i2c-algo-bit: Complain about masters which can't read SCL
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / net / sock.h
blob21a02f7e4f4565f6f5e76b1a8957a107b646379b
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
60 #include <linux/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 #endif
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
102 struct sock;
103 struct proto;
104 struct net;
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_daddr: Foreign IPv4 addr
109 * @skc_rcv_saddr: Bound local IPv4 addr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_family: network address family
113 * @skc_state: Connection state
114 * @skc_reuse: %SO_REUSEADDR setting
115 * @skc_bound_dev_if: bound device index if != 0
116 * @skc_bind_node: bind hash linkage for various protocol lookup tables
117 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
118 * @skc_prot: protocol handlers inside a network family
119 * @skc_net: reference to the network namespace of this socket
120 * @skc_node: main hash linkage for various protocol lookup tables
121 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
122 * @skc_tx_queue_mapping: tx queue number for this connection
123 * @skc_refcnt: reference count
125 * This is the minimal network layer representation of sockets, the header
126 * for struct sock and struct inet_timewait_sock.
128 struct sock_common {
129 /* skc_daddr and skc_rcv_saddr must be grouped :
130 * cf INET_MATCH() and INET_TW_MATCH()
132 __be32 skc_daddr;
133 __be32 skc_rcv_saddr;
135 union {
136 unsigned int skc_hash;
137 __u16 skc_u16hashes[2];
139 unsigned short skc_family;
140 volatile unsigned char skc_state;
141 unsigned char skc_reuse;
142 int skc_bound_dev_if;
143 union {
144 struct hlist_node skc_bind_node;
145 struct hlist_nulls_node skc_portaddr_node;
147 struct proto *skc_prot;
148 #ifdef CONFIG_NET_NS
149 struct net *skc_net;
150 #endif
152 * fields between dontcopy_begin/dontcopy_end
153 * are not copied in sock_copy()
155 int skc_dontcopy_begin[0];
156 union {
157 struct hlist_node skc_node;
158 struct hlist_nulls_node skc_nulls_node;
160 int skc_tx_queue_mapping;
161 atomic_t skc_refcnt;
162 int skc_dontcopy_end[0];
166 * struct sock - network layer representation of sockets
167 * @__sk_common: shared layout with inet_timewait_sock
168 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
169 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
170 * @sk_lock: synchronizer
171 * @sk_rcvbuf: size of receive buffer in bytes
172 * @sk_wq: sock wait queue and async head
173 * @sk_dst_cache: destination cache
174 * @sk_dst_lock: destination cache lock
175 * @sk_policy: flow policy
176 * @sk_rmem_alloc: receive queue bytes committed
177 * @sk_receive_queue: incoming packets
178 * @sk_wmem_alloc: transmit queue bytes committed
179 * @sk_write_queue: Packet sending queue
180 * @sk_async_wait_queue: DMA copied packets
181 * @sk_omem_alloc: "o" is "option" or "other"
182 * @sk_wmem_queued: persistent queue size
183 * @sk_forward_alloc: space allocated forward
184 * @sk_allocation: allocation mode
185 * @sk_sndbuf: size of send buffer in bytes
186 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
187 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
188 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
189 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
190 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
191 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
192 * @sk_gso_max_size: Maximum GSO segment size to build
193 * @sk_lingertime: %SO_LINGER l_linger setting
194 * @sk_backlog: always used with the per-socket spinlock held
195 * @sk_callback_lock: used with the callbacks in the end of this struct
196 * @sk_error_queue: rarely used
197 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
198 * IPV6_ADDRFORM for instance)
199 * @sk_err: last error
200 * @sk_err_soft: errors that don't cause failure but are the cause of a
201 * persistent failure not just 'timed out'
202 * @sk_drops: raw/udp drops counter
203 * @sk_ack_backlog: current listen backlog
204 * @sk_max_ack_backlog: listen backlog set in listen()
205 * @sk_priority: %SO_PRIORITY setting
206 * @sk_type: socket type (%SOCK_STREAM, etc)
207 * @sk_protocol: which protocol this socket belongs in this network family
208 * @sk_peer_pid: &struct pid for this socket's peer
209 * @sk_peer_cred: %SO_PEERCRED setting
210 * @sk_rcvlowat: %SO_RCVLOWAT setting
211 * @sk_rcvtimeo: %SO_RCVTIMEO setting
212 * @sk_sndtimeo: %SO_SNDTIMEO setting
213 * @sk_rxhash: flow hash received from netif layer
214 * @sk_filter: socket filtering instructions
215 * @sk_protinfo: private area, net family specific, when not using slab
216 * @sk_timer: sock cleanup timer
217 * @sk_stamp: time stamp of last packet received
218 * @sk_socket: Identd and reporting IO signals
219 * @sk_user_data: RPC layer private data
220 * @sk_sndmsg_page: cached page for sendmsg
221 * @sk_sndmsg_off: cached offset for sendmsg
222 * @sk_send_head: front of stuff to transmit
223 * @sk_security: used by security modules
224 * @sk_mark: generic packet mark
225 * @sk_classid: this socket's cgroup classid
226 * @sk_write_pending: a write to stream socket waits to start
227 * @sk_state_change: callback to indicate change in the state of the sock
228 * @sk_data_ready: callback to indicate there is data to be processed
229 * @sk_write_space: callback to indicate there is bf sending space available
230 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
231 * @sk_backlog_rcv: callback to process the backlog
232 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
234 struct sock {
236 * Now struct inet_timewait_sock also uses sock_common, so please just
237 * don't add nothing before this first member (__sk_common) --acme
239 struct sock_common __sk_common;
240 #define sk_node __sk_common.skc_node
241 #define sk_nulls_node __sk_common.skc_nulls_node
242 #define sk_refcnt __sk_common.skc_refcnt
243 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
245 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
246 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
247 #define sk_hash __sk_common.skc_hash
248 #define sk_family __sk_common.skc_family
249 #define sk_state __sk_common.skc_state
250 #define sk_reuse __sk_common.skc_reuse
251 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
252 #define sk_bind_node __sk_common.skc_bind_node
253 #define sk_prot __sk_common.skc_prot
254 #define sk_net __sk_common.skc_net
255 socket_lock_t sk_lock;
256 struct sk_buff_head sk_receive_queue;
258 * The backlog queue is special, it is always used with
259 * the per-socket spinlock held and requires low latency
260 * access. Therefore we special case it's implementation.
