regs_stat
& mask
;
3262 val64
= val64
>> (index
* 0x2);
3268 "Take Xframe NIC out of service.\n");
3270 "Excessive temperatures may result in premature transceiver failure.\n");
3274 "Take Xframe NIC out of service.\n");
3276 "Excessive bias currents may indicate imminent laser diode failure.\n");
3280 "Take Xframe NIC out of service.\n");
3282 "Excessive laser output power may saturate far-end receiver.\n");
3286 "Incorrect XPAK Alarm type\n");
3290 val64
= val64
<< (index
* 0x2);
3291 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3294 *regs_stat
= *regs_stat
& (~mask
);
3299 * s2io_updt_xpak_counter - Function to update the xpak counters
3300 * @dev : pointer to net_device struct
3302 * This function is to upate the status of the xpak counters value
3305 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3313 struct s2io_nic
*sp
= netdev_priv(dev
);
3314 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3315 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3317 /* Check the communication with the MDIO slave */
3320 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3321 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3323 "ERR: MDIO slave access failed - Returned %llx\n",
3324 (unsigned long long)val64
);
3328 /* Check for the expected value of control reg 1 */
3329 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3330 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3331 "Returned: %llx- Expected: 0x%x\n",
3332 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3336 /* Loading the DOM register to MDIO register */
3338 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3339 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3341 /* Reading the Alarm flags */
3344 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3346 flag
= CHECKBIT(val64
, 0x7);
3348 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3349 &xstats
->xpak_regs_stat
,
3352 if (CHECKBIT(val64
, 0x6))
3353 xstats
->alarm_transceiver_temp_low
++;
3355 flag
= CHECKBIT(val64
, 0x3);
3357 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3358 &xstats
->xpak_regs_stat
,
3361 if (CHECKBIT(val64
, 0x2))
3362 xstats
->alarm_laser_bias_current_low
++;
3364 flag
= CHECKBIT(val64
, 0x1);
3366 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3367 &xstats
->xpak_regs_stat
,
3370 if (CHECKBIT(val64
, 0x0))
3371 xstats
->alarm_laser_output_power_low
++;
3373 /* Reading the Warning flags */
3376 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3378 if (CHECKBIT(val64
, 0x7))
3379 xstats
->warn_transceiver_temp_high
++;
3381 if (CHECKBIT(val64
, 0x6))
3382 xstats
->warn_transceiver_temp_low
++;
3384 if (CHECKBIT(val64
, 0x3))
3385 xstats
->warn_laser_bias_current_high
++;
3387 if (CHECKBIT(val64
, 0x2))
3388 xstats
->warn_laser_bias_current_low
++;
3390 if (CHECKBIT(val64
, 0x1))
3391 xstats
->warn_laser_output_power_high
++;
3393 if (CHECKBIT(val64
, 0x0))
3394 xstats
->warn_laser_output_power_low
++;
3398 * wait_for_cmd_complete - waits for a command to complete.
3399 * @sp : private member of the device structure, which is a pointer to the
3400 * s2io_nic structure.
3401 * Description: Function that waits for a command to Write into RMAC
3402 * ADDR DATA registers to be completed and returns either success or
3403 * error depending on whether the command was complete or not.
3405 * SUCCESS on success and FAILURE on failure.
3408 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3411 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3414 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3418 val64
= readq(addr
);
3419 if (bit_state
== S2IO_BIT_RESET
) {
3420 if (!(val64
& busy_bit
)) {
3425 if (val64
& busy_bit
) {
3442 * check_pci_device_id - Checks if the device id is supported
3444 * Description: Function to check if the pci device id is supported by driver.
3445 * Return value: Actual device id if supported else PCI_ANY_ID
3447 static u16
check_pci_device_id(u16 id
)
3450 case PCI_DEVICE_ID_HERC_WIN
:
3451 case PCI_DEVICE_ID_HERC_UNI
:
3452 return XFRAME_II_DEVICE
;
3453 case PCI_DEVICE_ID_S2IO_UNI
:
3454 case PCI_DEVICE_ID_S2IO_WIN
:
3455 return XFRAME_I_DEVICE
;
3462 * s2io_reset - Resets the card.
3463 * @sp : private member of the device structure.
3464 * Description: Function to Reset the card. This function then also
3465 * restores the previously saved PCI configuration space registers as
3466 * the card reset also resets the configuration space.
3471 static void s2io_reset(struct s2io_nic
*sp
)
3473 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3478 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3479 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3480 struct stat_block
*stats
;
3481 struct swStat
*swstats
;
3483 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3484 __func__
, pci_name(sp
->pdev
));
3486 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3487 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3489 val64
= SW_RESET_ALL
;
3490 writeq(val64
, &bar0
->sw_reset
);
3491 if (strstr(sp
->product_name
, "CX4"))
3494 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3496 /* Restore the PCI state saved during initialization. */
3497 pci_restore_state(sp
->pdev
);
3498 pci_save_state(sp
->pdev
);
3499 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3500 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3505 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3506 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3508 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3512 /* Set swapper to enable I/O register access */
3513 s2io_set_swapper(sp
);
3515 /* restore mac_addr entries */
3516 do_s2io_restore_unicast_mc(sp
);
3518 /* Restore the MSIX table entries from local variables */
3519 restore_xmsi_data(sp
);
3521 /* Clear certain PCI/PCI-X fields after reset */
3522 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3523 /* Clear "detected parity error" bit */
3524 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3526 /* Clearing PCIX Ecc status register */
3527 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3529 /* Clearing PCI_STATUS error reflected here */
3530 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3533 /* Reset device statistics maintained by OS */
3534 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3536 stats
= sp
->mac_control
.stats_info
;
3537 swstats
= &stats
->sw_stat
;
3539 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3540 up_cnt
= swstats
->link_up_cnt
;
3541 down_cnt
= swstats
->link_down_cnt
;
3542 up_time
= swstats
->link_up_time
;
3543 down_time
= swstats
->link_down_time
;
3544 reset_cnt
= swstats
->soft_reset_cnt
;
3545 mem_alloc_cnt
= swstats
->mem_allocated
;
3546 mem_free_cnt
= swstats
->mem_freed
;
3547 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3549 memset(stats
, 0, sizeof(struct stat_block
));
3551 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3552 swstats
->link_up_cnt
= up_cnt
;
3553 swstats
->link_down_cnt
= down_cnt
;
3554 swstats
->link_up_time
= up_time
;
3555 swstats
->link_down_time
= down_time
;
3556 swstats
->soft_reset_cnt
= reset_cnt
;
3557 swstats
->mem_allocated
= mem_alloc_cnt
;
3558 swstats
->mem_freed
= mem_free_cnt
;
3559 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3561 /* SXE-002: Configure link and activity LED to turn it off */
3562 subid
= sp
->pdev
->subsystem_device
;
3563 if (((subid
& 0xFF) >= 0x07) &&
3564 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3565 val64
= readq(&bar0
->gpio_control
);
3566 val64
|= 0x0000800000000000ULL
;
3567 writeq(val64
, &bar0
->gpio_control
);
3568 val64
= 0x0411040400000000ULL
;
3569 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3573 * Clear spurious ECC interrupts that would have occured on
3574 * XFRAME II cards after reset.
3576 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3577 val64
= readq(&bar0
->pcc_err_reg
);
3578 writeq(val64
, &bar0
->pcc_err_reg
);
3581 sp
->device_enabled_once
= false;
3585 * s2io_set_swapper - to set the swapper controle on the card
3586 * @sp : private member of the device structure,
3587 * pointer to the s2io_nic structure.
3588 * Description: Function to set the swapper control on the card
3589 * correctly depending on the 'endianness' of the system.
3591 * SUCCESS on success and FAILURE on failure.
3594 static int s2io_set_swapper(struct s2io_nic
*sp
)
3596 struct net_device
*dev
= sp
->dev
;
3597 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3598 u64 val64
, valt
, valr
;
3601 * Set proper endian settings and verify the same by reading
3602 * the PIF Feed-back register.
3605 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3606 if (val64
!= 0x0123456789ABCDEFULL
) {
3608 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3609 0x8100008181000081ULL
, /* FE=1, SE=0 */
3610 0x4200004242000042ULL
, /* FE=0, SE=1 */
3611 0}; /* FE=0, SE=0 */
3614 writeq(value
[i
], &bar0
->swapper_ctrl
);
3615 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3616 if (val64
== 0x0123456789ABCDEFULL
)
3621 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3622 "feedback read %llx\n",
3623 dev
->name
, (unsigned long long)val64
);
3628 valr
= readq(&bar0
->swapper_ctrl
);
3631 valt
= 0x0123456789ABCDEFULL
;
3632 writeq(valt
, &bar0
->xmsi_address
);
3633 val64
= readq(&bar0
->xmsi_address
);
3635 if (val64
!= valt
) {
3637 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3638 0x0081810000818100ULL
, /* FE=1, SE=0 */
3639 0x0042420000424200ULL
, /* FE=0, SE=1 */
3640 0}; /* FE=0, SE=0 */
3643 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3644 writeq(valt
, &bar0
->xmsi_address
);
3645 val64
= readq(&bar0
->xmsi_address
);
3651 unsigned long long x
= val64
;
3653 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3657 val64
= readq(&bar0
->swapper_ctrl
);
3658 val64
&= 0xFFFF000000000000ULL
;
3662 * The device by default set to a big endian format, so a
3663 * big endian driver need not set anything.
3665 val64
|= (SWAPPER_CTRL_TXP_FE
|
3666 SWAPPER_CTRL_TXP_SE
|
3667 SWAPPER_CTRL_TXD_R_FE
|
3668 SWAPPER_CTRL_TXD_W_FE
|
3669 SWAPPER_CTRL_TXF_R_FE
|
3670 SWAPPER_CTRL_RXD_R_FE
|
3671 SWAPPER_CTRL_RXD_W_FE
|
3672 SWAPPER_CTRL_RXF_W_FE
|
3673 SWAPPER_CTRL_XMSI_FE
|
3674 SWAPPER_CTRL_STATS_FE
|
3675 SWAPPER_CTRL_STATS_SE
);
3676 if (sp
->config
.intr_type
== INTA
)
3677 val64
|= SWAPPER_CTRL_XMSI_SE
;
3678 writeq(val64
, &bar0
->swapper_ctrl
);
3681 * Initially we enable all bits to make it accessible by the
3682 * driver, then we selectively enable only those bits that
3685 val64
|= (SWAPPER_CTRL_TXP_FE
|
3686 SWAPPER_CTRL_TXP_SE
|
3687 SWAPPER_CTRL_TXD_R_FE
|
3688 SWAPPER_CTRL_TXD_R_SE
|
3689 SWAPPER_CTRL_TXD_W_FE
|
3690 SWAPPER_CTRL_TXD_W_SE
|
3691 SWAPPER_CTRL_TXF_R_FE
|
3692 SWAPPER_CTRL_RXD_R_FE
|
3693 SWAPPER_CTRL_RXD_R_SE
|
3694 SWAPPER_CTRL_RXD_W_FE
|
3695 SWAPPER_CTRL_RXD_W_SE
|
3696 SWAPPER_CTRL_RXF_W_FE
|
3697 SWAPPER_CTRL_XMSI_FE
|
3698 SWAPPER_CTRL_STATS_FE
|
3699 SWAPPER_CTRL_STATS_SE
);
3700 if (sp
->config
.intr_type
== INTA
)
3701 val64
|= SWAPPER_CTRL_XMSI_SE
;
3702 writeq(val64
, &bar0
->swapper_ctrl
);
3704 val64
= readq(&bar0
->swapper_ctrl
);
3707 * Verifying if endian settings are accurate by reading a
3708 * feedback register.
3710 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3711 if (val64
!= 0x0123456789ABCDEFULL
) {
3712 /* Endian settings are incorrect, calls for another dekko. */
3714 "%s: Endian settings are wrong, feedback read %llx\n",
3715 dev
->name
, (unsigned long long)val64
);
3722 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3724 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3726 int ret
= 0, cnt
= 0;
3729 val64
= readq(&bar0
->xmsi_access
);
3730 if (!(val64
& s2BIT(15)))
3736 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3743 static void restore_xmsi_data(struct s2io_nic
*nic
)
3745 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3749 if (nic
->device_type
== XFRAME_I_DEVICE
)
3752 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3753 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3754 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3755 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3756 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3757 writeq(val64
, &bar0
->xmsi_access
);
3758 if (wait_for_msix_trans(nic
, msix_index
)) {
3759 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3760 __func__
, msix_index
);
3766 static void store_xmsi_data(struct s2io_nic
*nic
)
3768 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3769 u64 val64
, addr
, data
;
3772 if (nic
->device_type
== XFRAME_I_DEVICE
)
3775 /* Store and display */
3776 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3777 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3778 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3779 writeq(val64
, &bar0
->xmsi_access
);
3780 if (wait_for_msix_trans(nic
, msix_index
)) {
3781 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3782 __func__
, msix_index
);
3785 addr
= readq(&bar0
->xmsi_address
);
3786 data
= readq(&bar0
->xmsi_data
);
3788 nic
->msix_info
[i
].addr
= addr
;
3789 nic
->msix_info
[i
].data
= data
;
3794 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3796 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3798 u16 msi_control
; /* Temp variable */
3799 int ret
, i
, j
, msix_indx
= 1;
3801 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3802 struct swStat
*swstats
= &stats
->sw_stat
;
3804 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3805 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3806 if (!nic
->entries
) {
3807 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3809 swstats
->mem_alloc_fail_cnt
++;
3812 swstats
->mem_allocated
+= size
;
3814 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3815 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3816 if (!nic
->s2io_entries
) {
3817 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3819 swstats
->mem_alloc_fail_cnt
++;
3820 kfree(nic
->entries
);
3822 += (nic
->num_entries
* sizeof(struct msix_entry
));
3825 swstats
->mem_allocated
+= size
;
3827 nic
->entries
[0].entry
= 0;
3828 nic
->s2io_entries
[0].entry
= 0;
3829 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3830 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3831 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3833 for (i
= 1; i
< nic
->num_entries
; i
++) {
3834 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3835 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3836 nic
->s2io_entries
[i
].arg
= NULL
;
3837 nic
->s2io_entries
[i
].in_use
= 0;
3840 rx_mat
= readq(&bar0
->rx_mat
);
3841 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3842 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3843 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3844 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3845 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3848 writeq(rx_mat
, &bar0
->rx_mat
);
3849 readq(&bar0
->rx_mat
);
3851 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3852 /* We fail init if error or we get less vectors than min required */
3854 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3855 kfree(nic
->entries
);
3856 swstats
->mem_freed
+= nic
->num_entries
*
3857 sizeof(struct msix_entry
);
3858 kfree(nic
->s2io_entries
);
3859 swstats
->mem_freed
+= nic
->num_entries
*
3860 sizeof(struct s2io_msix_entry
);
3861 nic
->entries
= NULL
;
3862 nic
->s2io_entries
= NULL
;
3867 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868 * in the herc NIC. (Temp change, needs to be removed later)
3870 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3871 msi_control
|= 0x1; /* Enable MSI */
3872 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3877 /* Handle software interrupt used during MSI(X) test */
3878 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3880 struct s2io_nic
*sp
= dev_id
;
3882 sp
->msi_detected
= 1;
3883 wake_up(&sp
->msi_wait
);
3888 /* Test interrupt path by forcing a a software IRQ */
3889 static int s2io_test_msi(struct s2io_nic
*sp
)
3891 struct pci_dev
*pdev
= sp
->pdev
;
3892 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3896 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3899 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3900 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3904 init_waitqueue_head(&sp
->msi_wait
);
3905 sp
->msi_detected
= 0;
3907 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3908 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3909 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3910 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3911 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3913 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3915 if (!sp
->msi_detected
) {
3916 /* MSI(X) test failed, go back to INTx mode */
3917 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3918 "using MSI(X) during test\n",
3919 sp
->dev
->name
, pci_name(pdev
));
3924 free_irq(sp
->entries
[1].vector
, sp
);
3926 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3931 static void remove_msix_isr(struct s2io_nic
*sp
)
3936 for (i
= 0; i
< sp
->num_entries
; i
++) {
3937 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3938 int vector
= sp
->entries
[i
].vector
;
3939 void *arg
= sp
->s2io_entries
[i
].arg
;
3940 free_irq(vector
, arg
);
3945 kfree(sp
->s2io_entries
);
3947 sp
->s2io_entries
= NULL
;
3949 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3950 msi_control
&= 0xFFFE; /* Disable MSI */
3951 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3953 pci_disable_msix(sp
->pdev
);
3956 static void remove_inta_isr(struct s2io_nic
*sp
)
3958 struct net_device
*dev
= sp
->dev
;
3960 free_irq(sp
->pdev
->irq
, dev
);
3963 /* ********************************************************* *
3964 * Functions defined below concern the OS part of the driver *
3965 * ********************************************************* */
3968 * s2io_open - open entry point of the driver
3969 * @dev : pointer to the device structure.
