nilfs2: fix list corruption after ifile creation failure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mlock.c
blob49e5e4cb82328dea4e45ee9d81e51d5599df54ff
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
22 #include "internal.h"
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (rlimit(RLIMIT_MEMLOCK) != 0)
29 return 1;
30 return 0;
32 EXPORT_SYMBOL(can_do_mlock);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page *page)
56 VM_BUG_ON(!PageLocked(page));
58 if (!page->mapping) { /* truncated ? */
59 return;
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page *page)
81 BUG_ON(!PageLocked(page));
83 if (!TestSetPageMlocked(page)) {
84 inc_zone_page_state(page, NR_MLOCK);
85 count_vm_event(UNEVICTABLE_PGMLOCKED);
86 if (!isolate_lru_page(page))
87 putback_lru_page(page);
91 /**
92 * munlock_vma_page - munlock a vma page
93 * @page - page to be unlocked
95 * called from munlock()/munmap() path with page supposedly on the LRU.
96 * When we munlock a page, because the vma where we found the page is being
97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98 * page locked so that we can leave it on the unevictable lru list and not
99 * bother vmscan with it. However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU. If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance. If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
106 void munlock_vma_page(struct page *page)
108 BUG_ON(!PageLocked(page));
110 if (TestClearPageMlocked(page)) {
111 dec_zone_page_state(page, NR_MLOCK);
112 if (!isolate_lru_page(page)) {
113 int ret = try_to_munlock(page);
115 * did try_to_unlock() succeed or punt?
117 if (ret != SWAP_MLOCK)
118 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
120 putback_lru_page(page);
121 } else {
123 * Some other task has removed the page from the LRU.
124 * putback_lru_page() will take care of removing the
125 * page from the unevictable list, if necessary.
126 * vmscan [page_referenced()] will move the page back
127 * to the unevictable list if some other vma has it
128 * mlocked.
130 if (PageUnevictable(page))
131 count_vm_event(UNEVICTABLE_PGSTRANDED);
132 else
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
139 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
140 * @vma: target vma
141 * @start: start address
142 * @end: end address
144 * This takes care of making the pages present too.
146 * return 0 on success, negative error code on error.
148 * vma->vm_mm->mmap_sem must be held for at least read.
150 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151 unsigned long start, unsigned long end)
153 struct mm_struct *mm = vma->vm_mm;
154 unsigned long addr = start;
155 struct page *pages[16]; /* 16 gives a reasonable batch */
156 int nr_pages = (end - start) / PAGE_SIZE;
157 int ret = 0;
158 int gup_flags;
160 VM_BUG_ON(start & ~PAGE_MASK);
161 VM_BUG_ON(end & ~PAGE_MASK);
162 VM_BUG_ON(start < vma->vm_start);
163 VM_BUG_ON(end > vma->vm_end);
164 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
166 gup_flags = FOLL_TOUCH | FOLL_GET;
167 if (vma->vm_flags & VM_WRITE)
168 gup_flags |= FOLL_WRITE;
170 /* We don't try to access the guard page of a stack vma */
171 if (vma->vm_flags & VM_GROWSDOWN) {
172 if (start == vma->vm_start) {
173 start += PAGE_SIZE;
174 nr_pages--;
178 while (nr_pages > 0) {
179 int i;
181 cond_resched();
184 * get_user_pages makes pages present if we are
185 * setting mlock. and this extra reference count will
186 * disable migration of this page. However, page may
187 * still be truncated out from under us.
189 ret = __get_user_pages(current, mm, addr,
190 min_t(int, nr_pages, ARRAY_SIZE(pages)),
191 gup_flags, pages, NULL);
193 * This can happen for, e.g., VM_NONLINEAR regions before
194 * a page has been allocated and mapped at a given offset,
195 * or for addresses that map beyond end of a file.
196 * We'll mlock the pages if/when they get faulted in.
198 if (ret < 0)
199 break;
201 lru_add_drain(); /* push cached pages to LRU */
203 for (i = 0; i < ret; i++) {
204 struct page *page = pages[i];
206 if (page->mapping) {
208 * That preliminary check is mainly to avoid
209 * the pointless overhead of lock_page on the
210 * ZERO_PAGE: which might bounce very badly if
211 * there is contention. However, we're still
212 * dirtying its cacheline with get/put_page:
213 * we'll add another __get_user_pages flag to
214 * avoid it if that case turns out to matter.
216 lock_page(page);
218 * Because we lock page here and migration is
219 * blocked by the elevated reference, we need
220 * only check for file-cache page truncation.
222 if (page->mapping)
223 mlock_vma_page(page);
224 unlock_page(page);
226 put_page(page); /* ref from get_user_pages() */
229 addr += ret * PAGE_SIZE;
230 nr_pages -= ret;
231 ret = 0;
234 return ret; /* 0 or negative error code */
238 * convert get_user_pages() return value to posix mlock() error
240 static int __mlock_posix_error_return(long retval)
242 if (retval == -EFAULT)
243 retval = -ENOMEM;
244 else if (retval == -ENOMEM)
245 retval = -EAGAIN;
246 return retval;
250 * mlock_vma_pages_range() - mlock pages in specified vma range.