261 * Note : rmem_alloc is in this structure to fill a hole
262 * on 64bit arches, not because its logically part of
263 * backlog.
265 struct {
266 atomic_t rmem_alloc;
267 int len;
268 struct sk_buff *head;
269 struct sk_buff *tail;
270 } sk_backlog;
271 #define sk_rmem_alloc sk_backlog.rmem_alloc
272 int sk_forward_alloc;
273 #ifdef CONFIG_RPS
274 __u32 sk_rxhash;
275 #endif
276 atomic_t sk_drops;
277 int sk_rcvbuf;
279 struct sk_filter __rcu *sk_filter;
280 struct socket_wq *sk_wq;
282 #ifdef CONFIG_NET_DMA
283 struct sk_buff_head sk_async_wait_queue;
284 #endif
286 #ifdef CONFIG_XFRM
287 struct xfrm_policy *sk_policy[2];
288 #endif
289 unsigned long sk_flags;
290 struct dst_entry *sk_dst_cache;
291 spinlock_t sk_dst_lock;
292 atomic_t sk_wmem_alloc;
293 atomic_t sk_omem_alloc;
294 int sk_sndbuf;
295 struct sk_buff_head sk_write_queue;
296 kmemcheck_bitfield_begin(flags);
297 unsigned int sk_shutdown : 2,
298 sk_no_check : 2,
299 sk_userlocks : 4,
300 sk_protocol : 8,
301 sk_type : 16;
302 kmemcheck_bitfield_end(flags);
303 int sk_wmem_queued;
304 gfp_t sk_allocation;
305 int sk_route_caps;
306 int sk_route_nocaps;
307 int sk_gso_type;
308 unsigned int sk_gso_max_size;
309 int sk_rcvlowat;
310 unsigned long sk_lingertime;
311 struct sk_buff_head sk_error_queue;
312 struct proto *sk_prot_creator;
313 rwlock_t sk_callback_lock;
314 int sk_err,
315 sk_err_soft;
316 unsigned short sk_ack_backlog;
317 unsigned short sk_max_ack_backlog;
318 __u32 sk_priority;
319 struct pid *sk_peer_pid;
320 const struct cred *sk_peer_cred;
321 long sk_rcvtimeo;
322 long sk_sndtimeo;
323 void *sk_protinfo;
324 struct timer_list sk_timer;
325 ktime_t sk_stamp;
326 struct socket *sk_socket;
327 void *sk_user_data;
328 struct page *sk_sndmsg_page;
329 struct sk_buff *sk_send_head;
330 __u32 sk_sndmsg_off;
331 int sk_write_pending;
332 #ifdef CONFIG_SECURITY
333 void *sk_security;
334 #endif
335 __u32 sk_mark;
336 u32 sk_classid;
337 void (*sk_state_change)(struct sock *sk);
338 void (*sk_data_ready)(struct sock *sk, int bytes);
339 void (*sk_write_space)(struct sock *sk);
340 void (*sk_error_report)(struct sock *sk);
341 int (*sk_backlog_rcv)(struct sock *sk,
342 struct sk_buff *skb);
343 void (*sk_destruct)(struct sock *sk);
347 * Hashed lists helper routines
349 static inline struct sock *sk_entry(const struct hlist_node *node)
351 return hlist_entry(node, struct sock, sk_node);
354 static inline struct sock *__sk_head(const struct hlist_head *head)
356 return hlist_entry(head->first, struct sock, sk_node);
359 static inline struct sock *sk_head(const struct hlist_head *head)
361 return hlist_empty(head) ? NULL : __sk_head(head);
364 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
366 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
369 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
371 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
374 static inline struct sock *sk_next(const struct sock *sk)
376 return sk->sk_node.next ?
377 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
380 static inline struct sock *sk_nulls_next(const struct sock *sk)
382 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
383 hlist_nulls_entry(sk->sk_nulls_node.next,
384 struct sock, sk_nulls_node) :
385 NULL;
388 static inline int sk_unhashed(const struct sock *sk)
390 return hlist_unhashed(&sk->sk_node);
393 static inline int sk_hashed(const struct sock *sk)
395 return !sk_unhashed(sk);
398 static __inline__ void sk_node_init(struct hlist_node *node)
400 node->pprev = NULL;
403 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
405 node->pprev = NULL;
408 static __inline__ void __sk_del_node(struct sock *sk)
410 __hlist_del(&sk->sk_node);
413 /* NB: equivalent to hlist_del_init_rcu */
414 static __inline__ int __sk_del_node_init(struct sock *sk)
416 if (sk_hashed(sk)) {
417 __sk_del_node(sk);
418 sk_node_init(&sk->sk_node);
419 return 1;
421 return 0;
424 /* Grab socket reference count. This operation is valid only
425 when sk is ALREADY grabbed f.e. it is found in hash table
426 or a list and the lookup is made under lock preventing hash table
427 modifications.
430 static inline void sock_hold(struct sock *sk)
432 atomic_inc(&sk->sk_refcnt);
435 /* Ungrab socket in the context, which assumes that socket refcnt
436 cannot hit zero, f.e. it is true in context of any socketcall.