3971 * This function is the open entry point of the driver. It mainly calls a
3972 * function to allocate Rx buffers and inserts them into the buffer
3973 * descriptors and then enables the Rx part of the NIC.
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3979 static int s2io_open(struct net_device
*dev
)
3981 struct s2io_nic
*sp
= netdev_priv(dev
);
3982 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3986 * Make sure you have link off by default every time
3987 * Nic is initialized
3989 netif_carrier_off(dev
);
3990 sp
->last_link_state
= 0;
3992 /* Initialize H/W and enable interrupts */
3993 err
= s2io_card_up(sp
);
3995 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3997 goto hw_init_failed
;
4000 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4001 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4004 goto hw_init_failed
;
4006 s2io_start_all_tx_queue(sp
);
4010 if (sp
->config
.intr_type
== MSI_X
) {
4013 swstats
->mem_freed
+= sp
->num_entries
*
4014 sizeof(struct msix_entry
);
4016 if (sp
->s2io_entries
) {
4017 kfree(sp
->s2io_entries
);
4018 swstats
->mem_freed
+= sp
->num_entries
*
4019 sizeof(struct s2io_msix_entry
);
4026 * s2io_close -close entry point of the driver
4027 * @dev : device pointer.
4029 * This is the stop entry point of the driver. It needs to undo exactly
4030 * whatever was done by the open entry point,thus it's usually referred to
4031 * as the close function.Among other things this function mainly stops the
4032 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4034 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4038 static int s2io_close(struct net_device
*dev
)
4040 struct s2io_nic
*sp
= netdev_priv(dev
);
4041 struct config_param
*config
= &sp
->config
;
4045 /* Return if the device is already closed *
4046 * Can happen when s2io_card_up failed in change_mtu *
4048 if (!is_s2io_card_up(sp
))
4051 s2io_stop_all_tx_queue(sp
);
4052 /* delete all populated mac entries */
4053 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4054 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4055 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4056 do_s2io_delete_unicast_mc(sp
, tmp64
);
4065 * s2io_xmit - Tx entry point of te driver
4066 * @skb : the socket buffer containing the Tx data.
4067 * @dev : device pointer.
4069 * This function is the Tx entry point of the driver. S2IO NIC supports
4070 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4071 * NOTE: when device cant queue the pkt,just the trans_start variable will
4074 * 0 on success & 1 on failure.
4077 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4079 struct s2io_nic
*sp
= netdev_priv(dev
);
4080 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4083 struct TxFIFO_element __iomem
*tx_fifo
;
4084 unsigned long flags
= 0;
4086 struct fifo_info
*fifo
= NULL
;
4087 int do_spin_lock
= 1;
4089 int enable_per_list_interrupt
= 0;
4090 struct config_param
*config
= &sp
->config
;
4091 struct mac_info
*mac_control
= &sp
->mac_control
;
4092 struct stat_block
*stats
= mac_control
->stats_info
;
4093 struct swStat
*swstats
= &stats
->sw_stat
;
4095 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4097 if (unlikely(skb
->len
<= 0)) {
4098 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4099 dev_kfree_skb_any(skb
);
4100 return NETDEV_TX_OK
;
4103 if (!is_s2io_card_up(sp
)) {
4104 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4107 return NETDEV_TX_OK
;
4111 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4112 vlan_tag
= vlan_tx_tag_get(skb
);
4113 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4114 if (skb
->protocol
== htons(ETH_P_IP
)) {
4119 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4120 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4123 if (ip
->protocol
== IPPROTO_TCP
) {
4124 queue_len
= sp
->total_tcp_fifos
;
4125 queue
= (ntohs(th
->source
) +
4127 sp
->fifo_selector
[queue_len
- 1];
4128 if (queue
>= queue_len
)
4129 queue
= queue_len
- 1;
4130 } else if (ip
->protocol
== IPPROTO_UDP
) {
4131 queue_len
= sp
->total_udp_fifos
;
4132 queue
= (ntohs(th
->source
) +
4134 sp
->fifo_selector
[queue_len
- 1];
4135 if (queue
>= queue_len
)
4136 queue
= queue_len
- 1;
4137 queue
+= sp
->udp_fifo_idx
;
4138 if (skb
->len
> 1024)
4139 enable_per_list_interrupt
= 1;
4144 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4145 /* get fifo number based on skb->priority value */
4146 queue
= config
->fifo_mapping
4147 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4148 fifo
= &mac_control
->fifos
[queue
];
4151 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4153 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4154 return NETDEV_TX_LOCKED
;
4157 if (sp
->config
.multiq
) {
4158 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4159 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4160 return NETDEV_TX_BUSY
;
4162 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4163 if (netif_queue_stopped(dev
)) {
4164 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4165 return NETDEV_TX_BUSY
;
4169 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4170 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4171 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4173 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4174 /* Avoid "put" pointer going beyond "get" pointer */
4175 if (txdp
->Host_Control
||
4176 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4177 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4178 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4180 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4181 return NETDEV_TX_OK
;
4184 offload_type
= s2io_offload_type(skb
);
4185 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4186 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4187 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4189 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4190 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4194 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4195 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4196 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4197 if (enable_per_list_interrupt
)
4198 if (put_off
& (queue_len
>> 5))
4199 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4201 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4202 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4205 frg_len
= skb
->len
- skb
->data_len
;
4206 if (offload_type
== SKB_GSO_UDP
) {
4209 ufo_size
= s2io_udp_mss(skb
);
4211 txdp
->Control_1
|= TXD_UFO_EN
;
4212 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4213 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4215 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4216 fifo
->ufo_in_band_v
[put_off
] =
4217 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4219 fifo
->ufo_in_band_v
[put_off
] =
4220 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4222 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4223 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4224 fifo
->ufo_in_band_v
,
4227 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4228 goto pci_map_failed
;
4232 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4233 frg_len
, PCI_DMA_TODEVICE
);
4234 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4235 goto pci_map_failed
;
4237 txdp
->Host_Control
= (unsigned long)skb
;
4238 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4239 if (offload_type
== SKB_GSO_UDP
)
4240 txdp
->Control_1
|= TXD_UFO_EN
;
4242 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4243 /* For fragmented SKB. */
4244 for (i
= 0; i
< frg_cnt
; i
++) {
4245 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4246 /* A '0' length fragment will be ignored */
4250 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4254 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4255 if (offload_type
== SKB_GSO_UDP
)
4256 txdp
->Control_1
|= TXD_UFO_EN
;
4258 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4260 if (offload_type
== SKB_GSO_UDP
)
4261 frg_cnt
++; /* as Txd0 was used for inband header */
4263 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4264 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4265 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4267 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4270 val64
|= TX_FIFO_SPECIAL_FUNC
;
4272 writeq(val64
, &tx_fifo
->List_Control
);
4277 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4279 fifo
->tx_curr_put_info
.offset
= put_off
;
4281 /* Avoid "put" pointer going beyond "get" pointer */
4282 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4283 swstats
->fifo_full_cnt
++;
4285 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4287 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4289 swstats
->mem_allocated
+= skb
->truesize
;
4290 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4292 if (sp
->config
.intr_type
== MSI_X
)
4293 tx_intr_handler(fifo
);
4295 return NETDEV_TX_OK
;
4298 swstats
->pci_map_fail_cnt
++;
4299 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4300 swstats
->mem_freed
+= skb
->truesize
;
4302 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4303 return NETDEV_TX_OK
;
4307 s2io_alarm_handle(unsigned long data
)
4309 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4310 struct net_device
*dev
= sp
->dev
;
4312 s2io_handle_errors(dev
);
4313 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4316 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4318 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4319 struct s2io_nic
*sp
= ring
->nic
;
4320 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4322 if (unlikely(!is_s2io_card_up(sp
)))
4325 if (sp
->config
.napi
) {
4326 u8 __iomem
*addr
= NULL
;
4329 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4330 addr
+= (7 - ring
->ring_no
);
4331 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4334 napi_schedule(&ring
->napi
);
4336 rx_intr_handler(ring
, 0);
4337 s2io_chk_rx_buffers(sp
, ring
);
4343 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4346 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4347 struct s2io_nic
*sp
= fifos
->nic
;
4348 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4349 struct config_param
*config
= &sp
->config
;
4352 if (unlikely(!is_s2io_card_up(sp
)))
4355 reason
= readq(&bar0
->general_int_status
);
4356 if (unlikely(reason
== S2IO_MINUS_ONE
))
4357 /* Nothing much can be done. Get out */
4360 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4361 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4363 if (reason
& GEN_INTR_TXPIC
)
4364 s2io_txpic_intr_handle(sp
);
4366 if (reason
& GEN_INTR_TXTRAFFIC
)
4367 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4369 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4370 tx_intr_handler(&fifos
[i
]);
4372 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4373 readl(&bar0
->general_int_status
);
4376 /* The interrupt was not raised by us */
4380 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4382 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4385 val64
= readq(&bar0
->pic_int_status
);
4386 if (val64
& PIC_INT_GPIO
) {
4387 val64
= readq(&bar0
->gpio_int_reg
);
4388 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4389 (val64
& GPIO_INT_REG_LINK_UP
)) {
4391 * This is unstable state so clear both up/down
4392 * interrupt and adapter to re-evaluate the link state.
4394 val64
|= GPIO_INT_REG_LINK_DOWN
;
4395 val64
|= GPIO_INT_REG_LINK_UP
;
4396 writeq(val64
, &bar0
->gpio_int_reg
);
4397 val64
= readq(&bar0
->gpio_int_mask
);
4398 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4399 GPIO_INT_MASK_LINK_DOWN
);
4400 writeq(val64
, &bar0
->gpio_int_mask
);
4401 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4402 val64
= readq(&bar0
->adapter_status
);
4403 /* Enable Adapter */
4404 val64
= readq(&bar0
->adapter_control
);
4405 val64
|= ADAPTER_CNTL_EN
;
4406 writeq(val64
, &bar0
->adapter_control
);
4407 val64
|= ADAPTER_LED_ON
;
4408 writeq(val64
, &bar0
->adapter_control
);
4409 if (!sp
->device_enabled_once
)
4410 sp
->device_enabled_once
= 1;
4412 s2io_link(sp
, LINK_UP
);
4414 * unmask link down interrupt and mask link-up
4417 val64
= readq(&bar0
->gpio_int_mask
);
4418 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4419 val64
|= GPIO_INT_MASK_LINK_UP
;
4420 writeq(val64
, &bar0
->gpio_int_mask
);
4422 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4423 val64
= readq(&bar0
->adapter_status
);
4424 s2io_link(sp
, LINK_DOWN
);
4425 /* Link is down so unmaks link up interrupt */
4426 val64
= readq(&bar0
->gpio_int_mask
);
4427 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4428 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4429 writeq(val64
, &bar0
->gpio_int_mask
);
4432 val64
= readq(&bar0
->adapter_control
);
4433 val64
= val64
& (~ADAPTER_LED_ON
);
4434 writeq(val64
, &bar0
->adapter_control
);
4437 val64
= readq(&bar0
->gpio_int_mask
);
4441 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4442 * @value: alarm bits
4443 * @addr: address value
4444 * @cnt: counter variable
4445 * Description: Check for alarm and increment the counter
4447 * 1 - if alarm bit set
4448 * 0 - if alarm bit is not set
4450 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4451 unsigned long long *cnt
)
4454 val64
= readq(addr
);
4455 if (val64
& value
) {
4456 writeq(val64
, addr
);
4465 * s2io_handle_errors - Xframe error indication handler
4466 * @nic: device private variable
4467 * Description: Handle alarms such as loss of link, single or
4468 * double ECC errors, critical and serious errors.