251 * @vma - the vma containing the specfied address range
252 * @start - starting address in @vma to mlock
253 * @end - end address [+1] in @vma to mlock
255 * For mmap()/mremap()/expansion of mlocked vma.
257 * return 0 on success for "normal" vmas.
259 * return number of pages [> 0] to be removed from locked_vm on success
260 * of "special" vmas.
262 long mlock_vma_pages_range(struct vm_area_struct *vma,
263 unsigned long start, unsigned long end)
265 int nr_pages = (end - start) / PAGE_SIZE;
266 BUG_ON(!(vma->vm_flags & VM_LOCKED));
269 * filter unlockable vmas
271 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
272 goto no_mlock;
274 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
275 is_vm_hugetlb_page(vma) ||
276 vma == get_gate_vma(current))) {
278 __mlock_vma_pages_range(vma, start, end);
280 /* Hide errors from mmap() and other callers */
281 return 0;
285 * User mapped kernel pages or huge pages:
286 * make these pages present to populate the ptes, but
287 * fall thru' to reset VM_LOCKED--no need to unlock, and
288 * return nr_pages so these don't get counted against task's
289 * locked limit. huge pages are already counted against
290 * locked vm limit.
292 make_pages_present(start, end);
294 no_mlock:
295 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
296 return nr_pages; /* error or pages NOT mlocked */
300 * munlock_vma_pages_range() - munlock all pages in the vma range.'
301 * @vma - vma containing range to be munlock()ed.
302 * @start - start address in @vma of the range
303 * @end - end of range in @vma.
305 * For mremap(), munmap() and exit().
307 * Called with @vma VM_LOCKED.
309 * Returns with VM_LOCKED cleared. Callers must be prepared to
310 * deal with this.
312 * We don't save and restore VM_LOCKED here because pages are
313 * still on lru. In unmap path, pages might be scanned by reclaim
314 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
315 * free them. This will result in freeing mlocked pages.
317 void munlock_vma_pages_range(struct vm_area_struct *vma,
318 unsigned long start, unsigned long end)
320 unsigned long addr;
322 lru_add_drain();
323 vma->vm_flags &= ~VM_LOCKED;
325 for (addr = start; addr < end; addr += PAGE_SIZE) {
326 struct page *page;
328 * Although FOLL_DUMP is intended for get_dump_page(),
329 * it just so happens that its special treatment of the
330 * ZERO_PAGE (returning an error instead of doing get_page)
331 * suits munlock very well (and if somehow an abnormal page
332 * has sneaked into the range, we won't oops here: great).
334 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
335 if (page && !IS_ERR(page)) {
336 lock_page(page);
338 * Like in __mlock_vma_pages_range(),
339 * because we lock page here and migration is
340 * blocked by the elevated reference, we need
341 * only check for file-cache page truncation.
343 if (page->mapping)
344 munlock_vma_page(page);
345 unlock_page(page);
346 put_page(page);
348 cond_resched();
353 * mlock_fixup - handle mlock[all]/munlock[all] requests.
355 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
356 * munlock is a no-op. However, for some special vmas, we go ahead and
357 * populate the ptes via make_pages_present().
359 * For vmas that pass the filters, merge/split as appropriate.
361 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
362 unsigned long start, unsigned long end, unsigned int newflags)
364 struct mm_struct *mm = vma->vm_mm;
365 pgoff_t pgoff;
366 int nr_pages;
367 int ret = 0;
368 int lock = newflags & VM_LOCKED;
370 if (newflags == vma->vm_flags ||
371 (vma->vm_flags & (VM_IO | VM_PFNMAP)))
372 goto out; /* don't set VM_LOCKED, don't count */
374 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
375 is_vm_hugetlb_page(vma) ||
376 vma == get_gate_vma(current)) {
377 if (lock)
378 make_pages_present(start, end);
379 goto out; /* don't set VM_LOCKED, don't count */
382 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
383 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
384 vma->vm_file, pgoff, vma_policy(vma));
385 if (*prev) {
386 vma = *prev;
387 goto success;
390 if (start != vma->vm_start) {
391 ret = split_vma(mm, vma, start, 1);
392 if (ret)
393 goto out;
396 if (end != vma->vm_end) {
397 ret = split_vma(mm, vma, end, 0);
398 if (ret)
399 goto out;
402 success:
404 * Keep track of amount of locked VM.
406 nr_pages = (end - start) >> PAGE_SHIFT;
407 if (!lock)
408 nr_pages = -nr_pages;
409 mm->locked_vm += nr_pages;
412 * vm_flags is protected by the mmap_sem held in write mode.