438 static inline void __sock_put(struct sock *sk)
440 atomic_dec(&sk->sk_refcnt);
443 static __inline__ int sk_del_node_init(struct sock *sk)
445 int rc = __sk_del_node_init(sk);
447 if (rc) {
448 /* paranoid for a while -acme */
449 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
450 __sock_put(sk);
452 return rc;
454 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
456 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
458 if (sk_hashed(sk)) {
459 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
460 return 1;
462 return 0;
465 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
467 int rc = __sk_nulls_del_node_init_rcu(sk);
469 if (rc) {
470 /* paranoid for a while -acme */
471 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
472 __sock_put(sk);
474 return rc;
477 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
479 hlist_add_head(&sk->sk_node, list);
482 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
484 sock_hold(sk);
485 __sk_add_node(sk, list);
488 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
490 sock_hold(sk);
491 hlist_add_head_rcu(&sk->sk_node, list);
494 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
496 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
499 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
501 sock_hold(sk);
502 __sk_nulls_add_node_rcu(sk, list);
505 static __inline__ void __sk_del_bind_node(struct sock *sk)
507 __hlist_del(&sk->sk_bind_node);
510 static __inline__ void sk_add_bind_node(struct sock *sk,
511 struct hlist_head *list)
513 hlist_add_head(&sk->sk_bind_node, list);
516 #define sk_for_each(__sk, node, list) \
517 hlist_for_each_entry(__sk, node, list, sk_node)
518 #define sk_for_each_rcu(__sk, node, list) \
519 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
520 #define sk_nulls_for_each(__sk, node, list) \
521 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
522 #define sk_nulls_for_each_rcu(__sk, node, list) \
523 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
524 #define sk_for_each_from(__sk, node) \
525 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
526 hlist_for_each_entry_from(__sk, node, sk_node)
527 #define sk_nulls_for_each_from(__sk, node) \
528 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
529 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
530 #define sk_for_each_safe(__sk, node, tmp, list) \
531 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
532 #define sk_for_each_bound(__sk, node, list) \
533 hlist_for_each_entry(__sk, node, list, sk_bind_node)
535 /* Sock flags */
536 enum sock_flags {
537 SOCK_DEAD,
538 SOCK_DONE,
539 SOCK_URGINLINE,
540 SOCK_KEEPOPEN,
541 SOCK_LINGER,
542 SOCK_DESTROY,
543 SOCK_BROADCAST,
544 SOCK_TIMESTAMP,
545 SOCK_ZAPPED,
546 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
547 SOCK_DBG, /* %SO_DEBUG setting */
548 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
549 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
550 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
551 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
552 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
553 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
554 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
555 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
556 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
557 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
558 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
559 SOCK_FASYNC, /* fasync() active */
560 SOCK_RXQ_OVFL,
563 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
565 nsk->sk_flags = osk->sk_flags;
568 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
570 __set_bit(flag, &sk->sk_flags);
573 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
575 __clear_bit(flag, &sk->sk_flags);
578 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
580 return test_bit(flag, &sk->sk_flags);
583 static inline void sk_acceptq_removed(struct sock *sk)
585 sk->sk_ack_backlog--;
588 static inline void sk_acceptq_added(struct sock *sk)
590 sk->sk_ack_backlog++;
593 static inline int sk_acceptq_is_full(struct sock *sk)
595 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
599 * Compute minimal free write space needed to queue new packets.
601 static inline int sk_stream_min_wspace(struct sock *sk)
603 return sk->sk_wmem_queued >> 1;
606 static inline int sk_stream_wspace(struct sock *sk)
608 return sk->sk_sndbuf - sk->sk_wmem_queued;
611 extern void sk_stream_write_space(struct sock *sk);
613 static inline int sk_stream_memory_free(struct sock *sk)
615 return sk->sk_wmem_queued < sk->sk_sndbuf;
618 /* OOB backlog add */
619 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
621 /* dont let skb dst not refcounted, we are going to leave rcu lock */
622 skb_dst_force(skb);
624 if (!sk->sk_backlog.tail)
625 sk->sk_backlog.head = skb;
626 else
627 sk->sk_backlog.tail->next = skb;
629 sk->sk_backlog.tail = skb;
630 skb->next = NULL;
634 * Take into account size of receive queue and backlog queue
636 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
638 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
640 return qsize + skb->truesize > sk->sk_rcvbuf;
643 /* The per-socket spinlock must be held here. */
644 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
646 if (sk_rcvqueues_full(sk, skb))
647 return -ENOBUFS;
649 __sk_add_backlog(sk, skb);
650 sk->sk_backlog.len += skb->truesize;
651 return 0;
654 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
656 return sk->sk_backlog_rcv(sk, skb);
659 static inline void sock_rps_record_flow(const struct sock *sk)
661 #ifdef CONFIG_RPS
662 struct rps_sock_flow_table *sock_flow_table;
664 rcu_read_lock();
665 sock_flow_table = rcu_dereference(rps_sock_flow_table);
666 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
667 rcu_read_unlock();
668 #endif
671 static inline void sock_rps_reset_flow(const struct sock *sk)
673 #ifdef CONFIG_RPS
674 struct rps_sock_flow_table *sock_flow_table;
676 rcu_read_lock();
677 sock_flow_table = rcu_dereference(rps_sock_flow_table);
678 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
679 rcu_read_unlock();
680 #endif
683 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
685 #ifdef CONFIG_RPS
686 if (unlikely(sk->sk_rxhash != rxhash)) {
687 sock_rps_reset_flow(sk);
688 sk->sk_rxhash = rxhash;
690 #endif
693 #define sk_wait_event(__sk, __timeo, __condition) \
694 ({ int __rc; \
695 release_sock(__sk); \
696 __rc = __condition; \
697 if (!__rc) { \
698 *(__timeo) = schedule_timeout(*(__timeo)); \
700 lock_sock(__sk); \
701 __rc = __condition; \
702 __rc; \
705 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
706 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
707 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
708 extern int sk_stream_error(struct sock *sk, int flags, int err);
709 extern void sk_stream_kill_queues(struct sock *sk);
711 extern int sk_wait_data(struct sock *sk, long *timeo);
713 struct request_sock_ops;
714 struct timewait_sock_ops;
715 struct inet_hashinfo;
716 struct raw_hashinfo;
718 /* Networking protocol blocks we attach to sockets.
