drm/radeon/kms: register an i2c adapter name for the dp aux bus
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobf7cc624085ccf217c9dc7f294d57471db8e01fdc
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
77 * Array of node states.
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 [N_CPU] = { { [0] = 1UL } },
88 #endif /* NUMA */
90 EXPORT_SYMBOL(node_states);
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
106 void set_gfp_allowed_mask(gfp_t mask)
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
114 gfp_t ret = gfp_allowed_mask;
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
120 #endif /* CONFIG_PM_SLEEP */
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
126 static void __free_pages_ok(struct page *page, unsigned int order);
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
148 #endif
152 EXPORT_SYMBOL(totalram_pages);
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 "DMA32",
160 #endif
161 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 "HighMem",
164 #endif
165 "Movable",
168 int min_free_kbytes = 1024;
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __initdata required_kernelcore;
200 static unsigned long __initdata required_movablecore;
201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
215 int page_group_by_mobility_disabled __read_mostly;
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
227 bool oom_killer_disabled __read_mostly;
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
244 return ret;
247 static int page_is_consistent(struct zone *zone, struct page *page)
249 if (!pfn_valid_within(page_to_pfn(page)))
250 return 0;
251 if (zone != page_zone(page))
252 return 0;
254 return 1;
257 * Temporary debugging check for pages not lying within a given zone.
259 static int bad_range(struct zone *zone, struct page *page)
261 if (page_outside_zone_boundaries(zone, page))
262 return 1;
263 if (!page_is_consistent(zone, page))
264 return 1;
266 return 0;
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
271 return 0;
273 #endif
275 static void bad_page(struct page *page)
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
296 if (nr_unshown) {
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
299 nr_unshown);
300 nr_unshown = 0;
302 nr_shown = 0;
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
308 current->comm, page_to_pfn(page));
309 dump_page(page);
311 dump_stack();
312 out:
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
315 add_taint(TAINT_BAD_PAGE);
319 * Higher-order pages are called "compound pages". They are structured thusly:
321 * The first PAGE_SIZE page is called the "head page".
323 * The remaining PAGE_SIZE pages are called "tail pages".
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
333 static void free_compound_page(struct page *page)
335 __free_pages_ok(page, compound_order(page));
338 void prep_compound_page(struct page *page, unsigned long order)
340 int i;
341 int nr_pages = 1 << order;
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
349 __SetPageTail(p);
350 p->first_page = page;
354 static int destroy_compound_page(struct page *page, unsigned long order)
356 int i;
357 int nr_pages = 1 << order;
358 int bad = 0;
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
362 bad_page(page);
363 bad++;
366 __ClearPageHead(page);
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 bad_page(page);
373 bad++;
375 __ClearPageTail(p);
378 return bad;
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
383 int i;
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
394 static inline void set_page_order(struct page *page, int order)
396 set_page_private(page, order);
397 __SetPageBuddy(page);
400 static inline void rmv_page_order(struct page *page)
402 __ClearPageBuddy(page);
403 set_page_private(page, 0);
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
426 unsigned long buddy_idx = page_idx ^ (1 << order);
428 return page + (buddy_idx - page_idx);
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
434 return (page_idx & ~(1 << order));
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
463 return 0;
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
487 * -- wli
490 static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 struct page *buddy;
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
502 VM_BUG_ON(migratetype == -1);
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
509 while (order < MAX_ORDER-1) {
510 buddy = __page_find_buddy(page, page_idx, order);
511 if (!page_is_buddy(page, buddy, order))
512 break;
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy->lru);
516 zone->free_area[order].nr_free--;
517 rmv_page_order(buddy);
518 combined_idx = __find_combined_index(page_idx, order);
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
523 set_page_order(page, order);
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 zone->free_area[order].nr_free++;
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
555 static inline void free_page_mlock(struct page *page)
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561 static inline int free_pages_check(struct page *page)
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
565 (atomic_read(&page->_count) != 0) |
566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 bad_page(page);
568 return 1;
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
589 int migratetype = 0;
590 int batch_free = 0;
591 int to_free = count;
593 spin_lock(&zone->lock);
594 zone->all_unreclaimable = 0;
595 zone->pages_scanned = 0;
597 while (to_free) {
598 struct page *page;
599 struct list_head *list;
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
608 do {
609 batch_free++;
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 } while (--to_free && --batch_free && !list_empty(list));
624 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
625 spin_unlock(&zone->lock);
628 static void free_one_page(struct zone *zone, struct page *page, int order,
629 int migratetype)
631 spin_lock(&zone->lock);
632 zone->all_unreclaimable = 0;
633 zone->pages_scanned = 0;
635 __free_one_page(page, zone, order, migratetype);
636 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
637 spin_unlock(&zone->lock);
640 static bool free_pages_prepare(struct page *page, unsigned int order)
642 int i;
643 int bad = 0;
645 trace_mm_page_free_direct(page, order);
646 kmemcheck_free_shadow(page, order);
648 for (i = 0; i < (1 << order); i++) {
649 struct page *pg = page + i;
651 if (PageAnon(pg))
652 pg->mapping = NULL;
653 bad += free_pages_check(pg);
655 if (bad)
656 return false;
658 if (!PageHighMem(page)) {
659 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
660 debug_check_no_obj_freed(page_address(page),
661 PAGE_SIZE << order);
663 arch_free_page(page, order);
664 kernel_map_pages(page, 1 << order, 0);
666 return true;
669 static void __free_pages_ok(struct page *page, unsigned int order)
671 unsigned long flags;
672 int wasMlocked = __TestClearPageMlocked(page);
674 if (!free_pages_prepare(page, order))
675 return;
677 local_irq_save(flags);
678 if (unlikely(wasMlocked))
679 free_page_mlock(page);
680 __count_vm_events(PGFREE, 1 << order);
681 free_one_page(page_zone(page), page, order,
682 get_pageblock_migratetype(page));
683 local_irq_restore(flags);
687 * permit the bootmem allocator to evade page validation on high-order frees
689 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
691 if (order == 0) {
692 __ClearPageReserved(page);
693 set_page_count(page, 0);
694 set_page_refcounted(page);
695 __free_page(page);
696 } else {
697 int loop;
699 prefetchw(page);
700 for (loop = 0; loop < BITS_PER_LONG; loop++) {
701 struct page *p = &page[loop];
703 if (loop + 1 < BITS_PER_LONG)
704 prefetchw(p + 1);
705 __ClearPageReserved(p);
706 set_page_count(p, 0);
709 set_page_refcounted(page);
710 __free_pages(page, order);
716 * The order of subdivision here is critical for the IO subsystem.
717 * Please do not alter this order without good reasons and regression
718 * testing. Specifically, as large blocks of memory are subdivided,
719 * the order in which smaller blocks are delivered depends on the order
720 * they're subdivided in this function. This is the primary factor
721 * influencing the order in which pages are delivered to the IO
722 * subsystem according to empirical testing, and this is also justified
723 * by considering the behavior of a buddy system containing a single
724 * large block of memory acted on by a series of small allocations.
725 * This behavior is a critical factor in sglist merging's success.
727 * -- wli
729 static inline void expand(struct zone *zone, struct page *page,
730 int low, int high, struct free_area *area,
731 int migratetype)
733 unsigned long size = 1 << high;
735 while (high > low) {
736 area--;
737 high--;
738 size >>= 1;
739 VM_BUG_ON(bad_range(zone, &page[size]));
740 list_add(&page[size].lru, &area->free_list[migratetype]);
741 area->nr_free++;
742 set_page_order(&page[size], high);
747 * This page is about to be returned from the page allocator
749 static inline int check_new_page(struct page *page)
751 if (unlikely(page_mapcount(page) |
752 (page->mapping != NULL) |
753 (atomic_read(&page->_count) != 0) |
754 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
755 bad_page(page);
756 return 1;
758 return 0;
761 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
763 int i;
765 for (i = 0; i < (1 << order); i++) {
766 struct page *p = page + i;
767 if (unlikely(check_new_page(p)))
768 return 1;
771 set_page_private(page, 0);
772 set_page_refcounted(page);
774 arch_alloc_page(page, order);
775 kernel_map_pages(page, 1 << order, 1);
777 if (gfp_flags & __GFP_ZERO)
778 prep_zero_page(page, order, gfp_flags);
780 if (order && (gfp_flags & __GFP_COMP))
781 prep_compound_page(page, order);
783 return 0;
787 * Go through the free lists for the given migratetype and remove
788 * the smallest available page from the freelists
790 static inline
791 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
792 int migratetype)
794 unsigned int current_order;
795 struct free_area * area;
796 struct page *page;
798 /* Find a page of the appropriate size in the preferred list */
799 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 list_del(&page->lru);
807 rmv_page_order(page);
808 area->nr_free--;
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
813 return NULL;
818 * This array describes the order lists are fallen back to when
819 * the free lists for the desirable migrate type are depleted
821 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
822 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
825 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
829 * Move the free pages in a range to the free lists of the requested type.
830 * Note that start_page and end_pages are not aligned on a pageblock
831 * boundary. If alignment is required, use move_freepages_block()
833 static int move_freepages(struct zone *zone,
834 struct page *start_page, struct page *end_page,
835 int migratetype)
837 struct page *page;
838 unsigned long order;
839 int pages_moved = 0;
841 #ifndef CONFIG_HOLES_IN_ZONE
843 * page_zone is not safe to call in this context when
844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 * anyway as we check zone boundaries in move_freepages_block().
846 * Remove at a later date when no bug reports exist related to
847 * grouping pages by mobility
849 BUG_ON(page_zone(start_page) != page_zone(end_page));
850 #endif
852 for (page = start_page; page <= end_page;) {
853 /* Make sure we are not inadvertently changing nodes */
854 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
856 if (!pfn_valid_within(page_to_pfn(page))) {
857 page++;
858 continue;
861 if (!PageBuddy(page)) {
862 page++;
863 continue;
866 order = page_order(page);
867 list_del(&page->lru);
868 list_add(&page->lru,
869 &zone->free_area[order].free_list[migratetype]);
870 page += 1 << order;
871 pages_moved += 1 << order;
874 return pages_moved;
877 static int move_freepages_block(struct zone *zone, struct page *page,
878 int migratetype)
880 unsigned long start_pfn, end_pfn;
881 struct page *start_page, *end_page;
883 start_pfn = page_to_pfn(page);
884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
885 start_page = pfn_to_page(start_pfn);
886 end_page = start_page + pageblock_nr_pages - 1;
887 end_pfn = start_pfn + pageblock_nr_pages - 1;
889 /* Do not cross zone boundaries */
890 if (start_pfn < zone->zone_start_pfn)
891 start_page = page;
892 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
893 return 0;
895 return move_freepages(zone, start_page, end_page, migratetype);
898 static void change_pageblock_range(struct page *pageblock_page,
899 int start_order, int migratetype)
901 int nr_pageblocks = 1 << (start_order - pageblock_order);
903 while (nr_pageblocks--) {
904 set_pageblock_migratetype(pageblock_page, migratetype);
905 pageblock_page += pageblock_nr_pages;
909 /* Remove an element from the buddy allocator from the fallback list */
910 static inline struct page *
911 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
913 struct free_area * area;
914 int current_order;
915 struct page *page;
916 int migratetype, i;
918 /* Find the largest possible block of pages in the other list */
919 for (current_order = MAX_ORDER-1; current_order >= order;
920 --current_order) {
921 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
922 migratetype = fallbacks[start_migratetype][i];
924 /* MIGRATE_RESERVE handled later if necessary */
925 if (migratetype == MIGRATE_RESERVE)
926 continue;
928 area = &(zone->free_area[current_order]);
929 if (list_empty(&area->free_list[migratetype]))
930 continue;
932 page = list_entry(area->free_list[migratetype].next,
933 struct page, lru);
934 area->nr_free--;
937 * If breaking a large block of pages, move all free
938 * pages to the preferred allocation list. If falling
939 * back for a reclaimable kernel allocation, be more
940 * agressive about taking ownership of free pages
942 if (unlikely(current_order >= (pageblock_order >> 1)) ||
943 start_migratetype == MIGRATE_RECLAIMABLE ||
944 page_group_by_mobility_disabled) {
945 unsigned long pages;
946 pages = move_freepages_block(zone, page,
947 start_migratetype);
949 /* Claim the whole block if over half of it is free */
950 if (pages >= (1 << (pageblock_order-1)) ||
951 page_group_by_mobility_disabled)
952 set_pageblock_migratetype(page,
953 start_migratetype);
955 migratetype = start_migratetype;
958 /* Remove the page from the freelists */
959 list_del(&page->lru);
960 rmv_page_order(page);
962 /* Take ownership for orders >= pageblock_order */
963 if (current_order >= pageblock_order)
964 change_pageblock_range(page, current_order,
965 start_migratetype);
967 expand(zone, page, order, current_order, area, migratetype);
969 trace_mm_page_alloc_extfrag(page, order, current_order,
970 start_migratetype, migratetype);
972 return page;
976 return NULL;
980 * Do the hard work of removing an element from the buddy allocator.
981 * Call me with the zone->lock already held.
983 static struct page *__rmqueue(struct zone *zone, unsigned int order,
984 int migratetype)
986 struct page *page;
988 retry_reserve:
989 page = __rmqueue_smallest(zone, order, migratetype);
991 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
992 page = __rmqueue_fallback(zone, order, migratetype);
995 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 * is used because __rmqueue_smallest is an inline function
997 * and we want just one call site
999 if (!page) {
1000 migratetype = MIGRATE_RESERVE;
1001 goto retry_reserve;
1005 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1006 return page;
1010 * Obtain a specified number of elements from the buddy allocator, all under
1011 * a single hold of the lock, for efficiency. Add them to the supplied list.
1012 * Returns the number of new pages which were placed at *list.
1014 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1015 unsigned long count, struct list_head *list,
1016 int migratetype, int cold)
1018 int i;
1020 spin_lock(&zone->lock);
1021 for (i = 0; i < count; ++i) {
1022 struct page *page = __rmqueue(zone, order, migratetype);
1023 if (unlikely(page == NULL))
1024 break;
1027 * Split buddy pages returned by expand() are received here
1028 * in physical page order. The page is added to the callers and
1029 * list and the list head then moves forward. From the callers
1030 * perspective, the linked list is ordered by page number in
1031 * some conditions. This is useful for IO devices that can
1032 * merge IO requests if the physical pages are ordered
1033 * properly.
1035 if (likely(cold == 0))
1036 list_add(&page->lru, list);
1037 else
1038 list_add_tail(&page->lru, list);
1039 set_page_private(page, migratetype);
1040 list = &page->lru;
1042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1043 spin_unlock(&zone->lock);
1044 return i;
1047 #ifdef CONFIG_NUMA
1049 * Called from the vmstat counter updater to drain pagesets of this
1050 * currently executing processor on remote nodes after they have
1051 * expired.
1053 * Note that this function must be called with the thread pinned to
1054 * a single processor.
1056 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1058 unsigned long flags;
1059 int to_drain;
1061 local_irq_save(flags);
1062 if (pcp->count >= pcp->batch)
1063 to_drain = pcp->batch;
1064 else
1065 to_drain = pcp->count;
1066 free_pcppages_bulk(zone, to_drain, pcp);
1067 pcp->count -= to_drain;
1068 local_irq_restore(flags);
1070 #endif
1073 * Drain pages of the indicated processor.
1075 * The processor must either be the current processor and the
1076 * thread pinned to the current processor or a processor that
1077 * is not online.
1079 static void drain_pages(unsigned int cpu)
1081 unsigned long flags;
1082 struct zone *zone;
1084 for_each_populated_zone(zone) {
1085 struct per_cpu_pageset *pset;
1086 struct per_cpu_pages *pcp;
1088 local_irq_save(flags);
1089 pset = per_cpu_ptr(zone->pageset, cpu);
1091 pcp = &pset->pcp;
1092 free_pcppages_bulk(zone, pcp->count, pcp);
1093 pcp->count = 0;
1094 local_irq_restore(flags);
1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101 void drain_local_pages(void *arg)
1103 drain_pages(smp_processor_id());
1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109 void drain_all_pages(void)
1111 on_each_cpu(drain_local_pages, NULL, 1);
1114 #ifdef CONFIG_HIBERNATION
1116 void mark_free_pages(struct zone *zone)
1118 unsigned long pfn, max_zone_pfn;
1119 unsigned long flags;
1120 int order, t;
1121 struct list_head *curr;
1123 if (!zone->spanned_pages)
1124 return;
1126 spin_lock_irqsave(&zone->lock, flags);
1128 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1130 if (pfn_valid(pfn)) {
1131 struct page *page = pfn_to_page(pfn);
1133 if (!swsusp_page_is_forbidden(page))
1134 swsusp_unset_page_free(page);
1137 for_each_migratetype_order(order, t) {
1138 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1139 unsigned long i;
1141 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1142 for (i = 0; i < (1UL << order); i++)
1143 swsusp_set_page_free(pfn_to_page(pfn + i));
1146 spin_unlock_irqrestore(&zone->lock, flags);
1148 #endif /* CONFIG_PM */
1151 * Free a 0-order page
1152 * cold == 1 ? free a cold page : free a hot page
1154 void free_hot_cold_page(struct page *page, int cold)
1156 struct zone *zone = page_zone(page);
1157 struct per_cpu_pages *pcp;
1158 unsigned long flags;
1159 int migratetype;
1160 int wasMlocked = __TestClearPageMlocked(page);
1162 if (!free_pages_prepare(page, 0))
1163 return;
1165 migratetype = get_pageblock_migratetype(page);
1166 set_page_private(page, migratetype);
1167 local_irq_save(flags);
1168 if (unlikely(wasMlocked))
1169 free_page_mlock(page);
1170 __count_vm_event(PGFREE);
1173 * We only track unmovable, reclaimable and movable on pcp lists.
