[ALSA] Remove xxx_t typedefs: ARM SA11xx-UDA1341
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-powerpc / pgtable.h
blob0303f57366c1286ff9f1798c939f4c78a7496818
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
4 #ifndef CONFIG_PPC64
5 #include <asm-ppc/pgtable.h>
6 #else
8 /*
9 * This file contains the functions and defines necessary to modify and use
10 * the ppc64 hashed page table.
13 #ifndef __ASSEMBLY__
14 #include <linux/config.h>
15 #include <linux/stddef.h>
16 #include <asm/processor.h> /* For TASK_SIZE */
17 #include <asm/mmu.h>
18 #include <asm/page.h>
19 #include <asm/tlbflush.h>
20 struct mm_struct;
21 #endif /* __ASSEMBLY__ */
23 #ifdef CONFIG_PPC_64K_PAGES
24 #include <asm/pgtable-64k.h>
25 #else
26 #include <asm/pgtable-4k.h>
27 #endif
29 #define FIRST_USER_ADDRESS 0
32 * Size of EA range mapped by our pagetables.
34 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
35 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
36 #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
38 #if TASK_SIZE_USER64 > PGTABLE_RANGE
39 #error TASK_SIZE_USER64 exceeds pagetable range
40 #endif
42 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
43 #error TASK_SIZE_USER64 exceeds user VSID range
44 #endif
47 * Define the address range of the vmalloc VM area.
49 #define VMALLOC_START (0xD000000000000000ul)
50 #define VMALLOC_SIZE (0x80000000000UL)
51 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
54 * Define the address range of the imalloc VM area.
56 #define PHBS_IO_BASE VMALLOC_END
57 #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
58 #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
61 * Common bits in a linux-style PTE. These match the bits in the
62 * (hardware-defined) PowerPC PTE as closely as possible. Additional
63 * bits may be defined in pgtable-*.h
65 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
66 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
67 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
68 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
69 #define _PAGE_GUARDED 0x0008
70 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
71 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
72 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
73 #define _PAGE_DIRTY 0x0080 /* C: page changed */
74 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
75 #define _PAGE_RW 0x0200 /* software: user write access allowed */
76 #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
77 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
79 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
81 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
83 /* __pgprot defined in asm-powerpc/page.h */
84 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
86 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
87 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
88 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
89 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
90 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
91 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
92 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
93 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
94 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
95 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
97 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
98 #define HAVE_PAGE_AGP
100 /* PTEIDX nibble */
101 #define _PTEIDX_SECONDARY 0x8
102 #define _PTEIDX_GROUP_IX 0x7
106 * POWER4 and newer have per page execute protection, older chips can only
107 * do this on a segment (256MB) basis.
109 * Also, write permissions imply read permissions.
110 * This is the closest we can get..
112 * Note due to the way vm flags are laid out, the bits are XWR
114 #define __P000 PAGE_NONE
115 #define __P001 PAGE_READONLY
116 #define __P010 PAGE_COPY
117 #define __P011 PAGE_COPY
118 #define __P100 PAGE_READONLY_X
119 #define __P101 PAGE_READONLY_X
120 #define __P110 PAGE_COPY_X
121 #define __P111 PAGE_COPY_X
123 #define __S000 PAGE_NONE
124 #define __S001 PAGE_READONLY
125 #define __S010 PAGE_SHARED
126 #define __S011 PAGE_SHARED
127 #define __S100 PAGE_READONLY_X
128 #define __S101 PAGE_READONLY_X
129 #define __S110 PAGE_SHARED_X
130 #define __S111 PAGE_SHARED_X
132 #ifndef __ASSEMBLY__
135 * ZERO_PAGE is a global shared page that is always zero: used
136 * for zero-mapped memory areas etc..
138 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
139 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
140 #endif /* __ASSEMBLY__ */
142 #ifdef CONFIG_HUGETLB_PAGE
144 #define HAVE_ARCH_UNMAPPED_AREA
145 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
147 #endif
149 #ifndef __ASSEMBLY__
152 * Conversion functions: convert a page and protection to a page entry,
153 * and a page entry and page directory to the page they refer to.