413 * It's okay if try_to_unmap_one unmaps a page just after we
414 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
417 if (lock) {
418 vma->vm_flags = newflags;
419 ret = __mlock_vma_pages_range(vma, start, end);
420 if (ret < 0)
421 ret = __mlock_posix_error_return(ret);
422 } else {
423 munlock_vma_pages_range(vma, start, end);
426 out:
427 *prev = vma;
428 return ret;
431 static int do_mlock(unsigned long start, size_t len, int on)
433 unsigned long nstart, end, tmp;
434 struct vm_area_struct * vma, * prev;
435 int error;
437 len = PAGE_ALIGN(len);
438 end = start + len;
439 if (end < start)
440 return -EINVAL;
441 if (end == start)
442 return 0;
443 vma = find_vma_prev(current->mm, start, &prev);
444 if (!vma || vma->vm_start > start)
445 return -ENOMEM;
447 if (start > vma->vm_start)
448 prev = vma;
450 for (nstart = start ; ; ) {
451 unsigned int newflags;
453 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
455 newflags = vma->vm_flags | VM_LOCKED;
456 if (!on)
457 newflags &= ~VM_LOCKED;
459 tmp = vma->vm_end;
460 if (tmp > end)
461 tmp = end;
462 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
463 if (error)
464 break;
465 nstart = tmp;
466 if (nstart < prev->vm_end)
467 nstart = prev->vm_end;
468 if (nstart >= end)
469 break;
471 vma = prev->vm_next;
472 if (!vma || vma->vm_start != nstart) {
473 error = -ENOMEM;
474 break;
477 return error;
480 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
482 unsigned long locked;
483 unsigned long lock_limit;
484 int error = -ENOMEM;
486 if (!can_do_mlock())
487 return -EPERM;
489 lru_add_drain_all(); /* flush pagevec */
491 down_write(&current->mm->mmap_sem);
492 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
493 start &= PAGE_MASK;
495 locked = len >> PAGE_SHIFT;
496 locked += current->mm->locked_vm;
498 lock_limit = rlimit(RLIMIT_MEMLOCK);
499 lock_limit >>= PAGE_SHIFT;
501 /* check against resource limits */
502 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
503 error = do_mlock(start, len, 1);
504 up_write(&current->mm->mmap_sem);
505 return error;
508 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
510 int ret;
512 down_write(&current->mm->mmap_sem);
513 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
514 start &= PAGE_MASK;
515 ret = do_mlock(start, len, 0);
516 up_write(&current->mm->mmap_sem);
517 return ret;
520 static int do_mlockall(int flags)
522 struct vm_area_struct * vma, * prev = NULL;
523 unsigned int def_flags = 0;
525 if (flags & MCL_FUTURE)
526 def_flags = VM_LOCKED;
527 current->mm->def_flags = def_flags;
528 if (flags == MCL_FUTURE)
529 goto out;
531 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
532 unsigned int newflags;
534 newflags = vma->vm_flags | VM_LOCKED;
535 if (!(flags & MCL_CURRENT))
536 newflags &= ~VM_LOCKED;
538 /* Ignore errors */
539 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
541 out:
542 return 0;
545 SYSCALL_DEFINE1(mlockall, int, flags)
547 unsigned long lock_limit;
548 int ret = -EINVAL;
550 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
551 goto out;
553 ret = -EPERM;
554 if (!can_do_mlock())
555 goto out;
557 lru_add_drain_all(); /* flush pagevec */
559 down_write(&current->mm->mmap_sem);
561 lock_limit = rlimit(RLIMIT_MEMLOCK);
562 lock_limit >>= PAGE_SHIFT;
564 ret = -ENOMEM;
565 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
566 capable(CAP_IPC_LOCK))
567 ret = do_mlockall(flags);
568 up_write(&current->mm->mmap_sem);
569 out:
570 return ret;
573 SYSCALL_DEFINE0(munlockall)
575 int ret;
577 down_write(&current->mm->mmap_sem);
578 ret = do_mlockall(0);
579 up_write(&current->mm->mmap_sem);
580 return ret;
584 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
585 * shm segments) get accounted against the user_struct instead.
587 static DEFINE_SPINLOCK(shmlock_user_lock);
589 int user_shm_lock(size_t size, struct user_struct *user)
591 unsigned long lock_limit, locked;
592 int allowed = 0;
594 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
595 lock_limit = rlimit(RLIMIT_MEMLOCK);
596 if (lock_limit == RLIM_INFINITY)
597 allowed = 1;
598 lock_limit >>= PAGE_SHIFT;
599 spin_lock(&shmlock_user_lock);
600 if (!allowed &&
601 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
602 goto out;
603 get_uid(user);
604 user->locked_shm += locked;
605 allowed = 1;
606 out:
607 spin_unlock(&shmlock_user_lock);
608 return allowed;
611 void user_shm_unlock(size_t size, struct user_struct *user)
613 spin_lock(&shmlock_user_lock);
614 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
615 spin_unlock(&shmlock_user_lock);
616 free_uid(user);