1174 * Free ISOLATE pages back to the allocator because they are being
1175 * offlined but treat RESERVE as movable pages so we can get those
1176 * areas back if necessary. Otherwise, we may have to free
1177 * excessively into the page allocator
1179 if (migratetype >= MIGRATE_PCPTYPES) {
1180 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1181 free_one_page(zone, page, 0, migratetype);
1182 goto out;
1184 migratetype = MIGRATE_MOVABLE;
1187 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1188 if (cold)
1189 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1190 else
1191 list_add(&page->lru, &pcp->lists[migratetype]);
1192 pcp->count++;
1193 if (pcp->count >= pcp->high) {
1194 free_pcppages_bulk(zone, pcp->batch, pcp);
1195 pcp->count -= pcp->batch;
1198 out:
1199 local_irq_restore(flags);
1203 * split_page takes a non-compound higher-order page, and splits it into
1204 * n (1<<order) sub-pages: page[0..n]
1205 * Each sub-page must be freed individually.
1207 * Note: this is probably too low level an operation for use in drivers.
1208 * Please consult with lkml before using this in your driver.
1210 void split_page(struct page *page, unsigned int order)
1212 int i;
1214 VM_BUG_ON(PageCompound(page));
1215 VM_BUG_ON(!page_count(page));
1217 #ifdef CONFIG_KMEMCHECK
1219 * Split shadow pages too, because free(page[0]) would
1220 * otherwise free the whole shadow.
1222 if (kmemcheck_page_is_tracked(page))
1223 split_page(virt_to_page(page[0].shadow), order);
1224 #endif
1226 for (i = 1; i < (1 << order); i++)
1227 set_page_refcounted(page + i);
1231 * Similar to split_page except the page is already free. As this is only
1232 * being used for migration, the migratetype of the block also changes.
1233 * As this is called with interrupts disabled, the caller is responsible
1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1235 * are enabled.
1237 * Note: this is probably too low level an operation for use in drivers.
1238 * Please consult with lkml before using this in your driver.
1240 int split_free_page(struct page *page)
1242 unsigned int order;
1243 unsigned long watermark;
1244 struct zone *zone;
1246 BUG_ON(!PageBuddy(page));
1248 zone = page_zone(page);
1249 order = page_order(page);
1251 /* Obey watermarks as if the page was being allocated */
1252 watermark = low_wmark_pages(zone) + (1 << order);
1253 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1254 return 0;
1256 /* Remove page from free list */
1257 list_del(&page->lru);
1258 zone->free_area[order].nr_free--;
1259 rmv_page_order(page);
1260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262 /* Split into individual pages */
1263 set_page_refcounted(page);
1264 split_page(page, order);
1266 if (order >= pageblock_order - 1) {
1267 struct page *endpage = page + (1 << order) - 1;
1268 for (; page < endpage; page += pageblock_nr_pages)
1269 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1272 return 1 << order;
1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1278 * or two.
1280 static inline
1281 struct page *buffered_rmqueue(struct zone *preferred_zone,
1282 struct zone *zone, int order, gfp_t gfp_flags,
1283 int migratetype)
1285 unsigned long flags;
1286 struct page *page;
1287 int cold = !!(gfp_flags & __GFP_COLD);
1289 again:
1290 if (likely(order == 0)) {
1291 struct per_cpu_pages *pcp;
1292 struct list_head *list;
1294 local_irq_save(flags);
1295 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1296 list = &pcp->lists[migratetype];
1297 if (list_empty(list)) {
1298 pcp->count += rmqueue_bulk(zone, 0,
1299 pcp->batch, list,
1300 migratetype, cold);
1301 if (unlikely(list_empty(list)))
1302 goto failed;
1305 if (cold)
1306 page = list_entry(list->prev, struct page, lru);
1307 else
1308 page = list_entry(list->next, struct page, lru);
1310 list_del(&page->lru);
1311 pcp->count--;
1312 } else {
1313 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 * __GFP_NOFAIL is not to be used in new code.
1317 * All __GFP_NOFAIL callers should be fixed so that they
1318 * properly detect and handle allocation failures.
1320 * We most definitely don't want callers attempting to
1321 * allocate greater than order-1 page units with
1322 * __GFP_NOFAIL.
1324 WARN_ON_ONCE(order > 1);
1326 spin_lock_irqsave(&zone->lock, flags);
1327 page = __rmqueue(zone, order, migratetype);
1328 spin_unlock(&zone->lock);
1329 if (!page)
1330 goto failed;
1331 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1334 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1335 zone_statistics(preferred_zone, zone);
1336 local_irq_restore(flags);
1338 VM_BUG_ON(bad_range(zone, page));
1339 if (prep_new_page(page, order, gfp_flags))
1340 goto again;
1341 return page;
1343 failed:
1344 local_irq_restore(flags);
1345 return NULL;
1348 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349 #define ALLOC_WMARK_MIN WMARK_MIN
1350 #define ALLOC_WMARK_LOW WMARK_LOW
1351 #define ALLOC_WMARK_HIGH WMARK_HIGH
1352 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1354 /* Mask to get the watermark bits */
1355 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1357 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1358 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1359 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1361 #ifdef CONFIG_FAIL_PAGE_ALLOC
1363 static struct fail_page_alloc_attr {
1364 struct fault_attr attr;
1366 u32 ignore_gfp_highmem;
1367 u32 ignore_gfp_wait;
1368 u32 min_order;
1370 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372 struct dentry *ignore_gfp_highmem_file;
1373 struct dentry *ignore_gfp_wait_file;
1374 struct dentry *min_order_file;
1376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378 } fail_page_alloc = {
1379 .attr = FAULT_ATTR_INITIALIZER,
1380 .ignore_gfp_wait = 1,
1381 .ignore_gfp_highmem = 1,
1382 .min_order = 1,
1385 static int __init setup_fail_page_alloc(char *str)
1387 return setup_fault_attr(&fail_page_alloc.attr, str);
1389 __setup("fail_page_alloc=", setup_fail_page_alloc);
1391 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393 if (order < fail_page_alloc.min_order)
1394 return 0;
1395 if (gfp_mask & __GFP_NOFAIL)
1396 return 0;
1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 return 0;
1402 return should_fail(&fail_page_alloc.attr, 1 << order);
1405 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407 static int __init fail_page_alloc_debugfs(void)
1409 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1410 struct dentry *dir;
1411 int err;
1413 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1414 "fail_page_alloc");
1415 if (err)
1416 return err;
1417 dir = fail_page_alloc.attr.dentries.dir;
1419 fail_page_alloc.ignore_gfp_wait_file =
1420 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1421 &fail_page_alloc.ignore_gfp_wait);
1423 fail_page_alloc.ignore_gfp_highmem_file =
1424 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem);
1426 fail_page_alloc.min_order_file =
1427 debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order);
1430 if (!fail_page_alloc.ignore_gfp_wait_file ||
1431 !fail_page_alloc.ignore_gfp_highmem_file ||
1432 !fail_page_alloc.min_order_file) {
1433 err = -ENOMEM;
1434 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1435 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1436 debugfs_remove(fail_page_alloc.min_order_file);
1437 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1440 return err;
1443 late_initcall(fail_page_alloc_debugfs);
1445 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447 #else /* CONFIG_FAIL_PAGE_ALLOC */
1449 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451 return 0;
1454 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1457 * Return 1 if free pages are above 'mark'. This takes into account the order
1458 * of the allocation.
1460 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1461 int classzone_idx, int alloc_flags)
1463 /* free_pages my go negative - that's OK */
1464 long min = mark;
1465 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1466 int o;
1468 if (alloc_flags & ALLOC_HIGH)
1469 min -= min / 2;
1470 if (alloc_flags & ALLOC_HARDER)
1471 min -= min / 4;
1473 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1474 return 0;
1475 for (o = 0; o < order; o++) {
1476 /* At the next order, this order's pages become unavailable */
1477 free_pages -= z->free_area[o].nr_free << o;
1479 /* Require fewer higher order pages to be free */
1480 min >>= 1;
1482 if (free_pages <= min)
1483 return 0;
1485 return 1;
1488 #ifdef CONFIG_NUMA
1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1491 * skip over zones that are not allowed by the cpuset, or that have
1492 * been recently (in last second) found to be nearly full. See further
1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1494 * that have to skip over a lot of full or unallowed zones.
1496 * If the zonelist cache is present in the passed in zonelist, then
1497 * returns a pointer to the allowed node mask (either the current
1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1500 * If the zonelist cache is not available for this zonelist, does
1501 * nothing and returns NULL.
1503 * If the fullzones BITMAP in the zonelist cache is stale (more than
1504 * a second since last zap'd) then we zap it out (clear its bits.)
1506 * We hold off even calling zlc_setup, until after we've checked the
1507 * first zone in the zonelist, on the theory that most allocations will
1508 * be satisfied from that first zone, so best to examine that zone as
1509 * quickly as we can.
1511 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1514 nodemask_t *allowednodes; /* zonelist_cache approximation */
1516 zlc = zonelist->zlcache_ptr;
1517 if (!zlc)
1518 return NULL;
1520 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1521 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1522 zlc->last_full_zap = jiffies;
1525 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1526 &cpuset_current_mems_allowed :
1527 &node_states[N_HIGH_MEMORY];
1528 return allowednodes;
1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533 * if it is worth looking at further for free memory:
1534 * 1) Check that the zone isn't thought to be full (doesn't have its
1535 * bit set in the zonelist_cache fullzones BITMAP).
1536 * 2) Check that the zones node (obtained from the zonelist_cache
1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538 * Return true (non-zero) if zone is worth looking at further, or
1539 * else return false (zero) if it is not.
1541 * This check -ignores- the distinction between various watermarks,
1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1543 * found to be full for any variation of these watermarks, it will
1544 * be considered full for up to one second by all requests, unless
1545 * we are so low on memory on all allowed nodes that we are forced
1546 * into the second scan of the zonelist.
1548 * In the second scan we ignore this zonelist cache and exactly
1549 * apply the watermarks to all zones, even it is slower to do so.
1550 * We are low on memory in the second scan, and should leave no stone
1551 * unturned looking for a free page.
1553 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1554 nodemask_t *allowednodes)
1556 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1557 int i; /* index of *z in zonelist zones */
1558 int n; /* node that zone *z is on */
1560 zlc = zonelist->zlcache_ptr;
1561 if (!zlc)
1562 return 1;
1564 i = z - zonelist->_zonerefs;
1565 n = zlc->z_to_n[i];
1567 /* This zone is worth trying if it is allowed but not full */
1568 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1572 * Given 'z' scanning a zonelist, set the corresponding bit in
1573 * zlc->fullzones, so that subsequent attempts to allocate a page
1574 * from that zone don't waste time re-examining it.
1576 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1579 int i; /* index of *z in zonelist zones */
1581 zlc = zonelist->zlcache_ptr;
1582 if (!zlc)
1583 return;
1585 i = z - zonelist->_zonerefs;
1587 set_bit(i, zlc->fullzones);
1590 #else /* CONFIG_NUMA */
1592 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1594 return NULL;
1597 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1598 nodemask_t *allowednodes)
1600 return 1;
1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1606 #endif /* CONFIG_NUMA */
1609 * get_page_from_freelist goes through the zonelist trying to allocate
1610 * a page.
1612 static struct page *
1613 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1614 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1615 struct zone *preferred_zone, int migratetype)
1617 struct zoneref *z;
1618 struct page *page = NULL;
1619 int classzone_idx;
1620 struct zone *zone;
1621 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1622 int zlc_active = 0; /* set if using zonelist_cache */
1623 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1625 classzone_idx = zone_idx(preferred_zone);
1626 zonelist_scan:
1628 * Scan zonelist, looking for a zone with enough free.
1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1631 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1632 high_zoneidx, nodemask) {
1633 if (NUMA_BUILD && zlc_active &&
1634 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1635 continue;
1636 if ((alloc_flags & ALLOC_CPUSET) &&
1637 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1638 goto try_next_zone;
1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1641 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1642 unsigned long mark;
1643 int ret;
1645 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1646 if (zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
1648 goto try_this_zone;
1650 if (zone_reclaim_mode == 0)
1651 goto this_zone_full;
1653 ret = zone_reclaim(zone, gfp_mask, order);
1654 switch (ret) {
1655 case ZONE_RECLAIM_NOSCAN:
1656 /* did not scan */
1657 goto try_next_zone;
1658 case ZONE_RECLAIM_FULL:
1659 /* scanned but unreclaimable */
1660 goto this_zone_full;
1661 default:
1662 /* did we reclaim enough */
1663 if (!zone_watermark_ok(zone, order, mark,
1664 classzone_idx, alloc_flags))
1665 goto this_zone_full;
1669 try_this_zone:
1670 page = buffered_rmqueue(preferred_zone, zone, order,
1671 gfp_mask, migratetype);
1672 if (page)
1673 break;
1674 this_zone_full:
1675 if (NUMA_BUILD)
1676 zlc_mark_zone_full(zonelist, z);
1677 try_next_zone:
1678 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1680 * we do zlc_setup after the first zone is tried but only
1681 * if there are multiple nodes make it worthwhile
1683 allowednodes = zlc_setup(zonelist, alloc_flags);
1684 zlc_active = 1;
1685 did_zlc_setup = 1;
1689 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1690 /* Disable zlc cache for second zonelist scan */
1691 zlc_active = 0;
1692 goto zonelist_scan;
1694 return page;
1697 static inline int
1698 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1699 unsigned long pages_reclaimed)
1701 /* Do not loop if specifically requested */
1702 if (gfp_mask & __GFP_NORETRY)
1703 return 0;
1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 * means __GFP_NOFAIL, but that may not be true in other
1708 * implementations.
1710 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1711 return 1;
1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 * specified, then we retry until we no longer reclaim any pages
1716 * (above), or we've reclaimed an order of pages at least as
1717 * large as the allocation's order. In both cases, if the
1718 * allocation still fails, we stop retrying.
1720 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1721 return 1;
1724 * Don't let big-order allocations loop unless the caller
1725 * explicitly requests that.
1727 if (gfp_mask & __GFP_NOFAIL)
1728 return 1;
1730 return 0;
1733 static inline struct page *
1734 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1735 struct zonelist *zonelist, enum zone_type high_zoneidx,
1736 nodemask_t *nodemask, struct zone *preferred_zone,
1737 int migratetype)
1739 struct page *page;
1741 /* Acquire the OOM killer lock for the zones in zonelist */
1742 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1743 schedule_timeout_uninterruptible(1);
1744 return NULL;
1748 * Go through the zonelist yet one more time, keep very high watermark
1749 * here, this is only to catch a parallel oom killing, we must fail if
1750 * we're still under heavy pressure.
1752 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1753 order, zonelist, high_zoneidx,
1754 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1755 preferred_zone, migratetype);
1756 if (page)
1757 goto out;
1759 if (!(gfp_mask & __GFP_NOFAIL)) {
1760 /* The OOM killer will not help higher order allocs */
1761 if (order > PAGE_ALLOC_COSTLY_ORDER)
1762 goto out;
1764 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1765 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1766 * The caller should handle page allocation failure by itself if
1767 * it specifies __GFP_THISNODE.
1768 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1770 if (gfp_mask & __GFP_THISNODE)
1771 goto out;
1773 /* Exhausted what can be done so it's blamo time */
1774 out_of_memory(zonelist, gfp_mask, order, nodemask);
1776 out:
1777 clear_zonelist_oom(zonelist, gfp_mask);
1778 return page;
1781 #ifdef CONFIG_COMPACTION
1782 /* Try memory compaction for high-order allocations before reclaim */
1783 static struct page *
1784 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1785 struct zonelist *zonelist, enum zone_type high_zoneidx,
1786 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1787 int migratetype, unsigned long *did_some_progress)
1789 struct page *page;
1791 if (!order || compaction_deferred(preferred_zone))
1792 return NULL;
1794 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1795 nodemask);
1796 if (*did_some_progress != COMPACT_SKIPPED) {
1798 /* Page migration frees to the PCP lists but we want merging */
1799 drain_pages(get_cpu());
1800 put_cpu();
1802 page = get_page_from_freelist(gfp_mask, nodemask,
1803 order, zonelist, high_zoneidx,
1804 alloc_flags, preferred_zone,
1805 migratetype);
1806 if (page) {
1807 preferred_zone->compact_considered = 0;
1808 preferred_zone->compact_defer_shift = 0;
1809 count_vm_event(COMPACTSUCCESS);
1810 return page;
1814 * It's bad if compaction run occurs and fails.
1815 * The most likely reason is that pages exist,
1816 * but not enough to satisfy watermarks.
