4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
25 #include <asm/siginfo.h>
26 #include <asm/uaccess.h>
28 void set_close_on_exec(unsigned int fd
, int flag
)
30 struct files_struct
*files
= current
->files
;
32 spin_lock(&files
->file_lock
);
33 fdt
= files_fdtable(files
);
35 FD_SET(fd
, fdt
->close_on_exec
);
37 FD_CLR(fd
, fdt
->close_on_exec
);
38 spin_unlock(&files
->file_lock
);
41 static int get_close_on_exec(unsigned int fd
)
43 struct files_struct
*files
= current
->files
;
47 fdt
= files_fdtable(files
);
48 res
= FD_ISSET(fd
, fdt
->close_on_exec
);
53 SYSCALL_DEFINE3(dup3
, unsigned int, oldfd
, unsigned int, newfd
, int, flags
)
56 struct file
* file
, *tofree
;
57 struct files_struct
* files
= current
->files
;
60 if ((flags
& ~O_CLOEXEC
) != 0)
63 if (unlikely(oldfd
== newfd
))
66 spin_lock(&files
->file_lock
);
67 err
= expand_files(files
, newfd
);
71 if (unlikely(err
< 0)) {
77 * We need to detect attempts to do dup2() over allocated but still
78 * not finished descriptor. NB: OpenBSD avoids that at the price of
79 * extra work in their equivalent of fget() - they insert struct
80 * file immediately after grabbing descriptor, mark it larval if
81 * more work (e.g. actual opening) is needed and make sure that
82 * fget() treats larval files as absent. Potentially interesting,
83 * but while extra work in fget() is trivial, locking implications
84 * and amount of surgery on open()-related paths in VFS are not.
85 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
86 * deadlocks in rather amusing ways, AFAICS. All of that is out of
87 * scope of POSIX or SUS, since neither considers shared descriptor
88 * tables and this condition does not arise without those.
91 fdt
= files_fdtable(files
);
92 tofree
= fdt
->fd
[newfd
];
93 if (!tofree
&& FD_ISSET(newfd
, fdt
->open_fds
))
96 rcu_assign_pointer(fdt
->fd
[newfd
], file
);
97 FD_SET(newfd
, fdt
->open_fds
);
98 if (flags
& O_CLOEXEC
)
99 FD_SET(newfd
, fdt
->close_on_exec
);
101 FD_CLR(newfd
, fdt
->close_on_exec
);
102 spin_unlock(&files
->file_lock
);
105 filp_close(tofree
, files
);
112 spin_unlock(&files
->file_lock
);
116 SYSCALL_DEFINE2(dup2
, unsigned int, oldfd
, unsigned int, newfd
)
118 if (unlikely(newfd
== oldfd
)) { /* corner case */
119 struct files_struct
*files
= current
->files
;
123 if (!fcheck_files(files
, oldfd
))
128 return sys_dup3(oldfd
, newfd
, 0);
131 SYSCALL_DEFINE1(dup
, unsigned int, fildes
)
134 struct file
*file
= fget_raw(fildes
);
137 ret
= get_unused_fd();
139 fd_install(ret
, file
);
146 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
148 static int setfl(int fd
, struct file
* filp
, unsigned long arg
)
150 struct inode
* inode
= filp
->f_path
.dentry
->d_inode
;
154 * O_APPEND cannot be cleared if the file is marked as append-only
155 * and the file is open for write.
157 if (((arg
^ filp
->f_flags
) & O_APPEND
) && IS_APPEND(inode
))
160 /* O_NOATIME can only be set by the owner or superuser */
161 if ((arg
& O_NOATIME
) && !(filp
->f_flags
& O_NOATIME
))
162 if (!inode_owner_or_capable(inode
))
165 /* required for strict SunOS emulation */
166 if (O_NONBLOCK
!= O_NDELAY
)
170 if (arg
& O_DIRECT
) {
171 if (!filp
->f_mapping
|| !filp
->f_mapping
->a_ops
||
172 !filp
->f_mapping
->a_ops
->direct_IO
)
176 if (filp
->f_op
&& filp
->f_op
->check_flags
)
177 error
= filp
->f_op
->check_flags(arg
);
182 * ->fasync() is responsible for setting the FASYNC bit.