4472 static void s2io_handle_errors(void *dev_id
)
4474 struct net_device
*dev
= (struct net_device
*)dev_id
;
4475 struct s2io_nic
*sp
= netdev_priv(dev
);
4476 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4477 u64 temp64
= 0, val64
= 0;
4480 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4481 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4483 if (!is_s2io_card_up(sp
))
4486 if (pci_channel_offline(sp
->pdev
))
4489 memset(&sw_stat
->ring_full_cnt
, 0,
4490 sizeof(sw_stat
->ring_full_cnt
));
4492 /* Handling the XPAK counters update */
4493 if (stats
->xpak_timer_count
< 72000) {
4494 /* waiting for an hour */
4495 stats
->xpak_timer_count
++;
4497 s2io_updt_xpak_counter(dev
);
4498 /* reset the count to zero */
4499 stats
->xpak_timer_count
= 0;
4502 /* Handling link status change error Intr */
4503 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4504 val64
= readq(&bar0
->mac_rmac_err_reg
);
4505 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4506 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4507 schedule_work(&sp
->set_link_task
);
4510 /* In case of a serious error, the device will be Reset. */
4511 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4512 &sw_stat
->serious_err_cnt
))
4515 /* Check for data parity error */
4516 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4517 &sw_stat
->parity_err_cnt
))
4520 /* Check for ring full counter */
4521 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4522 val64
= readq(&bar0
->ring_bump_counter1
);
4523 for (i
= 0; i
< 4; i
++) {
4524 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4525 temp64
>>= 64 - ((i
+1)*16);
4526 sw_stat
->ring_full_cnt
[i
] += temp64
;
4529 val64
= readq(&bar0
->ring_bump_counter2
);
4530 for (i
= 0; i
< 4; i
++) {
4531 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4532 temp64
>>= 64 - ((i
+1)*16);
4533 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4537 val64
= readq(&bar0
->txdma_int_status
);
4538 /*check for pfc_err*/
4539 if (val64
& TXDMA_PFC_INT
) {
4540 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4541 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4544 &sw_stat
->pfc_err_cnt
))
4546 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4548 &sw_stat
->pfc_err_cnt
);
4551 /*check for tda_err*/
4552 if (val64
& TXDMA_TDA_INT
) {
4553 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4557 &sw_stat
->tda_err_cnt
))
4559 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4561 &sw_stat
->tda_err_cnt
);
4563 /*check for pcc_err*/
4564 if (val64
& TXDMA_PCC_INT
) {
4565 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4566 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4567 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4568 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4571 &sw_stat
->pcc_err_cnt
))
4573 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4575 &sw_stat
->pcc_err_cnt
);
4578 /*check for tti_err*/
4579 if (val64
& TXDMA_TTI_INT
) {
4580 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4582 &sw_stat
->tti_err_cnt
))
4584 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4586 &sw_stat
->tti_err_cnt
);
4589 /*check for lso_err*/
4590 if (val64
& TXDMA_LSO_INT
) {
4591 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4592 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4594 &sw_stat
->lso_err_cnt
))
4596 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4598 &sw_stat
->lso_err_cnt
);
4601 /*check for tpa_err*/
4602 if (val64
& TXDMA_TPA_INT
) {
4603 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4605 &sw_stat
->tpa_err_cnt
))
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4609 &sw_stat
->tpa_err_cnt
);
4612 /*check for sm_err*/
4613 if (val64
& TXDMA_SM_INT
) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4616 &sw_stat
->sm_err_cnt
))
4620 val64
= readq(&bar0
->mac_int_status
);
4621 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4622 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4623 &bar0
->mac_tmac_err_reg
,
4624 &sw_stat
->mac_tmac_err_cnt
))
4626 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4627 TMAC_DESC_ECC_SG_ERR
|
4628 TMAC_DESC_ECC_DB_ERR
,
4629 &bar0
->mac_tmac_err_reg
,
4630 &sw_stat
->mac_tmac_err_cnt
);
4633 val64
= readq(&bar0
->xgxs_int_status
);
4634 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4635 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4636 &bar0
->xgxs_txgxs_err_reg
,
4637 &sw_stat
->xgxs_txgxs_err_cnt
))
4639 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4640 &bar0
->xgxs_txgxs_err_reg
,
4641 &sw_stat
->xgxs_txgxs_err_cnt
);
4644 val64
= readq(&bar0
->rxdma_int_status
);
4645 if (val64
& RXDMA_INT_RC_INT_M
) {
4646 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4648 RC_PRCn_SM_ERR_ALARM
|
4649 RC_FTC_SM_ERR_ALARM
,
4651 &sw_stat
->rc_err_cnt
))
4653 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4655 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4656 &sw_stat
->rc_err_cnt
);
4657 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4660 &bar0
->prc_pcix_err_reg
,
4661 &sw_stat
->prc_pcix_err_cnt
))
4663 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4666 &bar0
->prc_pcix_err_reg
,
4667 &sw_stat
->prc_pcix_err_cnt
);
4670 if (val64
& RXDMA_INT_RPA_INT_M
) {
4671 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4673 &sw_stat
->rpa_err_cnt
))
4675 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4677 &sw_stat
->rpa_err_cnt
);
4680 if (val64
& RXDMA_INT_RDA_INT_M
) {
4681 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4682 RDA_FRM_ECC_DB_N_AERR
|
4685 RDA_RXD_ECC_DB_SERR
,
4687 &sw_stat
->rda_err_cnt
))
4689 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4690 RDA_FRM_ECC_SG_ERR
|
4694 &sw_stat
->rda_err_cnt
);
4697 if (val64
& RXDMA_INT_RTI_INT_M
) {
4698 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4700 &sw_stat
->rti_err_cnt
))
4702 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4704 &sw_stat
->rti_err_cnt
);
4707 val64
= readq(&bar0
->mac_int_status
);
4708 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4709 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4710 &bar0
->mac_rmac_err_reg
,
4711 &sw_stat
->mac_rmac_err_cnt
))
4713 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4714 RMAC_SINGLE_ECC_ERR
|
4715 RMAC_DOUBLE_ECC_ERR
,
4716 &bar0
->mac_rmac_err_reg
,
4717 &sw_stat
->mac_rmac_err_cnt
);
4720 val64
= readq(&bar0
->xgxs_int_status
);
4721 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4722 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4723 &bar0
->xgxs_rxgxs_err_reg
,
4724 &sw_stat
->xgxs_rxgxs_err_cnt
))
4728 val64
= readq(&bar0
->mc_int_status
);
4729 if (val64
& MC_INT_STATUS_MC_INT
) {
4730 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4732 &sw_stat
->mc_err_cnt
))
4735 /* Handling Ecc errors */
4736 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4737 writeq(val64
, &bar0
->mc_err_reg
);
4738 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4739 sw_stat
->double_ecc_errs
++;
4740 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4742 * Reset XframeI only if critical error
4745 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4746 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4750 sw_stat
->single_ecc_errs
++;
4756 s2io_stop_all_tx_queue(sp
);
4757 schedule_work(&sp
->rst_timer_task
);
4758 sw_stat
->soft_reset_cnt
++;
4763 * s2io_isr - ISR handler of the device .
4764 * @irq: the irq of the device.
4765 * @dev_id: a void pointer to the dev structure of the NIC.
4766 * Description: This function is the ISR handler of the device. It
4767 * identifies the reason for the interrupt and calls the relevant
4768 * service routines. As a contongency measure, this ISR allocates the
4769 * recv buffers, if their numbers are below the panic value which is
4770 * presently set to 25% of the original number of rcv buffers allocated.
4772 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4773 * IRQ_NONE: will be returned if interrupt is not from our device
4775 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4777 struct net_device
*dev
= (struct net_device
*)dev_id
;
4778 struct s2io_nic
*sp
= netdev_priv(dev
);
4779 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4782 struct mac_info
*mac_control
;
4783 struct config_param
*config
;
4785 /* Pretend we handled any irq's from a disconnected card */
4786 if (pci_channel_offline(sp
->pdev
))
4789 if (!is_s2io_card_up(sp
))
4792 config
= &sp
->config
;
4793 mac_control
= &sp
->mac_control
;
4796 * Identify the cause for interrupt and call the appropriate
4797 * interrupt handler. Causes for the interrupt could be;
4802 reason
= readq(&bar0
->general_int_status
);
4804 if (unlikely(reason
== S2IO_MINUS_ONE
))
4805 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4808 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4809 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4812 if (reason
& GEN_INTR_RXTRAFFIC
) {
4813 napi_schedule(&sp
->napi
);
4814 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4815 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4816 readl(&bar0
->rx_traffic_int
);
4820 * rx_traffic_int reg is an R1 register, writing all 1's
4821 * will ensure that the actual interrupt causing bit
4822 * get's cleared and hence a read can be avoided.
4824 if (reason
& GEN_INTR_RXTRAFFIC
)
4825 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4827 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4828 struct ring_info
*ring
= &mac_control
->rings
[i
];
4830 rx_intr_handler(ring
, 0);
4835 * tx_traffic_int reg is an R1 register, writing all 1's
4836 * will ensure that the actual interrupt causing bit get's
4837 * cleared and hence a read can be avoided.
4839 if (reason
& GEN_INTR_TXTRAFFIC
)
4840 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4842 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4843 tx_intr_handler(&mac_control
->fifos
[i
]);
4845 if (reason
& GEN_INTR_TXPIC
)
4846 s2io_txpic_intr_handle(sp
);
4849 * Reallocate the buffers from the interrupt handler itself.
4851 if (!config
->napi
) {
4852 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4853 struct ring_info
*ring
= &mac_control
->rings
[i
];
4855 s2io_chk_rx_buffers(sp
, ring
);
4858 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4859 readl(&bar0
->general_int_status
);
4863 } else if (!reason
) {
4864 /* The interrupt was not raised by us */
4874 static void s2io_updt_stats(struct s2io_nic
*sp
)
4876 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4880 if (is_s2io_card_up(sp
)) {
4881 /* Apprx 30us on a 133 MHz bus */
4882 val64
= SET_UPDT_CLICKS(10) |
4883 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4884 writeq(val64
, &bar0
->stat_cfg
);
4887 val64
= readq(&bar0
->stat_cfg
);
4888 if (!(val64
& s2BIT(0)))
4892 break; /* Updt failed */
4898 * s2io_get_stats - Updates the device statistics structure.
4899 * @dev : pointer to the device structure.
4901 * This function updates the device statistics structure in the s2io_nic
4902 * structure and returns a pointer to the same.
4904 * pointer to the updated net_device_stats structure.
4907 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4909 struct s2io_nic
*sp
= netdev_priv(dev
);
4910 struct config_param
*config
= &sp
->config
;
4911 struct mac_info
*mac_control
= &sp
->mac_control
;
4912 struct stat_block
*stats
= mac_control
->stats_info
;
4915 /* Configure Stats for immediate updt */
4916 s2io_updt_stats(sp
);
4918 /* Using sp->stats as a staging area, because reset (due to mtu
4919 change, for example) will clear some hardware counters */
4920 dev
->stats
.tx_packets
+= le32_to_cpu(stats
->tmac_frms
) -
4921 sp
->stats
.tx_packets
;
4922 sp
->stats
.tx_packets
= le32_to_cpu(stats
->tmac_frms
);
4924 dev
->stats
.tx_errors
+= le32_to_cpu(stats
->tmac_any_err_frms
) -
4925 sp
->stats
.tx_errors
;
4926 sp
->stats
.tx_errors
= le32_to_cpu(stats
->tmac_any_err_frms
);
4928 dev
->stats
.rx_errors
+= le64_to_cpu(stats
->rmac_drop_frms
) -
4929 sp
->stats
.rx_errors
;
4930 sp
->stats
.rx_errors
= le64_to_cpu(stats
->rmac_drop_frms
);
4932 dev
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
) -
4933 sp
->stats
.multicast
;
4934 sp
->stats
.multicast
= le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4936 dev
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
) -
4937 sp
->stats
.rx_length_errors
;
4938 sp
->stats
.rx_length_errors
= le64_to_cpu(stats
->rmac_long_frms
);
4940 /* collect per-ring rx_packets and rx_bytes */
4941 dev
->stats
.rx_packets
= dev
->stats
.rx_bytes
= 0;
4942 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4943 struct ring_info
*ring
= &mac_control
->rings
[i
];
4945 dev
->stats
.rx_packets
+= ring
->rx_packets
;
4946 dev
->stats
.rx_bytes
+= ring
->rx_bytes
;
4953 * s2io_set_multicast - entry point for multicast address enable/disable.
4954 * @dev : pointer to the device structure
4956 * This function is a driver entry point which gets called by the kernel
4957 * whenever multicast addresses must be enabled/disabled. This also gets
4958 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4959 * determine, if multicast address must be enabled or if promiscuous mode
4960 * is to be disabled etc.
4965 static void s2io_set_multicast(struct net_device
*dev
)
4968 struct dev_mc_list
*mclist
;
4969 struct s2io_nic
*sp
= netdev_priv(dev
);
4970 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4971 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4973 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4975 struct config_param
*config
= &sp
->config
;
4977 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4978 /* Enable all Multicast addresses */
4979 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4980 &bar0
->rmac_addr_data0_mem
);
4981 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4982 &bar0
->rmac_addr_data1_mem
);
4983 val64
= RMAC_ADDR_CMD_MEM_WE
|
4984 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4985 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4986 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4987 /* Wait till command completes */
4988 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4989 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4993 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4994 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4995 /* Disable all Multicast addresses */
4996 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4997 &bar0
->rmac_addr_data0_mem
);
4998 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4999 &bar0
->rmac_addr_data1_mem
);
5000 val64
= RMAC_ADDR_CMD_MEM_WE
|
5001 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5002 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5003 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5004 /* Wait till command completes */
5005 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5006 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5010 sp
->all_multi_pos
= 0;
5013 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5014 /* Put the NIC into promiscuous mode */
5015 add
= &bar0
->mac_cfg
;
5016 val64
= readq(&bar0
->mac_cfg
);
5017 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5020 writel((u32
)val64
, add
);
5021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5022 writel((u32
) (val64
>> 32), (add
+ 4));
5024 if (vlan_tag_strip
!= 1) {
5025 val64
= readq(&bar0
->rx_pa_cfg
);
5026 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5027 writeq(val64
, &bar0
->rx_pa_cfg
);
5028 sp
->vlan_strip_flag
= 0;
5031 val64
= readq(&bar0
->mac_cfg
);
5032 sp
->promisc_flg
= 1;
5033 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5035 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5036 /* Remove the NIC from promiscuous mode */
5037 add
= &bar0
->mac_cfg
;
5038 val64
= readq(&bar0
->mac_cfg
);
5039 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5041 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5042 writel((u32
)val64
, add
);
5043 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5044 writel((u32
) (val64
>> 32), (add
+ 4));
5046 if (vlan_tag_strip
!= 0) {
5047 val64
= readq(&bar0
->rx_pa_cfg
);
5048 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5049 writeq(val64
, &bar0
->rx_pa_cfg
);
5050 sp
->vlan_strip_flag
= 1;
5053 val64
= readq(&bar0
->mac_cfg
);
5054 sp
->promisc_flg
= 0;
5055 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5058 /* Update individual M_CAST address list */
5059 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5060 if (netdev_mc_count(dev
) >
5061 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5063 "%s: No more Rx filters can be added - "
5064 "please enable ALL_MULTI instead\n",
5069 prev_cnt
= sp
->mc_addr_count
;
5070 sp
->mc_addr_count
= netdev_mc_count(dev
);
5072 /* Clear out the previous list of Mc in the H/W. */
5073 for (i
= 0; i
< prev_cnt
; i
++) {
5074 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5075 &bar0
->rmac_addr_data0_mem
);
5076 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5077 &bar0
->rmac_addr_data1_mem
);
5078 val64
= RMAC_ADDR_CMD_MEM_WE
|
5079 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5080 RMAC_ADDR_CMD_MEM_OFFSET
5081 (config
->mc_start_offset
+ i
);
5082 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5084 /* Wait for command completes */
5085 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5086 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5089 "%s: Adding Multicasts failed\n",
5095 /* Create the new Rx filter list and update the same in H/W. */
5097 netdev_for_each_mc_addr(mclist
, dev
) {
5098 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5101 for (j
= 0; j
< ETH_ALEN
; j
++) {
5102 mac_addr
|= mclist
->dmi_addr
[j
];
5106 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5107 &bar0
->rmac_addr_data0_mem
);
5108 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5109 &bar0
->rmac_addr_data1_mem
);
5110 val64
= RMAC_ADDR_CMD_MEM_WE
|
5111 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5112 RMAC_ADDR_CMD_MEM_OFFSET
5113 (i
+ config
->mc_start_offset
);
5114 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5116 /* Wait for command completes */
5117 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5118 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5121 "%s: Adding Multicasts failed\n",
5130 /* read from CAM unicast & multicast addresses and store it in
5131 * def_mac_addr structure
5133 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5137 struct config_param
*config
= &sp
->config
;
5139 /* store unicast & multicast mac addresses */
5140 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5141 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5142 /* if read fails disable the entry */
5143 if (mac_addr
== FAILURE
)
5144 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5145 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5149 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5150 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5153 struct config_param
*config
= &sp
->config
;
5154 /* restore unicast mac address */
5155 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5156 do_s2io_prog_unicast(sp
->dev
,
5157 sp
->def_mac_addr
[offset
].mac_addr
);
5159 /* restore multicast mac address */
5160 for (offset
= config
->mc_start_offset
;
5161 offset
< config
->max_mc_addr
; offset
++)
5162 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5165 /* add a multicast MAC address to CAM */
5166 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5170 struct config_param
*config
= &sp
->config
;
5172 for (i
= 0; i
< ETH_ALEN
; i
++) {
5174 mac_addr
|= addr
[i
];
5176 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5179 /* check if the multicast mac already preset in CAM */
5180 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5182 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5183 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5186 if (tmp64
== mac_addr
)
5189 if (i
== config
->max_mc_addr
) {
5191 "CAM full no space left for multicast MAC\n");
5194 /* Update the internal structure with this new mac address */
5195 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5197 return do_s2io_add_mac(sp
, mac_addr
, i
);
5200 /* add MAC address to CAM */
5201 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5204 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5206 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5207 &bar0
->rmac_addr_data0_mem
);
5209 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5210 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5211 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5213 /* Wait till command completes */
5214 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5215 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5217 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5222 /* deletes a specified unicast/multicast mac entry from CAM */
5223 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5226 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5227 struct config_param
*config
= &sp
->config
;
5230 offset
< config
->max_mc_addr
; offset
++) {
5231 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5232 if (tmp64
== addr
) {
5233 /* disable the entry by writing 0xffffffffffffULL */
5234 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5236 /* store the new mac list from CAM */
5237 do_s2io_store_unicast_mc(sp
);
5241 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5242 (unsigned long long)addr
);
5246 /* read mac entries from CAM */
5247 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5249 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5250 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5253 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5254 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5255 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5257 /* Wait till command completes */
5258 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5259 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5261 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5264 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5270 * s2io_set_mac_addr driver entry point
5273 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5275 struct sockaddr
*addr
= p
;
5277 if (!is_valid_ether_addr(addr
->sa_data
))
5280 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5282 /* store the MAC address in CAM */
5283 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5286 * do_s2io_prog_unicast - Programs the Xframe mac address
5287 * @dev : pointer to the device structure.