719 * socket layer -> transport layer interface
720 * transport -> network interface is defined by struct inet_proto
722 struct proto {
723 void (*close)(struct sock *sk,
724 long timeout);
725 int (*connect)(struct sock *sk,
726 struct sockaddr *uaddr,
727 int addr_len);
728 int (*disconnect)(struct sock *sk, int flags);
730 struct sock * (*accept) (struct sock *sk, int flags, int *err);
732 int (*ioctl)(struct sock *sk, int cmd,
733 unsigned long arg);
734 int (*init)(struct sock *sk);
735 void (*destroy)(struct sock *sk);
736 void (*shutdown)(struct sock *sk, int how);
737 int (*setsockopt)(struct sock *sk, int level,
738 int optname, char __user *optval,
739 unsigned int optlen);
740 int (*getsockopt)(struct sock *sk, int level,
741 int optname, char __user *optval,
742 int __user *option);
743 #ifdef CONFIG_COMPAT
744 int (*compat_setsockopt)(struct sock *sk,
745 int level,
746 int optname, char __user *optval,
747 unsigned int optlen);
748 int (*compat_getsockopt)(struct sock *sk,
749 int level,
750 int optname, char __user *optval,
751 int __user *option);
752 #endif
753 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
754 struct msghdr *msg, size_t len);
755 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
756 struct msghdr *msg,
757 size_t len, int noblock, int flags,
758 int *addr_len);
759 int (*sendpage)(struct sock *sk, struct page *page,
760 int offset, size_t size, int flags);
761 int (*bind)(struct sock *sk,
762 struct sockaddr *uaddr, int addr_len);
764 int (*backlog_rcv) (struct sock *sk,
765 struct sk_buff *skb);
767 /* Keeping track of sk's, looking them up, and port selection methods. */
768 void (*hash)(struct sock *sk);
769 void (*unhash)(struct sock *sk);
770 void (*rehash)(struct sock *sk);
771 int (*get_port)(struct sock *sk, unsigned short snum);
772 void (*clear_sk)(struct sock *sk, int size);
774 /* Keeping track of sockets in use */
775 #ifdef CONFIG_PROC_FS
776 unsigned int inuse_idx;
777 #endif
779 /* Memory pressure */
780 void (*enter_memory_pressure)(struct sock *sk);
781 atomic_long_t *memory_allocated; /* Current allocated memory. */
782 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
784 * Pressure flag: try to collapse.
785 * Technical note: it is used by multiple contexts non atomically.
786 * All the __sk_mem_schedule() is of this nature: accounting
787 * is strict, actions are advisory and have some latency.
789 int *memory_pressure;
790 long *sysctl_mem;
791 int *sysctl_wmem;
792 int *sysctl_rmem;
793 int max_header;
794 bool no_autobind;
796 struct kmem_cache *slab;
797 unsigned int obj_size;
798 int slab_flags;
800 struct percpu_counter *orphan_count;
802 struct request_sock_ops *rsk_prot;
803 struct timewait_sock_ops *twsk_prot;
805 union {
806 struct inet_hashinfo *hashinfo;
807 struct udp_table *udp_table;
808 struct raw_hashinfo *raw_hash;
809 } h;
811 struct module *owner;
813 char name[32];
815 struct list_head node;
816 #ifdef SOCK_REFCNT_DEBUG
817 atomic_t socks;
818 #endif
821 extern int proto_register(struct proto *prot, int alloc_slab);
822 extern void proto_unregister(struct proto *prot);
824 #ifdef SOCK_REFCNT_DEBUG
825 static inline void sk_refcnt_debug_inc(struct sock *sk)
827 atomic_inc(&sk->sk_prot->socks);
830 static inline void sk_refcnt_debug_dec(struct sock *sk)
832 atomic_dec(&sk->sk_prot->socks);
833 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
834 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
837 static inline void sk_refcnt_debug_release(const struct sock *sk)
839 if (atomic_read(&sk->sk_refcnt) != 1)
840 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
841 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
843 #else /* SOCK_REFCNT_DEBUG */
844 #define sk_refcnt_debug_inc(sk) do { } while (0)
845 #define sk_refcnt_debug_dec(sk) do { } while (0)
846 #define sk_refcnt_debug_release(sk) do { } while (0)
847 #endif /* SOCK_REFCNT_DEBUG */
850 #ifdef CONFIG_PROC_FS
851 /* Called with local bh disabled */
852 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
853 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
854 #else
855 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
856 int inc)
859 #endif
862 /* With per-bucket locks this operation is not-atomic, so that
863 * this version is not worse.