184 if (((arg
^ filp
->f_flags
) & FASYNC
) && filp
->f_op
&&
185 filp
->f_op
->fasync
) {
186 error
= filp
->f_op
->fasync(fd
, filp
, (arg
& FASYNC
) != 0);
192 spin_lock(&filp
->f_lock
);
193 filp
->f_flags
= (arg
& SETFL_MASK
) | (filp
->f_flags
& ~SETFL_MASK
);
194 spin_unlock(&filp
->f_lock
);
200 static void f_modown(struct file
*filp
, struct pid
*pid
, enum pid_type type
,
203 write_lock_irq(&filp
->f_owner
.lock
);
204 if (force
|| !filp
->f_owner
.pid
) {
205 put_pid(filp
->f_owner
.pid
);
206 filp
->f_owner
.pid
= get_pid(pid
);
207 filp
->f_owner
.pid_type
= type
;
210 const struct cred
*cred
= current_cred();
211 filp
->f_owner
.uid
= cred
->uid
;
212 filp
->f_owner
.euid
= cred
->euid
;
215 write_unlock_irq(&filp
->f_owner
.lock
);
218 int __f_setown(struct file
*filp
, struct pid
*pid
, enum pid_type type
,
223 err
= security_file_set_fowner(filp
);
227 f_modown(filp
, pid
, type
, force
);
230 EXPORT_SYMBOL(__f_setown
);
232 int f_setown(struct file
*filp
, unsigned long arg
, int force
)
244 pid
= find_vpid(who
);
245 result
= __f_setown(filp
, pid
, type
, force
);
249 EXPORT_SYMBOL(f_setown
);
251 void f_delown(struct file
*filp
)
253 f_modown(filp
, NULL
, PIDTYPE_PID
, 1);
256 pid_t
f_getown(struct file
*filp
)
259 read_lock(&filp
->f_owner
.lock
);
260 pid
= pid_vnr(filp
->f_owner
.pid
);
261 if (filp
->f_owner
.pid_type
== PIDTYPE_PGID
)
263 read_unlock(&filp
->f_owner
.lock
);
267 static int f_setown_ex(struct file
*filp
, unsigned long arg
)
269 struct f_owner_ex
* __user owner_p
= (void * __user
)arg
;
270 struct f_owner_ex owner
;
275 ret
= copy_from_user(&owner
, owner_p
, sizeof(owner
));
279 switch (owner
.type
) {
297 pid
= find_vpid(owner
.pid
);
298 if (owner
.pid
&& !pid
)
301 ret
= __f_setown(filp
, pid
, type
, 1);
307 static int f_getown_ex(struct file
*filp
, unsigned long arg
)
309 struct f_owner_ex
* __user owner_p
= (void * __user
)arg
;
310 struct f_owner_ex owner
;
313 read_lock(&filp
->f_owner
.lock
);
314 owner
.pid
= pid_vnr(filp
->f_owner
.pid
);
315 switch (filp
->f_owner
.pid_type
) {
317 owner
.type
= F_OWNER_TID
;
321 owner
.type
= F_OWNER_PID
;
325 owner
.type
= F_OWNER_PGRP
;
333 read_unlock(&filp
->f_owner
.lock
);
336 ret
= copy_to_user(owner_p
, &owner
, sizeof(owner
));
343 static long do_fcntl(int fd
, unsigned int cmd
, unsigned long arg
,
350 case F_DUPFD_CLOEXEC
:
351 if (arg
>= rlimit(RLIMIT_NOFILE
))
353 err
= alloc_fd(arg
, cmd
== F_DUPFD_CLOEXEC
? O_CLOEXEC
: 0);
356 fd_install(err
, filp
);
360 err
= get_close_on_exec(fd
) ? FD_CLOEXEC
: 0;
364 set_close_on_exec(fd
, arg
& FD_CLOEXEC
);
370 err
= setfl(fd
, filp
, arg
);
373 err
= fcntl_getlk(filp
, (struct flock __user
*) arg
);
377 err
= fcntl_setlk(fd
, filp
, cmd
, (struct flock __user
*) arg
);
381 * XXX If f_owner is a process group, the
382 * negative return value will get converted
383 * into an error. Oops. If we keep the
384 * current syscall conventions, the only way
385 * to fix this will be in libc.
