2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/kthread.h>
51 #include <linux/errno.h>
52 #include <linux/spinlock.h>
53 #include <linux/file.h>
54 #include <linux/proc_fs.h>
55 #include <linux/seq_file.h>
56 #include <linux/miscdevice.h>
57 #include <linux/suspend.h>
58 #include <linux/mutex.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
61 #include <scsi/scsi.h>
63 #include <asm/uaccess.h>
66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
68 #define DPRINTK(fmt, args...)
72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #define VPRINTK(fmt, args...)
77 #define MAX_SPEED 0xffff
79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
81 static struct pktcdvd_device
*pkt_devs
[MAX_WRITERS
];
82 static struct proc_dir_entry
*pkt_proc
;
84 static struct mutex ctl_mutex
; /* Serialize open/close/setup/teardown */
85 static mempool_t
*psd_pool
;
88 static void pkt_bio_finished(struct pktcdvd_device
*pd
)
90 BUG_ON(atomic_read(&pd
->cdrw
.pending_bios
) <= 0);
91 if (atomic_dec_and_test(&pd
->cdrw
.pending_bios
)) {
92 VPRINTK("pktcdvd: queue empty\n");
93 atomic_set(&pd
->iosched
.attention
, 1);
98 static void pkt_bio_destructor(struct bio
*bio
)
100 kfree(bio
->bi_io_vec
);
104 static struct bio
*pkt_bio_alloc(int nr_iovecs
)
106 struct bio_vec
*bvl
= NULL
;
109 bio
= kmalloc(sizeof(struct bio
), GFP_KERNEL
);
114 bvl
= kcalloc(nr_iovecs
, sizeof(struct bio_vec
), GFP_KERNEL
);
118 bio
->bi_max_vecs
= nr_iovecs
;
119 bio
->bi_io_vec
= bvl
;
120 bio
->bi_destructor
= pkt_bio_destructor
;
131 * Allocate a packet_data struct
133 static struct packet_data
*pkt_alloc_packet_data(int frames
)
136 struct packet_data
*pkt
;
138 pkt
= kzalloc(sizeof(struct packet_data
), GFP_KERNEL
);
142 pkt
->frames
= frames
;
143 pkt
->w_bio
= pkt_bio_alloc(frames
);
147 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++) {
148 pkt
->pages
[i
] = alloc_page(GFP_KERNEL
|__GFP_ZERO
);
153 spin_lock_init(&pkt
->lock
);
155 for (i
= 0; i
< frames
; i
++) {
156 struct bio
*bio
= pkt_bio_alloc(1);
159 pkt
->r_bios
[i
] = bio
;
165 for (i
= 0; i
< frames
; i
++) {
166 struct bio
*bio
= pkt
->r_bios
[i
];
172 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++)
174 __free_page(pkt
->pages
[i
]);
183 * Free a packet_data struct
185 static void pkt_free_packet_data(struct packet_data
*pkt
)
189 for (i
= 0; i
< pkt
->frames
; i
++) {
190 struct bio
*bio
= pkt
->r_bios
[i
];
194 for (i
= 0; i
< pkt
->frames
/ FRAMES_PER_PAGE
; i
++)
195 __free_page(pkt
->pages
[i
]);
200 static void pkt_shrink_pktlist(struct pktcdvd_device
*pd
)
202 struct packet_data
*pkt
, *next
;
204 BUG_ON(!list_empty(&pd
->cdrw
.pkt_active_list
));
206 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_free_list
, list
) {
207 pkt_free_packet_data(pkt
);
209 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
212 static int pkt_grow_pktlist(struct pktcdvd_device
*pd
, int nr_packets
)
214 struct packet_data
*pkt
;
216 BUG_ON(!list_empty(&pd
->cdrw
.pkt_free_list
));
218 while (nr_packets
> 0) {
219 pkt
= pkt_alloc_packet_data(pd
->settings
.size
>> 2);
221 pkt_shrink_pktlist(pd
);
224 pkt
->id
= nr_packets
;
226 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
232 static inline struct pkt_rb_node
*pkt_rbtree_next(struct pkt_rb_node
*node
)
234 struct rb_node
*n
= rb_next(&node
->rb_node
);
237 return rb_entry(n
, struct pkt_rb_node
, rb_node
);
240 static void pkt_rbtree_erase(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
242 rb_erase(&node
->rb_node
, &pd
->bio_queue
);
243 mempool_free(node
, pd
->rb_pool
);
244 pd
->bio_queue_size
--;
245 BUG_ON(pd
->bio_queue_size
< 0);
249 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
251 static struct pkt_rb_node
*pkt_rbtree_find(struct pktcdvd_device
*pd
, sector_t s
)
253 struct rb_node
*n
= pd
->bio_queue
.rb_node
;
254 struct rb_node
*next
;
255 struct pkt_rb_node
*tmp
;
258 BUG_ON(pd
->bio_queue_size
> 0);
263 tmp
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
264 if (s
<= tmp
->bio
->bi_sector
)
273 if (s
> tmp
->bio
->bi_sector
) {
274 tmp
= pkt_rbtree_next(tmp
);
278 BUG_ON(s
> tmp
->bio
->bi_sector
);
283 * Insert a node into the pd->bio_queue rb tree.
