Btrfs: add a log of past tree roots
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / disk-io.c
bloba61f8a6cf2191cd07e5fa87bdf3394c77752257c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
99 u64 bio_offset;
100 struct btrfs_work work;
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
128 # error
129 # endif
131 static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136 } btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
150 void __init btrfs_init_lockdep(void)
152 int i, j;
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
167 struct btrfs_lockdep_keyset *ks;
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
180 #endif
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
186 static struct extent_map *btree_get_extent(struct inode *inode,
187 struct page *page, size_t pg_offset, u64 start, u64 len,
188 int create)
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
194 read_lock(&em_tree->lock);
195 em = lookup_extent_mapping(em_tree, start, len);
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
199 read_unlock(&em_tree->lock);
200 goto out;
202 read_unlock(&em_tree->lock);
204 em = alloc_extent_map();
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
209 em->start = 0;
210 em->len = (u64)-1;
211 em->block_len = (u64)-1;
212 em->block_start = 0;
213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215 write_lock(&em_tree->lock);
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
221 free_extent_map(em);
222 em = lookup_extent_mapping(em_tree, start, len);
223 if (em) {
224 ret = 0;
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
228 ret = -EIO;
230 } else if (ret) {
231 free_extent_map(em);
232 em = NULL;
234 write_unlock(&em_tree->lock);
236 if (ret)
237 em = ERR_PTR(ret);
238 out:
239 return em;
242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 return crc32c(seed, data, len);
247 void btrfs_csum_final(u32 crc, char *result)
249 put_unaligned_le32(~crc, result);
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
260 char *result = NULL;
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
269 unsigned long inline_result;
271 len = buf->len - offset;
272 while (len > 0) {
273 err = map_private_extent_buffer(buf, offset, 32,
274 &kaddr, &map_start, &map_len);
275 if (err)
276 return 1;
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
291 btrfs_csum_final(crc, result);
293 if (verify) {
294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
295 u32 val;
296 u32 found = 0;
297 memcpy(&found, result, csum_size);
299 read_extent_buffer(buf, &val, 0, csum_size);
300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
307 kfree(result);
308 return 1;
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
313 if (result != (char *)&inline_result)
314 kfree(result);
315 return 0;
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid)
327 struct extent_state *cached_state = NULL;
328 int ret;
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 0, &cached_state, GFP_NOFS);
335 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
345 ret = 1;
346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
347 out:
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
350 return ret;
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
359 u64 start, u64 parent_transid)
361 struct extent_io_tree *io_tree;
362 int ret;
363 int num_copies = 0;
364 int mirror_num = 0;
366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368 while (1) {
369 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
370 btree_get_extent, mirror_num);
371 if (!ret &&
372 !verify_parent_transid(io_tree, eb, parent_transid))
373 return ret;
376 * This buffer's crc is fine, but its contents are corrupted, so
377 * there is no reason to read the other copies, they won't be
378 * any less wrong.
380 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
381 return ret;
383 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
384 eb->start, eb->len);
385 if (num_copies == 1)
386 return ret;
388 mirror_num++;
389 if (mirror_num > num_copies)
390 return ret;
392 return -EIO;
396 * checksum a dirty tree block before IO. This has extra checks to make sure
397 * we only fill in the checksum field in the first page of a multi-page block
400 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
402 struct extent_io_tree *tree;
403 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
404 u64 found_start;
405 unsigned long len;
406 struct extent_buffer *eb;
407 int ret;
409 tree = &BTRFS_I(page->mapping->host)->io_tree;
411 if (page->private == EXTENT_PAGE_PRIVATE) {
412 WARN_ON(1);
413 goto out;
415 if (!page->private) {
416 WARN_ON(1);
417 goto out;
419 len = page->private >> 2;
420 WARN_ON(len == 0);
422 eb = alloc_extent_buffer(tree, start, len, page);
423 if (eb == NULL) {
424 WARN_ON(1);
425 goto out;
427 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
428 btrfs_header_generation(eb));
429 BUG_ON(ret);
430 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
434 WARN_ON(1);
435 goto err;
437 if (eb->first_page != page) {
438 WARN_ON(1);
439 goto err;
441 if (!PageUptodate(page)) {
442 WARN_ON(1);
443 goto err;
445 csum_tree_block(root, eb, 0);
446 err:
447 free_extent_buffer(eb);
448 out:
449 return 0;
452 static int check_tree_block_fsid(struct btrfs_root *root,
453 struct extent_buffer *eb)
455 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
456 u8 fsid[BTRFS_UUID_SIZE];
457 int ret = 1;
459 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
460 BTRFS_FSID_SIZE);
461 while (fs_devices) {
462 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
463 ret = 0;
464 break;
466 fs_devices = fs_devices->seed;
468 return ret;
471 #define CORRUPT(reason, eb, root, slot) \
472 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
473 "root=%llu, slot=%d\n", reason, \
474 (unsigned long long)btrfs_header_bytenr(eb), \
475 (unsigned long long)root->objectid, slot)
477 static noinline int check_leaf(struct btrfs_root *root,
478 struct extent_buffer *leaf)
480 struct btrfs_key key;
481 struct btrfs_key leaf_key;
482 u32 nritems = btrfs_header_nritems(leaf);
483 int slot;
485 if (nritems == 0)
486 return 0;
488 /* Check the 0 item */
489 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
490 BTRFS_LEAF_DATA_SIZE(root)) {
491 CORRUPT("invalid item offset size pair", leaf, root, 0);
492 return -EIO;
496 * Check to make sure each items keys are in the correct order and their
497 * offsets make sense. We only have to loop through nritems-1 because
498 * we check the current slot against the next slot, which verifies the
499 * next slot's offset+size makes sense and that the current's slot
500 * offset is correct.
502 for (slot = 0; slot < nritems - 1; slot++) {
503 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
504 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506 /* Make sure the keys are in the right order */
507 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
508 CORRUPT("bad key order", leaf, root, slot);
509 return -EIO;
513 * Make sure the offset and ends are right, remember that the
514 * item data starts at the end of the leaf and grows towards the
515 * front.
517 if (btrfs_item_offset_nr(leaf, slot) !=
518 btrfs_item_end_nr(leaf, slot + 1)) {
519 CORRUPT("slot offset bad", leaf, root, slot);
520 return -EIO;
524 * Check to make sure that we don't point outside of the leaf,
525 * just incase all the items are consistent to eachother, but
526 * all point outside of the leaf.
528 if (btrfs_item_end_nr(leaf, slot) >
529 BTRFS_LEAF_DATA_SIZE(root)) {
530 CORRUPT("slot end outside of leaf", leaf, root, slot);
531 return -EIO;
535 return 0;
538 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
539 struct extent_state *state)
541 struct extent_io_tree *tree;
542 u64 found_start;
543 int found_level;
544 unsigned long len;
545 struct extent_buffer *eb;
546 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
547 int ret = 0;
549 tree = &BTRFS_I(page->mapping->host)->io_tree;
550 if (page->private == EXTENT_PAGE_PRIVATE)
551 goto out;
552 if (!page->private)
553 goto out;
555 len = page->private >> 2;
556 WARN_ON(len == 0);
558 eb = alloc_extent_buffer(tree, start, len, page);
559 if (eb == NULL) {
560 ret = -EIO;
561 goto out;
564 found_start = btrfs_header_bytenr(eb);
565 if (found_start != start) {
566 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
567 "%llu %llu\n",
568 (unsigned long long)found_start,
569 (unsigned long long)eb->start);
570 ret = -EIO;
571 goto err;
573 if (eb->first_page != page) {
574 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
575 eb->first_page->index, page->index);
576 WARN_ON(1);
577 ret = -EIO;
578 goto err;
580 if (check_tree_block_fsid(root, eb)) {
581 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
582 (unsigned long long)eb->start);
583 ret = -EIO;
584 goto err;
586 found_level = btrfs_header_level(eb);
588 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
589 eb, found_level);
591 ret = csum_tree_block(root, eb, 1);
592 if (ret) {
593 ret = -EIO;
594 goto err;
598 * If this is a leaf block and it is corrupt, set the corrupt bit so
599 * that we don't try and read the other copies of this block, just
600 * return -EIO.