387 err
= f_getown(filp
);
388 force_successful_syscall_return();
391 err
= f_setown(filp
, arg
, 1);
394 err
= f_getown_ex(filp
, arg
);
397 err
= f_setown_ex(filp
, arg
);
400 err
= filp
->f_owner
.signum
;
403 /* arg == 0 restores default behaviour. */
404 if (!valid_signal(arg
)) {
408 filp
->f_owner
.signum
= arg
;
411 err
= fcntl_getlease(filp
);
414 err
= fcntl_setlease(fd
, filp
, arg
);
417 err
= fcntl_dirnotify(fd
, filp
, arg
);
421 err
= pipe_fcntl(filp
, cmd
, arg
);
429 static int check_fcntl_cmd(unsigned cmd
)
433 case F_DUPFD_CLOEXEC
:
442 SYSCALL_DEFINE3(fcntl
, unsigned int, fd
, unsigned int, cmd
, unsigned long, arg
)
451 if (unlikely(filp
->f_mode
& FMODE_PATH
)) {
452 if (!check_fcntl_cmd(cmd
)) {
458 err
= security_file_fcntl(filp
, cmd
, arg
);
464 err
= do_fcntl(fd
, cmd
, arg
, filp
);
471 #if BITS_PER_LONG == 32
472 SYSCALL_DEFINE3(fcntl64
, unsigned int, fd
, unsigned int, cmd
,
483 if (unlikely(filp
->f_mode
& FMODE_PATH
)) {
484 if (!check_fcntl_cmd(cmd
)) {
490 err
= security_file_fcntl(filp
, cmd
, arg
);
499 err
= fcntl_getlk64(filp
, (struct flock64 __user
*) arg
);
503 err
= fcntl_setlk64(fd
, filp
, cmd
,
504 (struct flock64 __user
*) arg
);
507 err
= do_fcntl(fd
, cmd
, arg
, filp
);
516 /* Table to convert sigio signal codes into poll band bitmaps */
518 static const long band_table
[NSIGPOLL
] = {
519 POLLIN
| POLLRDNORM
, /* POLL_IN */
520 POLLOUT
| POLLWRNORM
| POLLWRBAND
, /* POLL_OUT */
521 POLLIN
| POLLRDNORM
| POLLMSG
, /* POLL_MSG */
522 POLLERR
, /* POLL_ERR */
523 POLLPRI
| POLLRDBAND
, /* POLL_PRI */
524 POLLHUP
| POLLERR
/* POLL_HUP */
527 static inline int sigio_perm(struct task_struct
*p
,
528 struct fown_struct
*fown
, int sig
)
530 const struct cred
*cred
;
534 cred
= __task_cred(p
);
535 ret
= ((fown
->euid
== 0 ||
536 fown
->euid
== cred
->suid
|| fown
->euid
== cred
->uid
||
537 fown
->uid
== cred
->suid
|| fown
->uid
== cred
->uid
) &&
538 !security_file_send_sigiotask(p
, fown
, sig
));
543 static void send_sigio_to_task(struct task_struct
*p
,
544 struct fown_struct
*fown
,
545 int fd
, int reason
, int group
)
548 * F_SETSIG can change ->signum lockless in parallel, make
549 * sure we read it once and use the same value throughout.