5288 * @addr: a uchar pointer to the new mac address which is to be set.
5289 * Description : This procedure will program the Xframe to receive
5290 * frames with new Mac Address
5291 * Return value: SUCCESS on success and an appropriate (-)ve integer
5292 * as defined in errno.h file on failure.
5295 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5297 struct s2io_nic
*sp
= netdev_priv(dev
);
5298 register u64 mac_addr
= 0, perm_addr
= 0;
5301 struct config_param
*config
= &sp
->config
;
5304 * Set the new MAC address as the new unicast filter and reflect this
5305 * change on the device address registered with the OS. It will be
5308 for (i
= 0; i
< ETH_ALEN
; i
++) {
5310 mac_addr
|= addr
[i
];
5312 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5315 /* check if the dev_addr is different than perm_addr */
5316 if (mac_addr
== perm_addr
)
5319 /* check if the mac already preset in CAM */
5320 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5321 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5322 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5325 if (tmp64
== mac_addr
) {
5327 "MAC addr:0x%llx already present in CAM\n",
5328 (unsigned long long)mac_addr
);
5332 if (i
== config
->max_mac_addr
) {
5333 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5336 /* Update the internal structure with this new mac address */
5337 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5339 return do_s2io_add_mac(sp
, mac_addr
, i
);
5343 * s2io_ethtool_sset - Sets different link parameters.
5344 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5345 * @info: pointer to the structure with parameters given by ethtool to set
5348 * The function sets different link parameters provided by the user onto
5354 static int s2io_ethtool_sset(struct net_device
*dev
,
5355 struct ethtool_cmd
*info
)
5357 struct s2io_nic
*sp
= netdev_priv(dev
);
5358 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5359 (info
->speed
!= SPEED_10000
) ||
5360 (info
->duplex
!= DUPLEX_FULL
))
5363 s2io_close(sp
->dev
);
5371 * s2io_ethtol_gset - Return link specific information.
5372 * @sp : private member of the device structure, pointer to the
5373 * s2io_nic structure.
5374 * @info : pointer to the structure with parameters given by ethtool
5375 * to return link information.
5377 * Returns link specific information like speed, duplex etc.. to ethtool.
5379 * return 0 on success.
5382 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5384 struct s2io_nic
*sp
= netdev_priv(dev
);
5385 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5386 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5387 info
->port
= PORT_FIBRE
;
5389 /* info->transceiver */
5390 info
->transceiver
= XCVR_EXTERNAL
;
5392 if (netif_carrier_ok(sp
->dev
)) {
5393 info
->speed
= 10000;
5394 info
->duplex
= DUPLEX_FULL
;
5400 info
->autoneg
= AUTONEG_DISABLE
;
5405 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5406 * @sp : private member of the device structure, which is a pointer to the
5407 * s2io_nic structure.
5408 * @info : pointer to the structure with parameters given by ethtool to
5409 * return driver information.
5411 * Returns driver specefic information like name, version etc.. to ethtool.
5416 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5417 struct ethtool_drvinfo
*info
)
5419 struct s2io_nic
*sp
= netdev_priv(dev
);
5421 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5422 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5423 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5424 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5425 info
->regdump_len
= XENA_REG_SPACE
;
5426 info
->eedump_len
= XENA_EEPROM_SPACE
;
5430 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5431 * @sp: private member of the device structure, which is a pointer to the
5432 * s2io_nic structure.
5433 * @regs : pointer to the structure with parameters given by ethtool for
5434 * dumping the registers.
5435 * @reg_space: The input argumnet into which all the registers are dumped.
5437 * Dumps the entire register space of xFrame NIC into the user given
5443 static void s2io_ethtool_gregs(struct net_device
*dev
,
5444 struct ethtool_regs
*regs
, void *space
)
5448 u8
*reg_space
= (u8
*)space
;
5449 struct s2io_nic
*sp
= netdev_priv(dev
);
5451 regs
->len
= XENA_REG_SPACE
;
5452 regs
->version
= sp
->pdev
->subsystem_device
;
5454 for (i
= 0; i
< regs
->len
; i
+= 8) {
5455 reg
= readq(sp
->bar0
+ i
);
5456 memcpy((reg_space
+ i
), ®
, 8);
5461 * s2io_phy_id - timer function that alternates adapter LED.
5462 * @data : address of the private member of the device structure, which
5463 * is a pointer to the s2io_nic structure, provided as an u32.
5464 * Description: This is actually the timer function that alternates the
5465 * adapter LED bit of the adapter control bit to set/reset every time on
5466 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5467 * once every second.
5469 static void s2io_phy_id(unsigned long data
)
5471 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5472 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5476 subid
= sp
->pdev
->subsystem_device
;
5477 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5478 ((subid
& 0xFF) >= 0x07)) {
5479 val64
= readq(&bar0
->gpio_control
);
5480 val64
^= GPIO_CTRL_GPIO_0
;
5481 writeq(val64
, &bar0
->gpio_control
);
5483 val64
= readq(&bar0
->adapter_control
);
5484 val64
^= ADAPTER_LED_ON
;
5485 writeq(val64
, &bar0
->adapter_control
);
5488 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5492 * s2io_ethtool_idnic - To physically identify the nic on the system.
5493 * @sp : private member of the device structure, which is a pointer to the
5494 * s2io_nic structure.
5495 * @id : pointer to the structure with identification parameters given by
5497 * Description: Used to physically identify the NIC on the system.
5498 * The Link LED will blink for a time specified by the user for
5500 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5501 * identification is possible only if it's link is up.
5503 * int , returns 0 on success
5506 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5508 u64 val64
= 0, last_gpio_ctrl_val
;
5509 struct s2io_nic
*sp
= netdev_priv(dev
);
5510 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5513 subid
= sp
->pdev
->subsystem_device
;
5514 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5515 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5516 val64
= readq(&bar0
->adapter_control
);
5517 if (!(val64
& ADAPTER_CNTL_EN
)) {
5518 pr_err("Adapter Link down, cannot blink LED\n");
5522 if (sp
->id_timer
.function
== NULL
) {
5523 init_timer(&sp
->id_timer
);
5524 sp
->id_timer
.function
= s2io_phy_id
;
5525 sp
->id_timer
.data
= (unsigned long)sp
;
5527 mod_timer(&sp
->id_timer
, jiffies
);
5529 msleep_interruptible(data
* HZ
);
5531 msleep_interruptible(MAX_FLICKER_TIME
);
5532 del_timer_sync(&sp
->id_timer
);
5534 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5535 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5536 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5542 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5543 struct ethtool_ringparam
*ering
)
5545 struct s2io_nic
*sp
= netdev_priv(dev
);
5546 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5548 if (sp
->rxd_mode
== RXD_MODE_1
)
5549 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5550 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5551 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5553 ering
->tx_max_pending
= MAX_TX_DESC
;
5554 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5555 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5557 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5558 ering
->tx_pending
= tx_desc_count
;
5560 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5561 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5563 ering
->rx_pending
= rx_desc_count
;
5565 ering
->rx_mini_max_pending
= 0;
5566 ering
->rx_mini_pending
= 0;
5567 if (sp
->rxd_mode
== RXD_MODE_1
)
5568 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5569 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5570 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5571 ering
->rx_jumbo_pending
= rx_desc_count
;
5575 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5576 * @sp : private member of the device structure, which is a pointer to the
5577 * s2io_nic structure.
5578 * @ep : pointer to the structure with pause parameters given by ethtool.
5580 * Returns the Pause frame generation and reception capability of the NIC.
5584 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5585 struct ethtool_pauseparam
*ep
)
5588 struct s2io_nic
*sp
= netdev_priv(dev
);
5589 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5591 val64
= readq(&bar0
->rmac_pause_cfg
);
5592 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5593 ep
->tx_pause
= true;
5594 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5595 ep
->rx_pause
= true;
5596 ep
->autoneg
= false;
5600 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5601 * @sp : private member of the device structure, which is a pointer to the
5602 * s2io_nic structure.
5603 * @ep : pointer to the structure with pause parameters given by ethtool.
5605 * It can be used to set or reset Pause frame generation or reception
5606 * support of the NIC.
5608 * int, returns 0 on Success
5611 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5612 struct ethtool_pauseparam
*ep
)
5615 struct s2io_nic
*sp
= netdev_priv(dev
);
5616 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5618 val64
= readq(&bar0
->rmac_pause_cfg
);
5620 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5622 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5624 val64
|= RMAC_PAUSE_RX_ENABLE
;
5626 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5627 writeq(val64
, &bar0
->rmac_pause_cfg
);
5632 * read_eeprom - reads 4 bytes of data from user given offset.
5633 * @sp : private member of the device structure, which is a pointer to the
5634 * s2io_nic structure.
5635 * @off : offset at which the data must be written
5636 * @data : Its an output parameter where the data read at the given
5639 * Will read 4 bytes of data from the user given offset and return the
5641 * NOTE: Will allow to read only part of the EEPROM visible through the
5644 * -1 on failure and 0 on success.
5647 #define S2IO_DEV_ID 5
5648 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5653 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5655 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5656 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5657 I2C_CONTROL_ADDR(off
) |
5658 I2C_CONTROL_BYTE_CNT(0x3) |
5660 I2C_CONTROL_CNTL_START
;
5661 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5663 while (exit_cnt
< 5) {
5664 val64
= readq(&bar0
->i2c_control
);
5665 if (I2C_CONTROL_CNTL_END(val64
)) {
5666 *data
= I2C_CONTROL_GET_DATA(val64
);
5675 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5676 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5677 SPI_CONTROL_BYTECNT(0x3) |
5678 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5679 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5680 val64
|= SPI_CONTROL_REQ
;
5681 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5682 while (exit_cnt
< 5) {
5683 val64
= readq(&bar0
->spi_control
);
5684 if (val64
& SPI_CONTROL_NACK
) {
5687 } else if (val64
& SPI_CONTROL_DONE
) {
5688 *data
= readq(&bar0
->spi_data
);
5701 * write_eeprom - actually writes the relevant part of the data value.
5702 * @sp : private member of the device structure, which is a pointer to the
5703 * s2io_nic structure.
5704 * @off : offset at which the data must be written
5705 * @data : The data that is to be written
5706 * @cnt : Number of bytes of the data that are actually to be written into
5707 * the Eeprom. (max of 3)
5709 * Actually writes the relevant part of the data value into the Eeprom
5710 * through the I2C bus.
5712 * 0 on success, -1 on failure.
5715 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5717 int exit_cnt
= 0, ret
= -1;
5719 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5721 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5722 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5723 I2C_CONTROL_ADDR(off
) |
5724 I2C_CONTROL_BYTE_CNT(cnt
) |
5725 I2C_CONTROL_SET_DATA((u32
)data
) |
5726 I2C_CONTROL_CNTL_START
;
5727 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5729 while (exit_cnt
< 5) {
5730 val64
= readq(&bar0
->i2c_control
);
5731 if (I2C_CONTROL_CNTL_END(val64
)) {
5732 if (!(val64
& I2C_CONTROL_NACK
))
5741 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5742 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5743 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5745 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5746 SPI_CONTROL_BYTECNT(write_cnt
) |
5747 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5748 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5749 val64
|= SPI_CONTROL_REQ
;
5750 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5751 while (exit_cnt
< 5) {
5752 val64
= readq(&bar0
->spi_control
);
5753 if (val64
& SPI_CONTROL_NACK
) {
5756 } else if (val64
& SPI_CONTROL_DONE
) {
5766 static void s2io_vpd_read(struct s2io_nic
*nic
)
5770 int i
= 0, cnt
, fail
= 0;
5771 int vpd_addr
= 0x80;
5772 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5774 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5775 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5778 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5781 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5783 vpd_data
= kmalloc(256, GFP_KERNEL
);
5785 swstats
->mem_alloc_fail_cnt
++;
5788 swstats
->mem_allocated
+= 256;
5790 for (i
= 0; i
< 256; i
+= 4) {
5791 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5792 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5793 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5794 for (cnt
= 0; cnt
< 5; cnt
++) {
5796 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5801 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5805 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5806 (u32
*)&vpd_data
[i
]);
5810 /* read serial number of adapter */
5811 for (cnt
= 0; cnt
< 256; cnt
++) {
5812 if ((vpd_data
[cnt
] == 'S') &&
5813 (vpd_data
[cnt
+1] == 'N') &&
5814 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5815 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5816 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5823 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
))
5824 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5826 swstats
->mem_freed
+= 256;
5830 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5831 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5832 * @eeprom : pointer to the user level structure provided by ethtool,
5833 * containing all relevant information.