1818 count_vm_event(COMPACTFAIL);
1819 defer_compaction(preferred_zone);
1821 cond_resched();
1824 return NULL;
1826 #else
1827 static inline struct page *
1828 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1829 struct zonelist *zonelist, enum zone_type high_zoneidx,
1830 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1831 int migratetype, unsigned long *did_some_progress)
1833 return NULL;
1835 #endif /* CONFIG_COMPACTION */
1837 /* The really slow allocator path where we enter direct reclaim */
1838 static inline struct page *
1839 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1840 struct zonelist *zonelist, enum zone_type high_zoneidx,
1841 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1842 int migratetype, unsigned long *did_some_progress)
1844 struct page *page = NULL;
1845 struct reclaim_state reclaim_state;
1846 struct task_struct *p = current;
1847 bool drained = false;
1849 cond_resched();
1851 /* We now go into synchronous reclaim */
1852 cpuset_memory_pressure_bump();
1853 p->flags |= PF_MEMALLOC;
1854 lockdep_set_current_reclaim_state(gfp_mask);
1855 reclaim_state.reclaimed_slab = 0;
1856 p->reclaim_state = &reclaim_state;
1858 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1860 p->reclaim_state = NULL;
1861 lockdep_clear_current_reclaim_state();
1862 p->flags &= ~PF_MEMALLOC;
1864 cond_resched();
1866 if (unlikely(!(*did_some_progress)))
1867 return NULL;
1869 retry:
1870 page = get_page_from_freelist(gfp_mask, nodemask, order,
1871 zonelist, high_zoneidx,
1872 alloc_flags, preferred_zone,
1873 migratetype);
1876 * If an allocation failed after direct reclaim, it could be because
1877 * pages are pinned on the per-cpu lists. Drain them and try again
1879 if (!page && !drained) {
1880 drain_all_pages();
1881 drained = true;
1882 goto retry;
1885 return page;
1889 * This is called in the allocator slow-path if the allocation request is of
1890 * sufficient urgency to ignore watermarks and take other desperate measures
1892 static inline struct page *
1893 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1894 struct zonelist *zonelist, enum zone_type high_zoneidx,
1895 nodemask_t *nodemask, struct zone *preferred_zone,
1896 int migratetype)
1898 struct page *page;
1900 do {
1901 page = get_page_from_freelist(gfp_mask, nodemask, order,
1902 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1903 preferred_zone, migratetype);
1905 if (!page && gfp_mask & __GFP_NOFAIL)
1906 congestion_wait(BLK_RW_ASYNC, HZ/50);
1907 } while (!page && (gfp_mask & __GFP_NOFAIL));
1909 return page;
1912 static inline
1913 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1914 enum zone_type high_zoneidx)
1916 struct zoneref *z;
1917 struct zone *zone;
1919 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1920 wakeup_kswapd(zone, order);
1923 static inline int
1924 gfp_to_alloc_flags(gfp_t gfp_mask)
1926 struct task_struct *p = current;
1927 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1928 const gfp_t wait = gfp_mask & __GFP_WAIT;
1930 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1931 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1934 * The caller may dip into page reserves a bit more if the caller
1935 * cannot run direct reclaim, or if the caller has realtime scheduling
1936 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1937 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1939 alloc_flags |= (gfp_mask & __GFP_HIGH);
1941 if (!wait) {
1942 alloc_flags |= ALLOC_HARDER;
1944 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1945 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1947 alloc_flags &= ~ALLOC_CPUSET;
1948 } else if (unlikely(rt_task(p)) && !in_interrupt())
1949 alloc_flags |= ALLOC_HARDER;
1951 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1952 if (!in_interrupt() &&
1953 ((p->flags & PF_MEMALLOC) ||
1954 unlikely(test_thread_flag(TIF_MEMDIE))))
1955 alloc_flags |= ALLOC_NO_WATERMARKS;
1958 return alloc_flags;
1961 static inline struct page *
1962 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1963 struct zonelist *zonelist, enum zone_type high_zoneidx,
1964 nodemask_t *nodemask, struct zone *preferred_zone,
1965 int migratetype)
1967 const gfp_t wait = gfp_mask & __GFP_WAIT;
1968 struct page *page = NULL;
1969 int alloc_flags;
1970 unsigned long pages_reclaimed = 0;
1971 unsigned long did_some_progress;
1972 struct task_struct *p = current;
1975 * In the slowpath, we sanity check order to avoid ever trying to
1976 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1977 * be using allocators in order of preference for an area that is
1978 * too large.
1980 if (order >= MAX_ORDER) {
1981 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1982 return NULL;
1986 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1987 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1988 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1989 * using a larger set of nodes after it has established that the
1990 * allowed per node queues are empty and that nodes are
1991 * over allocated.
1993 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1994 goto nopage;
1996 restart:
1997 wake_all_kswapd(order, zonelist, high_zoneidx);
2000 * OK, we're below the kswapd watermark and have kicked background
2001 * reclaim. Now things get more complex, so set up alloc_flags according
2002 * to how we want to proceed.
2004 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2006 /* This is the last chance, in general, before the goto nopage. */
2007 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2008 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2009 preferred_zone, migratetype);
2010 if (page)
2011 goto got_pg;
2013 rebalance:
2014 /* Allocate without watermarks if the context allows */
2015 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2016 page = __alloc_pages_high_priority(gfp_mask, order,
2017 zonelist, high_zoneidx, nodemask,
2018 preferred_zone, migratetype);
2019 if (page)
2020 goto got_pg;
2023 /* Atomic allocations - we can't balance anything */
2024 if (!wait)
2025 goto nopage;
2027 /* Avoid recursion of direct reclaim */
2028 if (p->flags & PF_MEMALLOC)
2029 goto nopage;
2031 /* Avoid allocations with no watermarks from looping endlessly */
2032 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2033 goto nopage;
2035 /* Try direct compaction */
2036 page = __alloc_pages_direct_compact(gfp_mask, order,
2037 zonelist, high_zoneidx,
2038 nodemask,
2039 alloc_flags, preferred_zone,
2040 migratetype, &did_some_progress);
2041 if (page)
2042 goto got_pg;
2044 /* Try direct reclaim and then allocating */
2045 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2046 zonelist, high_zoneidx,
2047 nodemask,
2048 alloc_flags, preferred_zone,
2049 migratetype, &did_some_progress);
2050 if (page)
2051 goto got_pg;
2054 * If we failed to make any progress reclaiming, then we are
2055 * running out of options and have to consider going OOM
2057 if (!did_some_progress) {
2058 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2059 if (oom_killer_disabled)
2060 goto nopage;
2061 page = __alloc_pages_may_oom(gfp_mask, order,
2062 zonelist, high_zoneidx,
2063 nodemask, preferred_zone,
2064 migratetype);
2065 if (page)
2066 goto got_pg;
2069 * The OOM killer does not trigger for high-order
2070 * ~__GFP_NOFAIL allocations so if no progress is being
2071 * made, there are no other options and retrying is
2072 * unlikely to help.
2074 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2075 !(gfp_mask & __GFP_NOFAIL))
2076 goto nopage;
2078 goto restart;
2082 /* Check if we should retry the allocation */
2083 pages_reclaimed += did_some_progress;
2084 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2085 /* Wait for some write requests to complete then retry */
2086 congestion_wait(BLK_RW_ASYNC, HZ/50);
2087 goto rebalance;
2090 nopage:
2091 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2092 printk(KERN_WARNING "%s: page allocation failure."
2093 " order:%d, mode:0x%x\n",
2094 p->comm, order, gfp_mask);
2095 dump_stack();
2096 show_mem();
2098 return page;
2099 got_pg:
2100 if (kmemcheck_enabled)
2101 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2102 return page;
2107 * This is the 'heart' of the zoned buddy allocator.
2109 struct page *
2110 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2111 struct zonelist *zonelist, nodemask_t *nodemask)
2113 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2114 struct zone *preferred_zone;
2115 struct page *page;
2116 int migratetype = allocflags_to_migratetype(gfp_mask);
2118 gfp_mask &= gfp_allowed_mask;
2120 lockdep_trace_alloc(gfp_mask);
2122 might_sleep_if(gfp_mask & __GFP_WAIT);
2124 if (should_fail_alloc_page(gfp_mask, order))
2125 return NULL;
2128 * Check the zones suitable for the gfp_mask contain at least one
2129 * valid zone. It's possible to have an empty zonelist as a result
2130 * of GFP_THISNODE and a memoryless node
2132 if (unlikely(!zonelist->_zonerefs->zone))
2133 return NULL;
2135 get_mems_allowed();
2136 /* The preferred zone is used for statistics later */
2137 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2138 if (!preferred_zone) {
2139 put_mems_allowed();
2140 return NULL;
2143 /* First allocation attempt */
2144 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2145 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2146 preferred_zone, migratetype);
2147 if (unlikely(!page))
2148 page = __alloc_pages_slowpath(gfp_mask, order,
2149 zonelist, high_zoneidx, nodemask,
2150 preferred_zone, migratetype);
2151 put_mems_allowed();
2153 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2154 return page;
2156 EXPORT_SYMBOL(__alloc_pages_nodemask);
2159 * Common helper functions.
2161 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2163 struct page *page;
2166 * __get_free_pages() returns a 32-bit address, which cannot represent
2167 * a highmem page
2169 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2171 page = alloc_pages(gfp_mask, order);
2172 if (!page)
2173 return 0;
2174 return (unsigned long) page_address(page);
2176 EXPORT_SYMBOL(__get_free_pages);
2178 unsigned long get_zeroed_page(gfp_t gfp_mask)
2180 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2182 EXPORT_SYMBOL(get_zeroed_page);
2184 void __pagevec_free(struct pagevec *pvec)
2186 int i = pagevec_count(pvec);
2188 while (--i >= 0) {
2189 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2190 free_hot_cold_page(pvec->pages[i], pvec->cold);
2194 void __free_pages(struct page *page, unsigned int order)
2196 if (put_page_testzero(page)) {
2197 if (order == 0)
2198 free_hot_cold_page(page, 0);
2199 else
2200 __free_pages_ok(page, order);
2204 EXPORT_SYMBOL(__free_pages);
2206 void free_pages(unsigned long addr, unsigned int order)
2208 if (addr != 0) {
2209 VM_BUG_ON(!virt_addr_valid((void *)addr));
2210 __free_pages(virt_to_page((void *)addr), order);
2214 EXPORT_SYMBOL(free_pages);
2217 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2218 * @size: the number of bytes to allocate
2219 * @gfp_mask: GFP flags for the allocation
2221 * This function is similar to alloc_pages(), except that it allocates the
2222 * minimum number of pages to satisfy the request. alloc_pages() can only
2223 * allocate memory in power-of-two pages.
2225 * This function is also limited by MAX_ORDER.
2227 * Memory allocated by this function must be released by free_pages_exact().
2229 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2231 unsigned int order = get_order(size);
2232 unsigned long addr;
2234 addr = __get_free_pages(gfp_mask, order);
2235 if (addr) {
2236 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2237 unsigned long used = addr + PAGE_ALIGN(size);
2239 split_page(virt_to_page((void *)addr), order);
2240 while (used < alloc_end) {
2241 free_page(used);
2242 used += PAGE_SIZE;
2246 return (void *)addr;
2248 EXPORT_SYMBOL(alloc_pages_exact);
2251 * free_pages_exact - release memory allocated via alloc_pages_exact()
2252 * @virt: the value returned by alloc_pages_exact.
2253 * @size: size of allocation, same value as passed to alloc_pages_exact().
2255 * Release the memory allocated by a previous call to alloc_pages_exact.
2257 void free_pages_exact(void *virt, size_t size)
2259 unsigned long addr = (unsigned long)virt;
2260 unsigned long end = addr + PAGE_ALIGN(size);
2262 while (addr < end) {
2263 free_page(addr);
2264 addr += PAGE_SIZE;
2267 EXPORT_SYMBOL(free_pages_exact);
2269 static unsigned int nr_free_zone_pages(int offset)
2271 struct zoneref *z;
2272 struct zone *zone;
2274 /* Just pick one node, since fallback list is circular */
2275 unsigned int sum = 0;
2277 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2279 for_each_zone_zonelist(zone, z, zonelist, offset) {
2280 unsigned long size = zone->present_pages;
2281 unsigned long high = high_wmark_pages(zone);
2282 if (size > high)
2283 sum += size - high;
2286 return sum;
2290 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2292 unsigned int nr_free_buffer_pages(void)
2294 return nr_free_zone_pages(gfp_zone(GFP_USER));
2296 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2299 * Amount of free RAM allocatable within all zones
2301 unsigned int nr_free_pagecache_pages(void)
2303 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2306 static inline void show_node(struct zone *zone)
2308 if (NUMA_BUILD)
2309 printk("Node %d ", zone_to_nid(zone));
2312 void si_meminfo(struct sysinfo *val)
2314 val->totalram = totalram_pages;
2315 val->sharedram = 0;
2316 val->freeram = global_page_state(NR_FREE_PAGES);
2317 val->bufferram = nr_blockdev_pages();
2318 val->totalhigh = totalhigh_pages;
2319 val->freehigh = nr_free_highpages();
2320 val->mem_unit = PAGE_SIZE;
2323 EXPORT_SYMBOL(si_meminfo);
2325 #ifdef CONFIG_NUMA
2326 void si_meminfo_node(struct sysinfo *val, int nid)
2328 pg_data_t *pgdat = NODE_DATA(nid);
2330 val->totalram = pgdat->node_present_pages;
2331 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2332 #ifdef CONFIG_HIGHMEM
2333 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2334 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2335 NR_FREE_PAGES);
2336 #else
2337 val->totalhigh = 0;
2338 val->freehigh = 0;
2339 #endif
2340 val->mem_unit = PAGE_SIZE;
2342 #endif
2344 #define K(x) ((x) << (PAGE_SHIFT-10))
2347 * Show free area list (used inside shift_scroll-lock stuff)
2348 * We also calculate the percentage fragmentation. We do this by counting the
2349 * memory on each free list with the exception of the first item on the list.
2351 void show_free_areas(void)
2353 int cpu;
2354 struct zone *zone;
2356 for_each_populated_zone(zone) {
2357 show_node(zone);
2358 printk("%s per-cpu:\n", zone->name);
2360 for_each_online_cpu(cpu) {
2361 struct per_cpu_pageset *pageset;
2363 pageset = per_cpu_ptr(zone->pageset, cpu);
2365 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2366 cpu, pageset->pcp.high,
2367 pageset->pcp.batch, pageset->pcp.count);
2371 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2372 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2373 " unevictable:%lu"
2374 " dirty:%lu writeback:%lu unstable:%lu\n"
2375 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2376 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2377 global_page_state(NR_ACTIVE_ANON),
2378 global_page_state(NR_INACTIVE_ANON),
2379 global_page_state(NR_ISOLATED_ANON),
2380 global_page_state(NR_ACTIVE_FILE),
2381 global_page_state(NR_INACTIVE_FILE),
2382 global_page_state(NR_ISOLATED_FILE),
2383 global_page_state(NR_UNEVICTABLE),
2384 global_page_state(NR_FILE_DIRTY),
2385 global_page_state(NR_WRITEBACK),
2386 global_page_state(NR_UNSTABLE_NFS),
2387 global_page_state(NR_FREE_PAGES),
2388 global_page_state(NR_SLAB_RECLAIMABLE),
2389 global_page_state(NR_SLAB_UNRECLAIMABLE),
2390 global_page_state(NR_FILE_MAPPED),
2391 global_page_state(NR_SHMEM),
2392 global_page_state(NR_PAGETABLE),
2393 global_page_state(NR_BOUNCE));
2395 for_each_populated_zone(zone) {
2396 int i;
2398 show_node(zone);
2399 printk("%s"
2400 " free:%lukB"
2401 " min:%lukB"
2402 " low:%lukB"
2403 " high:%lukB"
2404 " active_anon:%lukB"
2405 " inactive_anon:%lukB"
2406 " active_file:%lukB"
2407 " inactive_file:%lukB"
2408 " unevictable:%lukB"
2409 " isolated(anon):%lukB"
2410 " isolated(file):%lukB"
2411 " present:%lukB"
2412 " mlocked:%lukB"
2413 " dirty:%lukB"
2414 " writeback:%lukB"
2415 " mapped:%lukB"
2416 " shmem:%lukB"
2417 " slab_reclaimable:%lukB"
2418 " slab_unreclaimable:%lukB"
2419 " kernel_stack:%lukB"
2420 " pagetables:%lukB"
2421 " unstable:%lukB"
2422 " bounce:%lukB"
2423 " writeback_tmp:%lukB"
2424 " pages_scanned:%lu"
2425 " all_unreclaimable? %s"
2426 "\n",
2427 zone->name,
2428 K(zone_nr_free_pages(zone)),
2429 K(min_wmark_pages(zone)),
2430 K(low_wmark_pages(zone)),
2431 K(high_wmark_pages(zone)),
2432 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2433 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2434 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2435 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2436 K(zone_page_state(zone, NR_UNEVICTABLE)),
2437 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2438 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2439 K(zone->present_pages),
2440 K(zone_page_state(zone, NR_MLOCK)),
2441 K(zone_page_state(zone, NR_FILE_DIRTY)),
2442 K(zone_page_state(zone, NR_WRITEBACK)),
2443 K(zone_page_state(zone, NR_FILE_MAPPED)),
2444 K(zone_page_state(zone, NR_SHMEM)),
2445 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2446 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2447 zone_page_state(zone, NR_KERNEL_STACK) *
2448 THREAD_SIZE / 1024,
2449 K(zone_page_state(zone, NR_PAGETABLE)),
2450 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2451 K(zone_page_state(zone, NR_BOUNCE)),
2452 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2453 zone->pages_scanned,
2454 (zone->all_unreclaimable ? "yes" : "no")
2456 printk("lowmem_reserve[]:");
2457 for (i = 0; i < MAX_NR_ZONES; i++)
2458 printk(" %lu", zone->lowmem_reserve[i]);
2459 printk("\n");
2462 for_each_populated_zone(zone) {
2463 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2465 show_node(zone);
2466 printk("%s: ", zone->name);
2468 spin_lock_irqsave(&zone->lock, flags);
2469 for (order = 0; order < MAX_ORDER; order++) {
2470 nr[order] = zone->free_area[order].nr_free;
2471 total += nr[order] << order;
2473 spin_unlock_irqrestore(&zone->lock, flags);
2474 for (order = 0; order < MAX_ORDER; order++)
2475 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2476 printk("= %lukB\n", K(total));
2479 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2481 show_swap_cache_info();
2484 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2486 zoneref->zone = zone;
2487 zoneref->zone_idx = zone_idx(zone);
2491 * Builds allocation fallback zone lists.