865 static inline void __sk_prot_rehash(struct sock *sk)
867 sk->sk_prot->unhash(sk);
868 sk->sk_prot->hash(sk);
871 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
873 /* About 10 seconds */
874 #define SOCK_DESTROY_TIME (10*HZ)
876 /* Sockets 0-1023 can't be bound to unless you are superuser */
877 #define PROT_SOCK 1024
879 #define SHUTDOWN_MASK 3
880 #define RCV_SHUTDOWN 1
881 #define SEND_SHUTDOWN 2
883 #define SOCK_SNDBUF_LOCK 1
884 #define SOCK_RCVBUF_LOCK 2
885 #define SOCK_BINDADDR_LOCK 4
886 #define SOCK_BINDPORT_LOCK 8
888 /* sock_iocb: used to kick off async processing of socket ios */
889 struct sock_iocb {
890 struct list_head list;
892 int flags;
893 int size;
894 struct socket *sock;
895 struct sock *sk;
896 struct scm_cookie *scm;
897 struct msghdr *msg, async_msg;
898 struct kiocb *kiocb;
901 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
903 return (struct sock_iocb *)iocb->private;
906 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
908 return si->kiocb;
911 struct socket_alloc {
912 struct socket socket;
913 struct inode vfs_inode;
916 static inline struct socket *SOCKET_I(struct inode *inode)
918 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
921 static inline struct inode *SOCK_INODE(struct socket *socket)
923 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
927 * Functions for memory accounting
929 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
930 extern void __sk_mem_reclaim(struct sock *sk);
932 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
933 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
934 #define SK_MEM_SEND 0
935 #define SK_MEM_RECV 1
937 static inline int sk_mem_pages(int amt)
939 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
942 static inline int sk_has_account(struct sock *sk)
944 /* return true if protocol supports memory accounting */
945 return !!sk->sk_prot->memory_allocated;
948 static inline int sk_wmem_schedule(struct sock *sk, int size)
950 if (!sk_has_account(sk))
951 return 1;
952 return size <= sk->sk_forward_alloc ||
953 __sk_mem_schedule(sk, size, SK_MEM_SEND);
956 static inline int sk_rmem_schedule(struct sock *sk, int size)
958 if (!sk_has_account(sk))
959 return 1;
960 return size <= sk->sk_forward_alloc ||
961 __sk_mem_schedule(sk, size, SK_MEM_RECV);
964 static inline void sk_mem_reclaim(struct sock *sk)
966 if (!sk_has_account(sk))
967 return;
968 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
969 __sk_mem_reclaim(sk);
972 static inline void sk_mem_reclaim_partial(struct sock *sk)
974 if (!sk_has_account(sk))
975 return;
976 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
977 __sk_mem_reclaim(sk);
980 static inline void sk_mem_charge(struct sock *sk, int size)
982 if (!sk_has_account(sk))
983 return;
984 sk->sk_forward_alloc -= size;
987 static inline void sk_mem_uncharge(struct sock *sk, int size)
989 if (!sk_has_account(sk))
990 return;
991 sk->sk_forward_alloc += size;
994 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
996 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
997 sk->sk_wmem_queued -= skb->truesize;
998 sk_mem_uncharge(sk, skb->truesize);
999 __kfree_skb(skb);
1002 /* Used by processes to "lock" a socket state, so that
1003 * interrupts and bottom half handlers won't change it
1004 * from under us. It essentially blocks any incoming
1005 * packets, so that we won't get any new data or any
1006 * packets that change the state of the socket.
1008 * While locked, BH processing will add new packets to
1009 * the backlog queue. This queue is processed by the
1010 * owner of the socket lock right before it is released.
1012 * Since ~2.3.5 it is also exclusive sleep lock serializing
1013 * accesses from user process context.
1015 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1018 * Macro so as to not evaluate some arguments when
1019 * lockdep is not enabled.
1021 * Mark both the sk_lock and the sk_lock.slock as a
1022 * per-address-family lock class.
1024 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1025 do { \
1026 sk->sk_lock.owned = 0; \
1027 init_waitqueue_head(&sk->sk_lock.wq); \
1028 spin_lock_init(&(sk)->sk_lock.slock); \
1029 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1030 sizeof((sk)->sk_lock)); \
1031 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1032 (skey), (sname)); \
1033 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1034 } while (0)
1036 extern void lock_sock_nested(struct sock *sk, int subclass);
1038 static inline void lock_sock(struct sock *sk)
1040 lock_sock_nested(sk, 0);
1043 extern void release_sock(struct sock *sk);
1045 /* BH context may only use the following locking interface. */
1046 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1047 #define bh_lock_sock_nested(__sk) \
1048 spin_lock_nested(&((__sk)->sk_lock.slock), \
1049 SINGLE_DEPTH_NESTING)
1050 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1052 extern bool lock_sock_fast(struct sock *sk);
1054 * unlock_sock_fast - complement of lock_sock_fast
1055 * @sk: socket
1056 * @slow: slow mode
1058 * fast unlock socket for user context.
1059 * If slow mode is on, we call regular release_sock()
1061 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1063 if (slow)
1064 release_sock(sk);
1065 else
1066 spin_unlock_bh(&sk->sk_lock.slock);
1070 extern struct sock *sk_alloc(struct net *net, int family,
1071 gfp_t priority,
1072 struct proto *prot);
1073 extern void sk_free(struct sock *sk);
1074 extern void sk_release_kernel(struct sock *sk);
1075 extern struct sock *sk_clone(const struct sock *sk,
1076 const gfp_t priority);
1078 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1079 unsigned long size, int force,
1080 gfp_t priority);
1081 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1082 unsigned long size, int force,
1083 gfp_t priority);
1084 extern void sock_wfree(struct sk_buff *skb);
1085 extern void sock_rfree(struct sk_buff *skb);
1087 extern int sock_setsockopt(struct socket *sock, int level,
1088 int op, char __user *optval,
1089 unsigned int optlen);
1091 extern int sock_getsockopt(struct socket *sock, int level,
1092 int op, char __user *optval,
1093 int __user *optlen);
1094 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1095 unsigned long size,
1096 int noblock,
1097 int *errcode);
1098 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1099 unsigned long header_len,
1100 unsigned long data_len,
1101 int noblock,
1102 int *errcode);
1103 extern void *sock_kmalloc(struct sock *sk, int size,
1104 gfp_t priority);
1105 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1106 extern void sk_send_sigurg(struct sock *sk);
1108 #ifdef CONFIG_CGROUPS
1109 extern void sock_update_classid(struct sock *sk);
1110 #else
1111 static inline void sock_update_classid(struct sock *sk)
1114 #endif
1117 * Functions to fill in entries in struct proto_ops when a protocol
1118 * does not implement a particular function.