602 if (found_level == 0 && check_leaf(root, eb)) {
603 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
604 ret = -EIO;
607 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
608 end = eb->start + end - 1;
609 err:
610 free_extent_buffer(eb);
611 out:
612 return ret;
615 static void end_workqueue_bio(struct bio *bio, int err)
617 struct end_io_wq *end_io_wq = bio->bi_private;
618 struct btrfs_fs_info *fs_info;
620 fs_info = end_io_wq->info;
621 end_io_wq->error = err;
622 end_io_wq->work.func = end_workqueue_fn;
623 end_io_wq->work.flags = 0;
625 if (bio->bi_rw & REQ_WRITE) {
626 if (end_io_wq->metadata == 1)
627 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
628 &end_io_wq->work);
629 else if (end_io_wq->metadata == 2)
630 btrfs_queue_worker(&fs_info->endio_freespace_worker,
631 &end_io_wq->work);
632 else
633 btrfs_queue_worker(&fs_info->endio_write_workers,
634 &end_io_wq->work);
635 } else {
636 if (end_io_wq->metadata)
637 btrfs_queue_worker(&fs_info->endio_meta_workers,
638 &end_io_wq->work);
639 else
640 btrfs_queue_worker(&fs_info->endio_workers,
641 &end_io_wq->work);
646 * For the metadata arg you want
648 * 0 - if data
649 * 1 - if normal metadta
650 * 2 - if writing to the free space cache area
652 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
653 int metadata)
655 struct end_io_wq *end_io_wq;
656 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
657 if (!end_io_wq)
658 return -ENOMEM;
660 end_io_wq->private = bio->bi_private;
661 end_io_wq->end_io = bio->bi_end_io;
662 end_io_wq->info = info;
663 end_io_wq->error = 0;
664 end_io_wq->bio = bio;
665 end_io_wq->metadata = metadata;
667 bio->bi_private = end_io_wq;
668 bio->bi_end_io = end_workqueue_bio;
669 return 0;
672 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
674 unsigned long limit = min_t(unsigned long,
675 info->workers.max_workers,
676 info->fs_devices->open_devices);
677 return 256 * limit;
680 static void run_one_async_start(struct btrfs_work *work)
682 struct async_submit_bio *async;
684 async = container_of(work, struct async_submit_bio, work);
685 async->submit_bio_start(async->inode, async->rw, async->bio,
686 async->mirror_num, async->bio_flags,
687 async->bio_offset);
690 static void run_one_async_done(struct btrfs_work *work)
692 struct btrfs_fs_info *fs_info;
693 struct async_submit_bio *async;
694 int limit;
696 async = container_of(work, struct async_submit_bio, work);
697 fs_info = BTRFS_I(async->inode)->root->fs_info;
699 limit = btrfs_async_submit_limit(fs_info);
700 limit = limit * 2 / 3;
702 atomic_dec(&fs_info->nr_async_submits);
704 if (atomic_read(&fs_info->nr_async_submits) < limit &&
705 waitqueue_active(&fs_info->async_submit_wait))
706 wake_up(&fs_info->async_submit_wait);
708 async->submit_bio_done(async->inode, async->rw, async->bio,
709 async->mirror_num, async->bio_flags,
710 async->bio_offset);
713 static void run_one_async_free(struct btrfs_work *work)
715 struct async_submit_bio *async;
717 async = container_of(work, struct async_submit_bio, work);
718 kfree(async);
721 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
722 int rw, struct bio *bio, int mirror_num,
723 unsigned long bio_flags,
724 u64 bio_offset,
725 extent_submit_bio_hook_t *submit_bio_start,
726 extent_submit_bio_hook_t *submit_bio_done)
728 struct async_submit_bio *async;
730 async = kmalloc(sizeof(*async), GFP_NOFS);
731 if (!async)
732 return -ENOMEM;
734 async->inode = inode;
735 async->rw = rw;
736 async->bio = bio;
737 async->mirror_num = mirror_num;
738 async->submit_bio_start = submit_bio_start;
739 async->submit_bio_done = submit_bio_done;
741 async->work.func = run_one_async_start;
742 async->work.ordered_func = run_one_async_done;
743 async->work.ordered_free = run_one_async_free;
745 async->work.flags = 0;
746 async->bio_flags = bio_flags;
747 async->bio_offset = bio_offset;
749 atomic_inc(&fs_info->nr_async_submits);
751 if (rw & REQ_SYNC)
752 btrfs_set_work_high_prio(&async->work);
754 btrfs_queue_worker(&fs_info->workers, &async->work);
756 while (atomic_read(&fs_info->async_submit_draining) &&
757 atomic_read(&fs_info->nr_async_submits)) {
758 wait_event(fs_info->async_submit_wait,
759 (atomic_read(&fs_info->nr_async_submits) == 0));
762 return 0;
765 static int btree_csum_one_bio(struct bio *bio)
767 struct bio_vec *bvec = bio->bi_io_vec;
768 int bio_index = 0;
769 struct btrfs_root *root;
771 WARN_ON(bio->bi_vcnt <= 0);
772 while (bio_index < bio->bi_vcnt) {
773 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
774 csum_dirty_buffer(root, bvec->bv_page);
775 bio_index++;
776 bvec++;
778 return 0;
781 static int __btree_submit_bio_start(struct inode *inode, int rw,
782 struct bio *bio, int mirror_num,
783 unsigned long bio_flags,
784 u64 bio_offset)
787 * when we're called for a write, we're already in the async
788 * submission context. Just jump into btrfs_map_bio
790 btree_csum_one_bio(bio);
791 return 0;
794 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
795 int mirror_num, unsigned long bio_flags,
796 u64 bio_offset)
799 * when we're called for a write, we're already in the async
800 * submission context. Just jump into btrfs_map_bio
802 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
805 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
806 int mirror_num, unsigned long bio_flags,
807 u64 bio_offset)
809 int ret;
811 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
812 bio, 1);
813 BUG_ON(ret);
815 if (!(rw & REQ_WRITE)) {
817 * called for a read, do the setup so that checksum validation
818 * can happen in the async kernel threads
820 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
821 mirror_num, 0);
825 * kthread helpers are used to submit writes so that checksumming
826 * can happen in parallel across all CPUs
828 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
829 inode, rw, bio, mirror_num, 0,
830 bio_offset,
831 __btree_submit_bio_start,
832 __btree_submit_bio_done);
835 #ifdef CONFIG_MIGRATION
836 static int btree_migratepage(struct address_space *mapping,
837 struct page *newpage, struct page *page)
840 * we can't safely write a btree page from here,
841 * we haven't done the locking hook
843 if (PageDirty(page))
844 return -EAGAIN;
846 * Buffers may be managed in a filesystem specific way.
847 * We must have no buffers or drop them.
849 if (page_has_private(page) &&
850 !try_to_release_page(page, GFP_KERNEL))
851 return -EAGAIN;
852 return migrate_page(mapping, newpage, page);
854 #endif
856 static int btree_writepage(struct page *page, struct writeback_control *wbc)
858 struct extent_io_tree *tree;
859 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
860 struct extent_buffer *eb;
861 int was_dirty;
863 tree = &BTRFS_I(page->mapping->host)->io_tree;
864 if (!(current->flags & PF_MEMALLOC)) {
865 return extent_write_full_page(tree, page,
866 btree_get_extent, wbc);
869 redirty_page_for_writepage(wbc, page);
870 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
871 WARN_ON(!eb);
873 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
874 if (!was_dirty) {
875 spin_lock(&root->fs_info->delalloc_lock);
876 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
877 spin_unlock(&root->fs_info->delalloc_lock);
879 free_extent_buffer(eb);
881 unlock_page(page);
882 return 0;
885 static int btree_writepages(struct address_space *mapping,
886 struct writeback_control *wbc)
888 struct extent_io_tree *tree;
889 tree = &BTRFS_I(mapping->host)->io_tree;
890 if (wbc->sync_mode == WB_SYNC_NONE) {
891 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
892 u64 num_dirty;
893 unsigned long thresh = 32 * 1024 * 1024;
895 if (wbc->for_kupdate)
896 return 0;
898 /* this is a bit racy, but that's ok */
899 num_dirty = root->fs_info->dirty_metadata_bytes;
900 if (num_dirty < thresh)
901 return 0;
903 return extent_writepages(tree, mapping, btree_get_extent, wbc);
906 static int btree_readpage(struct file *file, struct page *page)
908 struct extent_io_tree *tree;
909 tree = &BTRFS_I(page->mapping->host)->io_tree;
910 return extent_read_full_page(tree, page, btree_get_extent);
913 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
915 struct extent_io_tree *tree;
916 struct extent_map_tree *map;
917 int ret;
919 if (PageWriteback(page) || PageDirty(page))
920 return 0;
922 tree = &BTRFS_I(page->mapping->host)->io_tree;
923 map = &BTRFS_I(page->mapping->host)->extent_tree;
925 ret = try_release_extent_state(map, tree, page, gfp_flags);
926 if (!ret)
927 return 0;
929 ret = try_release_extent_buffer(tree, page);
930 if (ret == 1) {
931 ClearPagePrivate(page);
932 set_page_private(page, 0);
933 page_cache_release(page);
936 return ret;
939 static void btree_invalidatepage(struct page *page, unsigned long offset)
941 struct extent_io_tree *tree;
942 tree = &BTRFS_I(page->mapping->host)->io_tree;
943 extent_invalidatepage(tree, page, offset);
944 btree_releasepage(page, GFP_NOFS);
945 if (PagePrivate(page)) {
946 printk(KERN_WARNING "btrfs warning page private not zero "
947 "on page %llu\n", (unsigned long long)page_offset(page));
948 ClearPagePrivate(page);
949 set_page_private(page, 0);
950 page_cache_release(page);
954 static const struct address_space_operations btree_aops = {
955 .readpage = btree_readpage,
956 .writepage = btree_writepage,
957 .writepages = btree_writepages,
958 .releasepage = btree_releasepage,
959 .invalidatepage = btree_invalidatepage,
960 #ifdef CONFIG_MIGRATION
961 .migratepage = btree_migratepage,
962 #endif
965 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
966 u64 parent_transid)
968 struct extent_buffer *buf = NULL;
969 struct inode *btree_inode = root->fs_info->btree_inode;
970 int ret = 0;
972 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
973 if (!buf)
974 return 0;
975 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
976 buf, 0, 0, btree_get_extent, 0);
977 free_extent_buffer(buf);
978 return ret;
981 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
982 u64 bytenr, u32 blocksize)
984 struct inode *btree_inode = root->fs_info->btree_inode;
985 struct extent_buffer *eb;
986 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
987 bytenr, blocksize);
988 return eb;
991 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
992 u64 bytenr, u32 blocksize)
994 struct inode *btree_inode = root->fs_info->btree_inode;
995 struct extent_buffer *eb;
997 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
998 bytenr, blocksize, NULL);
999 return eb;
1003 int btrfs_write_tree_block(struct extent_buffer *buf)
1005 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1006 buf->start + buf->len - 1);
1009 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1011 return filemap_fdatawait_range(buf->first_page->mapping,
1012 buf->start, buf->start + buf->len - 1);
1015 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1016 u32 blocksize, u64 parent_transid)
1018 struct extent_buffer *buf = NULL;
1019 int ret;
1021 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1022 if (!buf)
1023 return NULL;
1025 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1027 if (ret == 0)
1028 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1029 return buf;
1033 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1034 struct extent_buffer *buf)
1036 struct inode *btree_inode = root->fs_info->btree_inode;
1037 if (btrfs_header_generation(buf) ==
1038 root->fs_info->running_transaction->transid) {
1039 btrfs_assert_tree_locked(buf);
1041 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1042 spin_lock(&root->fs_info->delalloc_lock);
1043 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1044 root->fs_info->dirty_metadata_bytes -= buf->len;
1045 else
1046 WARN_ON(1);
1047 spin_unlock(&root->fs_info->delalloc_lock);
1050 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1051 btrfs_set_lock_blocking(buf);
1052 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1053 buf);
1055 return 0;
1058 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1059 u32 stripesize, struct btrfs_root *root,
1060 struct btrfs_fs_info *fs_info,
1061 u64 objectid)
1063 root->node = NULL;
1064 root->commit_root = NULL;
1065 root->sectorsize = sectorsize;
1066 root->nodesize = nodesize;
1067 root->leafsize = leafsize;
1068 root->stripesize = stripesize;
1069 root->ref_cows = 0;
1070 root->track_dirty = 0;
1071 root->in_radix = 0;
1072 root->orphan_item_inserted = 0;
1073 root->orphan_cleanup_state = 0;
1075 root->fs_info = fs_info;
1076 root->objectid = objectid;
1077 root->last_trans = 0;
1078 root->highest_objectid = 0;
1079 root->name = NULL;
1080 root->inode_tree = RB_ROOT;
1081 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1082 root->block_rsv = NULL;
1083 root->orphan_block_rsv = NULL;
1085 INIT_LIST_HEAD(&root->dirty_list);
1086 INIT_LIST_HEAD(&root->orphan_list);
1087 INIT_LIST_HEAD(&root->root_list);
1088 spin_lock_init(&root->orphan_lock);
1089 spin_lock_init(&root->inode_lock);
1090 spin_lock_init(&root->accounting_lock);
1091 mutex_init(&root->objectid_mutex);
1092 mutex_init(&root->log_mutex);
1093 init_waitqueue_head(&root->log_writer_wait);
1094 init_waitqueue_head(&root->log_commit_wait[0]);
1095 init_waitqueue_head(&root->log_commit_wait[1]);
1096 atomic_set(&root->log_commit[0], 0);
1097 atomic_set(&root->log_commit[1], 0);
1098 atomic_set(&root->log_writers, 0);
1099 root->log_batch = 0;
1100 root->log_transid = 0;
1101 root->last_log_commit = 0;
1102 extent_io_tree_init(&root->dirty_log_pages,
1103 fs_info->btree_inode->i_mapping);
1105 memset(&root->root_key, 0, sizeof(root->root_key));
1106 memset(&root->root_item, 0, sizeof(root->root_item));
1107 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1108 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1109 root->defrag_trans_start = fs_info->generation;
1110 init_completion(&root->kobj_unregister);
1111 root->defrag_running = 0;
1112 root->root_key.objectid = objectid;
1113 root->anon_dev = 0;
1114 return 0;
1117 static int find_and_setup_root(struct btrfs_root *tree_root,
1118 struct btrfs_fs_info *fs_info,
1119 u64 objectid,
1120 struct btrfs_root *root)
1122 int ret;
1123 u32 blocksize;
1124 u64 generation;
1126 __setup_root(tree_root->nodesize, tree_root->leafsize,
1127 tree_root->sectorsize, tree_root->stripesize,
1128 root, fs_info, objectid);
1129 ret = btrfs_find_last_root(tree_root, objectid,
1130 &root->root_item, &root->root_key);
1131 if (ret > 0)
1132 return -ENOENT;
1133 BUG_ON(ret);
1135 generation = btrfs_root_generation(&root->root_item);
1136 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1137 root->commit_root = NULL;
1138 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1139 blocksize, generation);
1140 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1141 free_extent_buffer(root->node);
1142 root->node = NULL;
1143 return -EIO;
1145 root->commit_root = btrfs_root_node(root);
1146 return 0;
1149 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1150 struct btrfs_fs_info *fs_info)
1152 struct btrfs_root *root;
1153 struct btrfs_root *tree_root = fs_info->tree_root;
1154 struct extent_buffer *leaf;
1156 root = kzalloc(sizeof(*root), GFP_NOFS);
1157 if (!root)
1158 return ERR_PTR(-ENOMEM);
1160 __setup_root(tree_root->nodesize, tree_root->leafsize,
1161 tree_root->sectorsize, tree_root->stripesize,
1162 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1164 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1165 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1166 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1168 * log trees do not get reference counted because they go away
1169 * before a real commit is actually done. They do store pointers
1170 * to file data extents, and those reference counts still get
1171 * updated (along with back refs to the log tree).