551 int signum
= ACCESS_ONCE(fown
->signum
);
553 if (!sigio_perm(p
, fown
, signum
))
559 /* Queue a rt signal with the appropriate fd as its
560 value. We use SI_SIGIO as the source, not
561 SI_KERNEL, since kernel signals always get
562 delivered even if we can't queue. Failure to
563 queue in this case _should_ be reported; we fall
564 back to SIGIO in that case. --sct */
565 si
.si_signo
= signum
;
568 /* Make sure we are called with one of the POLL_*
569 reasons, otherwise we could leak kernel stack into
571 BUG_ON((reason
& __SI_MASK
) != __SI_POLL
);
572 if (reason
- POLL_IN
>= NSIGPOLL
)
575 si
.si_band
= band_table
[reason
- POLL_IN
];
577 if (!do_send_sig_info(signum
, &si
, p
, group
))
579 /* fall-through: fall back on the old plain SIGIO signal */
581 do_send_sig_info(SIGIO
, SEND_SIG_PRIV
, p
, group
);
585 void send_sigio(struct fown_struct
*fown
, int fd
, int band
)
587 struct task_struct
*p
;
592 read_lock(&fown
->lock
);
594 type
= fown
->pid_type
;
595 if (type
== PIDTYPE_MAX
) {
602 goto out_unlock_fown
;
604 read_lock(&tasklist_lock
);
605 do_each_pid_task(pid
, type
, p
) {
606 send_sigio_to_task(p
, fown
, fd
, band
, group
);
607 } while_each_pid_task(pid
, type
, p
);
608 read_unlock(&tasklist_lock
);
610 read_unlock(&fown
->lock
);
613 static void send_sigurg_to_task(struct task_struct
*p
,
614 struct fown_struct
*fown
, int group
)
616 if (sigio_perm(p
, fown
, SIGURG
))
617 do_send_sig_info(SIGURG
, SEND_SIG_PRIV
, p
, group
);
620 int send_sigurg(struct fown_struct
*fown
)
622 struct task_struct
*p
;
628 read_lock(&fown
->lock
);
630 type
= fown
->pid_type
;
631 if (type
== PIDTYPE_MAX
) {
638 goto out_unlock_fown
;
642 read_lock(&tasklist_lock
);
643 do_each_pid_task(pid
, type
, p
) {
644 send_sigurg_to_task(p
, fown
, group
);
645 } while_each_pid_task(pid
, type
, p
);
646 read_unlock(&tasklist_lock
);
648 read_unlock(&fown
->lock
);
652 static DEFINE_SPINLOCK(fasync_lock
);
653 static struct kmem_cache
*fasync_cache __read_mostly
;
655 static void fasync_free_rcu(struct rcu_head
*head
)
657 kmem_cache_free(fasync_cache
,
658 container_of(head
, struct fasync_struct
, fa_rcu
));
662 * Remove a fasync entry. If successfully removed, return
663 * positive and clear the FASYNC flag. If no entry exists,
664 * do nothing and return 0.
666 * NOTE! It is very important that the FASYNC flag always
667 * match the state "is the filp on a fasync list".
670 int fasync_remove_entry(struct file
*filp
, struct fasync_struct
**fapp
)
672 struct fasync_struct
*fa
, **fp
;
675 spin_lock(&filp
->f_lock
);
676 spin_lock(&fasync_lock
);
677 for (fp
= fapp
; (fa
= *fp
) != NULL
; fp
= &fa
->fa_next
) {
678 if (fa
->fa_file
!= filp
)
681 spin_lock_irq(&fa
->fa_lock
);
683 spin_unlock_irq(&fa
->fa_lock
);
686 call_rcu(&fa
->fa_rcu
, fasync_free_rcu
);
687 filp
->f_flags
&= ~FASYNC
;
691 spin_unlock(&fasync_lock
);
692 spin_unlock(&filp
->f_lock
);
696 struct fasync_struct
*fasync_alloc(void)
698 return kmem_cache_alloc(fasync_cache
, GFP_KERNEL
);
702 * NOTE! This can be used only for unused fasync entries:
703 * entries that actually got inserted on the fasync list
704 * need to be released by rcu - see fasync_remove_entry.
706 void fasync_free(struct fasync_struct
*new)
708 kmem_cache_free(fasync_cache
, new);
712 * Insert a new entry into the fasync list. Return the pointer to the
713 * old one if we didn't use the new one.
715 * NOTE! It is very important that the FASYNC flag always
716 * match the state "is the filp on a fasync list".