285 static void pkt_rbtree_insert(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
287 struct rb_node
**p
= &pd
->bio_queue
.rb_node
;
288 struct rb_node
*parent
= NULL
;
289 sector_t s
= node
->bio
->bi_sector
;
290 struct pkt_rb_node
*tmp
;
294 tmp
= rb_entry(parent
, struct pkt_rb_node
, rb_node
);
295 if (s
< tmp
->bio
->bi_sector
)
300 rb_link_node(&node
->rb_node
, parent
, p
);
301 rb_insert_color(&node
->rb_node
, &pd
->bio_queue
);
302 pd
->bio_queue_size
++;
306 * Add a bio to a single linked list defined by its head and tail pointers.
308 static void pkt_add_list_last(struct bio
*bio
, struct bio
**list_head
, struct bio
**list_tail
)
312 BUG_ON((*list_head
) == NULL
);
313 (*list_tail
)->bi_next
= bio
;
316 BUG_ON((*list_head
) != NULL
);
323 * Remove and return the first bio from a single linked list defined by its
324 * head and tail pointers.
326 static inline struct bio
*pkt_get_list_first(struct bio
**list_head
, struct bio
**list_tail
)
330 if (*list_head
== NULL
)
334 *list_head
= bio
->bi_next
;
335 if (*list_head
== NULL
)
343 * Send a packet_command to the underlying block device and
344 * wait for completion.
346 static int pkt_generic_packet(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
348 char sense
[SCSI_SENSE_BUFFERSIZE
];
351 DECLARE_COMPLETION(wait
);
354 q
= bdev_get_queue(pd
->bdev
);
356 rq
= blk_get_request(q
, (cgc
->data_direction
== CGC_DATA_WRITE
) ? WRITE
: READ
,
359 rq
->rq_disk
= pd
->bdev
->bd_disk
;
363 rq
->data
= cgc
->buffer
;
364 rq
->data_len
= cgc
->buflen
;
366 memset(sense
, 0, sizeof(sense
));
368 rq
->flags
|= REQ_BLOCK_PC
| REQ_HARDBARRIER
;
370 rq
->flags
|= REQ_QUIET
;
371 memcpy(rq
->cmd
, cgc
->cmd
, CDROM_PACKET_SIZE
);
372 if (sizeof(rq
->cmd
) > CDROM_PACKET_SIZE
)
373 memset(rq
->cmd
+ CDROM_PACKET_SIZE
, 0, sizeof(rq
->cmd
) - CDROM_PACKET_SIZE
);
374 rq
->cmd_len
= COMMAND_SIZE(rq
->cmd
[0]);
377 rq
->flags
|= REQ_NOMERGE
;
379 rq
->end_io
= blk_end_sync_rq
;
380 elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 1);
381 generic_unplug_device(q
);
382 wait_for_completion(&wait
);
392 * A generic sense dump / resolve mechanism should be implemented across
393 * all ATAPI + SCSI devices.