1173 root->ref_cows = 0;
1175 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1176 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1177 if (IS_ERR(leaf)) {
1178 kfree(root);
1179 return ERR_CAST(leaf);
1182 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1183 btrfs_set_header_bytenr(leaf, leaf->start);
1184 btrfs_set_header_generation(leaf, trans->transid);
1185 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1186 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1187 root->node = leaf;
1189 write_extent_buffer(root->node, root->fs_info->fsid,
1190 (unsigned long)btrfs_header_fsid(root->node),
1191 BTRFS_FSID_SIZE);
1192 btrfs_mark_buffer_dirty(root->node);
1193 btrfs_tree_unlock(root->node);
1194 return root;
1197 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1198 struct btrfs_fs_info *fs_info)
1200 struct btrfs_root *log_root;
1202 log_root = alloc_log_tree(trans, fs_info);
1203 if (IS_ERR(log_root))
1204 return PTR_ERR(log_root);
1205 WARN_ON(fs_info->log_root_tree);
1206 fs_info->log_root_tree = log_root;
1207 return 0;
1210 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root)
1213 struct btrfs_root *log_root;
1214 struct btrfs_inode_item *inode_item;
1216 log_root = alloc_log_tree(trans, root->fs_info);
1217 if (IS_ERR(log_root))
1218 return PTR_ERR(log_root);
1220 log_root->last_trans = trans->transid;
1221 log_root->root_key.offset = root->root_key.objectid;
1223 inode_item = &log_root->root_item.inode;
1224 inode_item->generation = cpu_to_le64(1);
1225 inode_item->size = cpu_to_le64(3);
1226 inode_item->nlink = cpu_to_le32(1);
1227 inode_item->nbytes = cpu_to_le64(root->leafsize);
1228 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1230 btrfs_set_root_node(&log_root->root_item, log_root->node);
1232 WARN_ON(root->log_root);
1233 root->log_root = log_root;
1234 root->log_transid = 0;
1235 root->last_log_commit = 0;
1236 return 0;
1239 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1240 struct btrfs_key *location)
1242 struct btrfs_root *root;
1243 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1244 struct btrfs_path *path;
1245 struct extent_buffer *l;
1246 u64 generation;
1247 u32 blocksize;
1248 int ret = 0;
1250 root = kzalloc(sizeof(*root), GFP_NOFS);
1251 if (!root)
1252 return ERR_PTR(-ENOMEM);
1253 if (location->offset == (u64)-1) {
1254 ret = find_and_setup_root(tree_root, fs_info,
1255 location->objectid, root);
1256 if (ret) {
1257 kfree(root);
1258 return ERR_PTR(ret);
1260 goto out;
1263 __setup_root(tree_root->nodesize, tree_root->leafsize,
1264 tree_root->sectorsize, tree_root->stripesize,
1265 root, fs_info, location->objectid);
1267 path = btrfs_alloc_path();
1268 if (!path) {
1269 kfree(root);
1270 return ERR_PTR(-ENOMEM);
1272 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1273 if (ret == 0) {
1274 l = path->nodes[0];
1275 read_extent_buffer(l, &root->root_item,
1276 btrfs_item_ptr_offset(l, path->slots[0]),
1277 sizeof(root->root_item));
1278 memcpy(&root->root_key, location, sizeof(*location));
1280 btrfs_free_path(path);
1281 if (ret) {
1282 kfree(root);
1283 if (ret > 0)
1284 ret = -ENOENT;
1285 return ERR_PTR(ret);
1288 generation = btrfs_root_generation(&root->root_item);
1289 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1290 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1291 blocksize, generation);
1292 root->commit_root = btrfs_root_node(root);
1293 BUG_ON(!root->node);
1294 out:
1295 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1296 root->ref_cows = 1;
1297 btrfs_check_and_init_root_item(&root->root_item);
1300 return root;
1303 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1304 struct btrfs_key *location)
1306 struct btrfs_root *root;
1307 int ret;
1309 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1310 return fs_info->tree_root;
1311 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1312 return fs_info->extent_root;
1313 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1314 return fs_info->chunk_root;
1315 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1316 return fs_info->dev_root;
1317 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1318 return fs_info->csum_root;
1319 again:
1320 spin_lock(&fs_info->fs_roots_radix_lock);
1321 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1322 (unsigned long)location->objectid);
1323 spin_unlock(&fs_info->fs_roots_radix_lock);
1324 if (root)
1325 return root;
1327 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1328 if (IS_ERR(root))
1329 return root;
1331 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1332 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1333 GFP_NOFS);
1334 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1335 ret = -ENOMEM;
1336 goto fail;
1339 btrfs_init_free_ino_ctl(root);
1340 mutex_init(&root->fs_commit_mutex);
1341 spin_lock_init(&root->cache_lock);
1342 init_waitqueue_head(&root->cache_wait);
1344 ret = get_anon_bdev(&root->anon_dev);
1345 if (ret)
1346 goto fail;
1348 if (btrfs_root_refs(&root->root_item) == 0) {
1349 ret = -ENOENT;
1350 goto fail;
1353 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1354 if (ret < 0)
1355 goto fail;
1356 if (ret == 0)
1357 root->orphan_item_inserted = 1;
1359 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1360 if (ret)
1361 goto fail;
1363 spin_lock(&fs_info->fs_roots_radix_lock);
1364 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1365 (unsigned long)root->root_key.objectid,
1366 root);
1367 if (ret == 0)
1368 root->in_radix = 1;
1370 spin_unlock(&fs_info->fs_roots_radix_lock);
1371 radix_tree_preload_end();
1372 if (ret) {
1373 if (ret == -EEXIST) {
1374 free_fs_root(root);
1375 goto again;
1377 goto fail;
1380 ret = btrfs_find_dead_roots(fs_info->tree_root,
1381 root->root_key.objectid);
1382 WARN_ON(ret);
1383 return root;
1384 fail:
1385 free_fs_root(root);
1386 return ERR_PTR(ret);
1389 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1391 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1392 int ret = 0;
1393 struct btrfs_device *device;
1394 struct backing_dev_info *bdi;
1396 rcu_read_lock();
1397 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1398 if (!device->bdev)
1399 continue;
1400 bdi = blk_get_backing_dev_info(device->bdev);
1401 if (bdi && bdi_congested(bdi, bdi_bits)) {
1402 ret = 1;
1403 break;
1406 rcu_read_unlock();
1407 return ret;
1411 * If this fails, caller must call bdi_destroy() to get rid of the
1412 * bdi again.
1414 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1416 int err;
1418 bdi->capabilities = BDI_CAP_MAP_COPY;
1419 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1420 if (err)
1421 return err;
1423 bdi->ra_pages = default_backing_dev_info.ra_pages;
1424 bdi->congested_fn = btrfs_congested_fn;
1425 bdi->congested_data = info;
1426 return 0;
1429 static int bio_ready_for_csum(struct bio *bio)
1431 u64 length = 0;
1432 u64 buf_len = 0;
1433 u64 start = 0;
1434 struct page *page;
1435 struct extent_io_tree *io_tree = NULL;
1436 struct bio_vec *bvec;
1437 int i;
1438 int ret;
1440 bio_for_each_segment(bvec, bio, i) {
1441 page = bvec->bv_page;
1442 if (page->private == EXTENT_PAGE_PRIVATE) {
1443 length += bvec->bv_len;
1444 continue;
1446 if (!page->private) {
1447 length += bvec->bv_len;
1448 continue;
1450 length = bvec->bv_len;
1451 buf_len = page->private >> 2;
1452 start = page_offset(page) + bvec->bv_offset;
1453 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1455 /* are we fully contained in this bio? */
1456 if (buf_len <= length)
1457 return 1;
1459 ret = extent_range_uptodate(io_tree, start + length,
1460 start + buf_len - 1);
1461 return ret;
1465 * called by the kthread helper functions to finally call the bio end_io
1466 * functions. This is where read checksum verification actually happens
1468 static void end_workqueue_fn(struct btrfs_work *work)
1470 struct bio *bio;
1471 struct end_io_wq *end_io_wq;
1472 struct btrfs_fs_info *fs_info;
1473 int error;
1475 end_io_wq = container_of(work, struct end_io_wq, work);
1476 bio = end_io_wq->bio;
1477 fs_info = end_io_wq->info;
1479 /* metadata bio reads are special because the whole tree block must
1480 * be checksummed at once. This makes sure the entire block is in
1481 * ram and up to date before trying to verify things. For
1482 * blocksize <= pagesize, it is basically a noop
1484 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1485 !bio_ready_for_csum(bio)) {
1486 btrfs_queue_worker(&fs_info->endio_meta_workers,
1487 &end_io_wq->work);
1488 return;
1490 error = end_io_wq->error;
1491 bio->bi_private = end_io_wq->private;
1492 bio->bi_end_io = end_io_wq->end_io;
1493 kfree(end_io_wq);
1494 bio_endio(bio, error);
1497 static int cleaner_kthread(void *arg)
1499 struct btrfs_root *root = arg;
1501 do {
1502 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1504 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1505 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1506 btrfs_run_delayed_iputs(root);
1507 btrfs_clean_old_snapshots(root);
1508 mutex_unlock(&root->fs_info->cleaner_mutex);
1509 btrfs_run_defrag_inodes(root->fs_info);
1512 if (freezing(current)) {
1513 refrigerator();
1514 } else {
1515 set_current_state(TASK_INTERRUPTIBLE);
1516 if (!kthread_should_stop())
1517 schedule();
1518 __set_current_state(TASK_RUNNING);
1520 } while (!kthread_should_stop());
1521 return 0;
1524 static int transaction_kthread(void *arg)
1526 struct btrfs_root *root = arg;
1527 struct btrfs_trans_handle *trans;
1528 struct btrfs_transaction *cur;
1529 u64 transid;
1530 unsigned long now;
1531 unsigned long delay;
1532 int ret;
1534 do {
1535 delay = HZ * 30;
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1539 spin_lock(&root->fs_info->trans_lock);
1540 cur = root->fs_info->running_transaction;
1541 if (!cur) {
1542 spin_unlock(&root->fs_info->trans_lock);
1543 goto sleep;
1546 now = get_seconds();
1547 if (!cur->blocked &&
1548 (now < cur->start_time || now - cur->start_time < 30)) {
1549 spin_unlock(&root->fs_info->trans_lock);
1550 delay = HZ * 5;
1551 goto sleep;
1553 transid = cur->transid;
1554 spin_unlock(&root->fs_info->trans_lock);
1556 trans = btrfs_join_transaction(root);
1557 BUG_ON(IS_ERR(trans));
1558 if (transid == trans->transid) {
1559 ret = btrfs_commit_transaction(trans, root);
1560 BUG_ON(ret);
1561 } else {
1562 btrfs_end_transaction(trans, root);
1564 sleep:
1565 wake_up_process(root->fs_info->cleaner_kthread);
1566 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1568 if (freezing(current)) {
1569 refrigerator();
1570 } else {
1571 set_current_state(TASK_INTERRUPTIBLE);
1572 if (!kthread_should_stop() &&
1573 !btrfs_transaction_blocked(root->fs_info))
1574 schedule_timeout(delay);
1575 __set_current_state(TASK_RUNNING);
1577 } while (!kthread_should_stop());
1578 return 0;
1582 * this will find the highest generation in the array of
1583 * root backups. The index of the highest array is returned,
1584 * or -1 if we can't find anything.