2493 * Add all populated zones of a node to the zonelist.
2495 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2496 int nr_zones, enum zone_type zone_type)
2498 struct zone *zone;
2500 BUG_ON(zone_type >= MAX_NR_ZONES);
2501 zone_type++;
2503 do {
2504 zone_type--;
2505 zone = pgdat->node_zones + zone_type;
2506 if (populated_zone(zone)) {
2507 zoneref_set_zone(zone,
2508 &zonelist->_zonerefs[nr_zones++]);
2509 check_highest_zone(zone_type);
2512 } while (zone_type);
2513 return nr_zones;
2518 * zonelist_order:
2519 * 0 = automatic detection of better ordering.
2520 * 1 = order by ([node] distance, -zonetype)
2521 * 2 = order by (-zonetype, [node] distance)
2523 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2524 * the same zonelist. So only NUMA can configure this param.
2526 #define ZONELIST_ORDER_DEFAULT 0
2527 #define ZONELIST_ORDER_NODE 1
2528 #define ZONELIST_ORDER_ZONE 2
2530 /* zonelist order in the kernel.
2531 * set_zonelist_order() will set this to NODE or ZONE.
2533 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2534 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2537 #ifdef CONFIG_NUMA
2538 /* The value user specified ....changed by config */
2539 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2540 /* string for sysctl */
2541 #define NUMA_ZONELIST_ORDER_LEN 16
2542 char numa_zonelist_order[16] = "default";
2545 * interface for configure zonelist ordering.
2546 * command line option "numa_zonelist_order"
2547 * = "[dD]efault - default, automatic configuration.
2548 * = "[nN]ode - order by node locality, then by zone within node
2549 * = "[zZ]one - order by zone, then by locality within zone
2552 static int __parse_numa_zonelist_order(char *s)
2554 if (*s == 'd' || *s == 'D') {
2555 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2556 } else if (*s == 'n' || *s == 'N') {
2557 user_zonelist_order = ZONELIST_ORDER_NODE;
2558 } else if (*s == 'z' || *s == 'Z') {
2559 user_zonelist_order = ZONELIST_ORDER_ZONE;
2560 } else {
2561 printk(KERN_WARNING
2562 "Ignoring invalid numa_zonelist_order value: "
2563 "%s\n", s);
2564 return -EINVAL;
2566 return 0;
2569 static __init int setup_numa_zonelist_order(char *s)
2571 if (s)
2572 return __parse_numa_zonelist_order(s);
2573 return 0;
2575 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2578 * sysctl handler for numa_zonelist_order
2580 int numa_zonelist_order_handler(ctl_table *table, int write,
2581 void __user *buffer, size_t *length,
2582 loff_t *ppos)
2584 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2585 int ret;
2586 static DEFINE_MUTEX(zl_order_mutex);
2588 mutex_lock(&zl_order_mutex);
2589 if (write)
2590 strcpy(saved_string, (char*)table->data);
2591 ret = proc_dostring(table, write, buffer, length, ppos);
2592 if (ret)
2593 goto out;
2594 if (write) {
2595 int oldval = user_zonelist_order;
2596 if (__parse_numa_zonelist_order((char*)table->data)) {
2598 * bogus value. restore saved string
2600 strncpy((char*)table->data, saved_string,
2601 NUMA_ZONELIST_ORDER_LEN);
2602 user_zonelist_order = oldval;
2603 } else if (oldval != user_zonelist_order) {
2604 mutex_lock(&zonelists_mutex);
2605 build_all_zonelists(NULL);
2606 mutex_unlock(&zonelists_mutex);
2609 out:
2610 mutex_unlock(&zl_order_mutex);
2611 return ret;
2615 #define MAX_NODE_LOAD (nr_online_nodes)
2616 static int node_load[MAX_NUMNODES];
2619 * find_next_best_node - find the next node that should appear in a given node's fallback list
2620 * @node: node whose fallback list we're appending
2621 * @used_node_mask: nodemask_t of already used nodes
2623 * We use a number of factors to determine which is the next node that should
2624 * appear on a given node's fallback list. The node should not have appeared
2625 * already in @node's fallback list, and it should be the next closest node
2626 * according to the distance array (which contains arbitrary distance values
2627 * from each node to each node in the system), and should also prefer nodes
2628 * with no CPUs, since presumably they'll have very little allocation pressure
2629 * on them otherwise.
2630 * It returns -1 if no node is found.
2632 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2634 int n, val;
2635 int min_val = INT_MAX;
2636 int best_node = -1;
2637 const struct cpumask *tmp = cpumask_of_node(0);
2639 /* Use the local node if we haven't already */
2640 if (!node_isset(node, *used_node_mask)) {
2641 node_set(node, *used_node_mask);
2642 return node;
2645 for_each_node_state(n, N_HIGH_MEMORY) {
2647 /* Don't want a node to appear more than once */
2648 if (node_isset(n, *used_node_mask))
2649 continue;
2651 /* Use the distance array to find the distance */
2652 val = node_distance(node, n);
2654 /* Penalize nodes under us ("prefer the next node") */
2655 val += (n < node);
2657 /* Give preference to headless and unused nodes */
2658 tmp = cpumask_of_node(n);
2659 if (!cpumask_empty(tmp))
2660 val += PENALTY_FOR_NODE_WITH_CPUS;
2662 /* Slight preference for less loaded node */
2663 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2664 val += node_load[n];
2666 if (val < min_val) {
2667 min_val = val;
2668 best_node = n;
2672 if (best_node >= 0)
2673 node_set(best_node, *used_node_mask);
2675 return best_node;
2680 * Build zonelists ordered by node and zones within node.
2681 * This results in maximum locality--normal zone overflows into local
2682 * DMA zone, if any--but risks exhausting DMA zone.
2684 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2686 int j;
2687 struct zonelist *zonelist;
2689 zonelist = &pgdat->node_zonelists[0];
2690 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2692 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2693 MAX_NR_ZONES - 1);
2694 zonelist->_zonerefs[j].zone = NULL;
2695 zonelist->_zonerefs[j].zone_idx = 0;
2699 * Build gfp_thisnode zonelists
2701 static void build_thisnode_zonelists(pg_data_t *pgdat)
2703 int j;
2704 struct zonelist *zonelist;
2706 zonelist = &pgdat->node_zonelists[1];
2707 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2708 zonelist->_zonerefs[j].zone = NULL;
2709 zonelist->_zonerefs[j].zone_idx = 0;
2713 * Build zonelists ordered by zone and nodes within zones.
2714 * This results in conserving DMA zone[s] until all Normal memory is
2715 * exhausted, but results in overflowing to remote node while memory
2716 * may still exist in local DMA zone.
2718 static int node_order[MAX_NUMNODES];
2720 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2722 int pos, j, node;
2723 int zone_type; /* needs to be signed */
2724 struct zone *z;
2725 struct zonelist *zonelist;
2727 zonelist = &pgdat->node_zonelists[0];
2728 pos = 0;
2729 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2730 for (j = 0; j < nr_nodes; j++) {
2731 node = node_order[j];
2732 z = &NODE_DATA(node)->node_zones[zone_type];
2733 if (populated_zone(z)) {
2734 zoneref_set_zone(z,
2735 &zonelist->_zonerefs[pos++]);
2736 check_highest_zone(zone_type);
2740 zonelist->_zonerefs[pos].zone = NULL;
2741 zonelist->_zonerefs[pos].zone_idx = 0;
2744 static int default_zonelist_order(void)
2746 int nid, zone_type;
2747 unsigned long low_kmem_size,total_size;
2748 struct zone *z;
2749 int average_size;
2751 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2752 * If they are really small and used heavily, the system can fall
2753 * into OOM very easily.
2754 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2756 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2757 low_kmem_size = 0;
2758 total_size = 0;
2759 for_each_online_node(nid) {
2760 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2761 z = &NODE_DATA(nid)->node_zones[zone_type];
2762 if (populated_zone(z)) {
2763 if (zone_type < ZONE_NORMAL)
2764 low_kmem_size += z->present_pages;
2765 total_size += z->present_pages;
2766 } else if (zone_type == ZONE_NORMAL) {
2768 * If any node has only lowmem, then node order
2769 * is preferred to allow kernel allocations
2770 * locally; otherwise, they can easily infringe
2771 * on other nodes when there is an abundance of
2772 * lowmem available to allocate from.
2774 return ZONELIST_ORDER_NODE;
2778 if (!low_kmem_size || /* there are no DMA area. */
2779 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2780 return ZONELIST_ORDER_NODE;
2782 * look into each node's config.
2783 * If there is a node whose DMA/DMA32 memory is very big area on
2784 * local memory, NODE_ORDER may be suitable.
2786 average_size = total_size /
2787 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2788 for_each_online_node(nid) {
2789 low_kmem_size = 0;
2790 total_size = 0;
2791 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2792 z = &NODE_DATA(nid)->node_zones[zone_type];
2793 if (populated_zone(z)) {
2794 if (zone_type < ZONE_NORMAL)
2795 low_kmem_size += z->present_pages;
2796 total_size += z->present_pages;
2799 if (low_kmem_size &&
2800 total_size > average_size && /* ignore small node */
2801 low_kmem_size > total_size * 70/100)
2802 return ZONELIST_ORDER_NODE;
2804 return ZONELIST_ORDER_ZONE;
2807 static void set_zonelist_order(void)
2809 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2810 current_zonelist_order = default_zonelist_order();
2811 else
2812 current_zonelist_order = user_zonelist_order;
2815 static void build_zonelists(pg_data_t *pgdat)
2817 int j, node, load;
2818 enum zone_type i;
2819 nodemask_t used_mask;
2820 int local_node, prev_node;
2821 struct zonelist *zonelist;
2822 int order = current_zonelist_order;
2824 /* initialize zonelists */
2825 for (i = 0; i < MAX_ZONELISTS; i++) {
2826 zonelist = pgdat->node_zonelists + i;
2827 zonelist->_zonerefs[0].zone = NULL;
2828 zonelist->_zonerefs[0].zone_idx = 0;
2831 /* NUMA-aware ordering of nodes */
2832 local_node = pgdat->node_id;
2833 load = nr_online_nodes;
2834 prev_node = local_node;
2835 nodes_clear(used_mask);
2837 memset(node_order, 0, sizeof(node_order));
2838 j = 0;
2840 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2841 int distance = node_distance(local_node, node);
2844 * If another node is sufficiently far away then it is better
2845 * to reclaim pages in a zone before going off node.
2847 if (distance > RECLAIM_DISTANCE)
2848 zone_reclaim_mode = 1;
2851 * We don't want to pressure a particular node.
2852 * So adding penalty to the first node in same
2853 * distance group to make it round-robin.
2855 if (distance != node_distance(local_node, prev_node))
2856 node_load[node] = load;
2858 prev_node = node;
2859 load--;
2860 if (order == ZONELIST_ORDER_NODE)
2861 build_zonelists_in_node_order(pgdat, node);
2862 else
2863 node_order[j++] = node; /* remember order */
2866 if (order == ZONELIST_ORDER_ZONE) {
2867 /* calculate node order -- i.e., DMA last! */
2868 build_zonelists_in_zone_order(pgdat, j);
2871 build_thisnode_zonelists(pgdat);
2874 /* Construct the zonelist performance cache - see further mmzone.h */
2875 static void build_zonelist_cache(pg_data_t *pgdat)
2877 struct zonelist *zonelist;
2878 struct zonelist_cache *zlc;
2879 struct zoneref *z;
2881 zonelist = &pgdat->node_zonelists[0];
2882 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2883 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2884 for (z = zonelist->_zonerefs; z->zone; z++)
2885 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2888 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2890 * Return node id of node used for "local" allocations.
2891 * I.e., first node id of first zone in arg node's generic zonelist.
2892 * Used for initializing percpu 'numa_mem', which is used primarily
2893 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2895 int local_memory_node(int node)
2897 struct zone *zone;
2899 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2900 gfp_zone(GFP_KERNEL),
2901 NULL,
2902 &zone);
2903 return zone->node;
2905 #endif
2907 #else /* CONFIG_NUMA */
2909 static void set_zonelist_order(void)
2911 current_zonelist_order = ZONELIST_ORDER_ZONE;
2914 static void build_zonelists(pg_data_t *pgdat)
2916 int node, local_node;
2917 enum zone_type j;
2918 struct zonelist *zonelist;
2920 local_node = pgdat->node_id;
2922 zonelist = &pgdat->node_zonelists[0];
2923 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2926 * Now we build the zonelist so that it contains the zones
2927 * of all the other nodes.
2928 * We don't want to pressure a particular node, so when
2929 * building the zones for node N, we make sure that the
2930 * zones coming right after the local ones are those from
2931 * node N+1 (modulo N)
2933 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2934 if (!node_online(node))
2935 continue;
2936 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2937 MAX_NR_ZONES - 1);
2939 for (node = 0; node < local_node; node++) {
2940 if (!node_online(node))
2941 continue;
2942 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2943 MAX_NR_ZONES - 1);
2946 zonelist->_zonerefs[j].zone = NULL;
2947 zonelist->_zonerefs[j].zone_idx = 0;
2950 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2951 static void build_zonelist_cache(pg_data_t *pgdat)
2953 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2956 #endif /* CONFIG_NUMA */
2959 * Boot pageset table. One per cpu which is going to be used for all
2960 * zones and all nodes. The parameters will be set in such a way
2961 * that an item put on a list will immediately be handed over to
2962 * the buddy list. This is safe since pageset manipulation is done
2963 * with interrupts disabled.
2965 * The boot_pagesets must be kept even after bootup is complete for
2966 * unused processors and/or zones. They do play a role for bootstrapping
2967 * hotplugged processors.
2969 * zoneinfo_show() and maybe other functions do
2970 * not check if the processor is online before following the pageset pointer.
2971 * Other parts of the kernel may not check if the zone is available.
2973 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2974 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2975 static void setup_zone_pageset(struct zone *zone);
2978 * Global mutex to protect against size modification of zonelists
2979 * as well as to serialize pageset setup for the new populated zone.
2981 DEFINE_MUTEX(zonelists_mutex);
2983 /* return values int ....just for stop_machine() */
2984 static __init_refok int __build_all_zonelists(void *data)
2986 int nid;
2987 int cpu;
2989 #ifdef CONFIG_NUMA
2990 memset(node_load, 0, sizeof(node_load));
2991 #endif
2992 for_each_online_node(nid) {
2993 pg_data_t *pgdat = NODE_DATA(nid);
2995 build_zonelists(pgdat);
2996 build_zonelist_cache(pgdat);
2999 #ifdef CONFIG_MEMORY_HOTPLUG
3000 /* Setup real pagesets for the new zone */
3001 if (data) {
3002 struct zone *zone = data;
3003 setup_zone_pageset(zone);
3005 #endif
3008 * Initialize the boot_pagesets that are going to be used
3009 * for bootstrapping processors. The real pagesets for
3010 * each zone will be allocated later when the per cpu
3011 * allocator is available.
3013 * boot_pagesets are used also for bootstrapping offline
3014 * cpus if the system is already booted because the pagesets
3015 * are needed to initialize allocators on a specific cpu too.
3016 * F.e. the percpu allocator needs the page allocator which
3017 * needs the percpu allocator in order to allocate its pagesets
3018 * (a chicken-egg dilemma).
3020 for_each_possible_cpu(cpu) {
3021 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3023 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3025 * We now know the "local memory node" for each node--
3026 * i.e., the node of the first zone in the generic zonelist.
3027 * Set up numa_mem percpu variable for on-line cpus. During
3028 * boot, only the boot cpu should be on-line; we'll init the
3029 * secondary cpus' numa_mem as they come on-line. During
3030 * node/memory hotplug, we'll fixup all on-line cpus.
3032 if (cpu_online(cpu))
3033 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3034 #endif
3037 return 0;
3041 * Called with zonelists_mutex held always
3042 * unless system_state == SYSTEM_BOOTING.
3044 void build_all_zonelists(void *data)
3046 set_zonelist_order();
3048 if (system_state == SYSTEM_BOOTING) {
3049 __build_all_zonelists(NULL);
3050 mminit_verify_zonelist();
3051 cpuset_init_current_mems_allowed();
3052 } else {
3053 /* we have to stop all cpus to guarantee there is no user
3054 of zonelist */
3055 stop_machine(__build_all_zonelists, data, NULL);
3056 /* cpuset refresh routine should be here */
3058 vm_total_pages = nr_free_pagecache_pages();
3060 * Disable grouping by mobility if the number of pages in the
3061 * system is too low to allow the mechanism to work. It would be
3062 * more accurate, but expensive to check per-zone. This check is
3063 * made on memory-hotadd so a system can start with mobility
3064 * disabled and enable it later
3066 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3067 page_group_by_mobility_disabled = 1;
3068 else
3069 page_group_by_mobility_disabled = 0;
3071 printk("Built %i zonelists in %s order, mobility grouping %s. "
3072 "Total pages: %ld\n",
3073 nr_online_nodes,
3074 zonelist_order_name[current_zonelist_order],
3075 page_group_by_mobility_disabled ? "off" : "on",
3076 vm_total_pages);
3077 #ifdef CONFIG_NUMA
3078 printk("Policy zone: %s\n", zone_names[policy_zone]);
3079 #endif
3083 * Helper functions to size the waitqueue hash table.