395 static void pkt_dump_sense(struct packet_command
*cgc
)
397 static char *info
[9] = { "No sense", "Recovered error", "Not ready",
398 "Medium error", "Hardware error", "Illegal request",
399 "Unit attention", "Data protect", "Blank check" };
401 struct request_sense
*sense
= cgc
->sense
;
404 for (i
= 0; i
< CDROM_PACKET_SIZE
; i
++)
405 printk(" %02x", cgc
->cmd
[i
]);
409 printk("no sense\n");
413 printk("sense %02x.%02x.%02x", sense
->sense_key
, sense
->asc
, sense
->ascq
);
415 if (sense
->sense_key
> 8) {
416 printk(" (INVALID)\n");
420 printk(" (%s)\n", info
[sense
->sense_key
]);
424 * flush the drive cache to media
426 static int pkt_flush_cache(struct pktcdvd_device
*pd
)
428 struct packet_command cgc
;
430 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
431 cgc
.cmd
[0] = GPCMD_FLUSH_CACHE
;
435 * the IMMED bit -- we default to not setting it, although that
436 * would allow a much faster close, this is safer
441 return pkt_generic_packet(pd
, &cgc
);
445 * speed is given as the normal factor, e.g. 4 for 4x
447 static int pkt_set_speed(struct pktcdvd_device
*pd
, unsigned write_speed
, unsigned read_speed
)
449 struct packet_command cgc
;
450 struct request_sense sense
;
453 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
455 cgc
.cmd
[0] = GPCMD_SET_SPEED
;
456 cgc
.cmd
[2] = (read_speed
>> 8) & 0xff;
457 cgc
.cmd
[3] = read_speed
& 0xff;
458 cgc
.cmd
[4] = (write_speed
>> 8) & 0xff;
459 cgc
.cmd
[5] = write_speed
& 0xff;
461 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
462 pkt_dump_sense(&cgc
);
468 * Queue a bio for processing by the low-level CD device. Must be called
469 * from process context.
471 static void pkt_queue_bio(struct pktcdvd_device
*pd
, struct bio
*bio
)
473 spin_lock(&pd
->iosched
.lock
);
474 if (bio_data_dir(bio
) == READ
) {
475 pkt_add_list_last(bio
, &pd
->iosched
.read_queue
,
476 &pd
->iosched
.read_queue_tail
);
478 pkt_add_list_last(bio
, &pd
->iosched
.write_queue
,
479 &pd
->iosched
.write_queue_tail
);
481 spin_unlock(&pd
->iosched
.lock
);
483 atomic_set(&pd
->iosched
.attention
, 1);
484 wake_up(&pd
->wqueue
);
488 * Process the queued read/write requests. This function handles special
489 * requirements for CDRW drives:
490 * - A cache flush command must be inserted before a read request if the
491 * previous request was a write.
492 * - Switching between reading and writing is slow, so don't do it more often
494 * - Optimize for throughput at the expense of latency. This means that streaming
495 * writes will never be interrupted by a read, but if the drive has to seek
496 * before the next write, switch to reading instead if there are any pending
498 * - Set the read speed according to current usage pattern. When only reading
499 * from the device, it's best to use the highest possible read speed, but
500 * when switching often between reading and writing, it's better to have the
501 * same read and write speeds.
503 static void pkt_iosched_process_queue(struct pktcdvd_device
*pd
)
506 if (atomic_read(&pd
->iosched
.attention
) == 0)
508 atomic_set(&pd
->iosched
.attention
, 0);
512 int reads_queued
, writes_queued
;
514 spin_lock(&pd
->iosched
.lock
);
515 reads_queued
= (pd
->iosched
.read_queue
!= NULL
);
516 writes_queued
= (pd
->iosched
.write_queue
!= NULL
);
517 spin_unlock(&pd
->iosched
.lock
);
519 if (!reads_queued
&& !writes_queued
)
522 if (pd
->iosched
.writing
) {
523 int need_write_seek
= 1;
524 spin_lock(&pd
->iosched
.lock
);
525 bio
= pd
->iosched
.write_queue
;
526 spin_unlock(&pd
->iosched
.lock
);
527 if (bio
&& (bio
->bi_sector
== pd
->iosched
.last_write
))
529 if (need_write_seek
&& reads_queued
) {
530 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
531 VPRINTK("pktcdvd: write, waiting\n");
535 pd
->iosched
.writing
= 0;
538 if (!reads_queued
&& writes_queued
) {
539 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
540 VPRINTK("pktcdvd: read, waiting\n");
543 pd
->iosched
.writing
= 1;
547 spin_lock(&pd
->iosched
.lock
);
548 if (pd
->iosched
.writing
) {
549 bio
= pkt_get_list_first(&pd
->iosched
.write_queue
,
550 &pd
->iosched
.write_queue_tail
);
552 bio
= pkt_get_list_first(&pd
->iosched
.read_queue
,
553 &pd
->iosched
.read_queue_tail
);
555 spin_unlock(&pd
->iosched
.lock
);
560 if (bio_data_dir(bio
) == READ
)
561 pd
->iosched
.successive_reads
+= bio
->bi_size
>> 10;
563 pd
->iosched
.successive_reads
= 0;
564 pd
->iosched
.last_write
= bio
->bi_sector
+ bio_sectors(bio
);
566 if (pd
->iosched
.successive_reads
>= HI_SPEED_SWITCH
) {
567 if (pd
->read_speed
== pd
->write_speed
) {
568 pd
->read_speed
= MAX_SPEED
;
569 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
572 if (pd
->read_speed
!= pd
->write_speed
) {
573 pd
->read_speed
= pd
->write_speed
;
574 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
578 atomic_inc(&pd
->cdrw
.pending_bios
);
579 generic_make_request(bio
);
584 * Special care is needed if the underlying block device has a small
585 * max_phys_segments value.