1120 extern int sock_no_bind(struct socket *,
1121 struct sockaddr *, int);
1122 extern int sock_no_connect(struct socket *,
1123 struct sockaddr *, int, int);
1124 extern int sock_no_socketpair(struct socket *,
1125 struct socket *);
1126 extern int sock_no_accept(struct socket *,
1127 struct socket *, int);
1128 extern int sock_no_getname(struct socket *,
1129 struct sockaddr *, int *, int);
1130 extern unsigned int sock_no_poll(struct file *, struct socket *,
1131 struct poll_table_struct *);
1132 extern int sock_no_ioctl(struct socket *, unsigned int,
1133 unsigned long);
1134 extern int sock_no_listen(struct socket *, int);
1135 extern int sock_no_shutdown(struct socket *, int);
1136 extern int sock_no_getsockopt(struct socket *, int , int,
1137 char __user *, int __user *);
1138 extern int sock_no_setsockopt(struct socket *, int, int,
1139 char __user *, unsigned int);
1140 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1141 struct msghdr *, size_t);
1142 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1143 struct msghdr *, size_t, int);
1144 extern int sock_no_mmap(struct file *file,
1145 struct socket *sock,
1146 struct vm_area_struct *vma);
1147 extern ssize_t sock_no_sendpage(struct socket *sock,
1148 struct page *page,
1149 int offset, size_t size,
1150 int flags);
1153 * Functions to fill in entries in struct proto_ops when a protocol
1154 * uses the inet style.
1156 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1157 char __user *optval, int __user *optlen);
1158 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1159 struct msghdr *msg, size_t size, int flags);
1160 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1161 char __user *optval, unsigned int optlen);
1162 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1163 int optname, char __user *optval, int __user *optlen);
1164 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1165 int optname, char __user *optval, unsigned int optlen);
1167 extern void sk_common_release(struct sock *sk);
1170 * Default socket callbacks and setup code
1173 /* Initialise core socket variables */
1174 extern void sock_init_data(struct socket *sock, struct sock *sk);
1176 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1179 * sk_filter_release - release a socket filter
1180 * @fp: filter to remove
1182 * Remove a filter from a socket and release its resources.
1185 static inline void sk_filter_release(struct sk_filter *fp)
1187 if (atomic_dec_and_test(&fp->refcnt))
1188 call_rcu_bh(&fp->rcu, sk_filter_release_rcu);
1191 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1193 unsigned int size = sk_filter_len(fp);
1195 atomic_sub(size, &sk->sk_omem_alloc);
1196 sk_filter_release(fp);
1199 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1201 atomic_inc(&fp->refcnt);
1202 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1206 * Socket reference counting postulates.
1208 * * Each user of socket SHOULD hold a reference count.
1209 * * Each access point to socket (an hash table bucket, reference from a list,
1210 * running timer, skb in flight MUST hold a reference count.
1211 * * When reference count hits 0, it means it will never increase back.
1212 * * When reference count hits 0, it means that no references from
1213 * outside exist to this socket and current process on current CPU
1214 * is last user and may/should destroy this socket.
1215 * * sk_free is called from any context: process, BH, IRQ. When
1216 * it is called, socket has no references from outside -> sk_free
1217 * may release descendant resources allocated by the socket, but
1218 * to the time when it is called, socket is NOT referenced by any
1219 * hash tables, lists etc.
1220 * * Packets, delivered from outside (from network or from another process)
1221 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1222 * when they sit in queue. Otherwise, packets will leak to hole, when
1223 * socket is looked up by one cpu and unhasing is made by another CPU.
1224 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1225 * (leak to backlog). Packet socket does all the processing inside
1226 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1227 * use separate SMP lock, so that they are prone too.
1230 /* Ungrab socket and destroy it, if it was the last reference. */
1231 static inline void sock_put(struct sock *sk)
1233 if (atomic_dec_and_test(&sk->sk_refcnt))
1234 sk_free(sk);
1237 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1238 const int nested);
1240 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1242 sk->sk_tx_queue_mapping = tx_queue;
1245 static inline void sk_tx_queue_clear(struct sock *sk)
1247 sk->sk_tx_queue_mapping = -1;
1250 static inline int sk_tx_queue_get(const struct sock *sk)
1252 return sk ? sk->sk_tx_queue_mapping : -1;
1255 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1257 sk_tx_queue_clear(sk);
1258 sk->sk_socket = sock;
1261 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1263 return &sk->sk_wq->wait;
1265 /* Detach socket from process context.
1266 * Announce socket dead, detach it from wait queue and inode.
1267 * Note that parent inode held reference count on this struct sock,
1268 * we do not release it in this function, because protocol
1269 * probably wants some additional cleanups or even continuing
1270 * to work with this socket (TCP).