3084 * Essentially these want to choose hash table sizes sufficiently
3085 * large so that collisions trying to wait on pages are rare.
3086 * But in fact, the number of active page waitqueues on typical
3087 * systems is ridiculously low, less than 200. So this is even
3088 * conservative, even though it seems large.
3090 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3091 * waitqueues, i.e. the size of the waitq table given the number of pages.
3093 #define PAGES_PER_WAITQUEUE 256
3095 #ifndef CONFIG_MEMORY_HOTPLUG
3096 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3098 unsigned long size = 1;
3100 pages /= PAGES_PER_WAITQUEUE;
3102 while (size < pages)
3103 size <<= 1;
3106 * Once we have dozens or even hundreds of threads sleeping
3107 * on IO we've got bigger problems than wait queue collision.
3108 * Limit the size of the wait table to a reasonable size.
3110 size = min(size, 4096UL);
3112 return max(size, 4UL);
3114 #else
3116 * A zone's size might be changed by hot-add, so it is not possible to determine
3117 * a suitable size for its wait_table. So we use the maximum size now.
3119 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3121 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3122 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3123 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3125 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3126 * or more by the traditional way. (See above). It equals:
3128 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3129 * ia64(16K page size) : = ( 8G + 4M)byte.
3130 * powerpc (64K page size) : = (32G +16M)byte.
3132 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3134 return 4096UL;
3136 #endif
3139 * This is an integer logarithm so that shifts can be used later
3140 * to extract the more random high bits from the multiplicative
3141 * hash function before the remainder is taken.
3143 static inline unsigned long wait_table_bits(unsigned long size)
3145 return ffz(~size);
3148 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3151 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3152 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3153 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3154 * higher will lead to a bigger reserve which will get freed as contiguous
3155 * blocks as reclaim kicks in
3157 static void setup_zone_migrate_reserve(struct zone *zone)
3159 unsigned long start_pfn, pfn, end_pfn;
3160 struct page *page;
3161 unsigned long block_migratetype;
3162 int reserve;
3164 /* Get the start pfn, end pfn and the number of blocks to reserve */
3165 start_pfn = zone->zone_start_pfn;
3166 end_pfn = start_pfn + zone->spanned_pages;
3167 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3168 pageblock_order;
3171 * Reserve blocks are generally in place to help high-order atomic
3172 * allocations that are short-lived. A min_free_kbytes value that
3173 * would result in more than 2 reserve blocks for atomic allocations
3174 * is assumed to be in place to help anti-fragmentation for the
3175 * future allocation of hugepages at runtime.
3177 reserve = min(2, reserve);
3179 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3180 if (!pfn_valid(pfn))
3181 continue;
3182 page = pfn_to_page(pfn);
3184 /* Watch out for overlapping nodes */
3185 if (page_to_nid(page) != zone_to_nid(zone))
3186 continue;
3188 /* Blocks with reserved pages will never free, skip them. */
3189 if (PageReserved(page))
3190 continue;
3192 block_migratetype = get_pageblock_migratetype(page);
3194 /* If this block is reserved, account for it */
3195 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3196 reserve--;
3197 continue;
3200 /* Suitable for reserving if this block is movable */
3201 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3202 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3203 move_freepages_block(zone, page, MIGRATE_RESERVE);
3204 reserve--;
3205 continue;
3209 * If the reserve is met and this is a previous reserved block,
3210 * take it back
3212 if (block_migratetype == MIGRATE_RESERVE) {
3213 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3214 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3220 * Initially all pages are reserved - free ones are freed
3221 * up by free_all_bootmem() once the early boot process is
3222 * done. Non-atomic initialization, single-pass.
3224 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3225 unsigned long start_pfn, enum memmap_context context)
3227 struct page *page;
3228 unsigned long end_pfn = start_pfn + size;
3229 unsigned long pfn;
3230 struct zone *z;
3232 if (highest_memmap_pfn < end_pfn - 1)
3233 highest_memmap_pfn = end_pfn - 1;
3235 z = &NODE_DATA(nid)->node_zones[zone];
3236 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3238 * There can be holes in boot-time mem_map[]s
3239 * handed to this function. They do not
3240 * exist on hotplugged memory.
3242 if (context == MEMMAP_EARLY) {
3243 if (!early_pfn_valid(pfn))
3244 continue;
3245 if (!early_pfn_in_nid(pfn, nid))
3246 continue;
3248 page = pfn_to_page(pfn);
3249 set_page_links(page, zone, nid, pfn);
3250 mminit_verify_page_links(page, zone, nid, pfn);
3251 init_page_count(page);
3252 reset_page_mapcount(page);
3253 SetPageReserved(page);
3255 * Mark the block movable so that blocks are reserved for
3256 * movable at startup. This will force kernel allocations
3257 * to reserve their blocks rather than leaking throughout
3258 * the address space during boot when many long-lived
3259 * kernel allocations are made. Later some blocks near
3260 * the start are marked MIGRATE_RESERVE by
3261 * setup_zone_migrate_reserve()
3263 * bitmap is created for zone's valid pfn range. but memmap
3264 * can be created for invalid pages (for alignment)
3265 * check here not to call set_pageblock_migratetype() against
3266 * pfn out of zone.
3268 if ((z->zone_start_pfn <= pfn)
3269 && (pfn < z->zone_start_pfn + z->spanned_pages)
3270 && !(pfn & (pageblock_nr_pages - 1)))
3271 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3273 INIT_LIST_HEAD(&page->lru);
3274 #ifdef WANT_PAGE_VIRTUAL
3275 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3276 if (!is_highmem_idx(zone))
3277 set_page_address(page, __va(pfn << PAGE_SHIFT));
3278 #endif
3282 static void __meminit zone_init_free_lists(struct zone *zone)
3284 int order, t;
3285 for_each_migratetype_order(order, t) {
3286 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3287 zone->free_area[order].nr_free = 0;
3291 #ifndef __HAVE_ARCH_MEMMAP_INIT
3292 #define memmap_init(size, nid, zone, start_pfn) \
3293 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3294 #endif
3296 static int zone_batchsize(struct zone *zone)
3298 #ifdef CONFIG_MMU
3299 int batch;
3302 * The per-cpu-pages pools are set to around 1000th of the
3303 * size of the zone. But no more than 1/2 of a meg.
3305 * OK, so we don't know how big the cache is. So guess.
3307 batch = zone->present_pages / 1024;
3308 if (batch * PAGE_SIZE > 512 * 1024)
3309 batch = (512 * 1024) / PAGE_SIZE;
3310 batch /= 4; /* We effectively *= 4 below */
3311 if (batch < 1)
3312 batch = 1;
3315 * Clamp the batch to a 2^n - 1 value. Having a power
3316 * of 2 value was found to be more likely to have
3317 * suboptimal cache aliasing properties in some cases.
3319 * For example if 2 tasks are alternately allocating
3320 * batches of pages, one task can end up with a lot
3321 * of pages of one half of the possible page colors
3322 * and the other with pages of the other colors.
3324 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3326 return batch;
3328 #else
3329 /* The deferral and batching of frees should be suppressed under NOMMU
3330 * conditions.
3332 * The problem is that NOMMU needs to be able to allocate large chunks
3333 * of contiguous memory as there's no hardware page translation to
3334 * assemble apparent contiguous memory from discontiguous pages.
3336 * Queueing large contiguous runs of pages for batching, however,
3337 * causes the pages to actually be freed in smaller chunks. As there
3338 * can be a significant delay between the individual batches being
3339 * recycled, this leads to the once large chunks of space being
3340 * fragmented and becoming unavailable for high-order allocations.
3342 return 0;
3343 #endif
3346 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3348 struct per_cpu_pages *pcp;
3349 int migratetype;
3351 memset(p, 0, sizeof(*p));
3353 pcp = &p->pcp;
3354 pcp->count = 0;
3355 pcp->high = 6 * batch;
3356 pcp->batch = max(1UL, 1 * batch);
3357 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3358 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3362 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3363 * to the value high for the pageset p.
3366 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3367 unsigned long high)
3369 struct per_cpu_pages *pcp;
3371 pcp = &p->pcp;
3372 pcp->high = high;
3373 pcp->batch = max(1UL, high/4);
3374 if ((high/4) > (PAGE_SHIFT * 8))
3375 pcp->batch = PAGE_SHIFT * 8;
3378 static __meminit void setup_zone_pageset(struct zone *zone)
3380 int cpu;
3382 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3384 for_each_possible_cpu(cpu) {
3385 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3387 setup_pageset(pcp, zone_batchsize(zone));
3389 if (percpu_pagelist_fraction)
3390 setup_pagelist_highmark(pcp,
3391 (zone->present_pages /
3392 percpu_pagelist_fraction));
3397 * Allocate per cpu pagesets and initialize them.
3398 * Before this call only boot pagesets were available.
3400 void __init setup_per_cpu_pageset(void)
3402 struct zone *zone;
3404 for_each_populated_zone(zone)
3405 setup_zone_pageset(zone);
3408 static noinline __init_refok
3409 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3411 int i;
3412 struct pglist_data *pgdat = zone->zone_pgdat;
3413 size_t alloc_size;
3416 * The per-page waitqueue mechanism uses hashed waitqueues
3417 * per zone.
3419 zone->wait_table_hash_nr_entries =
3420 wait_table_hash_nr_entries(zone_size_pages);
3421 zone->wait_table_bits =
3422 wait_table_bits(zone->wait_table_hash_nr_entries);
3423 alloc_size = zone->wait_table_hash_nr_entries
3424 * sizeof(wait_queue_head_t);
3426 if (!slab_is_available()) {
3427 zone->wait_table = (wait_queue_head_t *)
3428 alloc_bootmem_node(pgdat, alloc_size);
3429 } else {
3431 * This case means that a zone whose size was 0 gets new memory
3432 * via memory hot-add.
3433 * But it may be the case that a new node was hot-added. In
3434 * this case vmalloc() will not be able to use this new node's
3435 * memory - this wait_table must be initialized to use this new
3436 * node itself as well.
3437 * To use this new node's memory, further consideration will be
3438 * necessary.
3440 zone->wait_table = vmalloc(alloc_size);
3442 if (!zone->wait_table)
3443 return -ENOMEM;
3445 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3446 init_waitqueue_head(zone->wait_table + i);
3448 return 0;
3451 static int __zone_pcp_update(void *data)
3453 struct zone *zone = data;
3454 int cpu;
3455 unsigned long batch = zone_batchsize(zone), flags;
3457 for_each_possible_cpu(cpu) {
3458 struct per_cpu_pageset *pset;
3459 struct per_cpu_pages *pcp;
3461 pset = per_cpu_ptr(zone->pageset, cpu);
3462 pcp = &pset->pcp;
3464 local_irq_save(flags);
3465 free_pcppages_bulk(zone, pcp->count, pcp);
3466 setup_pageset(pset, batch);
3467 local_irq_restore(flags);
3469 return 0;
3472 void zone_pcp_update(struct zone *zone)
3474 stop_machine(__zone_pcp_update, zone, NULL);
3477 static __meminit void zone_pcp_init(struct zone *zone)
3480 * per cpu subsystem is not up at this point. The following code
3481 * relies on the ability of the linker to provide the
3482 * offset of a (static) per cpu variable into the per cpu area.
3484 zone->pageset = &boot_pageset;
3486 if (zone->present_pages)
3487 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3488 zone->name, zone->present_pages,
3489 zone_batchsize(zone));
3492 __meminit int init_currently_empty_zone(struct zone *zone,
3493 unsigned long zone_start_pfn,
3494 unsigned long size,
3495 enum memmap_context context)
3497 struct pglist_data *pgdat = zone->zone_pgdat;
3498 int ret;
3499 ret = zone_wait_table_init(zone, size);
3500 if (ret)
3501 return ret;
3502 pgdat->nr_zones = zone_idx(zone) + 1;
3504 zone->zone_start_pfn = zone_start_pfn;
3506 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3507 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3508 pgdat->node_id,
3509 (unsigned long)zone_idx(zone),
3510 zone_start_pfn, (zone_start_pfn + size));
3512 zone_init_free_lists(zone);
3514 return 0;
3517 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3519 * Basic iterator support. Return the first range of PFNs for a node
3520 * Note: nid == MAX_NUMNODES returns first region regardless of node
3522 static int __meminit first_active_region_index_in_nid(int nid)
3524 int i;
3526 for (i = 0; i < nr_nodemap_entries; i++)
3527 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3528 return i;
3530 return -1;
3534 * Basic iterator support. Return the next active range of PFNs for a node
3535 * Note: nid == MAX_NUMNODES returns next region regardless of node
3537 static int __meminit next_active_region_index_in_nid(int index, int nid)
3539 for (index = index + 1; index < nr_nodemap_entries; index++)
3540 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3541 return index;
3543 return -1;
3546 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3548 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3549 * Architectures may implement their own version but if add_active_range()
3550 * was used and there are no special requirements, this is a convenient
3551 * alternative
3553 int __meminit __early_pfn_to_nid(unsigned long pfn)
3555 int i;
3557 for (i = 0; i < nr_nodemap_entries; i++) {
3558 unsigned long start_pfn = early_node_map[i].start_pfn;
3559 unsigned long end_pfn = early_node_map[i].end_pfn;
3561 if (start_pfn <= pfn && pfn < end_pfn)
3562 return early_node_map[i].nid;
3564 /* This is a memory hole */
3565 return -1;
3567 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3569 int __meminit early_pfn_to_nid(unsigned long pfn)
3571 int nid;
3573 nid = __early_pfn_to_nid(pfn);
3574 if (nid >= 0)
3575 return nid;
3576 /* just returns 0 */
3577 return 0;
3580 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3581 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3583 int nid;
3585 nid = __early_pfn_to_nid(pfn);
3586 if (nid >= 0 && nid != node)
3587 return false;
3588 return true;
3590 #endif
3592 /* Basic iterator support to walk early_node_map[] */
3593 #define for_each_active_range_index_in_nid(i, nid) \
3594 for (i = first_active_region_index_in_nid(nid); i != -1; \
3595 i = next_active_region_index_in_nid(i, nid))
3598 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3599 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3600 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3602 * If an architecture guarantees that all ranges registered with
3603 * add_active_ranges() contain no holes and may be freed, this
3604 * this function may be used instead of calling free_bootmem() manually.
3606 void __init free_bootmem_with_active_regions(int nid,
3607 unsigned long max_low_pfn)
3609 int i;
3611 for_each_active_range_index_in_nid(i, nid) {
3612 unsigned long size_pages = 0;
3613 unsigned long end_pfn = early_node_map[i].end_pfn;
3615 if (early_node_map[i].start_pfn >= max_low_pfn)
3616 continue;
3618 if (end_pfn > max_low_pfn)
3619 end_pfn = max_low_pfn;
3621 size_pages = end_pfn - early_node_map[i].start_pfn;
3622 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3623 PFN_PHYS(early_node_map[i].start_pfn),
3624 size_pages << PAGE_SHIFT);
3628 int __init add_from_early_node_map(struct range *range, int az,
3629 int nr_range, int nid)
3631 int i;
3632 u64 start, end;
3634 /* need to go over early_node_map to find out good range for node */
3635 for_each_active_range_index_in_nid(i, nid) {
3636 start = early_node_map[i].start_pfn;
3637 end = early_node_map[i].end_pfn;
3638 nr_range = add_range(range, az, nr_range, start, end);
3640 return nr_range;
3643 #ifdef CONFIG_NO_BOOTMEM
3644 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3645 u64 goal, u64 limit)
3647 int i;
3648 void *ptr;
3650 if (limit > get_max_mapped())
3651 limit = get_max_mapped();
3653 /* need to go over early_node_map to find out good range for node */
3654 for_each_active_range_index_in_nid(i, nid) {
3655 u64 addr;
3656 u64 ei_start, ei_last;
3658 ei_last = early_node_map[i].end_pfn;
3659 ei_last <<= PAGE_SHIFT;
3660 ei_start = early_node_map[i].start_pfn;
3661 ei_start <<= PAGE_SHIFT;
3662 addr = find_early_area(ei_start, ei_last,
3663 goal, limit, size, align);
3665 if (addr == -1ULL)
3666 continue;
3668 #if 0
3669 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3670 nid,
3671 ei_start, ei_last, goal, limit, size,
3672 align, addr);
3673 #endif
3675 ptr = phys_to_virt(addr);
3676 memset(ptr, 0, size);
3677 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3679 * The min_count is set to 0 so that bootmem allocated blocks
3680 * are never reported as leaks.
3682 kmemleak_alloc(ptr, size, 0, 0);
3683 return ptr;
3686 return NULL;
3688 #endif
3691 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3693 int i;
3694 int ret;
3696 for_each_active_range_index_in_nid(i, nid) {
3697 ret = work_fn(early_node_map[i].start_pfn,
3698 early_node_map[i].end_pfn, data);
3699 if (ret)
3700 break;
3704 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3705 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3707 * If an architecture guarantees that all ranges registered with
3708 * add_active_ranges() contain no holes and may be freed, this
3709 * function may be used instead of calling memory_present() manually.