155 * mk_pte takes a (struct page *) as input
157 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
159 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
161 pte_t pte;
164 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
165 return pte;
168 #define pte_modify(_pte, newprot) \
169 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
171 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
172 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
174 /* pte_clear moved to later in this file */
176 #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
177 #define pte_page(x) pfn_to_page(pte_pfn(x))
179 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
180 #define pmd_none(pmd) (!pmd_val(pmd))
181 #define pmd_bad(pmd) (pmd_val(pmd) == 0)
182 #define pmd_present(pmd) (pmd_val(pmd) != 0)
183 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
184 #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
185 #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
187 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
188 #define pud_none(pud) (!pud_val(pud))
189 #define pud_bad(pud) ((pud_val(pud)) == 0)
190 #define pud_present(pud) (pud_val(pud) != 0)
191 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
192 #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
194 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
197 * Find an entry in a page-table-directory. We combine the address region
198 * (the high order N bits) and the pgd portion of the address.
200 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
201 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
203 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
205 #define pmd_offset(pudp,addr) \
206 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
208 #define pte_offset_kernel(dir,addr) \
209 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
211 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
212 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
213 #define pte_unmap(pte) do { } while(0)
214 #define pte_unmap_nested(pte) do { } while(0)
216 /* to find an entry in a kernel page-table-directory */
217 /* This now only contains the vmalloc pages */
218 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
221 * The following only work if pte_present() is true.
222 * Undefined behaviour if not..
224 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
225 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
226 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
227 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
228 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
229 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
231 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
232 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
234 static inline pte_t pte_rdprotect(pte_t pte) {
235 pte_val(pte) &= ~_PAGE_USER; return pte; }
236 static inline pte_t pte_exprotect(pte_t pte) {
237 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
238 static inline pte_t pte_wrprotect(pte_t pte) {
239 pte_val(pte) &= ~(_PAGE_RW); return pte; }
240 static inline pte_t pte_mkclean(pte_t pte) {
241 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
242 static inline pte_t pte_mkold(pte_t pte) {
243 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
244 static inline pte_t pte_mkread(pte_t pte) {
245 pte_val(pte) |= _PAGE_USER; return pte; }
246 static inline pte_t pte_mkexec(pte_t pte) {
247 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
248 static inline pte_t pte_mkwrite(pte_t pte) {
249 pte_val(pte) |= _PAGE_RW; return pte; }
250 static inline pte_t pte_mkdirty(pte_t pte) {
251 pte_val(pte) |= _PAGE_DIRTY; return pte; }
252 static inline pte_t pte_mkyoung(pte_t pte) {
253 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
254 static inline pte_t pte_mkhuge(pte_t pte) {
255 return pte; }
257 /* Atomic PTE updates */
258 static inline unsigned long pte_update(pte_t *p, unsigned long clr)
260 unsigned long old, tmp;
262 __asm__ __volatile__(
263 "1: ldarx %0,0,%3 # pte_update\n\
264 andi. %1,%0,%6\n\
265 bne- 1b \n\
266 andc %1,%0,%4 \n\
267 stdcx. %1,0,%3 \n\
268 bne- 1b"
269 : "=&r" (old), "=&r" (tmp), "=m" (*p)
270 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
271 : "cc" );
272 return old;
275 /* PTE updating functions, this function puts the PTE in the
276 * batch, doesn't actually triggers the hash flush immediately,
277 * you need to call flush_tlb_pending() to do that.
278 * Pass -1 for "normal" size (4K or 64K)
280 extern void hpte_update(struct mm_struct *mm, unsigned long addr,
281 pte_t *ptep, unsigned long pte, int huge);
283 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
284 unsigned long addr, pte_t *ptep)
286 unsigned long old;
288 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
289 return 0;
290 old = pte_update(ptep, _PAGE_ACCESSED);
291 if (old & _PAGE_HASHPTE) {
292 hpte_update(mm, addr, ptep, old, 0);
293 flush_tlb_pending();
295 return (old & _PAGE_ACCESSED) != 0;
297 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
298 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
299 ({ \
300 int __r; \
301 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
302 __r; \
306 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
307 * moment we always flush but we need to fix hpte_update and test if the
308 * optimisation is worth it.
310 static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
311 unsigned long addr, pte_t *ptep)
313 unsigned long old;
315 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
316 return 0;
317 old = pte_update(ptep, _PAGE_DIRTY);
318 if (old & _PAGE_HASHPTE)
319 hpte_update(mm, addr, ptep, old, 0);
320 return (old & _PAGE_DIRTY) != 0;
322 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
323 #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
324 ({ \
325 int __r; \
326 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
327 __r; \
330 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
331 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
332 pte_t *ptep)
334 unsigned long old;
336 if ((pte_val(*ptep) & _PAGE_RW) == 0)
337 return;
338 old = pte_update(ptep, _PAGE_RW);
339 if (old & _PAGE_HASHPTE)
340 hpte_update(mm, addr, ptep, old, 0);
344 * We currently remove entries from the hashtable regardless of whether
345 * the entry was young or dirty. The generic routines only flush if the
346 * entry was young or dirty which is not good enough.