1586 * We check to make sure the array is valid by comparing the
1587 * generation of the latest root in the array with the generation
1588 * in the super block. If they don't match we pitch it.
1590 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1592 u64 cur;
1593 int newest_index = -1;
1594 struct btrfs_root_backup *root_backup;
1595 int i;
1597 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1598 root_backup = info->super_copy->super_roots + i;
1599 cur = btrfs_backup_tree_root_gen(root_backup);
1600 if (cur == newest_gen)
1601 newest_index = i;
1604 /* check to see if we actually wrapped around */
1605 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1606 root_backup = info->super_copy->super_roots;
1607 cur = btrfs_backup_tree_root_gen(root_backup);
1608 if (cur == newest_gen)
1609 newest_index = 0;
1611 return newest_index;
1616 * find the oldest backup so we know where to store new entries
1617 * in the backup array. This will set the backup_root_index
1618 * field in the fs_info struct
1620 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1621 u64 newest_gen)
1623 int newest_index = -1;
1625 newest_index = find_newest_super_backup(info, newest_gen);
1626 /* if there was garbage in there, just move along */
1627 if (newest_index == -1) {
1628 info->backup_root_index = 0;
1629 } else {
1630 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1635 * copy all the root pointers into the super backup array.
1636 * this will bump the backup pointer by one when it is
1637 * done
1639 static void backup_super_roots(struct btrfs_fs_info *info)
1641 int next_backup;
1642 struct btrfs_root_backup *root_backup;
1643 int last_backup;
1645 next_backup = info->backup_root_index;
1646 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1647 BTRFS_NUM_BACKUP_ROOTS;
1650 * just overwrite the last backup if we're at the same generation
1651 * this happens only at umount
1653 root_backup = info->super_for_commit->super_roots + last_backup;
1654 if (btrfs_backup_tree_root_gen(root_backup) ==
1655 btrfs_header_generation(info->tree_root->node))
1656 next_backup = last_backup;
1658 root_backup = info->super_for_commit->super_roots + next_backup;
1661 * make sure all of our padding and empty slots get zero filled
1662 * regardless of which ones we use today
1664 memset(root_backup, 0, sizeof(*root_backup));
1666 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1668 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1669 btrfs_set_backup_tree_root_gen(root_backup,
1670 btrfs_header_generation(info->tree_root->node));
1672 btrfs_set_backup_tree_root_level(root_backup,
1673 btrfs_header_level(info->tree_root->node));
1675 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1676 btrfs_set_backup_chunk_root_gen(root_backup,
1677 btrfs_header_generation(info->chunk_root->node));
1678 btrfs_set_backup_chunk_root_level(root_backup,
1679 btrfs_header_level(info->chunk_root->node));
1681 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1682 btrfs_set_backup_extent_root_gen(root_backup,
1683 btrfs_header_generation(info->extent_root->node));
1684 btrfs_set_backup_extent_root_level(root_backup,
1685 btrfs_header_level(info->extent_root->node));
1687 btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start);
1688 btrfs_set_backup_fs_root_gen(root_backup,
1689 btrfs_header_generation(info->fs_root->node));
1690 btrfs_set_backup_fs_root_level(root_backup,
1691 btrfs_header_level(info->fs_root->node));
1693 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1694 btrfs_set_backup_dev_root_gen(root_backup,
1695 btrfs_header_generation(info->dev_root->node));
1696 btrfs_set_backup_dev_root_level(root_backup,
1697 btrfs_header_level(info->dev_root->node));
1699 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1700 btrfs_set_backup_csum_root_gen(root_backup,
1701 btrfs_header_generation(info->csum_root->node));
1702 btrfs_set_backup_csum_root_level(root_backup,
1703 btrfs_header_level(info->csum_root->node));
1705 btrfs_set_backup_total_bytes(root_backup,
1706 btrfs_super_total_bytes(info->super_copy));
1707 btrfs_set_backup_bytes_used(root_backup,
1708 btrfs_super_bytes_used(info->super_copy));
1709 btrfs_set_backup_num_devices(root_backup,
1710 btrfs_super_num_devices(info->super_copy));
1713 * if we don't copy this out to the super_copy, it won't get remembered
1714 * for the next commit
1716 memcpy(&info->super_copy->super_roots,
1717 &info->super_for_commit->super_roots,
1718 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1722 * this copies info out of the root backup array and back into
1723 * the in-memory super block. It is meant to help iterate through
1724 * the array, so you send it the number of backups you've already
1725 * tried and the last backup index you used.
1727 * this returns -1 when it has tried all the backups
1729 static noinline int next_root_backup(struct btrfs_fs_info *info,
1730 struct btrfs_super_block *super,
1731 int *num_backups_tried, int *backup_index)
1733 struct btrfs_root_backup *root_backup;
1734 int newest = *backup_index;
1736 if (*num_backups_tried == 0) {
1737 u64 gen = btrfs_super_generation(super);
1739 newest = find_newest_super_backup(info, gen);
1740 if (newest == -1)
1741 return -1;
1743 *backup_index = newest;
1744 *num_backups_tried = 1;
1745 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1746 /* we've tried all the backups, all done */
1747 return -1;
1748 } else {
1749 /* jump to the next oldest backup */
1750 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1751 BTRFS_NUM_BACKUP_ROOTS;
1752 *backup_index = newest;
1753 *num_backups_tried += 1;
1755 root_backup = super->super_roots + newest;
1757 btrfs_set_super_generation(super,
1758 btrfs_backup_tree_root_gen(root_backup));
1759 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1760 btrfs_set_super_root_level(super,
1761 btrfs_backup_tree_root_level(root_backup));
1762 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1765 * fixme: the total bytes and num_devices need to match or we should
1766 * need a fsck
1768 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1769 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1770 return 0;
1773 /* helper to cleanup tree roots */
1774 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1776 free_extent_buffer(info->tree_root->node);
1777 free_extent_buffer(info->tree_root->commit_root);
1778 free_extent_buffer(info->dev_root->node);
1779 free_extent_buffer(info->dev_root->commit_root);
1780 free_extent_buffer(info->extent_root->node);
1781 free_extent_buffer(info->extent_root->commit_root);
1782 free_extent_buffer(info->csum_root->node);
1783 free_extent_buffer(info->csum_root->commit_root);
1785 info->tree_root->node = NULL;
1786 info->tree_root->commit_root = NULL;
1787 info->dev_root->node = NULL;
1788 info->dev_root->commit_root = NULL;
1789 info->extent_root->node = NULL;
1790 info->extent_root->commit_root = NULL;
1791 info->csum_root->node = NULL;
1792 info->csum_root->commit_root = NULL;
1794 if (chunk_root) {
1795 free_extent_buffer(info->chunk_root->node);
1796 free_extent_buffer(info->chunk_root->commit_root);
1797 info->chunk_root->node = NULL;
1798 info->chunk_root->commit_root = NULL;
1803 struct btrfs_root *open_ctree(struct super_block *sb,
1804 struct btrfs_fs_devices *fs_devices,
1805 char *options)
1807 u32 sectorsize;
1808 u32 nodesize;
1809 u32 leafsize;
1810 u32 blocksize;
1811 u32 stripesize;
1812 u64 generation;
1813 u64 features;
1814 struct btrfs_key location;
1815 struct buffer_head *bh;
1816 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1817 GFP_NOFS);
1818 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1819 GFP_NOFS);
1820 struct btrfs_root *tree_root = btrfs_sb(sb);
1821 struct btrfs_fs_info *fs_info = NULL;
1822 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1823 GFP_NOFS);
1824 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1825 GFP_NOFS);
1826 struct btrfs_root *log_tree_root;
1828 int ret;
1829 int err = -EINVAL;
1830 int num_backups_tried = 0;
1831 int backup_index = 0;
1833 struct btrfs_super_block *disk_super;
1835 if (!extent_root || !tree_root || !tree_root->fs_info ||
1836 !chunk_root || !dev_root || !csum_root) {
1837 err = -ENOMEM;
1838 goto fail;
1840 fs_info = tree_root->fs_info;
1842 ret = init_srcu_struct(&fs_info->subvol_srcu);
1843 if (ret) {
1844 err = ret;
1845 goto fail;
1848 ret = setup_bdi(fs_info, &fs_info->bdi);
1849 if (ret) {
1850 err = ret;
1851 goto fail_srcu;
1854 fs_info->btree_inode = new_inode(sb);
1855 if (!fs_info->btree_inode) {
1856 err = -ENOMEM;
1857 goto fail_bdi;
1860 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1862 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1863 INIT_LIST_HEAD(&fs_info->trans_list);
1864 INIT_LIST_HEAD(&fs_info->dead_roots);
1865 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1866 INIT_LIST_HEAD(&fs_info->hashers);
1867 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1868 INIT_LIST_HEAD(&fs_info->ordered_operations);
1869 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1870 spin_lock_init(&fs_info->delalloc_lock);
1871 spin_lock_init(&fs_info->trans_lock);
1872 spin_lock_init(&fs_info->ref_cache_lock);
1873 spin_lock_init(&fs_info->fs_roots_radix_lock);
1874 spin_lock_init(&fs_info->delayed_iput_lock);
1875 spin_lock_init(&fs_info->defrag_inodes_lock);
1876 spin_lock_init(&fs_info->free_chunk_lock);
1877 mutex_init(&fs_info->reloc_mutex);
1879 init_completion(&fs_info->kobj_unregister);
1880 fs_info->tree_root = tree_root;
1881 fs_info->extent_root = extent_root;
1882 fs_info->csum_root = csum_root;
1883 fs_info->chunk_root = chunk_root;
1884 fs_info->dev_root = dev_root;
1885 fs_info->fs_devices = fs_devices;
1886 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1887 INIT_LIST_HEAD(&fs_info->space_info);
1888 btrfs_mapping_init(&fs_info->mapping_tree);
1889 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1890 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1891 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1892 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1893 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1894 atomic_set(&fs_info->nr_async_submits, 0);
1895 atomic_set(&fs_info->async_delalloc_pages, 0);
1896 atomic_set(&fs_info->async_submit_draining, 0);
1897 atomic_set(&fs_info->nr_async_bios, 0);
1898 atomic_set(&fs_info->defrag_running, 0);
1899 fs_info->sb = sb;
1900 fs_info->max_inline = 8192 * 1024;
1901 fs_info->metadata_ratio = 0;
1902 fs_info->defrag_inodes = RB_ROOT;
1903 fs_info->trans_no_join = 0;
1904 fs_info->free_chunk_space = 0;
1906 fs_info->thread_pool_size = min_t(unsigned long,
1907 num_online_cpus() + 2, 8);
1909 INIT_LIST_HEAD(&fs_info->ordered_extents);
1910 spin_lock_init(&fs_info->ordered_extent_lock);
1911 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1912 GFP_NOFS);
1913 if (!fs_info->delayed_root) {
1914 err = -ENOMEM;
1915 goto fail_iput;
1917 btrfs_init_delayed_root(fs_info->delayed_root);
1919 mutex_init(&fs_info->scrub_lock);
1920 atomic_set(&fs_info->scrubs_running, 0);
1921 atomic_set(&fs_info->scrub_pause_req, 0);
1922 atomic_set(&fs_info->scrubs_paused, 0);
1923 atomic_set(&fs_info->scrub_cancel_req, 0);
1924 init_waitqueue_head(&fs_info->scrub_pause_wait);
1925 init_rwsem(&fs_info->scrub_super_lock);
1926 fs_info->scrub_workers_refcnt = 0;
1928 sb->s_blocksize = 4096;
1929 sb->s_blocksize_bits = blksize_bits(4096);
1930 sb->s_bdi = &fs_info->bdi;
1932 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1933 fs_info->btree_inode->i_nlink = 1;
1935 * we set the i_size on the btree inode to the max possible int.