1272 static inline void sock_orphan(struct sock *sk)
1274 write_lock_bh(&sk->sk_callback_lock);
1275 sock_set_flag(sk, SOCK_DEAD);
1276 sk_set_socket(sk, NULL);
1277 sk->sk_wq = NULL;
1278 write_unlock_bh(&sk->sk_callback_lock);
1281 static inline void sock_graft(struct sock *sk, struct socket *parent)
1283 write_lock_bh(&sk->sk_callback_lock);
1284 rcu_assign_pointer(sk->sk_wq, parent->wq);
1285 parent->sk = sk;
1286 sk_set_socket(sk, parent);
1287 security_sock_graft(sk, parent);
1288 write_unlock_bh(&sk->sk_callback_lock);
1291 extern int sock_i_uid(struct sock *sk);
1292 extern unsigned long sock_i_ino(struct sock *sk);
1294 static inline struct dst_entry *
1295 __sk_dst_get(struct sock *sk)
1297 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1298 sock_owned_by_user(sk) ||
1299 lockdep_is_held(&sk->sk_lock.slock));
1302 static inline struct dst_entry *
1303 sk_dst_get(struct sock *sk)
1305 struct dst_entry *dst;
1307 rcu_read_lock();
1308 dst = rcu_dereference(sk->sk_dst_cache);
1309 if (dst)
1310 dst_hold(dst);
1311 rcu_read_unlock();
1312 return dst;
1315 extern void sk_reset_txq(struct sock *sk);
1317 static inline void dst_negative_advice(struct sock *sk)
1319 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1321 if (dst && dst->ops->negative_advice) {
1322 ndst = dst->ops->negative_advice(dst);
1324 if (ndst != dst) {
1325 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1326 sk_reset_txq(sk);
1331 static inline void
1332 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1334 struct dst_entry *old_dst;
1336 sk_tx_queue_clear(sk);
1338 * This can be called while sk is owned by the caller only,
1339 * with no state that can be checked in a rcu_dereference_check() cond
1341 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1342 rcu_assign_pointer(sk->sk_dst_cache, dst);
1343 dst_release(old_dst);
1346 static inline void
1347 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1349 spin_lock(&sk->sk_dst_lock);
1350 __sk_dst_set(sk, dst);
1351 spin_unlock(&sk->sk_dst_lock);
1354 static inline void
1355 __sk_dst_reset(struct sock *sk)
1357 __sk_dst_set(sk, NULL);
1360 static inline void
1361 sk_dst_reset(struct sock *sk)
1363 spin_lock(&sk->sk_dst_lock);
1364 __sk_dst_reset(sk);
1365 spin_unlock(&sk->sk_dst_lock);
1368 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1370 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1372 static inline int sk_can_gso(const struct sock *sk)
1374 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1377 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1379 static inline void sk_nocaps_add(struct sock *sk, int flags)
1381 sk->sk_route_nocaps |= flags;
1382 sk->sk_route_caps &= ~flags;
1385 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1386 struct sk_buff *skb, struct page *page,
1387 int off, int copy)
1389 if (skb->ip_summed == CHECKSUM_NONE) {
1390 int err = 0;
1391 __wsum csum = csum_and_copy_from_user(from,
1392 page_address(page) + off,
1393 copy, 0, &err);
1394 if (err)
1395 return err;
1396 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1397 } else if (copy_from_user(page_address(page) + off, from, copy))
1398 return -EFAULT;
1400 skb->len += copy;
1401 skb->data_len += copy;
1402 skb->truesize += copy;
1403 sk->sk_wmem_queued += copy;
1404 sk_mem_charge(sk, copy);
1405 return 0;
1409 * sk_wmem_alloc_get - returns write allocations
1410 * @sk: socket
1412 * Returns sk_wmem_alloc minus initial offset of one
1414 static inline int sk_wmem_alloc_get(const struct sock *sk)
1416 return atomic_read(&sk->sk_wmem_alloc) - 1;
1420 * sk_rmem_alloc_get - returns read allocations
1421 * @sk: socket
1423 * Returns sk_rmem_alloc
1425 static inline int sk_rmem_alloc_get(const struct sock *sk)
1427 return atomic_read(&sk->sk_rmem_alloc);
1431 * sk_has_allocations - check if allocations are outstanding
1432 * @sk: socket
1434 * Returns true if socket has write or read allocations
1436 static inline int sk_has_allocations(const struct sock *sk)
1438 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1442 * wq_has_sleeper - check if there are any waiting processes
1443 * @wq: struct socket_wq
1445 * Returns true if socket_wq has waiting processes
1447 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1448 * barrier call. They were added due to the race found within the tcp code.
1450 * Consider following tcp code paths:
1452 * CPU1 CPU2
1454 * sys_select receive packet
1455 * ... ...
1456 * __add_wait_queue update tp->rcv_nxt
1457 * ... ...
1458 * tp->rcv_nxt check sock_def_readable
1459 * ... {
1460 * schedule rcu_read_lock();
1461 * wq = rcu_dereference(sk->sk_wq);
1462 * if (wq && waitqueue_active(&wq->wait))
1463 * wake_up_interruptible(&wq->wait)
1464 * ...
1467 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1468 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1469 * could then endup calling schedule and sleep forever if there are no more
1470 * data on the socket.
1473 static inline bool wq_has_sleeper(struct socket_wq *wq)
1477 * We need to be sure we are in sync with the
1478 * add_wait_queue modifications to the wait queue.
1480 * This memory barrier is paired in the sock_poll_wait.
1482 smp_mb();
1483 return wq && waitqueue_active(&wq->wait);
1487 * sock_poll_wait - place memory barrier behind the poll_wait call.
1488 * @filp: file
1489 * @wait_address: socket wait queue
1490 * @p: poll_table
1492 * See the comments in the wq_has_sleeper function.
1494 static inline void sock_poll_wait(struct file *filp,
1495 wait_queue_head_t *wait_address, poll_table *p)
1497 if (p && wait_address) {
1498 poll_wait(filp, wait_address, p);
1500 * We need to be sure we are in sync with the
1501 * socket flags modification.
1503 * This memory barrier is paired in the wq_has_sleeper.