587 static int pkt_set_segment_merging(struct pktcdvd_device
*pd
, request_queue_t
*q
)
589 if ((pd
->settings
.size
<< 9) / CD_FRAMESIZE
<= q
->max_phys_segments
) {
591 * The cdrom device can handle one segment/frame
593 clear_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
595 } else if ((pd
->settings
.size
<< 9) / PAGE_SIZE
<= q
->max_phys_segments
) {
597 * We can handle this case at the expense of some extra memory
598 * copies during write operations
600 set_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
603 printk("pktcdvd: cdrom max_phys_segments too small\n");
609 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
611 static void pkt_copy_bio_data(struct bio
*src_bio
, int seg
, int offs
, struct page
*dst_page
, int dst_offs
)
613 unsigned int copy_size
= CD_FRAMESIZE
;
615 while (copy_size
> 0) {
616 struct bio_vec
*src_bvl
= bio_iovec_idx(src_bio
, seg
);
617 void *vfrom
= kmap_atomic(src_bvl
->bv_page
, KM_USER0
) +
618 src_bvl
->bv_offset
+ offs
;
619 void *vto
= page_address(dst_page
) + dst_offs
;
620 int len
= min_t(int, copy_size
, src_bvl
->bv_len
- offs
);
623 memcpy(vto
, vfrom
, len
);
624 kunmap_atomic(vfrom
, KM_USER0
);
634 * Copy all data for this packet to pkt->pages[], so that
635 * a) The number of required segments for the write bio is minimized, which
636 * is necessary for some scsi controllers.
637 * b) The data can be used as cache to avoid read requests if we receive a
638 * new write request for the same zone.
640 static void pkt_make_local_copy(struct packet_data
*pkt
, struct bio_vec
*bvec
)
644 /* Copy all data to pkt->pages[] */
647 for (f
= 0; f
< pkt
->frames
; f
++) {
648 if (bvec
[f
].bv_page
!= pkt
->pages
[p
]) {
649 void *vfrom
= kmap_atomic(bvec
[f
].bv_page
, KM_USER0
) + bvec
[f
].bv_offset
;
650 void *vto
= page_address(pkt
->pages
[p
]) + offs
;
651 memcpy(vto
, vfrom
, CD_FRAMESIZE
);
652 kunmap_atomic(vfrom
, KM_USER0
);
653 bvec
[f
].bv_page
= pkt
->pages
[p
];
654 bvec
[f
].bv_offset
= offs
;
656 BUG_ON(bvec
[f
].bv_offset
!= offs
);
658 offs
+= CD_FRAMESIZE
;
659 if (offs
>= PAGE_SIZE
) {
666 static int pkt_end_io_read(struct bio
*bio
, unsigned int bytes_done
, int err
)
668 struct packet_data
*pkt
= bio
->bi_private
;
669 struct pktcdvd_device
*pd
= pkt
->pd
;
675 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio
,
676 (unsigned long long)pkt
->sector
, (unsigned long long)bio
->bi_sector
, err
);
679 atomic_inc(&pkt
->io_errors
);
680 if (atomic_dec_and_test(&pkt
->io_wait
)) {
681 atomic_inc(&pkt
->run_sm
);
682 wake_up(&pd
->wqueue
);
684 pkt_bio_finished(pd
);
689 static int pkt_end_io_packet_write(struct bio
*bio
, unsigned int bytes_done
, int err
)
691 struct packet_data
*pkt
= bio
->bi_private
;
692 struct pktcdvd_device
*pd
= pkt
->pd
;
698 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt
->id
, err
);
700 pd
->stats
.pkt_ended
++;
702 pkt_bio_finished(pd
);
703 atomic_dec(&pkt
->io_wait
);
704 atomic_inc(&pkt
->run_sm
);
705 wake_up(&pd
->wqueue
);
710 * Schedule reads for the holes in a packet
712 static void pkt_gather_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
717 char written
[PACKET_MAX_SIZE
];
719 BUG_ON(!pkt
->orig_bios
);
721 atomic_set(&pkt
->io_wait
, 0);
722 atomic_set(&pkt
->io_errors
, 0);
725 * Figure out which frames we need to read before we can write.