1936 * the real end of the address space is determined by all of
1937 * the devices in the system
1939 fs_info->btree_inode->i_size = OFFSET_MAX;
1940 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1941 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1943 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1944 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1945 fs_info->btree_inode->i_mapping);
1946 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1948 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1950 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1951 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1952 sizeof(struct btrfs_key));
1953 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1954 insert_inode_hash(fs_info->btree_inode);
1956 spin_lock_init(&fs_info->block_group_cache_lock);
1957 fs_info->block_group_cache_tree = RB_ROOT;
1959 extent_io_tree_init(&fs_info->freed_extents[0],
1960 fs_info->btree_inode->i_mapping);
1961 extent_io_tree_init(&fs_info->freed_extents[1],
1962 fs_info->btree_inode->i_mapping);
1963 fs_info->pinned_extents = &fs_info->freed_extents[0];
1964 fs_info->do_barriers = 1;
1967 mutex_init(&fs_info->ordered_operations_mutex);
1968 mutex_init(&fs_info->tree_log_mutex);
1969 mutex_init(&fs_info->chunk_mutex);
1970 mutex_init(&fs_info->transaction_kthread_mutex);
1971 mutex_init(&fs_info->cleaner_mutex);
1972 mutex_init(&fs_info->volume_mutex);
1973 init_rwsem(&fs_info->extent_commit_sem);
1974 init_rwsem(&fs_info->cleanup_work_sem);
1975 init_rwsem(&fs_info->subvol_sem);
1977 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1978 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1980 init_waitqueue_head(&fs_info->transaction_throttle);
1981 init_waitqueue_head(&fs_info->transaction_wait);
1982 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1983 init_waitqueue_head(&fs_info->async_submit_wait);
1985 __setup_root(4096, 4096, 4096, 4096, tree_root,
1986 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1988 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1989 if (!bh) {
1990 err = -EINVAL;
1991 goto fail_alloc;
1994 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
1995 memcpy(fs_info->super_for_commit, fs_info->super_copy,
1996 sizeof(*fs_info->super_for_commit));
1997 brelse(bh);
1999 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2001 disk_super = fs_info->super_copy;
2002 if (!btrfs_super_root(disk_super))
2003 goto fail_alloc;
2005 /* check FS state, whether FS is broken. */
2006 fs_info->fs_state |= btrfs_super_flags(disk_super);
2008 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2011 * run through our array of backup supers and setup
2012 * our ring pointer to the oldest one
2014 generation = btrfs_super_generation(disk_super);
2015 find_oldest_super_backup(fs_info, generation);
2018 * In the long term, we'll store the compression type in the super
2019 * block, and it'll be used for per file compression control.
2021 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2023 ret = btrfs_parse_options(tree_root, options);
2024 if (ret) {
2025 err = ret;
2026 goto fail_alloc;
2029 features = btrfs_super_incompat_flags(disk_super) &
2030 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2031 if (features) {
2032 printk(KERN_ERR "BTRFS: couldn't mount because of "
2033 "unsupported optional features (%Lx).\n",
2034 (unsigned long long)features);
2035 err = -EINVAL;
2036 goto fail_alloc;
2039 features = btrfs_super_incompat_flags(disk_super);
2040 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2041 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2042 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2043 btrfs_set_super_incompat_flags(disk_super, features);
2045 features = btrfs_super_compat_ro_flags(disk_super) &
2046 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2047 if (!(sb->s_flags & MS_RDONLY) && features) {
2048 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2049 "unsupported option features (%Lx).\n",
2050 (unsigned long long)features);
2051 err = -EINVAL;
2052 goto fail_alloc;
2055 btrfs_init_workers(&fs_info->generic_worker,
2056 "genwork", 1, NULL);
2058 btrfs_init_workers(&fs_info->workers, "worker",
2059 fs_info->thread_pool_size,
2060 &fs_info->generic_worker);
2062 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2063 fs_info->thread_pool_size,
2064 &fs_info->generic_worker);
2066 btrfs_init_workers(&fs_info->submit_workers, "submit",
2067 min_t(u64, fs_devices->num_devices,
2068 fs_info->thread_pool_size),
2069 &fs_info->generic_worker);
2071 btrfs_init_workers(&fs_info->caching_workers, "cache",
2072 2, &fs_info->generic_worker);
2074 /* a higher idle thresh on the submit workers makes it much more
2075 * likely that bios will be send down in a sane order to the
2076 * devices
2078 fs_info->submit_workers.idle_thresh = 64;
2080 fs_info->workers.idle_thresh = 16;
2081 fs_info->workers.ordered = 1;
2083 fs_info->delalloc_workers.idle_thresh = 2;
2084 fs_info->delalloc_workers.ordered = 1;
2086 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2087 &fs_info->generic_worker);
2088 btrfs_init_workers(&fs_info->endio_workers, "endio",
2089 fs_info->thread_pool_size,
2090 &fs_info->generic_worker);
2091 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2092 fs_info->thread_pool_size,
2093 &fs_info->generic_worker);
2094 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2095 "endio-meta-write", fs_info->thread_pool_size,
2096 &fs_info->generic_worker);
2097 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2098 fs_info->thread_pool_size,
2099 &fs_info->generic_worker);
2100 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2101 1, &fs_info->generic_worker);
2102 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2103 fs_info->thread_pool_size,
2104 &fs_info->generic_worker);
2107 * endios are largely parallel and should have a very
2108 * low idle thresh
2110 fs_info->endio_workers.idle_thresh = 4;
2111 fs_info->endio_meta_workers.idle_thresh = 4;
2113 fs_info->endio_write_workers.idle_thresh = 2;
2114 fs_info->endio_meta_write_workers.idle_thresh = 2;
2116 btrfs_start_workers(&fs_info->workers, 1);
2117 btrfs_start_workers(&fs_info->generic_worker, 1);
2118 btrfs_start_workers(&fs_info->submit_workers, 1);
2119 btrfs_start_workers(&fs_info->delalloc_workers, 1);
2120 btrfs_start_workers(&fs_info->fixup_workers, 1);
2121 btrfs_start_workers(&fs_info->endio_workers, 1);
2122 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
2123 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
2124 btrfs_start_workers(&fs_info->endio_write_workers, 1);
2125 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
2126 btrfs_start_workers(&fs_info->delayed_workers, 1);
2127 btrfs_start_workers(&fs_info->caching_workers, 1);
2129 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2130 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2131 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2133 nodesize = btrfs_super_nodesize(disk_super);
2134 leafsize = btrfs_super_leafsize(disk_super);
2135 sectorsize = btrfs_super_sectorsize(disk_super);
2136 stripesize = btrfs_super_stripesize(disk_super);
2137 tree_root->nodesize = nodesize;
2138 tree_root->leafsize = leafsize;
2139 tree_root->sectorsize = sectorsize;
2140 tree_root->stripesize = stripesize;
2142 sb->s_blocksize = sectorsize;
2143 sb->s_blocksize_bits = blksize_bits(sectorsize);
2145 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2146 sizeof(disk_super->magic))) {
2147 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2148 goto fail_sb_buffer;
2151 mutex_lock(&fs_info->chunk_mutex);
2152 ret = btrfs_read_sys_array(tree_root);
2153 mutex_unlock(&fs_info->chunk_mutex);
2154 if (ret) {
2155 printk(KERN_WARNING "btrfs: failed to read the system "
2156 "array on %s\n", sb->s_id);
2157 goto fail_sb_buffer;
2160 blocksize = btrfs_level_size(tree_root,
2161 btrfs_super_chunk_root_level(disk_super));
2162 generation = btrfs_super_chunk_root_generation(disk_super);
2164 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2165 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2167 chunk_root->node = read_tree_block(chunk_root,
2168 btrfs_super_chunk_root(disk_super),
2169 blocksize, generation);
2170 BUG_ON(!chunk_root->node);
2171 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2172 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2173 sb->s_id);
2174 goto fail_tree_roots;
2176 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2177 chunk_root->commit_root = btrfs_root_node(chunk_root);