5834 * @data_buf : user defined value to be written into Eeprom.
5835 * Description: Reads the values stored in the Eeprom at given offset
5836 * for a given length. Stores these values int the input argument data
5837 * buffer 'data_buf' and returns these to the caller (ethtool.)
5842 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5843 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5847 struct s2io_nic
*sp
= netdev_priv(dev
);
5849 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5851 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5852 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5854 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5855 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5856 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5860 memcpy((data_buf
+ i
), &valid
, 4);
5866 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5867 * @sp : private member of the device structure, which is a pointer to the
5868 * s2io_nic structure.
5869 * @eeprom : pointer to the user level structure provided by ethtool,
5870 * containing all relevant information.
5871 * @data_buf ; user defined value to be written into Eeprom.
5873 * Tries to write the user provided value in the Eeprom, at the offset
5874 * given by the user.
5876 * 0 on success, -EFAULT on failure.
5879 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5880 struct ethtool_eeprom
*eeprom
,
5883 int len
= eeprom
->len
, cnt
= 0;
5884 u64 valid
= 0, data
;
5885 struct s2io_nic
*sp
= netdev_priv(dev
);
5887 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5889 "ETHTOOL_WRITE_EEPROM Err: "
5890 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5891 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5897 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5899 valid
= (u32
)(data
<< 24);
5903 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5905 "ETHTOOL_WRITE_EEPROM Err: "
5906 "Cannot write into the specified offset\n");
5917 * s2io_register_test - reads and writes into all clock domains.
5918 * @sp : private member of the device structure, which is a pointer to the
5919 * s2io_nic structure.
5920 * @data : variable that returns the result of each of the test conducted b
5923 * Read and write into all clock domains. The NIC has 3 clock domains,
5924 * see that registers in all the three regions are accessible.
5929 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5931 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5932 u64 val64
= 0, exp_val
;
5935 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5936 if (val64
!= 0x123456789abcdefULL
) {
5938 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5941 val64
= readq(&bar0
->rmac_pause_cfg
);
5942 if (val64
!= 0xc000ffff00000000ULL
) {
5944 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5947 val64
= readq(&bar0
->rx_queue_cfg
);
5948 if (sp
->device_type
== XFRAME_II_DEVICE
)
5949 exp_val
= 0x0404040404040404ULL
;
5951 exp_val
= 0x0808080808080808ULL
;
5952 if (val64
!= exp_val
) {
5954 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5957 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5958 if (val64
!= 0x000000001923141EULL
) {
5960 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5963 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5964 writeq(val64
, &bar0
->xmsi_data
);
5965 val64
= readq(&bar0
->xmsi_data
);
5966 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5968 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5971 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5972 writeq(val64
, &bar0
->xmsi_data
);
5973 val64
= readq(&bar0
->xmsi_data
);
5974 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5976 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5984 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5985 * @sp : private member of the device structure, which is a pointer to the
5986 * s2io_nic structure.
5987 * @data:variable that returns the result of each of the test conducted by
5990 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5996 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5999 u64 ret_data
, org_4F0
, org_7F0
;
6000 u8 saved_4F0
= 0, saved_7F0
= 0;
6001 struct net_device
*dev
= sp
->dev
;
6003 /* Test Write Error at offset 0 */
6004 /* Note that SPI interface allows write access to all areas
6005 * of EEPROM. Hence doing all negative testing only for Xframe I.
6007 if (sp
->device_type
== XFRAME_I_DEVICE
)
6008 if (!write_eeprom(sp
, 0, 0, 3))
6011 /* Save current values at offsets 0x4F0 and 0x7F0 */
6012 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6014 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6017 /* Test Write at offset 4f0 */
6018 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6020 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6023 if (ret_data
!= 0x012345) {
6024 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6025 "Data written %llx Data read %llx\n",
6026 dev
->name
, (unsigned long long)0x12345,
6027 (unsigned long long)ret_data
);
6031 /* Reset the EEPROM data go FFFF */
6032 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6034 /* Test Write Request Error at offset 0x7c */
6035 if (sp
->device_type
== XFRAME_I_DEVICE
)
6036 if (!write_eeprom(sp
, 0x07C, 0, 3))
6039 /* Test Write Request at offset 0x7f0 */
6040 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6042 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6045 if (ret_data
!= 0x012345) {
6046 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6047 "Data written %llx Data read %llx\n",
6048 dev
->name
, (unsigned long long)0x12345,
6049 (unsigned long long)ret_data
);
6053 /* Reset the EEPROM data go FFFF */
6054 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6056 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6057 /* Test Write Error at offset 0x80 */
6058 if (!write_eeprom(sp
, 0x080, 0, 3))
6061 /* Test Write Error at offset 0xfc */
6062 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6065 /* Test Write Error at offset 0x100 */
6066 if (!write_eeprom(sp
, 0x100, 0, 3))
6069 /* Test Write Error at offset 4ec */
6070 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6074 /* Restore values at offsets 0x4F0 and 0x7F0 */
6076 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6078 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6085 * s2io_bist_test - invokes the MemBist test of the card .
6086 * @sp : private member of the device structure, which is a pointer to the
6087 * s2io_nic structure.
6088 * @data:variable that returns the result of each of the test conducted by
6091 * This invokes the MemBist test of the card. We give around
6092 * 2 secs time for the Test to complete. If it's still not complete
6093 * within this peiod, we consider that the test failed.
6095 * 0 on success and -1 on failure.
6098 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6101 int cnt
= 0, ret
= -1;
6103 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6104 bist
|= PCI_BIST_START
;
6105 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6108 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6109 if (!(bist
& PCI_BIST_START
)) {
6110 *data
= (bist
& PCI_BIST_CODE_MASK
);
6122 * s2io-link_test - verifies the link state of the nic
6123 * @sp ; private member of the device structure, which is a pointer to the
6124 * s2io_nic structure.
6125 * @data: variable that returns the result of each of the test conducted by
6128 * The function verifies the link state of the NIC and updates the input
6129 * argument 'data' appropriately.
6134 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6136 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6139 val64
= readq(&bar0
->adapter_status
);
6140 if (!(LINK_IS_UP(val64
)))
6149 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6150 * @sp - private member of the device structure, which is a pointer to the
6151 * s2io_nic structure.
6152 * @data - variable that returns the result of each of the test
6153 * conducted by the driver.
6155 * This is one of the offline test that tests the read and write
6156 * access to the RldRam chip on the NIC.
6161 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6163 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6165 int cnt
, iteration
= 0, test_fail
= 0;
6167 val64
= readq(&bar0
->adapter_control
);
6168 val64
&= ~ADAPTER_ECC_EN
;
6169 writeq(val64
, &bar0
->adapter_control
);
6171 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6172 val64
|= MC_RLDRAM_TEST_MODE
;
6173 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6175 val64
= readq(&bar0
->mc_rldram_mrs
);
6176 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6177 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6179 val64
|= MC_RLDRAM_MRS_ENABLE
;
6180 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6182 while (iteration
< 2) {
6183 val64
= 0x55555555aaaa0000ULL
;
6185 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6186 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6188 val64
= 0xaaaa5a5555550000ULL
;
6190 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6191 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6193 val64
= 0x55aaaaaaaa5a0000ULL
;
6195 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6196 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6198 val64
= (u64
) (0x0000003ffffe0100ULL
);
6199 writeq(val64
, &bar0
->mc_rldram_test_add
);
6201 val64
= MC_RLDRAM_TEST_MODE
|
6202 MC_RLDRAM_TEST_WRITE
|
6204 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6206 for (cnt
= 0; cnt
< 5; cnt
++) {
6207 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6208 if (val64
& MC_RLDRAM_TEST_DONE
)
6216 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6217 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6219 for (cnt
= 0; cnt
< 5; cnt
++) {
6220 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6221 if (val64
& MC_RLDRAM_TEST_DONE
)
6229 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6230 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6238 /* Bring the adapter out of test mode */
6239 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6245 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6246 * @sp : private member of the device structure, which is a pointer to the
6247 * s2io_nic structure.
6248 * @ethtest : pointer to a ethtool command specific structure that will be
6249 * returned to the user.
6250 * @data : variable that returns the result of each of the test
6251 * conducted by the driver.
6253 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6254 * the health of the card.
6259 static void s2io_ethtool_test(struct net_device
*dev
,
6260 struct ethtool_test
*ethtest
,
6263 struct s2io_nic
*sp
= netdev_priv(dev
);
6264 int orig_state
= netif_running(sp
->dev
);
6266 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6267 /* Offline Tests. */
6269 s2io_close(sp
->dev
);
6271 if (s2io_register_test(sp
, &data
[0]))
6272 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6276 if (s2io_rldram_test(sp
, &data
[3]))
6277 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6281 if (s2io_eeprom_test(sp
, &data
[1]))
6282 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6284 if (s2io_bist_test(sp
, &data
[4]))
6285 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6294 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6303 if (s2io_link_test(sp
, &data
[2]))
6304 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6313 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6314 struct ethtool_stats
*estats
,
6318 struct s2io_nic
*sp
= netdev_priv(dev
);
6319 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6320 struct swStat
*swstats
= &stats
->sw_stat
;
6321 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6323 s2io_updt_stats(sp
);
6325 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6326 le32_to_cpu(stats
->tmac_frms
);
6328 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6329 le32_to_cpu(stats
->tmac_data_octets
);
6330 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6332 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6333 le32_to_cpu(stats
->tmac_mcst_frms
);
6335 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6336 le32_to_cpu(stats
->tmac_bcst_frms
);
6337 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6339 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6340 le32_to_cpu(stats
->tmac_ttl_octets
);
6342 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6343 le32_to_cpu(stats
->tmac_ucst_frms
);
6345 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6346 le32_to_cpu(stats
->tmac_nucst_frms
);
6348 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6349 le32_to_cpu(stats
->tmac_any_err_frms
);
6350 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6351 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6353 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6354 le32_to_cpu(stats
->tmac_vld_ip
);
6356 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6357 le32_to_cpu(stats
->tmac_drop_ip
);
6359 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6360 le32_to_cpu(stats
->tmac_icmp
);
6362 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6363 le32_to_cpu(stats
->tmac_rst_tcp
);
6364 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6365 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6366 le32_to_cpu(stats
->tmac_udp
);
6368 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6369 le32_to_cpu(stats
->rmac_vld_frms
);
6371 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6372 le32_to_cpu(stats
->rmac_data_octets
);
6373 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6374 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6376 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6377 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6379 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6380 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6381 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6382 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6383 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6384 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6385 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6387 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6388 le32_to_cpu(stats
->rmac_ttl_octets
);
6390 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6391 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6393 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6394 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6396 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6397 le32_to_cpu(stats
->rmac_discarded_frms
);
6399 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6400 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6401 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6402 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6404 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6405 le32_to_cpu(stats
->rmac_usized_frms
);
6407 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6408 le32_to_cpu(stats
->rmac_osized_frms
);
6410 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6411 le32_to_cpu(stats
->rmac_frag_frms
);
6413 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6414 le32_to_cpu(stats
->rmac_jabber_frms
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6418 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6419 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6420 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6422 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6423 le32_to_cpu(stats
->rmac_ip
);
6424 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6425 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6427 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6428 le32_to_cpu(stats
->rmac_drop_ip
);
6430 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6431 le32_to_cpu(stats
->rmac_icmp
);
6432 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6434 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6435 le32_to_cpu(stats
->rmac_udp
);
6437 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6438 le32_to_cpu(stats
->rmac_err_drp_udp
);
6439 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6440 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6441 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6442 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6443 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6444 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6445 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6446 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6447 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6448 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6449 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6450 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6451 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6452 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6453 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6454 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6455 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6457 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6458 le32_to_cpu(stats
->rmac_pause_cnt
);
6459 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6460 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6462 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6463 le32_to_cpu(stats
->rmac_accepted_ip
);
6464 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6465 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6466 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6467 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6470 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6471 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6472 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6473 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6474 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6475 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6476 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6477 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6478 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6479 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6480 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6481 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6482 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6484 /* Enhanced statistics exist only for Hercules */
6485 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6487 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6489 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6491 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6492 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6493 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6494 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6495 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6496 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6497 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6508 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6509 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6510 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6511 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6512 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6513 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6514 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6515 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6516 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6517 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6518 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6519 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6520 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6521 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6522 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6523 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6524 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6525 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6526 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6527 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6528 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6529 tmp_stats
[i
++] = swstats
->sending_both
;
6530 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6531 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6532 if (swstats
->num_aggregations
) {
6533 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6536 * Since 64-bit divide does not work on all platforms,
6537 * do repeated subtraction.
6539 while (tmp
>= swstats
->num_aggregations
) {
6540 tmp
-= swstats
->num_aggregations
;
6543 tmp_stats
[i
++] = count
;
6546 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6547 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6548 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6549 tmp_stats
[i
++] = swstats
->mem_allocated
;
6550 tmp_stats
[i
++] = swstats
->mem_freed
;
6551 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6552 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6553 tmp_stats
[i
++] = swstats
->link_up_time
;
6554 tmp_stats
[i
++] = swstats
->link_down_time
;
6556 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6557 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6558 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6559 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6560 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6562 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6563 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6564 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6565 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6566 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6567 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6568 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6569 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6570 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6571 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6572 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6573 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6574 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6575 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6576 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6577 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6578 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6579 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6580 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6581 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6582 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6583 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6584 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6585 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6586 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6587 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6590 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6592 return XENA_REG_SPACE
;
6596 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6598 struct s2io_nic
*sp
= netdev_priv(dev
);
6603 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6605 struct s2io_nic
*sp
= netdev_priv(dev
);
6615 static int s2io_get_eeprom_len(struct net_device
*dev
)
6617 return XENA_EEPROM_SPACE
;
6620 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6622 struct s2io_nic
*sp
= netdev_priv(dev
);
6626 return S2IO_TEST_LEN
;
6628 switch (sp
->device_type
) {
6629 case XFRAME_I_DEVICE
:
6630 return XFRAME_I_STAT_LEN
;
6631 case XFRAME_II_DEVICE
:
6632 return XFRAME_II_STAT_LEN
;
6641 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6642 u32 stringset
, u8
*data
)
6645 struct s2io_nic
*sp
= netdev_priv(dev
);
6647 switch (stringset
) {
6649 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6652 stat_size
= sizeof(ethtool_xena_stats_keys
);
6653 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6654 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6655 memcpy(data
+ stat_size
,
6656 ðtool_enhanced_stats_keys
,
6657 sizeof(ethtool_enhanced_stats_keys
));
6658 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6661 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6662 sizeof(ethtool_driver_stats_keys
));
6666 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6669 dev
->features
|= NETIF_F_IP_CSUM
;
6671 dev
->features
&= ~NETIF_F_IP_CSUM
;
6676 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6678 return (dev
->features
& NETIF_F_TSO
) != 0;
6680 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6683 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6685 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6690 static const struct ethtool_ops netdev_ethtool_ops
= {
6691 .get_settings
= s2io_ethtool_gset
,
6692 .set_settings
= s2io_ethtool_sset
,
6693 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6694 .get_regs_len
= s2io_ethtool_get_regs_len
,
6695 .get_regs
= s2io_ethtool_gregs
,
6696 .get_link
= ethtool_op_get_link
,
6697 .get_eeprom_len
= s2io_get_eeprom_len
,
6698 .get_eeprom
= s2io_ethtool_geeprom
,
6699 .set_eeprom
= s2io_ethtool_seeprom
,
6700 .get_ringparam
= s2io_ethtool_gringparam
,
6701 .get_pauseparam
= s2io_ethtool_getpause_data
,
6702 .set_pauseparam
= s2io_ethtool_setpause_data
,
6703 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6704 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6705 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6706 .set_sg
= ethtool_op_set_sg
,
6707 .get_tso
= s2io_ethtool_op_get_tso
,
6708 .set_tso
= s2io_ethtool_op_set_tso
,
6709 .set_ufo
= ethtool_op_set_ufo
,
6710 .self_test
= s2io_ethtool_test
,
6711 .get_strings
= s2io_ethtool_get_strings
,
6712 .phys_id
= s2io_ethtool_idnic
,
6713 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6714 .get_sset_count
= s2io_get_sset_count
,
6718 * s2io_ioctl - Entry point for the Ioctl
6719 * @dev : Device pointer.