3711 void __init sparse_memory_present_with_active_regions(int nid)
3713 int i;
3715 for_each_active_range_index_in_nid(i, nid)
3716 memory_present(early_node_map[i].nid,
3717 early_node_map[i].start_pfn,
3718 early_node_map[i].end_pfn);
3722 * get_pfn_range_for_nid - Return the start and end page frames for a node
3723 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3724 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3725 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3727 * It returns the start and end page frame of a node based on information
3728 * provided by an arch calling add_active_range(). If called for a node
3729 * with no available memory, a warning is printed and the start and end
3730 * PFNs will be 0.
3732 void __meminit get_pfn_range_for_nid(unsigned int nid,
3733 unsigned long *start_pfn, unsigned long *end_pfn)
3735 int i;
3736 *start_pfn = -1UL;
3737 *end_pfn = 0;
3739 for_each_active_range_index_in_nid(i, nid) {
3740 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3741 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3744 if (*start_pfn == -1UL)
3745 *start_pfn = 0;
3749 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3750 * assumption is made that zones within a node are ordered in monotonic
3751 * increasing memory addresses so that the "highest" populated zone is used
3753 static void __init find_usable_zone_for_movable(void)
3755 int zone_index;
3756 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3757 if (zone_index == ZONE_MOVABLE)
3758 continue;
3760 if (arch_zone_highest_possible_pfn[zone_index] >
3761 arch_zone_lowest_possible_pfn[zone_index])
3762 break;
3765 VM_BUG_ON(zone_index == -1);
3766 movable_zone = zone_index;
3770 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3771 * because it is sized independant of architecture. Unlike the other zones,
3772 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3773 * in each node depending on the size of each node and how evenly kernelcore
3774 * is distributed. This helper function adjusts the zone ranges
3775 * provided by the architecture for a given node by using the end of the
3776 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3777 * zones within a node are in order of monotonic increases memory addresses
3779 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3780 unsigned long zone_type,
3781 unsigned long node_start_pfn,
3782 unsigned long node_end_pfn,
3783 unsigned long *zone_start_pfn,
3784 unsigned long *zone_end_pfn)
3786 /* Only adjust if ZONE_MOVABLE is on this node */
3787 if (zone_movable_pfn[nid]) {
3788 /* Size ZONE_MOVABLE */
3789 if (zone_type == ZONE_MOVABLE) {
3790 *zone_start_pfn = zone_movable_pfn[nid];
3791 *zone_end_pfn = min(node_end_pfn,
3792 arch_zone_highest_possible_pfn[movable_zone]);
3794 /* Adjust for ZONE_MOVABLE starting within this range */
3795 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3796 *zone_end_pfn > zone_movable_pfn[nid]) {
3797 *zone_end_pfn = zone_movable_pfn[nid];
3799 /* Check if this whole range is within ZONE_MOVABLE */
3800 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3801 *zone_start_pfn = *zone_end_pfn;
3806 * Return the number of pages a zone spans in a node, including holes
3807 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3809 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3810 unsigned long zone_type,
3811 unsigned long *ignored)
3813 unsigned long node_start_pfn, node_end_pfn;
3814 unsigned long zone_start_pfn, zone_end_pfn;
3816 /* Get the start and end of the node and zone */
3817 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3818 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3819 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3820 adjust_zone_range_for_zone_movable(nid, zone_type,
3821 node_start_pfn, node_end_pfn,
3822 &zone_start_pfn, &zone_end_pfn);
3824 /* Check that this node has pages within the zone's required range */
3825 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3826 return 0;
3828 /* Move the zone boundaries inside the node if necessary */
3829 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3830 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3832 /* Return the spanned pages */
3833 return zone_end_pfn - zone_start_pfn;
3837 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3838 * then all holes in the requested range will be accounted for.
3840 unsigned long __meminit __absent_pages_in_range(int nid,
3841 unsigned long range_start_pfn,
3842 unsigned long range_end_pfn)
3844 int i = 0;
3845 unsigned long prev_end_pfn = 0, hole_pages = 0;
3846 unsigned long start_pfn;
3848 /* Find the end_pfn of the first active range of pfns in the node */
3849 i = first_active_region_index_in_nid(nid);
3850 if (i == -1)
3851 return 0;
3853 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3855 /* Account for ranges before physical memory on this node */
3856 if (early_node_map[i].start_pfn > range_start_pfn)
3857 hole_pages = prev_end_pfn - range_start_pfn;
3859 /* Find all holes for the zone within the node */
3860 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3862 /* No need to continue if prev_end_pfn is outside the zone */
3863 if (prev_end_pfn >= range_end_pfn)
3864 break;
3866 /* Make sure the end of the zone is not within the hole */
3867 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3868 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3870 /* Update the hole size cound and move on */
3871 if (start_pfn > range_start_pfn) {
3872 BUG_ON(prev_end_pfn > start_pfn);
3873 hole_pages += start_pfn - prev_end_pfn;
3875 prev_end_pfn = early_node_map[i].end_pfn;
3878 /* Account for ranges past physical memory on this node */
3879 if (range_end_pfn > prev_end_pfn)
3880 hole_pages += range_end_pfn -
3881 max(range_start_pfn, prev_end_pfn);
3883 return hole_pages;
3887 * absent_pages_in_range - Return number of page frames in holes within a range
3888 * @start_pfn: The start PFN to start searching for holes
3889 * @end_pfn: The end PFN to stop searching for holes
3891 * It returns the number of pages frames in memory holes within a range.
3893 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3894 unsigned long end_pfn)
3896 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3899 /* Return the number of page frames in holes in a zone on a node */
3900 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3901 unsigned long zone_type,
3902 unsigned long *ignored)
3904 unsigned long node_start_pfn, node_end_pfn;
3905 unsigned long zone_start_pfn, zone_end_pfn;
3907 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3908 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3909 node_start_pfn);
3910 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3911 node_end_pfn);
3913 adjust_zone_range_for_zone_movable(nid, zone_type,
3914 node_start_pfn, node_end_pfn,
3915 &zone_start_pfn, &zone_end_pfn);
3916 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3919 #else
3920 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3921 unsigned long zone_type,
3922 unsigned long *zones_size)
3924 return zones_size[zone_type];
3927 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3928 unsigned long zone_type,
3929 unsigned long *zholes_size)
3931 if (!zholes_size)
3932 return 0;
3934 return zholes_size[zone_type];
3937 #endif
3939 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3940 unsigned long *zones_size, unsigned long *zholes_size)
3942 unsigned long realtotalpages, totalpages = 0;
3943 enum zone_type i;
3945 for (i = 0; i < MAX_NR_ZONES; i++)
3946 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3947 zones_size);
3948 pgdat->node_spanned_pages = totalpages;
3950 realtotalpages = totalpages;
3951 for (i = 0; i < MAX_NR_ZONES; i++)
3952 realtotalpages -=
3953 zone_absent_pages_in_node(pgdat->node_id, i,
3954 zholes_size);
3955 pgdat->node_present_pages = realtotalpages;
3956 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3957 realtotalpages);
3960 #ifndef CONFIG_SPARSEMEM
3962 * Calculate the size of the zone->blockflags rounded to an unsigned long
3963 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3964 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3965 * round what is now in bits to nearest long in bits, then return it in
3966 * bytes.
3968 static unsigned long __init usemap_size(unsigned long zonesize)
3970 unsigned long usemapsize;
3972 usemapsize = roundup(zonesize, pageblock_nr_pages);
3973 usemapsize = usemapsize >> pageblock_order;
3974 usemapsize *= NR_PAGEBLOCK_BITS;
3975 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3977 return usemapsize / 8;
3980 static void __init setup_usemap(struct pglist_data *pgdat,
3981 struct zone *zone, unsigned long zonesize)
3983 unsigned long usemapsize = usemap_size(zonesize);
3984 zone->pageblock_flags = NULL;
3985 if (usemapsize)
3986 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3988 #else
3989 static void inline setup_usemap(struct pglist_data *pgdat,
3990 struct zone *zone, unsigned long zonesize) {}
3991 #endif /* CONFIG_SPARSEMEM */
3993 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3995 /* Return a sensible default order for the pageblock size. */
3996 static inline int pageblock_default_order(void)
3998 if (HPAGE_SHIFT > PAGE_SHIFT)
3999 return HUGETLB_PAGE_ORDER;
4001 return MAX_ORDER-1;
4004 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4005 static inline void __init set_pageblock_order(unsigned int order)
4007 /* Check that pageblock_nr_pages has not already been setup */
4008 if (pageblock_order)
4009 return;
4012 * Assume the largest contiguous order of interest is a huge page.
4013 * This value may be variable depending on boot parameters on IA64
4015 pageblock_order = order;
4017 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4020 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4021 * and pageblock_default_order() are unused as pageblock_order is set
4022 * at compile-time. See include/linux/pageblock-flags.h for the values of
4023 * pageblock_order based on the kernel config
4025 static inline int pageblock_default_order(unsigned int order)
4027 return MAX_ORDER-1;
4029 #define set_pageblock_order(x) do {} while (0)
4031 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4034 * Set up the zone data structures:
4035 * - mark all pages reserved
4036 * - mark all memory queues empty
4037 * - clear the memory bitmaps
4039 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4040 unsigned long *zones_size, unsigned long *zholes_size)
4042 enum zone_type j;
4043 int nid = pgdat->node_id;
4044 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4045 int ret;
4047 pgdat_resize_init(pgdat);
4048 pgdat->nr_zones = 0;
4049 init_waitqueue_head(&pgdat->kswapd_wait);
4050 pgdat->kswapd_max_order = 0;
4051 pgdat_page_cgroup_init(pgdat);
4053 for (j = 0; j < MAX_NR_ZONES; j++) {
4054 struct zone *zone = pgdat->node_zones + j;
4055 unsigned long size, realsize, memmap_pages;
4056 enum lru_list l;
4058 size = zone_spanned_pages_in_node(nid, j, zones_size);
4059 realsize = size - zone_absent_pages_in_node(nid, j,
4060 zholes_size);
4063 * Adjust realsize so that it accounts for how much memory
4064 * is used by this zone for memmap. This affects the watermark
4065 * and per-cpu initialisations
4067 memmap_pages =
4068 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4069 if (realsize >= memmap_pages) {
4070 realsize -= memmap_pages;
4071 if (memmap_pages)
4072 printk(KERN_DEBUG
4073 " %s zone: %lu pages used for memmap\n",
4074 zone_names[j], memmap_pages);
4075 } else
4076 printk(KERN_WARNING
4077 " %s zone: %lu pages exceeds realsize %lu\n",
4078 zone_names[j], memmap_pages, realsize);
4080 /* Account for reserved pages */
4081 if (j == 0 && realsize > dma_reserve) {
4082 realsize -= dma_reserve;
4083 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4084 zone_names[0], dma_reserve);
4087 if (!is_highmem_idx(j))
4088 nr_kernel_pages += realsize;
4089 nr_all_pages += realsize;
4091 zone->spanned_pages = size;
4092 zone->present_pages = realsize;
4093 #ifdef CONFIG_NUMA
4094 zone->node = nid;
4095 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4096 / 100;
4097 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4098 #endif
4099 zone->name = zone_names[j];
4100 spin_lock_init(&zone->lock);
4101 spin_lock_init(&zone->lru_lock);
4102 zone_seqlock_init(zone);
4103 zone->zone_pgdat = pgdat;
4105 zone->prev_priority = DEF_PRIORITY;
4107 zone_pcp_init(zone);
4108 for_each_lru(l) {
4109 INIT_LIST_HEAD(&zone->lru[l].list);
4110 zone->reclaim_stat.nr_saved_scan[l] = 0;
4112 zone->reclaim_stat.recent_rotated[0] = 0;
4113 zone->reclaim_stat.recent_rotated[1] = 0;
4114 zone->reclaim_stat.recent_scanned[0] = 0;
4115 zone->reclaim_stat.recent_scanned[1] = 0;
4116 zap_zone_vm_stats(zone);
4117 zone->flags = 0;
4118 if (!size)
4119 continue;
4121 set_pageblock_order(pageblock_default_order());
4122 setup_usemap(pgdat, zone, size);
4123 ret = init_currently_empty_zone(zone, zone_start_pfn,
4124 size, MEMMAP_EARLY);
4125 BUG_ON(ret);
4126 memmap_init(size, nid, j, zone_start_pfn);
4127 zone_start_pfn += size;
4131 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4133 /* Skip empty nodes */
4134 if (!pgdat->node_spanned_pages)
4135 return;
4137 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4138 /* ia64 gets its own node_mem_map, before this, without bootmem */
4139 if (!pgdat->node_mem_map) {
4140 unsigned long size, start, end;
4141 struct page *map;
4144 * The zone's endpoints aren't required to be MAX_ORDER
4145 * aligned but the node_mem_map endpoints must be in order
4146 * for the buddy allocator to function correctly.
4148 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4149 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4150 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4151 size = (end - start) * sizeof(struct page);
4152 map = alloc_remap(pgdat->node_id, size);
4153 if (!map)
4154 map = alloc_bootmem_node(pgdat, size);
4155 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4157 #ifndef CONFIG_NEED_MULTIPLE_NODES
4159 * With no DISCONTIG, the global mem_map is just set as node 0's
4161 if (pgdat == NODE_DATA(0)) {
4162 mem_map = NODE_DATA(0)->node_mem_map;
4163 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4164 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4165 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4166 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4168 #endif
4169 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4172 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4173 unsigned long node_start_pfn, unsigned long *zholes_size)
4175 pg_data_t *pgdat = NODE_DATA(nid);
4177 pgdat->node_id = nid;
4178 pgdat->node_start_pfn = node_start_pfn;
4179 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4181 alloc_node_mem_map(pgdat);
4182 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4183 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4184 nid, (unsigned long)pgdat,
4185 (unsigned long)pgdat->node_mem_map);
4186 #endif
4188 free_area_init_core(pgdat, zones_size, zholes_size);
4191 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4193 #if MAX_NUMNODES > 1
4195 * Figure out the number of possible node ids.
4197 static void __init setup_nr_node_ids(void)
4199 unsigned int node;
4200 unsigned int highest = 0;
4202 for_each_node_mask(node, node_possible_map)
4203 highest = node;
4204 nr_node_ids = highest + 1;
4206 #else
4207 static inline void setup_nr_node_ids(void)
4210 #endif
4213 * add_active_range - Register a range of PFNs backed by physical memory
4214 * @nid: The node ID the range resides on
4215 * @start_pfn: The start PFN of the available physical memory
4216 * @end_pfn: The end PFN of the available physical memory
4218 * These ranges are stored in an early_node_map[] and later used by
4219 * free_area_init_nodes() to calculate zone sizes and holes. If the
4220 * range spans a memory hole, it is up to the architecture to ensure
4221 * the memory is not freed by the bootmem allocator. If possible
4222 * the range being registered will be merged with existing ranges.
4224 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4225 unsigned long end_pfn)
4227 int i;
4229 mminit_dprintk(MMINIT_TRACE, "memory_register",
4230 "Entering add_active_range(%d, %#lx, %#lx) "
4231 "%d entries of %d used\n",
4232 nid, start_pfn, end_pfn,
4233 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4235 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4237 /* Merge with existing active regions if possible */
4238 for (i = 0; i < nr_nodemap_entries; i++) {
4239 if (early_node_map[i].nid != nid)
4240 continue;
4242 /* Skip if an existing region covers this new one */
4243 if (start_pfn >= early_node_map[i].start_pfn &&
4244 end_pfn <= early_node_map[i].end_pfn)
4245 return;
4247 /* Merge forward if suitable */
4248 if (start_pfn <= early_node_map[i].end_pfn &&
4249 end_pfn > early_node_map[i].end_pfn) {
4250 early_node_map[i].end_pfn = end_pfn;
4251 return;
4254 /* Merge backward if suitable */
4255 if (start_pfn < early_node_map[i].start_pfn &&
4256 end_pfn >= early_node_map[i].start_pfn) {
4257 early_node_map[i].start_pfn = start_pfn;
4258 return;
4262 /* Check that early_node_map is large enough */
4263 if (i >= MAX_ACTIVE_REGIONS) {
4264 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4265 MAX_ACTIVE_REGIONS);
4266 return;
4269 early_node_map[i].nid = nid;
4270 early_node_map[i].start_pfn = start_pfn;
4271 early_node_map[i].end_pfn = end_pfn;
4272 nr_nodemap_entries = i + 1;
4276 * remove_active_range - Shrink an existing registered range of PFNs
4277 * @nid: The node id the range is on that should be shrunk
4278 * @start_pfn: The new PFN of the range
4279 * @end_pfn: The new PFN of the range
4281 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4282 * The map is kept near the end physical page range that has already been
4283 * registered. This function allows an arch to shrink an existing registered
4284 * range.