718 struct fasync_struct
*fasync_insert_entry(int fd
, struct file
*filp
, struct fasync_struct
**fapp
, struct fasync_struct
*new)
720 struct fasync_struct
*fa
, **fp
;
722 spin_lock(&filp
->f_lock
);
723 spin_lock(&fasync_lock
);
724 for (fp
= fapp
; (fa
= *fp
) != NULL
; fp
= &fa
->fa_next
) {
725 if (fa
->fa_file
!= filp
)
728 spin_lock_irq(&fa
->fa_lock
);
730 spin_unlock_irq(&fa
->fa_lock
);
734 spin_lock_init(&new->fa_lock
);
735 new->magic
= FASYNC_MAGIC
;
738 new->fa_next
= *fapp
;
739 rcu_assign_pointer(*fapp
, new);
740 filp
->f_flags
|= FASYNC
;
743 spin_unlock(&fasync_lock
);
744 spin_unlock(&filp
->f_lock
);
749 * Add a fasync entry. Return negative on error, positive if
750 * added, and zero if did nothing but change an existing one.
752 static int fasync_add_entry(int fd
, struct file
*filp
, struct fasync_struct
**fapp
)
754 struct fasync_struct
*new;
756 new = fasync_alloc();
761 * fasync_insert_entry() returns the old (update) entry if
764 * So free the (unused) new entry and return 0 to let the
765 * caller know that we didn't add any new fasync entries.
767 if (fasync_insert_entry(fd
, filp
, fapp
, new)) {
776 * fasync_helper() is used by almost all character device drivers
777 * to set up the fasync queue, and for regular files by the file
778 * lease code. It returns negative on error, 0 if it did no changes
779 * and positive if it added/deleted the entry.
781 int fasync_helper(int fd
, struct file
* filp
, int on
, struct fasync_struct
**fapp
)
784 return fasync_remove_entry(filp
, fapp
);
785 return fasync_add_entry(fd
, filp
, fapp
);
788 EXPORT_SYMBOL(fasync_helper
);
791 * rcu_read_lock() is held
793 static void kill_fasync_rcu(struct fasync_struct
*fa
, int sig
, int band
)
796 struct fown_struct
*fown
;
799 if (fa
->magic
!= FASYNC_MAGIC
) {
800 printk(KERN_ERR
"kill_fasync: bad magic number in "
804 spin_lock_irqsave(&fa
->fa_lock
, flags
);
806 fown
= &fa
->fa_file
->f_owner
;
807 /* Don't send SIGURG to processes which have not set a
808 queued signum: SIGURG has its own default signalling
810 if (!(sig
== SIGURG
&& fown
->signum
== 0))
811 send_sigio(fown
, fa
->fa_fd
, band
);
813 spin_unlock_irqrestore(&fa
->fa_lock
, flags
);
814 fa
= rcu_dereference(fa
->fa_next
);
818 void kill_fasync(struct fasync_struct
**fp
, int sig
, int band
)
820 /* First a quick test without locking: usually
825 kill_fasync_rcu(rcu_dereference(*fp
), sig
, band
);
829 EXPORT_SYMBOL(kill_fasync
);
831 static int __init
fcntl_init(void)
834 * Please add new bits here to ensure allocation uniqueness.
835 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
836 * is defined as O_NONBLOCK on some platforms and not on others.
838 BUILD_BUG_ON(19 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
839 O_RDONLY
| O_WRONLY
| O_RDWR
|
840 O_CREAT
| O_EXCL
| O_NOCTTY
|
841 O_TRUNC
| O_APPEND
| /* O_NONBLOCK | */
842 __O_SYNC
| O_DSYNC
| FASYNC
|
843 O_DIRECT
| O_LARGEFILE
| O_DIRECTORY
|
844 O_NOFOLLOW
| O_NOATIME
| O_CLOEXEC
|
845 __FMODE_EXEC
| O_PATH
848 fasync_cache
= kmem_cache_create("fasync_cache",
849 sizeof(struct fasync_struct
), 0, SLAB_PANIC
, NULL
);
853 module_init(fcntl_init
)