6720 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6721 * a proprietary structure used to pass information to the driver.
6722 * @cmd : This is used to distinguish between the different commands that
6723 * can be passed to the IOCTL functions.
6725 * Currently there are no special functionality supported in IOCTL, hence
6726 * function always return EOPNOTSUPPORTED
6729 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6735 * s2io_change_mtu - entry point to change MTU size for the device.
6736 * @dev : device pointer.
6737 * @new_mtu : the new MTU size for the device.
6738 * Description: A driver entry point to change MTU size for the device.
6739 * Before changing the MTU the device must be stopped.
6741 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6745 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6747 struct s2io_nic
*sp
= netdev_priv(dev
);
6750 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6751 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6756 if (netif_running(dev
)) {
6757 s2io_stop_all_tx_queue(sp
);
6759 ret
= s2io_card_up(sp
);
6761 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6765 s2io_wake_all_tx_queue(sp
);
6766 } else { /* Device is down */
6767 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6768 u64 val64
= new_mtu
;
6770 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6777 * s2io_set_link - Set the LInk status
6778 * @data: long pointer to device private structue
6779 * Description: Sets the link status for the adapter
6782 static void s2io_set_link(struct work_struct
*work
)
6784 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6786 struct net_device
*dev
= nic
->dev
;
6787 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6793 if (!netif_running(dev
))
6796 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6797 /* The card is being reset, no point doing anything */
6801 subid
= nic
->pdev
->subsystem_device
;
6802 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6804 * Allow a small delay for the NICs self initiated
6805 * cleanup to complete.
6810 val64
= readq(&bar0
->adapter_status
);
6811 if (LINK_IS_UP(val64
)) {
6812 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6813 if (verify_xena_quiescence(nic
)) {
6814 val64
= readq(&bar0
->adapter_control
);
6815 val64
|= ADAPTER_CNTL_EN
;
6816 writeq(val64
, &bar0
->adapter_control
);
6817 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6818 nic
->device_type
, subid
)) {
6819 val64
= readq(&bar0
->gpio_control
);
6820 val64
|= GPIO_CTRL_GPIO_0
;
6821 writeq(val64
, &bar0
->gpio_control
);
6822 val64
= readq(&bar0
->gpio_control
);
6824 val64
|= ADAPTER_LED_ON
;
6825 writeq(val64
, &bar0
->adapter_control
);
6827 nic
->device_enabled_once
= true;
6830 "%s: Error: device is not Quiescent\n",
6832 s2io_stop_all_tx_queue(nic
);
6835 val64
= readq(&bar0
->adapter_control
);
6836 val64
|= ADAPTER_LED_ON
;
6837 writeq(val64
, &bar0
->adapter_control
);
6838 s2io_link(nic
, LINK_UP
);
6840 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6842 val64
= readq(&bar0
->gpio_control
);
6843 val64
&= ~GPIO_CTRL_GPIO_0
;
6844 writeq(val64
, &bar0
->gpio_control
);
6845 val64
= readq(&bar0
->gpio_control
);
6848 val64
= readq(&bar0
->adapter_control
);
6849 val64
= val64
& (~ADAPTER_LED_ON
);
6850 writeq(val64
, &bar0
->adapter_control
);
6851 s2io_link(nic
, LINK_DOWN
);
6853 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6859 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6861 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6862 u64
*temp2
, int size
)
6864 struct net_device
*dev
= sp
->dev
;
6865 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6867 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6868 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6871 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6873 * As Rx frame are not going to be processed,
6874 * using same mapped address for the Rxd
6877 rxdp1
->Buffer0_ptr
= *temp0
;
6879 *skb
= dev_alloc_skb(size
);
6882 "%s: Out of memory to allocate %s\n",
6883 dev
->name
, "1 buf mode SKBs");
6884 stats
->mem_alloc_fail_cnt
++;
6887 stats
->mem_allocated
+= (*skb
)->truesize
;
6888 /* storing the mapped addr in a temp variable
6889 * such it will be used for next rxd whose
6890 * Host Control is NULL
6892 rxdp1
->Buffer0_ptr
= *temp0
=
6893 pci_map_single(sp
->pdev
, (*skb
)->data
,
6894 size
- NET_IP_ALIGN
,
6895 PCI_DMA_FROMDEVICE
);
6896 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6897 goto memalloc_failed
;
6898 rxdp
->Host_Control
= (unsigned long) (*skb
);
6900 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6901 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6902 /* Two buffer Mode */
6904 rxdp3
->Buffer2_ptr
= *temp2
;
6905 rxdp3
->Buffer0_ptr
= *temp0
;
6906 rxdp3
->Buffer1_ptr
= *temp1
;
6908 *skb
= dev_alloc_skb(size
);
6911 "%s: Out of memory to allocate %s\n",
6914 stats
->mem_alloc_fail_cnt
++;
6917 stats
->mem_allocated
+= (*skb
)->truesize
;
6918 rxdp3
->Buffer2_ptr
= *temp2
=
6919 pci_map_single(sp
->pdev
, (*skb
)->data
,
6921 PCI_DMA_FROMDEVICE
);
6922 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6923 goto memalloc_failed
;
6924 rxdp3
->Buffer0_ptr
= *temp0
=
6925 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6926 PCI_DMA_FROMDEVICE
);
6927 if (pci_dma_mapping_error(sp
->pdev
,
6928 rxdp3
->Buffer0_ptr
)) {
6929 pci_unmap_single(sp
->pdev
,
6930 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6932 PCI_DMA_FROMDEVICE
);
6933 goto memalloc_failed
;
6935 rxdp
->Host_Control
= (unsigned long) (*skb
);
6937 /* Buffer-1 will be dummy buffer not used */
6938 rxdp3
->Buffer1_ptr
= *temp1
=
6939 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6940 PCI_DMA_FROMDEVICE
);
6941 if (pci_dma_mapping_error(sp
->pdev
,
6942 rxdp3
->Buffer1_ptr
)) {
6943 pci_unmap_single(sp
->pdev
,
6944 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6945 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6946 pci_unmap_single(sp
->pdev
,
6947 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6949 PCI_DMA_FROMDEVICE
);
6950 goto memalloc_failed
;
6957 stats
->pci_map_fail_cnt
++;
6958 stats
->mem_freed
+= (*skb
)->truesize
;
6959 dev_kfree_skb(*skb
);
6963 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6966 struct net_device
*dev
= sp
->dev
;
6967 if (sp
->rxd_mode
== RXD_MODE_1
) {
6968 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6969 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6970 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6971 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6972 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6976 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6978 int i
, j
, k
, blk_cnt
= 0, size
;
6979 struct config_param
*config
= &sp
->config
;
6980 struct mac_info
*mac_control
= &sp
->mac_control
;
6981 struct net_device
*dev
= sp
->dev
;
6982 struct RxD_t
*rxdp
= NULL
;
6983 struct sk_buff
*skb
= NULL
;
6984 struct buffAdd
*ba
= NULL
;
6985 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6987 /* Calculate the size based on ring mode */
6988 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6989 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6990 if (sp
->rxd_mode
== RXD_MODE_1
)
6991 size
+= NET_IP_ALIGN
;
6992 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6993 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6995 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6996 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6997 struct ring_info
*ring
= &mac_control
->rings
[i
];
6999 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7001 for (j
= 0; j
< blk_cnt
; j
++) {
7002 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7003 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7004 if (sp
->rxd_mode
== RXD_MODE_3B
)
7005 ba
= &ring
->ba
[j
][k
];
7006 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7014 set_rxd_buffer_size(sp
, rxdp
, size
);
7016 /* flip the Ownership bit to Hardware */
7017 rxdp
->Control_1
|= RXD_OWN_XENA
;
7025 static int s2io_add_isr(struct s2io_nic
*sp
)
7028 struct net_device
*dev
= sp
->dev
;
7031 if (sp
->config
.intr_type
== MSI_X
)
7032 ret
= s2io_enable_msi_x(sp
);
7034 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7035 sp
->config
.intr_type
= INTA
;
7039 * Store the values of the MSIX table in
7040 * the struct s2io_nic structure
7042 store_xmsi_data(sp
);
7044 /* After proper initialization of H/W, register ISR */
7045 if (sp
->config
.intr_type
== MSI_X
) {
7046 int i
, msix_rx_cnt
= 0;
7048 for (i
= 0; i
< sp
->num_entries
; i
++) {
7049 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7050 if (sp
->s2io_entries
[i
].type
==
7052 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7054 err
= request_irq(sp
->entries
[i
].vector
,
7055 s2io_msix_ring_handle
,
7058 sp
->s2io_entries
[i
].arg
);
7059 } else if (sp
->s2io_entries
[i
].type
==
7061 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7063 err
= request_irq(sp
->entries
[i
].vector
,
7064 s2io_msix_fifo_handle
,
7067 sp
->s2io_entries
[i
].arg
);
7070 /* if either data or addr is zero print it. */
7071 if (!(sp
->msix_info
[i
].addr
&&
7072 sp
->msix_info
[i
].data
)) {
7074 "%s @Addr:0x%llx Data:0x%llx\n",
7076 (unsigned long long)
7077 sp
->msix_info
[i
].addr
,
7078 (unsigned long long)
7079 ntohl(sp
->msix_info
[i
].data
));
7083 remove_msix_isr(sp
);
7086 "%s:MSI-X-%d registration "
7087 "failed\n", dev
->name
, i
);
7090 "%s: Defaulting to INTA\n",
7092 sp
->config
.intr_type
= INTA
;
7095 sp
->s2io_entries
[i
].in_use
=
7096 MSIX_REGISTERED_SUCCESS
;
7100 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7102 "MSI-X-TX entries enabled through alarm vector\n");
7105 if (sp
->config
.intr_type
== INTA
) {
7106 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7109 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7117 static void s2io_rem_isr(struct s2io_nic
*sp
)
7119 if (sp
->config
.intr_type
== MSI_X
)
7120 remove_msix_isr(sp
);
7122 remove_inta_isr(sp
);
7125 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7128 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7129 register u64 val64
= 0;
7130 struct config_param
*config
;
7131 config
= &sp
->config
;
7133 if (!is_s2io_card_up(sp
))
7136 del_timer_sync(&sp
->alarm_timer
);
7137 /* If s2io_set_link task is executing, wait till it completes. */
7138 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7140 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7143 if (sp
->config
.napi
) {
7145 if (config
->intr_type
== MSI_X
) {
7146 for (; off
< sp
->config
.rx_ring_num
; off
++)
7147 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7150 napi_disable(&sp
->napi
);
7153 /* disable Tx and Rx traffic on the NIC */
7159 /* stop the tx queue, indicate link down */
7160 s2io_link(sp
, LINK_DOWN
);
7162 /* Check if the device is Quiescent and then Reset the NIC */
7164 /* As per the HW requirement we need to replenish the
7165 * receive buffer to avoid the ring bump. Since there is
7166 * no intention of processing the Rx frame at this pointwe are
7167 * just settting the ownership bit of rxd in Each Rx
7168 * ring to HW and set the appropriate buffer size
7169 * based on the ring mode
7171 rxd_owner_bit_reset(sp
);
7173 val64
= readq(&bar0
->adapter_status
);
7174 if (verify_xena_quiescence(sp
)) {
7175 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7182 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7183 "adapter status reads 0x%llx\n",
7184 (unsigned long long)val64
);
7191 /* Free all Tx buffers */
7192 free_tx_buffers(sp
);
7194 /* Free all Rx buffers */
7195 free_rx_buffers(sp
);
7197 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7200 static void s2io_card_down(struct s2io_nic
*sp
)
7202 do_s2io_card_down(sp
, 1);
7205 static int s2io_card_up(struct s2io_nic
*sp
)
7208 struct config_param
*config
;
7209 struct mac_info
*mac_control
;
7210 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7213 /* Initialize the H/W I/O registers */
7216 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7224 * Initializing the Rx buffers. For now we are considering only 1
7225 * Rx ring and initializing buffers into 30 Rx blocks
7227 config
= &sp
->config
;
7228 mac_control
= &sp
->mac_control
;
7230 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7231 struct ring_info
*ring
= &mac_control
->rings
[i
];
7233 ring
->mtu
= dev
->mtu
;
7234 ret
= fill_rx_buffers(sp
, ring
, 1);
7236 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7239 free_rx_buffers(sp
);
7242 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7243 ring
->rx_bufs_left
);
7246 /* Initialise napi */
7248 if (config
->intr_type
== MSI_X
) {
7249 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7250 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7252 napi_enable(&sp
->napi
);
7256 /* Maintain the state prior to the open */
7257 if (sp
->promisc_flg
)
7258 sp
->promisc_flg
= 0;
7259 if (sp
->m_cast_flg
) {
7261 sp
->all_multi_pos
= 0;
7264 /* Setting its receive mode */
7265 s2io_set_multicast(dev
);
7268 /* Initialize max aggregatable pkts per session based on MTU */
7269 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7270 /* Check if we can use (if specified) user provided value */
7271 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7272 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7275 /* Enable Rx Traffic and interrupts on the NIC */
7276 if (start_nic(sp
)) {
7277 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7279 free_rx_buffers(sp
);
7283 /* Add interrupt service routine */
7284 if (s2io_add_isr(sp
) != 0) {
7285 if (sp
->config
.intr_type
== MSI_X
)
7288 free_rx_buffers(sp
);
7292 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7294 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7296 /* Enable select interrupts */
7297 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7298 if (sp
->config
.intr_type
!= INTA
) {
7299 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7300 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7302 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7303 interruptible
|= TX_PIC_INTR
;
7304 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7311 * s2io_restart_nic - Resets the NIC.