1505 smp_mb();
1510 * Queue a received datagram if it will fit. Stream and sequenced
1511 * protocols can't normally use this as they need to fit buffers in
1512 * and play with them.
1514 * Inlined as it's very short and called for pretty much every
1515 * packet ever received.
1518 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1520 skb_orphan(skb);
1521 skb->sk = sk;
1522 skb->destructor = sock_wfree;
1524 * We used to take a refcount on sk, but following operation
1525 * is enough to guarantee sk_free() wont free this sock until
1526 * all in-flight packets are completed
1528 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1531 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1533 skb_orphan(skb);
1534 skb->sk = sk;
1535 skb->destructor = sock_rfree;
1536 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1537 sk_mem_charge(sk, skb->truesize);
1540 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1541 unsigned long expires);
1543 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1545 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1547 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1550 * Recover an error report and clear atomically
1553 static inline int sock_error(struct sock *sk)
1555 int err;
1556 if (likely(!sk->sk_err))
1557 return 0;
1558 err = xchg(&sk->sk_err, 0);
1559 return -err;
1562 static inline unsigned long sock_wspace(struct sock *sk)
1564 int amt = 0;
1566 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1567 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1568 if (amt < 0)
1569 amt = 0;
1571 return amt;
1574 static inline void sk_wake_async(struct sock *sk, int how, int band)
1576 if (sock_flag(sk, SOCK_FASYNC))
1577 sock_wake_async(sk->sk_socket, how, band);
1580 #define SOCK_MIN_SNDBUF 2048
1582 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1583 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1585 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1587 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1589 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1590 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1591 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1595 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1597 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1599 struct page *page = NULL;
1601 page = alloc_pages(sk->sk_allocation, 0);
1602 if (!page) {
1603 sk->sk_prot->enter_memory_pressure(sk);
1604 sk_stream_moderate_sndbuf(sk);
1606 return page;
1610 * Default write policy as shown to user space via poll/select/SIGIO
1612 static inline int sock_writeable(const struct sock *sk)
1614 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1617 static inline gfp_t gfp_any(void)
1619 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1622 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1624 return noblock ? 0 : sk->sk_rcvtimeo;
1627 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1629 return noblock ? 0 : sk->sk_sndtimeo;
1632 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1634 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1637 /* Alas, with timeout socket operations are not restartable.
1638 * Compare this to poll().
1640 static inline int sock_intr_errno(long timeo)
1642 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1645 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1646 struct sk_buff *skb);
1648 static __inline__ void
1649 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1651 ktime_t kt = skb->tstamp;
1652 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1655 * generate control messages if
1656 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1657 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1658 * - software time stamp available and wanted
1659 * (SOCK_TIMESTAMPING_SOFTWARE)
1660 * - hardware time stamps available and wanted
1661 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1662 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1664 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1665 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1666 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1667 (hwtstamps->hwtstamp.tv64 &&
1668 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1669 (hwtstamps->syststamp.tv64 &&
1670 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1671 __sock_recv_timestamp(msg, sk, skb);
1672 else
1673 sk->sk_stamp = kt;
1676 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1677 struct sk_buff *skb);
1679 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1680 struct sk_buff *skb)
1682 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1683 (1UL << SOCK_RCVTSTAMP) | \
1684 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1685 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1686 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1687 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1689 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1690 __sock_recv_ts_and_drops(msg, sk, skb);
1691 else
1692 sk->sk_stamp = skb->tstamp;
1696 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1697 * @sk: socket sending this packet
1698 * @tx_flags: filled with instructions for time stamping
1700 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1701 * parameters are invalid.
1703 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1706 * sk_eat_skb - Release a skb if it is no longer needed
1707 * @sk: socket to eat this skb from
1708 * @skb: socket buffer to eat
1709 * @copied_early: flag indicating whether DMA operations copied this data early
1711 * This routine must be called with interrupts disabled or with the socket
1712 * locked so that the sk_buff queue operation is ok.
1714 #ifdef CONFIG_NET_DMA
1715 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1717 __skb_unlink(skb, &sk->sk_receive_queue);
1718 if (!copied_early)
1719 __kfree_skb(skb);
1720 else
1721 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1723 #else
1724 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1726 __skb_unlink(skb, &sk->sk_receive_queue);
1727 __kfree_skb(skb);
1729 #endif
1731 static inline
1732 struct net *sock_net(const struct sock *sk)
1734 return read_pnet(&sk->sk_net);
1737 static inline
1738 void sock_net_set(struct sock *sk, struct net *net)
1740 write_pnet(&sk->sk_net, net);
1744 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1745 * They should not hold a referrence to a namespace in order to allow
1746 * to stop it.
1747 * Sockets after sk_change_net should be released using sk_release_kernel
1749 static inline void sk_change_net(struct sock *sk, struct net *net)
1751 put_net(sock_net(sk));
1752 sock_net_set(sk, hold_net(net));
1755 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1757 if (unlikely(skb->sk)) {
1758 struct sock *sk = skb->sk;
1760 skb->destructor = NULL;
1761 skb->sk = NULL;
1762 return sk;
1764 return NULL;
1767 extern void sock_enable_timestamp(struct sock *sk, int flag);
1768 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1769 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1772 * Enable debug/info messages
1774 extern int net_msg_warn;
1775 #define NETDEBUG(fmt, args...) \
1776 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1778 #define LIMIT_NETDEBUG(fmt, args...) \
1779 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1781 extern __u32 sysctl_wmem_max;
1782 extern __u32 sysctl_rmem_max;
1784 extern void sk_init(void);
1786 extern int sysctl_optmem_max;
1788 extern __u32 sysctl_wmem_default;
1789 extern __u32 sysctl_rmem_default;
1791 #endif /* _SOCK_H */