2179 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2180 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2181 BTRFS_UUID_SIZE);
2183 mutex_lock(&fs_info->chunk_mutex);
2184 ret = btrfs_read_chunk_tree(chunk_root);
2185 mutex_unlock(&fs_info->chunk_mutex);
2186 if (ret) {
2187 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2188 sb->s_id);
2189 goto fail_tree_roots;
2192 btrfs_close_extra_devices(fs_devices);
2194 retry_root_backup:
2195 blocksize = btrfs_level_size(tree_root,
2196 btrfs_super_root_level(disk_super));
2197 generation = btrfs_super_generation(disk_super);
2199 tree_root->node = read_tree_block(tree_root,
2200 btrfs_super_root(disk_super),
2201 blocksize, generation);
2202 if (!tree_root->node ||
2203 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2204 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2205 sb->s_id);
2207 goto recovery_tree_root;
2210 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2211 tree_root->commit_root = btrfs_root_node(tree_root);
2213 ret = find_and_setup_root(tree_root, fs_info,
2214 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2215 if (ret)
2216 goto recovery_tree_root;
2217 extent_root->track_dirty = 1;
2219 ret = find_and_setup_root(tree_root, fs_info,
2220 BTRFS_DEV_TREE_OBJECTID, dev_root);
2221 if (ret)
2222 goto recovery_tree_root;
2223 dev_root->track_dirty = 1;
2225 ret = find_and_setup_root(tree_root, fs_info,
2226 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2227 if (ret)
2228 goto recovery_tree_root;
2230 csum_root->track_dirty = 1;
2232 fs_info->generation = generation;
2233 fs_info->last_trans_committed = generation;
2234 fs_info->data_alloc_profile = (u64)-1;
2235 fs_info->metadata_alloc_profile = (u64)-1;
2236 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2238 ret = btrfs_init_space_info(fs_info);
2239 if (ret) {
2240 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2241 goto fail_block_groups;
2244 ret = btrfs_read_block_groups(extent_root);
2245 if (ret) {
2246 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2247 goto fail_block_groups;
2250 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2251 "btrfs-cleaner");
2252 if (IS_ERR(fs_info->cleaner_kthread))
2253 goto fail_block_groups;
2255 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2256 tree_root,
2257 "btrfs-transaction");
2258 if (IS_ERR(fs_info->transaction_kthread))
2259 goto fail_cleaner;
2261 if (!btrfs_test_opt(tree_root, SSD) &&
2262 !btrfs_test_opt(tree_root, NOSSD) &&
2263 !fs_info->fs_devices->rotating) {
2264 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2265 "mode\n");
2266 btrfs_set_opt(fs_info->mount_opt, SSD);
2269 /* do not make disk changes in broken FS */
2270 if (btrfs_super_log_root(disk_super) != 0 &&
2271 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2272 u64 bytenr = btrfs_super_log_root(disk_super);
2274 if (fs_devices->rw_devices == 0) {
2275 printk(KERN_WARNING "Btrfs log replay required "
2276 "on RO media\n");
2277 err = -EIO;
2278 goto fail_trans_kthread;
2280 blocksize =
2281 btrfs_level_size(tree_root,
2282 btrfs_super_log_root_level(disk_super));
2284 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2285 if (!log_tree_root) {
2286 err = -ENOMEM;
2287 goto fail_trans_kthread;
2290 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2291 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2293 log_tree_root->node = read_tree_block(tree_root, bytenr,
2294 blocksize,
2295 generation + 1);
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 BUG_ON(ret);
2299 if (sb->s_flags & MS_RDONLY) {
2300 ret = btrfs_commit_super(tree_root);
2301 BUG_ON(ret);
2305 ret = btrfs_find_orphan_roots(tree_root);
2306 BUG_ON(ret);
2308 if (!(sb->s_flags & MS_RDONLY)) {
2309 ret = btrfs_cleanup_fs_roots(fs_info);
2310 BUG_ON(ret);
2312 ret = btrfs_recover_relocation(tree_root);
2313 if (ret < 0) {
2314 printk(KERN_WARNING
2315 "btrfs: failed to recover relocation\n");
2316 err = -EINVAL;
2317 goto fail_trans_kthread;
2321 location.objectid = BTRFS_FS_TREE_OBJECTID;
2322 location.type = BTRFS_ROOT_ITEM_KEY;
2323 location.offset = (u64)-1;
2325 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2326 if (!fs_info->fs_root)
2327 goto fail_trans_kthread;
2328 if (IS_ERR(fs_info->fs_root)) {
2329 err = PTR_ERR(fs_info->fs_root);
2330 goto fail_trans_kthread;
2333 if (!(sb->s_flags & MS_RDONLY)) {
2334 down_read(&fs_info->cleanup_work_sem);
2335 err = btrfs_orphan_cleanup(fs_info->fs_root);
2336 if (!err)
2337 err = btrfs_orphan_cleanup(fs_info->tree_root);
2338 up_read(&fs_info->cleanup_work_sem);
2339 if (err) {
2340 close_ctree(tree_root);
2341 return ERR_PTR(err);
2345 return tree_root;
2347 fail_trans_kthread:
2348 kthread_stop(fs_info->transaction_kthread);
2349 fail_cleaner:
2350 kthread_stop(fs_info->cleaner_kthread);
2353 * make sure we're done with the btree inode before we stop our
2354 * kthreads
2356 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2357 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2359 fail_block_groups:
2360 btrfs_free_block_groups(fs_info);
2362 fail_tree_roots:
2363 free_root_pointers(fs_info, 1);
2365 fail_sb_buffer:
2366 btrfs_stop_workers(&fs_info->generic_worker);
2367 btrfs_stop_workers(&fs_info->fixup_workers);
2368 btrfs_stop_workers(&fs_info->delalloc_workers);
2369 btrfs_stop_workers(&fs_info->workers);
2370 btrfs_stop_workers(&fs_info->endio_workers);
2371 btrfs_stop_workers(&fs_info->endio_meta_workers);
2372 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2373 btrfs_stop_workers(&fs_info->endio_write_workers);
2374 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2375 btrfs_stop_workers(&fs_info->submit_workers);
2376 btrfs_stop_workers(&fs_info->delayed_workers);
2377 btrfs_stop_workers(&fs_info->caching_workers);
2378 fail_alloc:
2379 fail_iput:
2380 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2381 iput(fs_info->btree_inode);
2383 btrfs_close_devices(fs_info->fs_devices);
2384 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2385 fail_bdi:
2386 bdi_destroy(&fs_info->bdi);
2387 fail_srcu:
2388 cleanup_srcu_struct(&fs_info->subvol_srcu);
2389 fail:
2390 free_fs_info(fs_info);
2391 return ERR_PTR(err);
2393 recovery_tree_root:
2395 if (!btrfs_test_opt(tree_root, RECOVERY))
2396 goto fail_tree_roots;
2398 free_root_pointers(fs_info, 0);
2400 /* don't use the log in recovery mode, it won't be valid */
2401 btrfs_set_super_log_root(disk_super, 0);
2403 /* we can't trust the free space cache either */
2404 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2406 ret = next_root_backup(fs_info, fs_info->super_copy,
2407 &num_backups_tried, &backup_index);
2408 if (ret == -1)
2409 goto fail_block_groups;
2410 goto retry_root_backup;
2413 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2415 char b[BDEVNAME_SIZE];
2417 if (uptodate) {
2418 set_buffer_uptodate(bh);
2419 } else {
2420 printk_ratelimited(KERN_WARNING "lost page write due to "
2421 "I/O error on %s\n",
2422 bdevname(bh->b_bdev, b));
2423 /* note, we dont' set_buffer_write_io_error because we have
2424 * our own ways of dealing with the IO errors
2426 clear_buffer_uptodate(bh);
2428 unlock_buffer(bh);
2429 put_bh(bh);
2432 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2434 struct buffer_head *bh;
2435 struct buffer_head *latest = NULL;
2436 struct btrfs_super_block *super;
2437 int i;
2438 u64 transid = 0;
2439 u64 bytenr;
2441 /* we would like to check all the supers, but that would make
2442 * a btrfs mount succeed after a mkfs from a different FS.
2443 * So, we need to add a special mount option to scan for
2444 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2446 for (i = 0; i < 1; i++) {
2447 bytenr = btrfs_sb_offset(i);
2448 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2449 break;
2450 bh = __bread(bdev, bytenr / 4096, 4096);
2451 if (!bh)
2452 continue;
2454 super = (struct btrfs_super_block *)bh->b_data;
2455 if (btrfs_super_bytenr(super) != bytenr ||
2456 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2457 sizeof(super->magic))) {
2458 brelse(bh);
2459 continue;
2462 if (!latest || btrfs_super_generation(super) > transid) {
2463 brelse(latest);
2464 latest = bh;
2465 transid = btrfs_super_generation(super);
2466 } else {
2467 brelse(bh);
2470 return latest;
2474 * this should be called twice, once with wait == 0 and
2475 * once with wait == 1. When wait == 0 is done, all the buffer heads
2476 * we write are pinned.
2478 * They are released when wait == 1 is done.
2479 * max_mirrors must be the same for both runs, and it indicates how
2480 * many supers on this one device should be written.
2482 * max_mirrors == 0 means to write them all.