348 * We should be more intelligent about this but for the moment we override
349 * these functions and force a tlb flush unconditionally
351 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
352 #define ptep_clear_flush_young(__vma, __address, __ptep) \
353 ({ \
354 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
355 __ptep); \
356 __young; \
359 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
360 #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
361 ({ \
362 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
363 __ptep); \
364 flush_tlb_page(__vma, __address); \
365 __dirty; \
368 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
369 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
370 unsigned long addr, pte_t *ptep)
372 unsigned long old = pte_update(ptep, ~0UL);
374 if (old & _PAGE_HASHPTE)
375 hpte_update(mm, addr, ptep, old, 0);
376 return __pte(old);
379 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
380 pte_t * ptep)
382 unsigned long old = pte_update(ptep, ~0UL);
384 if (old & _PAGE_HASHPTE)
385 hpte_update(mm, addr, ptep, old, 0);
389 * set_pte stores a linux PTE into the linux page table.
391 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
392 pte_t *ptep, pte_t pte)
394 if (pte_present(*ptep)) {
395 pte_clear(mm, addr, ptep);
396 flush_tlb_pending();
398 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
400 #ifdef CONFIG_PPC_64K_PAGES
401 if (mmu_virtual_psize != MMU_PAGE_64K)
402 pte = __pte(pte_val(pte) | _PAGE_COMBO);
403 #endif /* CONFIG_PPC_64K_PAGES */
405 *ptep = pte;
408 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
409 * function doesn't need to flush the hash entry
411 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
412 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
414 unsigned long bits = pte_val(entry) &
415 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
416 unsigned long old, tmp;
418 __asm__ __volatile__(
419 "1: ldarx %0,0,%4\n\
420 andi. %1,%0,%6\n\
421 bne- 1b \n\
422 or %0,%3,%0\n\
423 stdcx. %0,0,%4\n\
424 bne- 1b"
425 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
426 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
427 :"cc");
429 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
430 do { \
431 __ptep_set_access_flags(__ptep, __entry, __dirty); \
432 flush_tlb_page_nohash(__vma, __address); \
433 } while(0)
436 * Macro to mark a page protection value as "uncacheable".
438 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
440 struct file;
441 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
442 unsigned long size, pgprot_t vma_prot);
443 #define __HAVE_PHYS_MEM_ACCESS_PROT
445 #define __HAVE_ARCH_PTE_SAME
446 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
448 #define pte_ERROR(e) \
449 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
450 #define pmd_ERROR(e) \
451 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
452 #define pgd_ERROR(e) \
453 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
455 extern pgd_t swapper_pg_dir[];
457 extern void paging_init(void);
459 #ifdef CONFIG_HUGETLB_PAGE
460 #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
461 free_pgd_range(tlb, addr, end, floor, ceiling)
462 #endif
465 * This gets called at the end of handling a page fault, when
466 * the kernel has put a new PTE into the page table for the process.
467 * We use it to put a corresponding HPTE into the hash table
468 * ahead of time, instead of waiting for the inevitable extra
469 * hash-table miss exception.
471 struct vm_area_struct;
472 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
474 /* Encode and de-code a swap entry */
475 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
476 #define __swp_offset(entry) ((entry).val >> 8)
477 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
478 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
479 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
480 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
481 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
482 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
485 * kern_addr_valid is intended to indicate whether an address is a valid
486 * kernel address. Most 32-bit archs define it as always true (like this)
487 * but most 64-bit archs actually perform a test. What should we do here?
488 * The only use is in fs/ncpfs/dir.c
490 #define kern_addr_valid(addr) (1)
492 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
493 remap_pfn_range(vma, vaddr, pfn, size, prot)
495 void pgtable_cache_init(void);
498 * find_linux_pte returns the address of a linux pte for a given
499 * effective address and directory. If not found, it returns zero.
500 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
502 pgd_t *pg;
503 pud_t *pu;
504 pmd_t *pm;
505 pte_t *pt = NULL;
507 pg = pgdir + pgd_index(ea);
508 if (!pgd_none(*pg)) {
509 pu = pud_offset(pg, ea);
510 if (!pud_none(*pu)) {
511 pm = pmd_offset(pu, ea);
512 if (pmd_present(*pm))
513 pt = pte_offset_kernel(pm, ea);
516 return pt;
519 #include <asm-generic/pgtable.h>
521 #endif /* __ASSEMBLY__ */
523 #endif /* CONFIG_PPC64 */
524 #endif /* _ASM_POWERPC_PGTABLE_H */