4286 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4287 unsigned long end_pfn)
4289 int i, j;
4290 int removed = 0;
4292 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4293 nid, start_pfn, end_pfn);
4295 /* Find the old active region end and shrink */
4296 for_each_active_range_index_in_nid(i, nid) {
4297 if (early_node_map[i].start_pfn >= start_pfn &&
4298 early_node_map[i].end_pfn <= end_pfn) {
4299 /* clear it */
4300 early_node_map[i].start_pfn = 0;
4301 early_node_map[i].end_pfn = 0;
4302 removed = 1;
4303 continue;
4305 if (early_node_map[i].start_pfn < start_pfn &&
4306 early_node_map[i].end_pfn > start_pfn) {
4307 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4308 early_node_map[i].end_pfn = start_pfn;
4309 if (temp_end_pfn > end_pfn)
4310 add_active_range(nid, end_pfn, temp_end_pfn);
4311 continue;
4313 if (early_node_map[i].start_pfn >= start_pfn &&
4314 early_node_map[i].end_pfn > end_pfn &&
4315 early_node_map[i].start_pfn < end_pfn) {
4316 early_node_map[i].start_pfn = end_pfn;
4317 continue;
4321 if (!removed)
4322 return;
4324 /* remove the blank ones */
4325 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4326 if (early_node_map[i].nid != nid)
4327 continue;
4328 if (early_node_map[i].end_pfn)
4329 continue;
4330 /* we found it, get rid of it */
4331 for (j = i; j < nr_nodemap_entries - 1; j++)
4332 memcpy(&early_node_map[j], &early_node_map[j+1],
4333 sizeof(early_node_map[j]));
4334 j = nr_nodemap_entries - 1;
4335 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4336 nr_nodemap_entries--;
4341 * remove_all_active_ranges - Remove all currently registered regions
4343 * During discovery, it may be found that a table like SRAT is invalid
4344 * and an alternative discovery method must be used. This function removes
4345 * all currently registered regions.
4347 void __init remove_all_active_ranges(void)
4349 memset(early_node_map, 0, sizeof(early_node_map));
4350 nr_nodemap_entries = 0;
4353 /* Compare two active node_active_regions */
4354 static int __init cmp_node_active_region(const void *a, const void *b)
4356 struct node_active_region *arange = (struct node_active_region *)a;
4357 struct node_active_region *brange = (struct node_active_region *)b;
4359 /* Done this way to avoid overflows */
4360 if (arange->start_pfn > brange->start_pfn)
4361 return 1;
4362 if (arange->start_pfn < brange->start_pfn)
4363 return -1;
4365 return 0;
4368 /* sort the node_map by start_pfn */
4369 void __init sort_node_map(void)
4371 sort(early_node_map, (size_t)nr_nodemap_entries,
4372 sizeof(struct node_active_region),
4373 cmp_node_active_region, NULL);
4376 /* Find the lowest pfn for a node */
4377 static unsigned long __init find_min_pfn_for_node(int nid)
4379 int i;
4380 unsigned long min_pfn = ULONG_MAX;
4382 /* Assuming a sorted map, the first range found has the starting pfn */
4383 for_each_active_range_index_in_nid(i, nid)
4384 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4386 if (min_pfn == ULONG_MAX) {
4387 printk(KERN_WARNING
4388 "Could not find start_pfn for node %d\n", nid);
4389 return 0;
4392 return min_pfn;
4396 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4398 * It returns the minimum PFN based on information provided via
4399 * add_active_range().
4401 unsigned long __init find_min_pfn_with_active_regions(void)
4403 return find_min_pfn_for_node(MAX_NUMNODES);
4407 * early_calculate_totalpages()
4408 * Sum pages in active regions for movable zone.
4409 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4411 static unsigned long __init early_calculate_totalpages(void)
4413 int i;
4414 unsigned long totalpages = 0;
4416 for (i = 0; i < nr_nodemap_entries; i++) {
4417 unsigned long pages = early_node_map[i].end_pfn -
4418 early_node_map[i].start_pfn;
4419 totalpages += pages;
4420 if (pages)
4421 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4423 return totalpages;
4427 * Find the PFN the Movable zone begins in each node. Kernel memory
4428 * is spread evenly between nodes as long as the nodes have enough
4429 * memory. When they don't, some nodes will have more kernelcore than
4430 * others
4432 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4434 int i, nid;
4435 unsigned long usable_startpfn;
4436 unsigned long kernelcore_node, kernelcore_remaining;
4437 /* save the state before borrow the nodemask */
4438 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4439 unsigned long totalpages = early_calculate_totalpages();
4440 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4443 * If movablecore was specified, calculate what size of
4444 * kernelcore that corresponds so that memory usable for
4445 * any allocation type is evenly spread. If both kernelcore
4446 * and movablecore are specified, then the value of kernelcore
4447 * will be used for required_kernelcore if it's greater than
4448 * what movablecore would have allowed.
4450 if (required_movablecore) {
4451 unsigned long corepages;
4454 * Round-up so that ZONE_MOVABLE is at least as large as what
4455 * was requested by the user
4457 required_movablecore =
4458 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4459 corepages = totalpages - required_movablecore;
4461 required_kernelcore = max(required_kernelcore, corepages);
4464 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4465 if (!required_kernelcore)
4466 goto out;
4468 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4469 find_usable_zone_for_movable();
4470 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4472 restart:
4473 /* Spread kernelcore memory as evenly as possible throughout nodes */
4474 kernelcore_node = required_kernelcore / usable_nodes;
4475 for_each_node_state(nid, N_HIGH_MEMORY) {
4477 * Recalculate kernelcore_node if the division per node
4478 * now exceeds what is necessary to satisfy the requested
4479 * amount of memory for the kernel
4481 if (required_kernelcore < kernelcore_node)
4482 kernelcore_node = required_kernelcore / usable_nodes;
4485 * As the map is walked, we track how much memory is usable
4486 * by the kernel using kernelcore_remaining. When it is
4487 * 0, the rest of the node is usable by ZONE_MOVABLE
4489 kernelcore_remaining = kernelcore_node;
4491 /* Go through each range of PFNs within this node */
4492 for_each_active_range_index_in_nid(i, nid) {
4493 unsigned long start_pfn, end_pfn;
4494 unsigned long size_pages;
4496 start_pfn = max(early_node_map[i].start_pfn,
4497 zone_movable_pfn[nid]);
4498 end_pfn = early_node_map[i].end_pfn;
4499 if (start_pfn >= end_pfn)
4500 continue;
4502 /* Account for what is only usable for kernelcore */
4503 if (start_pfn < usable_startpfn) {
4504 unsigned long kernel_pages;
4505 kernel_pages = min(end_pfn, usable_startpfn)
4506 - start_pfn;
4508 kernelcore_remaining -= min(kernel_pages,
4509 kernelcore_remaining);
4510 required_kernelcore -= min(kernel_pages,
4511 required_kernelcore);
4513 /* Continue if range is now fully accounted */
4514 if (end_pfn <= usable_startpfn) {
4517 * Push zone_movable_pfn to the end so
4518 * that if we have to rebalance
4519 * kernelcore across nodes, we will
4520 * not double account here
4522 zone_movable_pfn[nid] = end_pfn;
4523 continue;
4525 start_pfn = usable_startpfn;
4529 * The usable PFN range for ZONE_MOVABLE is from
4530 * start_pfn->end_pfn. Calculate size_pages as the
4531 * number of pages used as kernelcore
4533 size_pages = end_pfn - start_pfn;
4534 if (size_pages > kernelcore_remaining)
4535 size_pages = kernelcore_remaining;
4536 zone_movable_pfn[nid] = start_pfn + size_pages;
4539 * Some kernelcore has been met, update counts and
4540 * break if the kernelcore for this node has been
4541 * satisified
4543 required_kernelcore -= min(required_kernelcore,
4544 size_pages);
4545 kernelcore_remaining -= size_pages;
4546 if (!kernelcore_remaining)
4547 break;
4552 * If there is still required_kernelcore, we do another pass with one
4553 * less node in the count. This will push zone_movable_pfn[nid] further
4554 * along on the nodes that still have memory until kernelcore is
4555 * satisified
4557 usable_nodes--;
4558 if (usable_nodes && required_kernelcore > usable_nodes)
4559 goto restart;
4561 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4562 for (nid = 0; nid < MAX_NUMNODES; nid++)
4563 zone_movable_pfn[nid] =
4564 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4566 out:
4567 /* restore the node_state */
4568 node_states[N_HIGH_MEMORY] = saved_node_state;
4571 /* Any regular memory on that node ? */
4572 static void check_for_regular_memory(pg_data_t *pgdat)
4574 #ifdef CONFIG_HIGHMEM
4575 enum zone_type zone_type;
4577 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4578 struct zone *zone = &pgdat->node_zones[zone_type];
4579 if (zone->present_pages)
4580 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4582 #endif
4586 * free_area_init_nodes - Initialise all pg_data_t and zone data
4587 * @max_zone_pfn: an array of max PFNs for each zone
4589 * This will call free_area_init_node() for each active node in the system.
4590 * Using the page ranges provided by add_active_range(), the size of each
4591 * zone in each node and their holes is calculated. If the maximum PFN
4592 * between two adjacent zones match, it is assumed that the zone is empty.
4593 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4594 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4595 * starts where the previous one ended. For example, ZONE_DMA32 starts
4596 * at arch_max_dma_pfn.
4598 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4600 unsigned long nid;
4601 int i;
4603 /* Sort early_node_map as initialisation assumes it is sorted */
4604 sort_node_map();
4606 /* Record where the zone boundaries are */
4607 memset(arch_zone_lowest_possible_pfn, 0,
4608 sizeof(arch_zone_lowest_possible_pfn));
4609 memset(arch_zone_highest_possible_pfn, 0,
4610 sizeof(arch_zone_highest_possible_pfn));
4611 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4612 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4613 for (i = 1; i < MAX_NR_ZONES; i++) {
4614 if (i == ZONE_MOVABLE)
4615 continue;
4616 arch_zone_lowest_possible_pfn[i] =
4617 arch_zone_highest_possible_pfn[i-1];
4618 arch_zone_highest_possible_pfn[i] =
4619 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4621 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4622 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4624 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4625 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4626 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4628 /* Print out the zone ranges */
4629 printk("Zone PFN ranges:\n");
4630 for (i = 0; i < MAX_NR_ZONES; i++) {
4631 if (i == ZONE_MOVABLE)
4632 continue;
4633 printk(" %-8s ", zone_names[i]);
4634 if (arch_zone_lowest_possible_pfn[i] ==
4635 arch_zone_highest_possible_pfn[i])
4636 printk("empty\n");
4637 else
4638 printk("%0#10lx -> %0#10lx\n",
4639 arch_zone_lowest_possible_pfn[i],
4640 arch_zone_highest_possible_pfn[i]);
4643 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4644 printk("Movable zone start PFN for each node\n");
4645 for (i = 0; i < MAX_NUMNODES; i++) {
4646 if (zone_movable_pfn[i])
4647 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4650 /* Print out the early_node_map[] */
4651 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4652 for (i = 0; i < nr_nodemap_entries; i++)
4653 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4654 early_node_map[i].start_pfn,
4655 early_node_map[i].end_pfn);
4657 /* Initialise every node */
4658 mminit_verify_pageflags_layout();
4659 setup_nr_node_ids();
4660 for_each_online_node(nid) {
4661 pg_data_t *pgdat = NODE_DATA(nid);
4662 free_area_init_node(nid, NULL,
4663 find_min_pfn_for_node(nid), NULL);
4665 /* Any memory on that node */
4666 if (pgdat->node_present_pages)
4667 node_set_state(nid, N_HIGH_MEMORY);
4668 check_for_regular_memory(pgdat);
4672 static int __init cmdline_parse_core(char *p, unsigned long *core)
4674 unsigned long long coremem;
4675 if (!p)
4676 return -EINVAL;
4678 coremem = memparse(p, &p);
4679 *core = coremem >> PAGE_SHIFT;
4681 /* Paranoid check that UL is enough for the coremem value */
4682 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4684 return 0;
4688 * kernelcore=size sets the amount of memory for use for allocations that
4689 * cannot be reclaimed or migrated.
4691 static int __init cmdline_parse_kernelcore(char *p)
4693 return cmdline_parse_core(p, &required_kernelcore);
4697 * movablecore=size sets the amount of memory for use for allocations that
4698 * can be reclaimed or migrated.
4700 static int __init cmdline_parse_movablecore(char *p)
4702 return cmdline_parse_core(p, &required_movablecore);
4705 early_param("kernelcore", cmdline_parse_kernelcore);
4706 early_param("movablecore", cmdline_parse_movablecore);
4708 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4711 * set_dma_reserve - set the specified number of pages reserved in the first zone
4712 * @new_dma_reserve: The number of pages to mark reserved
4714 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4715 * In the DMA zone, a significant percentage may be consumed by kernel image
4716 * and other unfreeable allocations which can skew the watermarks badly. This
4717 * function may optionally be used to account for unfreeable pages in the
4718 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4719 * smaller per-cpu batchsize.
4721 void __init set_dma_reserve(unsigned long new_dma_reserve)
4723 dma_reserve = new_dma_reserve;
4726 #ifndef CONFIG_NEED_MULTIPLE_NODES
4727 struct pglist_data __refdata contig_page_data = {
4728 #ifndef CONFIG_NO_BOOTMEM
4729 .bdata = &bootmem_node_data[0]
4730 #endif
4732 EXPORT_SYMBOL(contig_page_data);
4733 #endif
4735 void __init free_area_init(unsigned long *zones_size)
4737 free_area_init_node(0, zones_size,
4738 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4741 static int page_alloc_cpu_notify(struct notifier_block *self,
4742 unsigned long action, void *hcpu)
4744 int cpu = (unsigned long)hcpu;
4746 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4747 drain_pages(cpu);
4750 * Spill the event counters of the dead processor
4751 * into the current processors event counters.
4752 * This artificially elevates the count of the current
4753 * processor.
4755 vm_events_fold_cpu(cpu);
4758 * Zero the differential counters of the dead processor
4759 * so that the vm statistics are consistent.
4761 * This is only okay since the processor is dead and cannot
4762 * race with what we are doing.
4764 refresh_cpu_vm_stats(cpu);
4766 return NOTIFY_OK;
4769 void __init page_alloc_init(void)
4771 hotcpu_notifier(page_alloc_cpu_notify, 0);
4775 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4776 * or min_free_kbytes changes.
4778 static void calculate_totalreserve_pages(void)
4780 struct pglist_data *pgdat;
4781 unsigned long reserve_pages = 0;
4782 enum zone_type i, j;
4784 for_each_online_pgdat(pgdat) {
4785 for (i = 0; i < MAX_NR_ZONES; i++) {
4786 struct zone *zone = pgdat->node_zones + i;
4787 unsigned long max = 0;
4789 /* Find valid and maximum lowmem_reserve in the zone */
4790 for (j = i; j < MAX_NR_ZONES; j++) {
4791 if (zone->lowmem_reserve[j] > max)
4792 max = zone->lowmem_reserve[j];
4795 /* we treat the high watermark as reserved pages. */
4796 max += high_wmark_pages(zone);
4798 if (max > zone->present_pages)
4799 max = zone->present_pages;
4800 reserve_pages += max;
4803 totalreserve_pages = reserve_pages;
4807 * setup_per_zone_lowmem_reserve - called whenever
4808 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4809 * has a correct pages reserved value, so an adequate number of
4810 * pages are left in the zone after a successful __alloc_pages().
4812 static void setup_per_zone_lowmem_reserve(void)
4814 struct pglist_data *pgdat;
4815 enum zone_type j, idx;
4817 for_each_online_pgdat(pgdat) {
4818 for (j = 0; j < MAX_NR_ZONES; j++) {
4819 struct zone *zone = pgdat->node_zones + j;
4820 unsigned long present_pages = zone->present_pages;
4822 zone->lowmem_reserve[j] = 0;
4824 idx = j;
4825 while (idx) {
4826 struct zone *lower_zone;
4828 idx--;
4830 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4831 sysctl_lowmem_reserve_ratio[idx] = 1;
4833 lower_zone = pgdat->node_zones + idx;
4834 lower_zone->lowmem_reserve[j] = present_pages /
4835 sysctl_lowmem_reserve_ratio[idx];
4836 present_pages += lower_zone->present_pages;
4841 /* update totalreserve_pages */
4842 calculate_totalreserve_pages();
4846 * setup_per_zone_wmarks - called when min_free_kbytes changes
4847 * or when memory is hot-{added|removed}
4849 * Ensures that the watermark[min,low,high] values for each zone are set
4850 * correctly with respect to min_free_kbytes.
4852 void setup_per_zone_wmarks(void)
4854 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4855 unsigned long lowmem_pages = 0;
4856 struct zone *zone;
4857 unsigned long flags;
4859 /* Calculate total number of !ZONE_HIGHMEM pages */
4860 for_each_zone(zone) {
4861 if (!is_highmem(zone))
4862 lowmem_pages += zone->present_pages;
4865 for_each_zone(zone) {
4866 u64 tmp;
4868 spin_lock_irqsave(&zone->lock, flags);
4869 tmp = (u64)pages_min * zone->present_pages;
4870 do_div(tmp, lowmem_pages);
4871 if (is_highmem(zone)) {
4873 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4874 * need highmem pages, so cap pages_min to a small
4875 * value here.
4877 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4878 * deltas controls asynch page reclaim, and so should
4879 * not be capped for highmem.
4881 int min_pages;
4883 min_pages = zone->present_pages / 1024;
4884 if (min_pages < SWAP_CLUSTER_MAX)
4885 min_pages = SWAP_CLUSTER_MAX;
4886 if (min_pages > 128)
4887 min_pages = 128;
4888 zone->watermark[WMARK_MIN] = min_pages;
4889 } else {
4891 * If it's a lowmem zone, reserve a number of pages
4892 * proportionate to the zone's size.