2484 static int write_dev_supers(struct btrfs_device *device,
2485 struct btrfs_super_block *sb,
2486 int do_barriers, int wait, int max_mirrors)
2488 struct buffer_head *bh;
2489 int i;
2490 int ret;
2491 int errors = 0;
2492 u32 crc;
2493 u64 bytenr;
2494 int last_barrier = 0;
2496 if (max_mirrors == 0)
2497 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2499 /* make sure only the last submit_bh does a barrier */
2500 if (do_barriers) {
2501 for (i = 0; i < max_mirrors; i++) {
2502 bytenr = btrfs_sb_offset(i);
2503 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2504 device->total_bytes)
2505 break;
2506 last_barrier = i;
2510 for (i = 0; i < max_mirrors; i++) {
2511 bytenr = btrfs_sb_offset(i);
2512 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2513 break;
2515 if (wait) {
2516 bh = __find_get_block(device->bdev, bytenr / 4096,
2517 BTRFS_SUPER_INFO_SIZE);
2518 BUG_ON(!bh);
2519 wait_on_buffer(bh);
2520 if (!buffer_uptodate(bh))
2521 errors++;
2523 /* drop our reference */
2524 brelse(bh);
2526 /* drop the reference from the wait == 0 run */
2527 brelse(bh);
2528 continue;
2529 } else {
2530 btrfs_set_super_bytenr(sb, bytenr);
2532 crc = ~(u32)0;
2533 crc = btrfs_csum_data(NULL, (char *)sb +
2534 BTRFS_CSUM_SIZE, crc,
2535 BTRFS_SUPER_INFO_SIZE -
2536 BTRFS_CSUM_SIZE);
2537 btrfs_csum_final(crc, sb->csum);
2540 * one reference for us, and we leave it for the
2541 * caller
2543 bh = __getblk(device->bdev, bytenr / 4096,
2544 BTRFS_SUPER_INFO_SIZE);
2545 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2547 /* one reference for submit_bh */
2548 get_bh(bh);
2550 set_buffer_uptodate(bh);
2551 lock_buffer(bh);
2552 bh->b_end_io = btrfs_end_buffer_write_sync;
2555 if (i == last_barrier && do_barriers)
2556 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2557 else
2558 ret = submit_bh(WRITE_SYNC, bh);
2560 if (ret)
2561 errors++;
2563 return errors < i ? 0 : -1;
2566 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2568 struct list_head *head;
2569 struct btrfs_device *dev;
2570 struct btrfs_super_block *sb;
2571 struct btrfs_dev_item *dev_item;
2572 int ret;
2573 int do_barriers;
2574 int max_errors;
2575 int total_errors = 0;
2576 u64 flags;
2578 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2579 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2580 backup_super_roots(root->fs_info);
2582 sb = root->fs_info->super_for_commit;
2583 dev_item = &sb->dev_item;
2585 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2586 head = &root->fs_info->fs_devices->devices;
2587 list_for_each_entry_rcu(dev, head, dev_list) {
2588 if (!dev->bdev) {
2589 total_errors++;
2590 continue;
2592 if (!dev->in_fs_metadata || !dev->writeable)
2593 continue;
2595 btrfs_set_stack_device_generation(dev_item, 0);
2596 btrfs_set_stack_device_type(dev_item, dev->type);
2597 btrfs_set_stack_device_id(dev_item, dev->devid);
2598 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2599 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2600 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2601 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2602 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2603 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2604 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2606 flags = btrfs_super_flags(sb);
2607 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2609 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2610 if (ret)
2611 total_errors++;
2613 if (total_errors > max_errors) {
2614 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2615 total_errors);
2616 BUG();
2619 total_errors = 0;
2620 list_for_each_entry_rcu(dev, head, dev_list) {
2621 if (!dev->bdev)
2622 continue;
2623 if (!dev->in_fs_metadata || !dev->writeable)
2624 continue;
2626 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2627 if (ret)
2628 total_errors++;
2630 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2631 if (total_errors > max_errors) {
2632 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2633 total_errors);
2634 BUG();
2636 return 0;
2639 int write_ctree_super(struct btrfs_trans_handle *trans,
2640 struct btrfs_root *root, int max_mirrors)
2642 int ret;
2644 ret = write_all_supers(root, max_mirrors);
2645 return ret;
2648 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2650 spin_lock(&fs_info->fs_roots_radix_lock);
2651 radix_tree_delete(&fs_info->fs_roots_radix,
2652 (unsigned long)root->root_key.objectid);
2653 spin_unlock(&fs_info->fs_roots_radix_lock);
2655 if (btrfs_root_refs(&root->root_item) == 0)
2656 synchronize_srcu(&fs_info->subvol_srcu);
2658 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2659 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2660 free_fs_root(root);
2661 return 0;
2664 static void free_fs_root(struct btrfs_root *root)
2666 iput(root->cache_inode);
2667 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2668 if (root->anon_dev)
2669 free_anon_bdev(root->anon_dev);
2670 free_extent_buffer(root->node);
2671 free_extent_buffer(root->commit_root);
2672 kfree(root->free_ino_ctl);
2673 kfree(root->free_ino_pinned);
2674 kfree(root->name);
2675 kfree(root);
2678 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2680 int ret;
2681 struct btrfs_root *gang[8];
2682 int i;
2684 while (!list_empty(&fs_info->dead_roots)) {
2685 gang[0] = list_entry(fs_info->dead_roots.next,
2686 struct btrfs_root, root_list);
2687 list_del(&gang[0]->root_list);
2689 if (gang[0]->in_radix) {
2690 btrfs_free_fs_root(fs_info, gang[0]);
2691 } else {
2692 free_extent_buffer(gang[0]->node);
2693 free_extent_buffer(gang[0]->commit_root);
2694 kfree(gang[0]);
2698 while (1) {
2699 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2700 (void **)gang, 0,
2701 ARRAY_SIZE(gang));
2702 if (!ret)
2703 break;
2704 for (i = 0; i < ret; i++)
2705 btrfs_free_fs_root(fs_info, gang[i]);
2707 return 0;
2710 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2712 u64 root_objectid = 0;
2713 struct btrfs_root *gang[8];
2714 int i;
2715 int ret;
2717 while (1) {
2718 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2719 (void **)gang, root_objectid,
2720 ARRAY_SIZE(gang));
2721 if (!ret)
2722 break;
2724 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2725 for (i = 0; i < ret; i++) {
2726 int err;
2728 root_objectid = gang[i]->root_key.objectid;
2729 err = btrfs_orphan_cleanup(gang[i]);
2730 if (err)
2731 return err;
2733 root_objectid++;
2735 return 0;
2738 int btrfs_commit_super(struct btrfs_root *root)
2740 struct btrfs_trans_handle *trans;
2741 int ret;
2743 mutex_lock(&root->fs_info->cleaner_mutex);
2744 btrfs_run_delayed_iputs(root);
2745 btrfs_clean_old_snapshots(root);
2746 mutex_unlock(&root->fs_info->cleaner_mutex);
2748 /* wait until ongoing cleanup work done */
2749 down_write(&root->fs_info->cleanup_work_sem);
2750 up_write(&root->fs_info->cleanup_work_sem);
2752 trans = btrfs_join_transaction(root);
2753 if (IS_ERR(trans))
2754 return PTR_ERR(trans);
2755 ret = btrfs_commit_transaction(trans, root);
2756 BUG_ON(ret);
2757 /* run commit again to drop the original snapshot */
2758 trans = btrfs_join_transaction(root);
2759 if (IS_ERR(trans))
2760 return PTR_ERR(trans);
2761 btrfs_commit_transaction(trans, root);
2762 ret = btrfs_write_and_wait_transaction(NULL, root);
2763 BUG_ON(ret);
2765 ret = write_ctree_super(NULL, root, 0);
2766 return ret;
2769 int close_ctree(struct btrfs_root *root)
2771 struct btrfs_fs_info *fs_info = root->fs_info;
2772 int ret;
2774 fs_info->closing = 1;
2775 smp_mb();
2777 btrfs_scrub_cancel(root);
2779 /* wait for any defraggers to finish */
2780 wait_event(fs_info->transaction_wait,
2781 (atomic_read(&fs_info->defrag_running) == 0));
2783 /* clear out the rbtree of defraggable inodes */
2784 btrfs_run_defrag_inodes(root->fs_info);
2787 * Here come 2 situations when btrfs is broken to flip readonly:
2789 * 1. when btrfs flips readonly somewhere else before
2790 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2791 * and btrfs will skip to write sb directly to keep
2792 * ERROR state on disk.
2794 * 2. when btrfs flips readonly just in btrfs_commit_super,
2795 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2796 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2797 * btrfs will cleanup all FS resources first and write sb then.
2799 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2800 ret = btrfs_commit_super(root);
2801 if (ret)
2802 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2805 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2806 ret = btrfs_error_commit_super(root);
2807 if (ret)
2808 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2811 btrfs_put_block_group_cache(fs_info);
2813 kthread_stop(root->fs_info->transaction_kthread);
2814 kthread_stop(root->fs_info->cleaner_kthread);
2816 fs_info->closing = 2;
2817 smp_mb();
2819 if (fs_info->delalloc_bytes) {
2820 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2821 (unsigned long long)fs_info->delalloc_bytes);
2823 if (fs_info->total_ref_cache_size) {
2824 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2825 (unsigned long long)fs_info->total_ref_cache_size);
2828 free_extent_buffer(fs_info->extent_root->node);
2829 free_extent_buffer(fs_info->extent_root->commit_root);
2830 free_extent_buffer(fs_info->tree_root->node);
2831 free_extent_buffer(fs_info->tree_root->commit_root);
2832 free_extent_buffer(root->fs_info->chunk_root->node);
2833 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2834 free_extent_buffer(root->fs_info->dev_root->node);
2835 free_extent_buffer(root->fs_info->dev_root->commit_root);
2836 free_extent_buffer(root->fs_info->csum_root->node);
2837 free_extent_buffer(root->fs_info->csum_root->commit_root);
2839 btrfs_free_block_groups(root->fs_info);
2841 del_fs_roots(fs_info);
2843 iput(fs_info->btree_inode);
2845 btrfs_stop_workers(&fs_info->generic_worker);
2846 btrfs_stop_workers(&fs_info->fixup_workers);
2847 btrfs_stop_workers(&fs_info->delalloc_workers);
2848 btrfs_stop_workers(&fs_info->workers);
2849 btrfs_stop_workers(&fs_info->endio_workers);
2850 btrfs_stop_workers(&fs_info->endio_meta_workers);
2851 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2852 btrfs_stop_workers(&fs_info->endio_write_workers);
2853 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2854 btrfs_stop_workers(&fs_info->submit_workers);
2855 btrfs_stop_workers(&fs_info->delayed_workers);
2856 btrfs_stop_workers(&fs_info->caching_workers);
2858 btrfs_close_devices(fs_info->fs_devices);
2859 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2861 bdi_destroy(&fs_info->bdi);
2862 cleanup_srcu_struct(&fs_info->subvol_srcu);
2864 free_fs_info(fs_info);
2866 return 0;
2869 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2871 int ret;
2872 struct inode *btree_inode = buf->first_page->mapping->host;
2874 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2875 NULL);
2876 if (!ret)
2877 return ret;
2879 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2880 parent_transid);
2881 return !ret;
2884 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2886 struct inode *btree_inode = buf->first_page->mapping->host;
2887 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2888 buf);
2891 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2893 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2894 u64 transid = btrfs_header_generation(buf);
2895 struct inode *btree_inode = root->fs_info->btree_inode;
2896 int was_dirty;
2898 btrfs_assert_tree_locked(buf);
2899 if (transid != root->fs_info->generation) {
2900 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2901 "found %llu running %llu\n",