7312 * @data : long pointer to the device private structure
7314 * This function is scheduled to be run by the s2io_tx_watchdog
7315 * function after 0.5 secs to reset the NIC. The idea is to reduce
7316 * the run time of the watch dog routine which is run holding a
7320 static void s2io_restart_nic(struct work_struct
*work
)
7322 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7323 struct net_device
*dev
= sp
->dev
;
7327 if (!netif_running(dev
))
7331 if (s2io_card_up(sp
)) {
7332 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7334 s2io_wake_all_tx_queue(sp
);
7335 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7341 * s2io_tx_watchdog - Watchdog for transmit side.
7342 * @dev : Pointer to net device structure
7344 * This function is triggered if the Tx Queue is stopped
7345 * for a pre-defined amount of time when the Interface is still up.
7346 * If the Interface is jammed in such a situation, the hardware is
7347 * reset (by s2io_close) and restarted again (by s2io_open) to
7348 * overcome any problem that might have been caused in the hardware.
7353 static void s2io_tx_watchdog(struct net_device
*dev
)
7355 struct s2io_nic
*sp
= netdev_priv(dev
);
7356 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7358 if (netif_carrier_ok(dev
)) {
7359 swstats
->watchdog_timer_cnt
++;
7360 schedule_work(&sp
->rst_timer_task
);
7361 swstats
->soft_reset_cnt
++;
7366 * rx_osm_handler - To perform some OS related operations on SKB.
7367 * @sp: private member of the device structure,pointer to s2io_nic structure.
7368 * @skb : the socket buffer pointer.
7369 * @len : length of the packet
7370 * @cksum : FCS checksum of the frame.
7371 * @ring_no : the ring from which this RxD was extracted.
7373 * This function is called by the Rx interrupt serivce routine to perform
7374 * some OS related operations on the SKB before passing it to the upper
7375 * layers. It mainly checks if the checksum is OK, if so adds it to the
7376 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7377 * to the upper layer. If the checksum is wrong, it increments the Rx
7378 * packet error count, frees the SKB and returns error.
7380 * SUCCESS on success and -1 on failure.
7382 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7384 struct s2io_nic
*sp
= ring_data
->nic
;
7385 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7386 struct sk_buff
*skb
= (struct sk_buff
*)
7387 ((unsigned long)rxdp
->Host_Control
);
7388 int ring_no
= ring_data
->ring_no
;
7389 u16 l3_csum
, l4_csum
;
7390 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7391 struct lro
*uninitialized_var(lro
);
7393 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7398 /* Check for parity error */
7400 swstats
->parity_err_cnt
++;
7402 err_mask
= err
>> 48;
7405 swstats
->rx_parity_err_cnt
++;
7409 swstats
->rx_abort_cnt
++;
7413 swstats
->rx_parity_abort_cnt
++;
7417 swstats
->rx_rda_fail_cnt
++;
7421 swstats
->rx_unkn_prot_cnt
++;
7425 swstats
->rx_fcs_err_cnt
++;
7429 swstats
->rx_buf_size_err_cnt
++;
7433 swstats
->rx_rxd_corrupt_cnt
++;
7437 swstats
->rx_unkn_err_cnt
++;
7441 * Drop the packet if bad transfer code. Exception being
7442 * 0x5, which could be due to unsupported IPv6 extension header.
7443 * In this case, we let stack handle the packet.
7444 * Note that in this case, since checksum will be incorrect,
7445 * stack will validate the same.
7447 if (err_mask
!= 0x5) {
7448 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7449 dev
->name
, err_mask
);
7450 dev
->stats
.rx_crc_errors
++;
7454 ring_data
->rx_bufs_left
-= 1;
7455 rxdp
->Host_Control
= 0;
7460 /* Updating statistics */
7461 ring_data
->rx_packets
++;
7462 rxdp
->Host_Control
= 0;
7463 if (sp
->rxd_mode
== RXD_MODE_1
) {
7464 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7466 ring_data
->rx_bytes
+= len
;
7469 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7470 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7471 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7472 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7473 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7474 unsigned char *buff
= skb_push(skb
, buf0_len
);
7476 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7477 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7478 memcpy(buff
, ba
->ba_0
, buf0_len
);
7479 skb_put(skb
, buf2_len
);
7482 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7483 ((!ring_data
->lro
) ||
7484 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7486 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7487 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7488 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7490 * NIC verifies if the Checksum of the received
7491 * frame is Ok or not and accordingly returns
7492 * a flag in the RxD.
7494 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7495 if (ring_data
->lro
) {
7500 ret
= s2io_club_tcp_session(ring_data
,
7505 case 3: /* Begin anew */
7508 case 1: /* Aggregate */
7509 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7511 case 4: /* Flush session */
7512 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7513 queue_rx_frame(lro
->parent
,
7515 clear_lro_session(lro
);
7516 swstats
->flush_max_pkts
++;
7518 case 2: /* Flush both */
7519 lro
->parent
->data_len
= lro
->frags_len
;
7520 swstats
->sending_both
++;
7521 queue_rx_frame(lro
->parent
,
7523 clear_lro_session(lro
);
7525 case 0: /* sessions exceeded */
7526 case -1: /* non-TCP or not L2 aggregatable */
7528 * First pkt in session not
7529 * L3/L4 aggregatable
7534 "%s: Samadhana!!\n",
7541 * Packet with erroneous checksum, let the
7542 * upper layers deal with it.
7544 skb
->ip_summed
= CHECKSUM_NONE
;
7547 skb
->ip_summed
= CHECKSUM_NONE
;
7549 swstats
->mem_freed
+= skb
->truesize
;
7551 skb_record_rx_queue(skb
, ring_no
);
7552 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7554 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7559 * s2io_link - stops/starts the Tx queue.
7560 * @sp : private member of the device structure, which is a pointer to the
7561 * s2io_nic structure.
7562 * @link : inidicates whether link is UP/DOWN.
7564 * This function stops/starts the Tx queue depending on whether the link
7565 * status of the NIC is is down or up. This is called by the Alarm
7566 * interrupt handler whenever a link change interrupt comes up.
7571 static void s2io_link(struct s2io_nic
*sp
, int link
)
7573 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7574 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7576 if (link
!= sp
->last_link_state
) {
7578 if (link
== LINK_DOWN
) {
7579 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7580 s2io_stop_all_tx_queue(sp
);
7581 netif_carrier_off(dev
);
7582 if (swstats
->link_up_cnt
)
7583 swstats
->link_up_time
=
7584 jiffies
- sp
->start_time
;
7585 swstats
->link_down_cnt
++;
7587 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7588 if (swstats
->link_down_cnt
)
7589 swstats
->link_down_time
=
7590 jiffies
- sp
->start_time
;
7591 swstats
->link_up_cnt
++;
7592 netif_carrier_on(dev
);
7593 s2io_wake_all_tx_queue(sp
);
7596 sp
->last_link_state
= link
;
7597 sp
->start_time
= jiffies
;
7601 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7602 * @sp : private member of the device structure, which is a pointer to the
7603 * s2io_nic structure.
7605 * This function initializes a few of the PCI and PCI-X configuration registers
7606 * with recommended values.
7611 static void s2io_init_pci(struct s2io_nic
*sp
)
7613 u16 pci_cmd
= 0, pcix_cmd
= 0;
7615 /* Enable Data Parity Error Recovery in PCI-X command register. */
7616 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7618 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7620 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7623 /* Set the PErr Response bit in PCI command register. */
7624 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7625 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7626 (pci_cmd
| PCI_COMMAND_PARITY
));
7627 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7630 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7633 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7634 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7635 "(%d) not supported\n", tx_fifo_num
);
7637 if (tx_fifo_num
< 1)
7640 tx_fifo_num
= MAX_TX_FIFOS
;
7642 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7646 *dev_multiq
= multiq
;
7648 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7649 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7651 "Tx steering is not supported with "
7652 "one fifo. Disabling Tx steering.\n");
7653 tx_steering_type
= NO_STEERING
;
7656 if ((tx_steering_type
< NO_STEERING
) ||
7657 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7659 "Requested transmit steering not supported\n");
7660 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7661 tx_steering_type
= NO_STEERING
;
7664 if (rx_ring_num
> MAX_RX_RINGS
) {
7666 "Requested number of rx rings not supported\n");
7667 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7669 rx_ring_num
= MAX_RX_RINGS
;
7672 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7673 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7674 "Defaulting to INTA\n");
7675 *dev_intr_type
= INTA
;
7678 if ((*dev_intr_type
== MSI_X
) &&
7679 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7680 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7681 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7682 "Defaulting to INTA\n");
7683 *dev_intr_type
= INTA
;
7686 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7687 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7688 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7695 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7696 * or Traffic class respectively.
7697 * @nic: device private variable
7698 * Description: The function configures the receive steering to
7699 * desired receive ring.
7700 * Return Value: SUCCESS on success and
7701 * '-1' on failure (endian settings incorrect).
7703 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7705 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7706 register u64 val64
= 0;
7708 if (ds_codepoint
> 63)
7711 val64
= RTS_DS_MEM_DATA(ring
);
7712 writeq(val64
, &bar0
->rts_ds_mem_data
);
7714 val64
= RTS_DS_MEM_CTRL_WE
|
7715 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7716 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7718 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7720 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7721 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7725 static const struct net_device_ops s2io_netdev_ops
= {
7726 .ndo_open
= s2io_open
,
7727 .ndo_stop
= s2io_close
,
7728 .ndo_get_stats
= s2io_get_stats
,
7729 .ndo_start_xmit
= s2io_xmit
,
7730 .ndo_validate_addr
= eth_validate_addr
,
7731 .ndo_set_multicast_list
= s2io_set_multicast
,
7732 .ndo_do_ioctl
= s2io_ioctl
,
7733 .ndo_set_mac_address
= s2io_set_mac_addr
,
7734 .ndo_change_mtu
= s2io_change_mtu
,
7735 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7736 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7737 .ndo_tx_timeout
= s2io_tx_watchdog
,
7738 #ifdef CONFIG_NET_POLL_CONTROLLER
7739 .ndo_poll_controller
= s2io_netpoll
,
7744 * s2io_init_nic - Initialization of the adapter .
7745 * @pdev : structure containing the PCI related information of the device.
7746 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7748 * The function initializes an adapter identified by the pci_dec structure.
7749 * All OS related initialization including memory and device structure and
7750 * initlaization of the device private variable is done. Also the swapper
7751 * control register is initialized to enable read and write into the I/O
7752 * registers of the device.
7754 * returns 0 on success and negative on failure.
7757 static int __devinit
7758 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7760 struct s2io_nic
*sp
;
7761 struct net_device
*dev
;
7763 int dma_flag
= false;
7764 u32 mac_up
, mac_down
;
7765 u64 val64
= 0, tmp64
= 0;
7766 struct XENA_dev_config __iomem
*bar0
= NULL
;
7768 struct config_param
*config
;
7769 struct mac_info
*mac_control
;
7771 u8 dev_intr_type
= intr_type
;
7774 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7778 ret
= pci_enable_device(pdev
);
7781 "%s: pci_enable_device failed\n", __func__
);
7785 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7786 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7788 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7790 "Unable to obtain 64bit DMA "
7791 "for consistent allocations\n");
7792 pci_disable_device(pdev
);
7795 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7796 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7798 pci_disable_device(pdev
);
7801 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7803 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7805 pci_disable_device(pdev
);
7809 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7811 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7813 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7814 pci_disable_device(pdev
);
7815 pci_release_regions(pdev
);
7819 pci_set_master(pdev
);
7820 pci_set_drvdata(pdev
, dev
);
7821 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7823 /* Private member variable initialized to s2io NIC structure */
7824 sp
= netdev_priv(dev
);
7825 memset(sp
, 0, sizeof(struct s2io_nic
));
7828 sp
->high_dma_flag
= dma_flag
;
7829 sp
->device_enabled_once
= false;
7830 if (rx_ring_mode
== 1)
7831 sp
->rxd_mode
= RXD_MODE_1
;
7832 if (rx_ring_mode
== 2)
7833 sp
->rxd_mode
= RXD_MODE_3B
;
7835 sp
->config
.intr_type
= dev_intr_type
;
7837 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7838 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7839 sp
->device_type
= XFRAME_II_DEVICE
;
7841 sp
->device_type
= XFRAME_I_DEVICE
;
7843 sp
->lro
= lro_enable
;
7845 /* Initialize some PCI/PCI-X fields of the NIC. */
7849 * Setting the device configuration parameters.
7850 * Most of these parameters can be specified by the user during
7851 * module insertion as they are module loadable parameters. If
7852 * these parameters are not not specified during load time, they
7853 * are initialized with default values.
7855 config
= &sp
->config
;
7856 mac_control
= &sp
->mac_control
;
7858 config
->napi
= napi
;
7859 config
->tx_steering_type
= tx_steering_type
;
7861 /* Tx side parameters. */
7862 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7863 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7865 config
->tx_fifo_num
= tx_fifo_num
;
7867 /* Initialize the fifos used for tx steering */
7868 if (config
->tx_fifo_num
< 5) {
7869 if (config
->tx_fifo_num
== 1)
7870 sp
->total_tcp_fifos
= 1;
7872 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7873 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7874 sp
->total_udp_fifos
= 1;
7875 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7877 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7878 FIFO_OTHER_MAX_NUM
);
7879 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7880 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7881 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7884 config
->multiq
= dev_multiq
;
7885 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7886 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7888 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7889 tx_cfg
->fifo_priority
= i
;
7892 /* mapping the QoS priority to the configured fifos */
7893 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7894 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7896 /* map the hashing selector table to the configured fifos */
7897 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7898 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7901 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7902 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7903 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7905 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7906 if (tx_cfg
->fifo_len
< 65) {
7907 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7911 /* + 2 because one Txd for skb->data and one Txd for UFO */
7912 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7914 /* Rx side parameters. */
7915 config
->rx_ring_num
= rx_ring_num
;
7916 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7917 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7918 struct ring_info
*ring
= &mac_control
->rings
[i
];
7920 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7921 rx_cfg
->ring_priority
= i
;
7922 ring
->rx_bufs_left
= 0;
7923 ring
->rxd_mode
= sp
->rxd_mode
;
7924 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7925 ring
->pdev
= sp
->pdev
;
7926 ring
->dev
= sp
->dev
;
7929 for (i
= 0; i
< rx_ring_num
; i
++) {
7930 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7932 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7933 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7936 /* Setting Mac Control parameters */
7937 mac_control
->rmac_pause_time
= rmac_pause_time
;
7938 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7939 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7942 /* initialize the shared memory used by the NIC and the host */
7943 if (init_shared_mem(sp
)) {
7944 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7946 goto mem_alloc_failed
;
7949 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7951 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7954 goto bar0_remap_failed
;
7957 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7959 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7962 goto bar1_remap_failed
;
7965 dev
->irq
= pdev
->irq
;
7966 dev
->base_addr
= (unsigned long)sp
->bar0
;
7968 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7969 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7970 mac_control
->tx_FIFO_start
[j
] =
7971 (struct TxFIFO_element __iomem
*)
7972 (sp
->bar1
+ (j
* 0x00020000));
7975 /* Driver entry points */
7976 dev
->netdev_ops
= &s2io_netdev_ops
;
7977 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7978 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7980 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7981 if (sp
->high_dma_flag
== true)
7982 dev
->features
|= NETIF_F_HIGHDMA
;
7983 dev
->features
|= NETIF_F_TSO
;
7984 dev
->features
|= NETIF_F_TSO6
;
7985 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7986 dev
->features
|= NETIF_F_UFO
;
7987 dev
->features
|= NETIF_F_HW_CSUM
;
7989 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7990 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7991 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7993 pci_save_state(sp
->pdev
);
7995 /* Setting swapper control on the NIC, for proper reset operation */
7996 if (s2io_set_swapper(sp
)) {
7997 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8000 goto set_swap_failed
;
8003 /* Verify if the Herc works on the slot its placed into */
8004 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8005 mode
= s2io_verify_pci_mode(sp
);
8007 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8010 goto set_swap_failed
;
8014 if (sp
->config
.intr_type
== MSI_X
) {
8015 sp
->num_entries
= config
->rx_ring_num
+ 1;
8016 ret
= s2io_enable_msi_x(sp
);
8019 ret
= s2io_test_msi(sp
);
8020 /* rollback MSI-X, will re-enable during add_isr() */
8021 remove_msix_isr(sp
);
8026 "MSI-X requested but failed to enable\n");
8027 sp
->config
.intr_type
= INTA
;
8031 if (config
->intr_type
== MSI_X
) {
8032 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8033 struct ring_info
*ring
= &mac_control
->rings
[i
];
8035 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8038 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8041 /* Not needed for Herc */
8042 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8044 * Fix for all "FFs" MAC address problems observed on
8047 fix_mac_address(sp
);
8052 * MAC address initialization.