4894 zone->watermark[WMARK_MIN] = tmp;
4897 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4898 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4899 setup_zone_migrate_reserve(zone);
4900 spin_unlock_irqrestore(&zone->lock, flags);
4903 /* update totalreserve_pages */
4904 calculate_totalreserve_pages();
4908 * The inactive anon list should be small enough that the VM never has to
4909 * do too much work, but large enough that each inactive page has a chance
4910 * to be referenced again before it is swapped out.
4912 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4913 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4914 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4915 * the anonymous pages are kept on the inactive list.
4917 * total target max
4918 * memory ratio inactive anon
4919 * -------------------------------------
4920 * 10MB 1 5MB
4921 * 100MB 1 50MB
4922 * 1GB 3 250MB
4923 * 10GB 10 0.9GB
4924 * 100GB 31 3GB
4925 * 1TB 101 10GB
4926 * 10TB 320 32GB
4928 void calculate_zone_inactive_ratio(struct zone *zone)
4930 unsigned int gb, ratio;
4932 /* Zone size in gigabytes */
4933 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4934 if (gb)
4935 ratio = int_sqrt(10 * gb);
4936 else
4937 ratio = 1;
4939 zone->inactive_ratio = ratio;
4942 static void __init setup_per_zone_inactive_ratio(void)
4944 struct zone *zone;
4946 for_each_zone(zone)
4947 calculate_zone_inactive_ratio(zone);
4951 * Initialise min_free_kbytes.
4953 * For small machines we want it small (128k min). For large machines
4954 * we want it large (64MB max). But it is not linear, because network
4955 * bandwidth does not increase linearly with machine size. We use
4957 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4958 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4960 * which yields
4962 * 16MB: 512k
4963 * 32MB: 724k
4964 * 64MB: 1024k
4965 * 128MB: 1448k
4966 * 256MB: 2048k
4967 * 512MB: 2896k
4968 * 1024MB: 4096k
4969 * 2048MB: 5792k
4970 * 4096MB: 8192k
4971 * 8192MB: 11584k
4972 * 16384MB: 16384k
4974 static int __init init_per_zone_wmark_min(void)
4976 unsigned long lowmem_kbytes;
4978 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4980 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4981 if (min_free_kbytes < 128)
4982 min_free_kbytes = 128;
4983 if (min_free_kbytes > 65536)
4984 min_free_kbytes = 65536;
4985 setup_per_zone_wmarks();
4986 setup_per_zone_lowmem_reserve();
4987 setup_per_zone_inactive_ratio();
4988 return 0;
4990 module_init(init_per_zone_wmark_min)
4993 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4994 * that we can call two helper functions whenever min_free_kbytes
4995 * changes.
4997 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4998 void __user *buffer, size_t *length, loff_t *ppos)
5000 proc_dointvec(table, write, buffer, length, ppos);
5001 if (write)
5002 setup_per_zone_wmarks();
5003 return 0;
5006 #ifdef CONFIG_NUMA
5007 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5008 void __user *buffer, size_t *length, loff_t *ppos)
5010 struct zone *zone;
5011 int rc;
5013 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5014 if (rc)
5015 return rc;
5017 for_each_zone(zone)
5018 zone->min_unmapped_pages = (zone->present_pages *
5019 sysctl_min_unmapped_ratio) / 100;
5020 return 0;
5023 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5024 void __user *buffer, size_t *length, loff_t *ppos)
5026 struct zone *zone;
5027 int rc;
5029 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5030 if (rc)
5031 return rc;
5033 for_each_zone(zone)
5034 zone->min_slab_pages = (zone->present_pages *
5035 sysctl_min_slab_ratio) / 100;
5036 return 0;
5038 #endif
5041 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5042 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5043 * whenever sysctl_lowmem_reserve_ratio changes.
5045 * The reserve ratio obviously has absolutely no relation with the
5046 * minimum watermarks. The lowmem reserve ratio can only make sense
5047 * if in function of the boot time zone sizes.
5049 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5050 void __user *buffer, size_t *length, loff_t *ppos)
5052 proc_dointvec_minmax(table, write, buffer, length, ppos);
5053 setup_per_zone_lowmem_reserve();
5054 return 0;
5058 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5059 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5060 * can have before it gets flushed back to buddy allocator.
5063 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5064 void __user *buffer, size_t *length, loff_t *ppos)
5066 struct zone *zone;
5067 unsigned int cpu;
5068 int ret;
5070 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5071 if (!write || (ret == -EINVAL))
5072 return ret;
5073 for_each_populated_zone(zone) {
5074 for_each_possible_cpu(cpu) {
5075 unsigned long high;
5076 high = zone->present_pages / percpu_pagelist_fraction;
5077 setup_pagelist_highmark(
5078 per_cpu_ptr(zone->pageset, cpu), high);
5081 return 0;
5084 int hashdist = HASHDIST_DEFAULT;
5086 #ifdef CONFIG_NUMA
5087 static int __init set_hashdist(char *str)
5089 if (!str)
5090 return 0;
5091 hashdist = simple_strtoul(str, &str, 0);
5092 return 1;
5094 __setup("hashdist=", set_hashdist);
5095 #endif
5098 * allocate a large system hash table from bootmem
5099 * - it is assumed that the hash table must contain an exact power-of-2
5100 * quantity of entries
5101 * - limit is the number of hash buckets, not the total allocation size
5103 void *__init alloc_large_system_hash(const char *tablename,
5104 unsigned long bucketsize,
5105 unsigned long numentries,
5106 int scale,
5107 int flags,
5108 unsigned int *_hash_shift,
5109 unsigned int *_hash_mask,
5110 unsigned long limit)
5112 unsigned long long max = limit;
5113 unsigned long log2qty, size;
5114 void *table = NULL;
5116 /* allow the kernel cmdline to have a say */
5117 if (!numentries) {
5118 /* round applicable memory size up to nearest megabyte */
5119 numentries = nr_kernel_pages;
5120 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5121 numentries >>= 20 - PAGE_SHIFT;
5122 numentries <<= 20 - PAGE_SHIFT;
5124 /* limit to 1 bucket per 2^scale bytes of low memory */
5125 if (scale > PAGE_SHIFT)
5126 numentries >>= (scale - PAGE_SHIFT);
5127 else
5128 numentries <<= (PAGE_SHIFT - scale);
5130 /* Make sure we've got at least a 0-order allocation.. */
5131 if (unlikely(flags & HASH_SMALL)) {
5132 /* Makes no sense without HASH_EARLY */
5133 WARN_ON(!(flags & HASH_EARLY));
5134 if (!(numentries >> *_hash_shift)) {
5135 numentries = 1UL << *_hash_shift;
5136 BUG_ON(!numentries);
5138 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5139 numentries = PAGE_SIZE / bucketsize;
5141 numentries = roundup_pow_of_two(numentries);
5143 /* limit allocation size to 1/16 total memory by default */
5144 if (max == 0) {
5145 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5146 do_div(max, bucketsize);
5149 if (numentries > max)
5150 numentries = max;
5152 log2qty = ilog2(numentries);
5154 do {
5155 size = bucketsize << log2qty;
5156 if (flags & HASH_EARLY)
5157 table = alloc_bootmem_nopanic(size);
5158 else if (hashdist)
5159 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5160 else {
5162 * If bucketsize is not a power-of-two, we may free
5163 * some pages at the end of hash table which
5164 * alloc_pages_exact() automatically does
5166 if (get_order(size) < MAX_ORDER) {
5167 table = alloc_pages_exact(size, GFP_ATOMIC);
5168 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5171 } while (!table && size > PAGE_SIZE && --log2qty);
5173 if (!table)
5174 panic("Failed to allocate %s hash table\n", tablename);
5176 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5177 tablename,
5178 (1U << log2qty),
5179 ilog2(size) - PAGE_SHIFT,
5180 size);
5182 if (_hash_shift)
5183 *_hash_shift = log2qty;
5184 if (_hash_mask)
5185 *_hash_mask = (1 << log2qty) - 1;
5187 return table;
5190 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5191 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5192 unsigned long pfn)
5194 #ifdef CONFIG_SPARSEMEM
5195 return __pfn_to_section(pfn)->pageblock_flags;
5196 #else
5197 return zone->pageblock_flags;
5198 #endif /* CONFIG_SPARSEMEM */
5201 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5203 #ifdef CONFIG_SPARSEMEM
5204 pfn &= (PAGES_PER_SECTION-1);
5205 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5206 #else
5207 pfn = pfn - zone->zone_start_pfn;
5208 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5209 #endif /* CONFIG_SPARSEMEM */
5213 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5214 * @page: The page within the block of interest
5215 * @start_bitidx: The first bit of interest to retrieve
5216 * @end_bitidx: The last bit of interest
5217 * returns pageblock_bits flags
5219 unsigned long get_pageblock_flags_group(struct page *page,
5220 int start_bitidx, int end_bitidx)
5222 struct zone *zone;
5223 unsigned long *bitmap;
5224 unsigned long pfn, bitidx;
5225 unsigned long flags = 0;
5226 unsigned long value = 1;
5228 zone = page_zone(page);
5229 pfn = page_to_pfn(page);
5230 bitmap = get_pageblock_bitmap(zone, pfn);
5231 bitidx = pfn_to_bitidx(zone, pfn);
5233 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5234 if (test_bit(bitidx + start_bitidx, bitmap))
5235 flags |= value;
5237 return flags;
5241 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5242 * @page: The page within the block of interest
5243 * @start_bitidx: The first bit of interest
5244 * @end_bitidx: The last bit of interest
5245 * @flags: The flags to set
5247 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5248 int start_bitidx, int end_bitidx)
5250 struct zone *zone;
5251 unsigned long *bitmap;
5252 unsigned long pfn, bitidx;
5253 unsigned long value = 1;
5255 zone = page_zone(page);
5256 pfn = page_to_pfn(page);
5257 bitmap = get_pageblock_bitmap(zone, pfn);
5258 bitidx = pfn_to_bitidx(zone, pfn);
5259 VM_BUG_ON(pfn < zone->zone_start_pfn);
5260 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5262 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5263 if (flags & value)
5264 __set_bit(bitidx + start_bitidx, bitmap);
5265 else
5266 __clear_bit(bitidx + start_bitidx, bitmap);
5270 * This is designed as sub function...plz see page_isolation.c also.
5271 * set/clear page block's type to be ISOLATE.
5272 * page allocater never alloc memory from ISOLATE block.
5275 int set_migratetype_isolate(struct page *page)
5277 struct zone *zone;
5278 struct page *curr_page;
5279 unsigned long flags, pfn, iter;
5280 unsigned long immobile = 0;
5281 struct memory_isolate_notify arg;
5282 int notifier_ret;
5283 int ret = -EBUSY;
5284 int zone_idx;
5286 zone = page_zone(page);
5287 zone_idx = zone_idx(zone);
5289 spin_lock_irqsave(&zone->lock, flags);
5290 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5291 zone_idx == ZONE_MOVABLE) {
5292 ret = 0;
5293 goto out;
5296 pfn = page_to_pfn(page);
5297 arg.start_pfn = pfn;
5298 arg.nr_pages = pageblock_nr_pages;
5299 arg.pages_found = 0;
5302 * It may be possible to isolate a pageblock even if the
5303 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5304 * notifier chain is used by balloon drivers to return the
5305 * number of pages in a range that are held by the balloon
5306 * driver to shrink memory. If all the pages are accounted for
5307 * by balloons, are free, or on the LRU, isolation can continue.
5308 * Later, for example, when memory hotplug notifier runs, these
5309 * pages reported as "can be isolated" should be isolated(freed)
5310 * by the balloon driver through the memory notifier chain.
5312 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5313 notifier_ret = notifier_to_errno(notifier_ret);
5314 if (notifier_ret || !arg.pages_found)
5315 goto out;
5317 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5318 if (!pfn_valid_within(pfn))
5319 continue;
5321 curr_page = pfn_to_page(iter);
5322 if (!page_count(curr_page) || PageLRU(curr_page))
5323 continue;
5325 immobile++;
5328 if (arg.pages_found == immobile)
5329 ret = 0;
5331 out:
5332 if (!ret) {
5333 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5334 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5337 spin_unlock_irqrestore(&zone->lock, flags);
5338 if (!ret)
5339 drain_all_pages();
5340 return ret;
5343 void unset_migratetype_isolate(struct page *page)
5345 struct zone *zone;
5346 unsigned long flags;
5347 zone = page_zone(page);
5348 spin_lock_irqsave(&zone->lock, flags);
5349 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5350 goto out;
5351 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5352 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5353 out:
5354 spin_unlock_irqrestore(&zone->lock, flags);
5357 #ifdef CONFIG_MEMORY_HOTREMOVE
5359 * All pages in the range must be isolated before calling this.
5361 void
5362 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5364 struct page *page;
5365 struct zone *zone;
5366 int order, i;
5367 unsigned long pfn;
5368 unsigned long flags;
5369 /* find the first valid pfn */
5370 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5371 if (pfn_valid(pfn))
5372 break;
5373 if (pfn == end_pfn)
5374 return;
5375 zone = page_zone(pfn_to_page(pfn));
5376 spin_lock_irqsave(&zone->lock, flags);
5377 pfn = start_pfn;
5378 while (pfn < end_pfn) {
5379 if (!pfn_valid(pfn)) {
5380 pfn++;
5381 continue;
5383 page = pfn_to_page(pfn);
5384 BUG_ON(page_count(page));
5385 BUG_ON(!PageBuddy(page));
5386 order = page_order(page);
5387 #ifdef CONFIG_DEBUG_VM
5388 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5389 pfn, 1 << order, end_pfn);
5390 #endif
5391 list_del(&page->lru);
5392 rmv_page_order(page);
5393 zone->free_area[order].nr_free--;
5394 __mod_zone_page_state(zone, NR_FREE_PAGES,
5395 - (1UL << order));
5396 for (i = 0; i < (1 << order); i++)
5397 SetPageReserved((page+i));
5398 pfn += (1 << order);
5400 spin_unlock_irqrestore(&zone->lock, flags);
5402 #endif
5404 #ifdef CONFIG_MEMORY_FAILURE
5405 bool is_free_buddy_page(struct page *page)
5407 struct zone *zone = page_zone(page);
5408 unsigned long pfn = page_to_pfn(page);
5409 unsigned long flags;
5410 int order;
5412 spin_lock_irqsave(&zone->lock, flags);
5413 for (order = 0; order < MAX_ORDER; order++) {
5414 struct page *page_head = page - (pfn & ((1 << order) - 1));
5416 if (PageBuddy(page_head) && page_order(page_head) >= order)
5417 break;
5419 spin_unlock_irqrestore(&zone->lock, flags);
5421 return order < MAX_ORDER;
5423 #endif
5425 static struct trace_print_flags pageflag_names[] = {
5426 {1UL << PG_locked, "locked" },
5427 {1UL << PG_error, "error" },
5428 {1UL << PG_referenced, "referenced" },
5429 {1UL << PG_uptodate, "uptodate" },
5430 {1UL << PG_dirty, "dirty" },
5431 {1UL << PG_lru, "lru" },
5432 {1UL << PG_active, "active" },
5433 {1UL << PG_slab, "slab" },
5434 {1UL << PG_owner_priv_1, "owner_priv_1" },
5435 {1UL << PG_arch_1, "arch_1" },
5436 {1UL << PG_reserved, "reserved" },
5437 {1UL << PG_private, "private" },
5438 {1UL << PG_private_2, "private_2" },
5439 {1UL << PG_writeback, "writeback" },
5440 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5441 {1UL << PG_head, "head" },
5442 {1UL << PG_tail, "tail" },
5443 #else
5444 {1UL << PG_compound, "compound" },
5445 #endif
5446 {1UL << PG_swapcache, "swapcache" },
5447 {1UL << PG_mappedtodisk, "mappedtodisk" },
5448 {1UL << PG_reclaim, "reclaim" },
5449 {1UL << PG_buddy, "buddy" },
5450 {1UL << PG_swapbacked, "swapbacked" },
5451 {1UL << PG_unevictable, "unevictable" },
5452 #ifdef CONFIG_MMU
5453 {1UL << PG_mlocked, "mlocked" },
5454 #endif
5455 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5456 {1UL << PG_uncached, "uncached" },
5457 #endif
5458 #ifdef CONFIG_MEMORY_FAILURE
5459 {1UL << PG_hwpoison, "hwpoison" },
5460 #endif
5461 {-1UL, NULL },
5464 static void dump_page_flags(unsigned long flags)
5466 const char *delim = "";
5467 unsigned long mask;
5468 int i;
5470 printk(KERN_ALERT "page flags: %#lx(", flags);
5472 /* remove zone id */
5473 flags &= (1UL << NR_PAGEFLAGS) - 1;
5475 for (i = 0; pageflag_names[i].name && flags; i++) {
5477 mask = pageflag_names[i].mask;
5478 if ((flags & mask) != mask)
5479 continue;
5481 flags &= ~mask;
5482 printk("%s%s", delim, pageflag_names[i].name);
5483 delim = "|";
5486 /* check for left over flags */
5487 if (flags)
5488 printk("%s%#lx", delim, flags);
5490 printk(")\n");
5493 void dump_page(struct page *page)
5495 printk(KERN_ALERT
5496 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5497 page, page_count(page), page_mapcount(page),
5498 page->mapping, page->index);
5499 dump_page_flags(page->flags);