2902 (unsigned long long)buf->start,
2903 (unsigned long long)transid,
2904 (unsigned long long)root->fs_info->generation);
2905 WARN_ON(1);
2907 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2908 buf);
2909 if (!was_dirty) {
2910 spin_lock(&root->fs_info->delalloc_lock);
2911 root->fs_info->dirty_metadata_bytes += buf->len;
2912 spin_unlock(&root->fs_info->delalloc_lock);
2916 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2919 * looks as though older kernels can get into trouble with
2920 * this code, they end up stuck in balance_dirty_pages forever
2922 u64 num_dirty;
2923 unsigned long thresh = 32 * 1024 * 1024;
2925 if (current->flags & PF_MEMALLOC)
2926 return;
2928 btrfs_balance_delayed_items(root);
2930 num_dirty = root->fs_info->dirty_metadata_bytes;
2932 if (num_dirty > thresh) {
2933 balance_dirty_pages_ratelimited_nr(
2934 root->fs_info->btree_inode->i_mapping, 1);
2936 return;
2939 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2942 * looks as though older kernels can get into trouble with
2943 * this code, they end up stuck in balance_dirty_pages forever
2945 u64 num_dirty;
2946 unsigned long thresh = 32 * 1024 * 1024;
2948 if (current->flags & PF_MEMALLOC)
2949 return;
2951 num_dirty = root->fs_info->dirty_metadata_bytes;
2953 if (num_dirty > thresh) {
2954 balance_dirty_pages_ratelimited_nr(
2955 root->fs_info->btree_inode->i_mapping, 1);
2957 return;
2960 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2962 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2963 int ret;
2964 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2965 if (ret == 0)
2966 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2967 return ret;
2970 static int btree_lock_page_hook(struct page *page, void *data,
2971 void (*flush_fn)(void *))
2973 struct inode *inode = page->mapping->host;
2974 struct btrfs_root *root = BTRFS_I(inode)->root;
2975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2976 struct extent_buffer *eb;
2977 unsigned long len;
2978 u64 bytenr = page_offset(page);
2980 if (page->private == EXTENT_PAGE_PRIVATE)
2981 goto out;
2983 len = page->private >> 2;
2984 eb = find_extent_buffer(io_tree, bytenr, len);
2985 if (!eb)
2986 goto out;
2988 if (!btrfs_try_tree_write_lock(eb)) {
2989 flush_fn(data);
2990 btrfs_tree_lock(eb);
2992 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2994 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2995 spin_lock(&root->fs_info->delalloc_lock);
2996 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2997 root->fs_info->dirty_metadata_bytes -= eb->len;
2998 else
2999 WARN_ON(1);
3000 spin_unlock(&root->fs_info->delalloc_lock);
3003 btrfs_tree_unlock(eb);
3004 free_extent_buffer(eb);
3005 out:
3006 if (!trylock_page(page)) {
3007 flush_fn(data);
3008 lock_page(page);
3010 return 0;
3013 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3014 int read_only)
3016 if (read_only)
3017 return;
3019 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3020 printk(KERN_WARNING "warning: mount fs with errors, "
3021 "running btrfsck is recommended\n");
3024 int btrfs_error_commit_super(struct btrfs_root *root)
3026 int ret;
3028 mutex_lock(&root->fs_info->cleaner_mutex);
3029 btrfs_run_delayed_iputs(root);
3030 mutex_unlock(&root->fs_info->cleaner_mutex);
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3035 /* cleanup FS via transaction */
3036 btrfs_cleanup_transaction(root);
3038 ret = write_ctree_super(NULL, root, 0);
3040 return ret;
3043 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3045 struct btrfs_inode *btrfs_inode;
3046 struct list_head splice;
3048 INIT_LIST_HEAD(&splice);
3050 mutex_lock(&root->fs_info->ordered_operations_mutex);
3051 spin_lock(&root->fs_info->ordered_extent_lock);
3053 list_splice_init(&root->fs_info->ordered_operations, &splice);
3054 while (!list_empty(&splice)) {
3055 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3056 ordered_operations);
3058 list_del_init(&btrfs_inode->ordered_operations);
3060 btrfs_invalidate_inodes(btrfs_inode->root);
3063 spin_unlock(&root->fs_info->ordered_extent_lock);
3064 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3066 return 0;
3069 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3071 struct list_head splice;
3072 struct btrfs_ordered_extent *ordered;
3073 struct inode *inode;
3075 INIT_LIST_HEAD(&splice);
3077 spin_lock(&root->fs_info->ordered_extent_lock);
3079 list_splice_init(&root->fs_info->ordered_extents, &splice);
3080 while (!list_empty(&splice)) {
3081 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3082 root_extent_list);
3084 list_del_init(&ordered->root_extent_list);
3085 atomic_inc(&ordered->refs);
3087 /* the inode may be getting freed (in sys_unlink path). */
3088 inode = igrab(ordered->inode);
3090 spin_unlock(&root->fs_info->ordered_extent_lock);
3091 if (inode)
3092 iput(inode);
3094 atomic_set(&ordered->refs, 1);
3095 btrfs_put_ordered_extent(ordered);
3097 spin_lock(&root->fs_info->ordered_extent_lock);
3100 spin_unlock(&root->fs_info->ordered_extent_lock);
3102 return 0;
3105 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3106 struct btrfs_root *root)
3108 struct rb_node *node;
3109 struct btrfs_delayed_ref_root *delayed_refs;
3110 struct btrfs_delayed_ref_node *ref;
3111 int ret = 0;
3113 delayed_refs = &trans->delayed_refs;
3115 spin_lock(&delayed_refs->lock);
3116 if (delayed_refs->num_entries == 0) {
3117 spin_unlock(&delayed_refs->lock);
3118 printk(KERN_INFO "delayed_refs has NO entry\n");
3119 return ret;
3122 node = rb_first(&delayed_refs->root);
3123 while (node) {
3124 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3125 node = rb_next(node);
3127 ref->in_tree = 0;
3128 rb_erase(&ref->rb_node, &delayed_refs->root);
3129 delayed_refs->num_entries--;
3131 atomic_set(&ref->refs, 1);
3132 if (btrfs_delayed_ref_is_head(ref)) {
3133 struct btrfs_delayed_ref_head *head;
3135 head = btrfs_delayed_node_to_head(ref);
3136 mutex_lock(&head->mutex);
3137 kfree(head->extent_op);
3138 delayed_refs->num_heads--;
3139 if (list_empty(&head->cluster))
3140 delayed_refs->num_heads_ready--;
3141 list_del_init(&head->cluster);
3142 mutex_unlock(&head->mutex);
3145 spin_unlock(&delayed_refs->lock);
3146 btrfs_put_delayed_ref(ref);
3148 cond_resched();
3149 spin_lock(&delayed_refs->lock);
3152 spin_unlock(&delayed_refs->lock);
3154 return ret;
3157 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3159 struct btrfs_pending_snapshot *snapshot;
3160 struct list_head splice;
3162 INIT_LIST_HEAD(&splice);
3164 list_splice_init(&t->pending_snapshots, &splice);
3166 while (!list_empty(&splice)) {
3167 snapshot = list_entry(splice.next,
3168 struct btrfs_pending_snapshot,
3169 list);
3171 list_del_init(&snapshot->list);
3173 kfree(snapshot);
3176 return 0;
3179 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3181 struct btrfs_inode *btrfs_inode;
3182 struct list_head splice;
3184 INIT_LIST_HEAD(&splice);
3186 spin_lock(&root->fs_info->delalloc_lock);
3187 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3189 while (!list_empty(&splice)) {
3190 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3191 delalloc_inodes);
3193 list_del_init(&btrfs_inode->delalloc_inodes);
3195 btrfs_invalidate_inodes(btrfs_inode->root);
3198 spin_unlock(&root->fs_info->delalloc_lock);
3200 return 0;
3203 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3204 struct extent_io_tree *dirty_pages,
3205 int mark)
3207 int ret;
3208 struct page *page;
3209 struct inode *btree_inode = root->fs_info->btree_inode;
3210 struct extent_buffer *eb;
3211 u64 start = 0;
3212 u64 end;
3213 u64 offset;
3214 unsigned long index;
3216 while (1) {
3217 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3218 mark);
3219 if (ret)
3220 break;
3222 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3223 while (start <= end) {
3224 index = start >> PAGE_CACHE_SHIFT;
3225 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3226 page = find_get_page(btree_inode->i_mapping, index);
3227 if (!page)
3228 continue;
3229 offset = page_offset(page);
3231 spin_lock(&dirty_pages->buffer_lock);
3232 eb = radix_tree_lookup(
3233 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3234 offset >> PAGE_CACHE_SHIFT);
3235 spin_unlock(&dirty_pages->buffer_lock);
3236 if (eb) {
3237 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3238 &eb->bflags);
3239 atomic_set(&eb->refs, 1);
3241 if (PageWriteback(page))
3242 end_page_writeback(page);
3244 lock_page(page);
3245 if (PageDirty(page)) {
3246 clear_page_dirty_for_io(page);
3247 spin_lock_irq(&page->mapping->tree_lock);
3248 radix_tree_tag_clear(&page->mapping->page_tree,
3249 page_index(page),
3250 PAGECACHE_TAG_DIRTY);
3251 spin_unlock_irq(&page->mapping->tree_lock);
3254 page->mapping->a_ops->invalidatepage(page, 0);
3255 unlock_page(page);
3259 return ret;
3262 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3263 struct extent_io_tree *pinned_extents)
3265 struct extent_io_tree *unpin;
3266 u64 start;
3267 u64 end;
3268 int ret;
3270 unpin = pinned_extents;
3271 while (1) {
3272 ret = find_first_extent_bit(unpin, 0, &start, &end,
3273 EXTENT_DIRTY);
3274 if (ret)
3275 break;
3277 /* opt_discard */
3278 if (btrfs_test_opt(root, DISCARD))
3279 ret = btrfs_error_discard_extent(root, start,
3280 end + 1 - start,
3281 NULL);
3283 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3284 btrfs_error_unpin_extent_range(root, start, end);
3285 cond_resched();
3288 return 0;
3291 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3293 struct btrfs_transaction *t;
3294 LIST_HEAD(list);
3296 WARN_ON(1);
3298 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3300 spin_lock(&root->fs_info->trans_lock);
3301 list_splice_init(&root->fs_info->trans_list, &list);
3302 root->fs_info->trans_no_join = 1;
3303 spin_unlock(&root->fs_info->trans_lock);
3305 while (!list_empty(&list)) {
3306 t = list_entry(list.next, struct btrfs_transaction, list);
3307 if (!t)
3308 break;
3310 btrfs_destroy_ordered_operations(root);
3312 btrfs_destroy_ordered_extents(root);
3314 btrfs_destroy_delayed_refs(t, root);
3316 btrfs_block_rsv_release(root,
3317 &root->fs_info->trans_block_rsv,
3318 t->dirty_pages.dirty_bytes);
3320 /* FIXME: cleanup wait for commit */
3321 t->in_commit = 1;
3322 t->blocked = 1;
3323 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3324 wake_up(&root->fs_info->transaction_blocked_wait);
3326 t->blocked = 0;
3327 if (waitqueue_active(&root->fs_info->transaction_wait))
3328 wake_up(&root->fs_info->transaction_wait);
3330 t->commit_done = 1;
3331 if (waitqueue_active(&t->commit_wait))
3332 wake_up(&t->commit_wait);
3334 btrfs_destroy_pending_snapshots(t);
3336 btrfs_destroy_delalloc_inodes(root);
3338 spin_lock(&root->fs_info->trans_lock);
3339 root->fs_info->running_transaction = NULL;
3340 spin_unlock(&root->fs_info->trans_lock);
3342 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3343 EXTENT_DIRTY);
3345 btrfs_destroy_pinned_extent(root,
3346 root->fs_info->pinned_extents);
3348 atomic_set(&t->use_count, 0);
3349 list_del_init(&t->list);
3350 memset(t, 0, sizeof(*t));
3351 kmem_cache_free(btrfs_transaction_cachep, t);
3354 spin_lock(&root->fs_info->trans_lock);
3355 root->fs_info->trans_no_join = 0;
3356 spin_unlock(&root->fs_info->trans_lock);
3357 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3359 return 0;
3362 static struct extent_io_ops btree_extent_io_ops = {
3363 .write_cache_pages_lock_hook = btree_lock_page_hook,
3364 .readpage_end_io_hook = btree_readpage_end_io_hook,
3365 .submit_bio_hook = btree_submit_bio_hook,
3366 /* note we're sharing with inode.c for the merge bio hook */
3367 .merge_bio_hook = btrfs_merge_bio_hook,