8053 * For now only one mac address will be read and used.
8056 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8057 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8058 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8059 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8062 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8063 mac_down
= (u32
)tmp64
;
8064 mac_up
= (u32
) (tmp64
>> 32);
8066 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8067 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8068 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8069 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8070 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8071 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8073 /* Set the factory defined MAC address initially */
8074 dev
->addr_len
= ETH_ALEN
;
8075 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8076 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8078 /* initialize number of multicast & unicast MAC entries variables */
8079 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8080 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8081 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8082 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8083 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8084 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8085 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8086 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8089 /* store mac addresses from CAM to s2io_nic structure */
8090 do_s2io_store_unicast_mc(sp
);
8092 /* Configure MSIX vector for number of rings configured plus one */
8093 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8094 (config
->intr_type
== MSI_X
))
8095 sp
->num_entries
= config
->rx_ring_num
+ 1;
8097 /* Store the values of the MSIX table in the s2io_nic structure */
8098 store_xmsi_data(sp
);
8099 /* reset Nic and bring it to known state */
8103 * Initialize link state flags
8104 * and the card state parameter
8108 /* Initialize spinlocks */
8109 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8110 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8112 spin_lock_init(&fifo
->tx_lock
);
8116 * SXE-002: Configure link and activity LED to init state
8119 subid
= sp
->pdev
->subsystem_device
;
8120 if ((subid
& 0xFF) >= 0x07) {
8121 val64
= readq(&bar0
->gpio_control
);
8122 val64
|= 0x0000800000000000ULL
;
8123 writeq(val64
, &bar0
->gpio_control
);
8124 val64
= 0x0411040400000000ULL
;
8125 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8126 val64
= readq(&bar0
->gpio_control
);
8129 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8131 if (register_netdev(dev
)) {
8132 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8134 goto register_failed
;
8137 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8138 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8139 sp
->product_name
, pdev
->revision
);
8140 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8141 s2io_driver_version
);
8142 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8143 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8144 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8145 mode
= s2io_print_pci_mode(sp
);
8148 unregister_netdev(dev
);
8149 goto set_swap_failed
;
8152 switch (sp
->rxd_mode
) {
8154 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8158 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8163 switch (sp
->config
.napi
) {
8165 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8168 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8172 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8173 sp
->config
.tx_fifo_num
);
8175 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8176 sp
->config
.rx_ring_num
);
8178 switch (sp
->config
.intr_type
) {
8180 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8183 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8186 if (sp
->config
.multiq
) {
8187 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8188 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8190 fifo
->multiq
= config
->multiq
;
8192 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8195 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8198 switch (sp
->config
.tx_steering_type
) {
8200 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8203 case TX_PRIORITY_STEERING
:
8205 "%s: Priority steering enabled for transmit\n",
8208 case TX_DEFAULT_STEERING
:
8210 "%s: Default steering enabled for transmit\n",
8215 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8219 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8221 /* Initialize device name */
8222 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8225 sp
->vlan_strip_flag
= 1;
8227 sp
->vlan_strip_flag
= 0;
8230 * Make Link state as off at this point, when the Link change
8231 * interrupt comes the state will be automatically changed to
8234 netif_carrier_off(dev
);
8245 free_shared_mem(sp
);
8246 pci_disable_device(pdev
);
8247 pci_release_regions(pdev
);
8248 pci_set_drvdata(pdev
, NULL
);
8255 * s2io_rem_nic - Free the PCI device
8256 * @pdev: structure containing the PCI related information of the device.
8257 * Description: This function is called by the Pci subsystem to release a
8258 * PCI device and free up all resource held up by the device. This could
8259 * be in response to a Hot plug event or when the driver is to be removed
8263 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8265 struct net_device
*dev
=
8266 (struct net_device
*)pci_get_drvdata(pdev
);
8267 struct s2io_nic
*sp
;
8270 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8274 flush_scheduled_work();
8276 sp
= netdev_priv(dev
);
8277 unregister_netdev(dev
);
8279 free_shared_mem(sp
);
8282 pci_release_regions(pdev
);
8283 pci_set_drvdata(pdev
, NULL
);
8285 pci_disable_device(pdev
);
8289 * s2io_starter - Entry point for the driver
8290 * Description: This function is the entry point for the driver. It verifies
8291 * the module loadable parameters and initializes PCI configuration space.
8294 static int __init
s2io_starter(void)
8296 return pci_register_driver(&s2io_driver
);
8300 * s2io_closer - Cleanup routine for the driver
8301 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8304 static __exit
void s2io_closer(void)
8306 pci_unregister_driver(&s2io_driver
);
8307 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8310 module_init(s2io_starter
);
8311 module_exit(s2io_closer
);
8313 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8314 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8315 struct s2io_nic
*sp
)
8318 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8320 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8322 "%s: Non-TCP frames not supported for LRO\n",
8327 /* Checking for DIX type or DIX type with VLAN */
8328 if ((l2_type
== 0) || (l2_type
== 4)) {
8329 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8331 * If vlan stripping is disabled and the frame is VLAN tagged,
8332 * shift the offset by the VLAN header size bytes.
8334 if ((!sp
->vlan_strip_flag
) &&
8335 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8336 ip_off
+= HEADER_VLAN_SIZE
;
8338 /* LLC, SNAP etc are considered non-mergeable */
8342 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8343 ip_len
= (u8
)((*ip
)->ihl
);
8345 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8350 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8353 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8354 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8355 (lro
->iph
->daddr
!= ip
->daddr
) ||
8356 (lro
->tcph
->source
!= tcp
->source
) ||
8357 (lro
->tcph
->dest
!= tcp
->dest
))
8362 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8364 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8367 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8368 struct iphdr
*ip
, struct tcphdr
*tcp
,
8369 u32 tcp_pyld_len
, u16 vlan_tag
)
8371 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8375 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8376 lro
->tcp_ack
= tcp
->ack_seq
;
8378 lro
->total_len
= ntohs(ip
->tot_len
);
8380 lro
->vlan_tag
= vlan_tag
;
8382 * Check if we saw TCP timestamp.
8383 * Other consistency checks have already been done.
8385 if (tcp
->doff
== 8) {
8387 ptr
= (__be32
*)(tcp
+1);
8389 lro
->cur_tsval
= ntohl(*(ptr
+1));
8390 lro
->cur_tsecr
= *(ptr
+2);
8395 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8397 struct iphdr
*ip
= lro
->iph
;
8398 struct tcphdr
*tcp
= lro
->tcph
;
8400 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8402 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8404 /* Update L3 header */
8405 ip
->tot_len
= htons(lro
->total_len
);
8407 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8410 /* Update L4 header */
8411 tcp
->ack_seq
= lro
->tcp_ack
;
8412 tcp
->window
= lro
->window
;
8414 /* Update tsecr field if this session has timestamps enabled */
8416 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8417 *(ptr
+2) = lro
->cur_tsecr
;
8420 /* Update counters required for calculation of
8421 * average no. of packets aggregated.
8423 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8424 swstats
->num_aggregations
++;
8427 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8428 struct tcphdr
*tcp
, u32 l4_pyld
)
8430 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8431 lro
->total_len
+= l4_pyld
;
8432 lro
->frags_len
+= l4_pyld
;
8433 lro
->tcp_next_seq
+= l4_pyld
;
8436 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8437 lro
->tcp_ack
= tcp
->ack_seq
;
8438 lro
->window
= tcp
->window
;
8442 /* Update tsecr and tsval from this packet */
8443 ptr
= (__be32
*)(tcp
+1);
8444 lro
->cur_tsval
= ntohl(*(ptr
+1));
8445 lro
->cur_tsecr
= *(ptr
+ 2);
8449 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8450 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8454 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8456 if (!tcp_pyld_len
) {
8457 /* Runt frame or a pure ack */
8461 if (ip
->ihl
!= 5) /* IP has options */
8464 /* If we see CE codepoint in IP header, packet is not mergeable */
8465 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8468 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8469 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8470 tcp
->syn
|| tcp
->fin
||
8471 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8473 * Currently recognize only the ack control word and
8474 * any other control field being set would result in
8475 * flushing the LRO session
8481 * Allow only one TCP timestamp option. Don't aggregate if
8482 * any other options are detected.
8484 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8487 if (tcp
->doff
== 8) {
8488 ptr
= (u8
*)(tcp
+ 1);
8489 while (*ptr
== TCPOPT_NOP
)
8491 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8494 /* Ensure timestamp value increases monotonically */
8496 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8499 /* timestamp echo reply should be non-zero */
8500 if (*((__be32
*)(ptr
+6)) == 0)
8507 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8508 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8509 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8512 struct tcphdr
*tcph
;
8515 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8517 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8522 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8524 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8525 tcph
= (struct tcphdr
*)*tcp
;
8526 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8527 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8528 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8529 if (l_lro
->in_use
) {
8530 if (check_for_socket_match(l_lro
, ip
, tcph
))
8532 /* Sock pair matched */
8535 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8536 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8537 "expected 0x%x, actual 0x%x\n",
8539 (*lro
)->tcp_next_seq
,
8542 swstats
->outof_sequence_pkts
++;
8547 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8549 ret
= 1; /* Aggregate */
8551 ret
= 2; /* Flush both */
8557 /* Before searching for available LRO objects,
8558 * check if the pkt is L3/L4 aggregatable. If not
8559 * don't create new LRO session. Just send this
8562 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8565 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8566 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8567 if (!(l_lro
->in_use
)) {
8569 ret
= 3; /* Begin anew */
8575 if (ret
== 0) { /* sessions exceeded */
8576 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8584 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8588 update_L3L4_header(sp
, *lro
);
8591 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8592 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8593 update_L3L4_header(sp
, *lro
);
8594 ret
= 4; /* Flush the LRO */
8598 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8605 static void clear_lro_session(struct lro
*lro
)
8607 static u16 lro_struct_size
= sizeof(struct lro
);
8609 memset(lro
, 0, lro_struct_size
);
8612 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8614 struct net_device
*dev
= skb
->dev
;
8615 struct s2io_nic
*sp
= netdev_priv(dev
);
8617 skb
->protocol
= eth_type_trans(skb
, dev
);
8618 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8619 /* Queueing the vlan frame to the upper layer */
8620 if (sp
->config
.napi
)
8621 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8623 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8625 if (sp
->config
.napi
)
8626 netif_receive_skb(skb
);
8632 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8633 struct sk_buff
*skb
, u32 tcp_len
)
8635 struct sk_buff
*first
= lro
->parent
;
8636 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8638 first
->len
+= tcp_len
;
8639 first
->data_len
= lro
->frags_len
;
8640 skb_pull(skb
, (skb
->len
- tcp_len
));
8641 if (skb_shinfo(first
)->frag_list
)
8642 lro
->last_frag
->next
= skb
;
8644 skb_shinfo(first
)->frag_list
= skb
;
8645 first
->truesize
+= skb
->truesize
;
8646 lro
->last_frag
= skb
;
8647 swstats
->clubbed_frms_cnt
++;
8652 * s2io_io_error_detected - called when PCI error is detected
8653 * @pdev: Pointer to PCI device
8654 * @state: The current pci connection state
8656 * This function is called after a PCI bus error affecting
8657 * this device has been detected.
8659 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8660 pci_channel_state_t state
)
8662 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8663 struct s2io_nic
*sp
= netdev_priv(netdev
);
8665 netif_device_detach(netdev
);
8667 if (state
== pci_channel_io_perm_failure
)
8668 return PCI_ERS_RESULT_DISCONNECT
;
8670 if (netif_running(netdev
)) {
8671 /* Bring down the card, while avoiding PCI I/O */
8672 do_s2io_card_down(sp
, 0);
8674 pci_disable_device(pdev
);
8676 return PCI_ERS_RESULT_NEED_RESET
;
8680 * s2io_io_slot_reset - called after the pci bus has been reset.
8681 * @pdev: Pointer to PCI device
8683 * Restart the card from scratch, as if from a cold-boot.
8684 * At this point, the card has exprienced a hard reset,
8685 * followed by fixups by BIOS, and has its config space
8686 * set up identically to what it was at cold boot.
8688 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8690 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8691 struct s2io_nic
*sp
= netdev_priv(netdev
);
8693 if (pci_enable_device(pdev
)) {
8694 pr_err("Cannot re-enable PCI device after reset.\n");
8695 return PCI_ERS_RESULT_DISCONNECT
;
8698 pci_set_master(pdev
);
8701 return PCI_ERS_RESULT_RECOVERED
;
8705 * s2io_io_resume - called when traffic can start flowing again.
8706 * @pdev: Pointer to PCI device
8708 * This callback is called when the error recovery driver tells
8709 * us that its OK to resume normal operation.
8711 static void s2io_io_resume(struct pci_dev
*pdev
)
8713 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8714 struct s2io_nic
*sp
= netdev_priv(netdev
);
8716 if (netif_running(netdev
)) {
8717 if (s2io_card_up(sp
)) {
8718 pr_err("Can't bring device back up after reset.\n");
8722 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8724 pr_err("Can't restore mac addr after reset.\n");
8729 netif_device_attach(netdev
);
8730 netif_tx_wake_all_queues(netdev
);