727 memset(written
, 0, sizeof(written
));
728 spin_lock(&pkt
->lock
);
729 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
730 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
731 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
732 pd
->stats
.secs_w
+= num_frames
* (CD_FRAMESIZE
>> 9);
733 BUG_ON(first_frame
< 0);
734 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
735 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++)
738 spin_unlock(&pkt
->lock
);
740 if (pkt
->cache_valid
) {
741 VPRINTK("pkt_gather_data: zone %llx cached\n",
742 (unsigned long long)pkt
->sector
);
747 * Schedule reads for missing parts of the packet.
749 for (f
= 0; f
< pkt
->frames
; f
++) {
753 bio
= pkt
->r_bios
[f
];
755 bio
->bi_max_vecs
= 1;
756 bio
->bi_sector
= pkt
->sector
+ f
* (CD_FRAMESIZE
>> 9);
757 bio
->bi_bdev
= pd
->bdev
;
758 bio
->bi_end_io
= pkt_end_io_read
;
759 bio
->bi_private
= pkt
;
761 p
= (f
* CD_FRAMESIZE
) / PAGE_SIZE
;
762 offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
763 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
764 f
, pkt
->pages
[p
], offset
);
765 if (!bio_add_page(bio
, pkt
->pages
[p
], CD_FRAMESIZE
, offset
))
768 atomic_inc(&pkt
->io_wait
);
770 pkt_queue_bio(pd
, bio
);
775 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
776 frames_read
, (unsigned long long)pkt
->sector
);
777 pd
->stats
.pkt_started
++;
778 pd
->stats
.secs_rg
+= frames_read
* (CD_FRAMESIZE
>> 9);
782 * Find a packet matching zone, or the least recently used packet if
785 static struct packet_data
*pkt_get_packet_data(struct pktcdvd_device
*pd
, int zone
)
787 struct packet_data
*pkt
;
789 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_free_list
, list
) {
790 if (pkt
->sector
== zone
|| pkt
->list
.next
== &pd
->cdrw
.pkt_free_list
) {
791 list_del_init(&pkt
->list
);
792 if (pkt
->sector
!= zone
)
793 pkt
->cache_valid
= 0;
801 static void pkt_put_packet_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
803 if (pkt
->cache_valid
) {
804 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
806 list_add_tail(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
811 * recover a failed write, query for relocation if possible
813 * returns 1 if recovery is possible, or 0 if not
816 static int pkt_start_recovery(struct packet_data
*pkt
)
819 * FIXME. We need help from the file system to implement
824 struct request
*rq
= pkt
->rq
;
825 struct pktcdvd_device
*pd
= rq
->rq_disk
->private_data
;
826 struct block_device
*pkt_bdev
;
827 struct super_block
*sb
= NULL
;
828 unsigned long old_block
, new_block
;
831 pkt_bdev
= bdget(kdev_t_to_nr(pd
->pkt_dev
));
833 sb
= get_super(pkt_bdev
);
840 if (!sb
->s_op
|| !sb
->s_op
->relocate_blocks
)
843 old_block
= pkt
->sector
/ (CD_FRAMESIZE
>> 9);
844 if (sb
->s_op
->relocate_blocks(sb
, old_block
, &new_block
))
847 new_sector
= new_block
* (CD_FRAMESIZE
>> 9);
848 pkt
->sector
= new_sector
;
850 pkt
->bio
->bi_sector
= new_sector
;
851 pkt
->bio
->bi_next
= NULL
;
852 pkt
->bio
->bi_flags
= 1 << BIO_UPTODATE
;
853 pkt
->bio
->bi_idx
= 0;
855 BUG_ON(pkt
->bio
->bi_rw
!= (1 << BIO_RW
));
856 BUG_ON(pkt
->bio
->bi_vcnt
!= pkt
->frames
);
857 BUG_ON(pkt
->bio
->bi_size
!= pkt
->frames
* CD_FRAMESIZE
);
858 BUG_ON(pkt
->bio
->bi_end_io
!= pkt_end_io_packet_write
);
859 BUG_ON(pkt
->bio
->bi_private
!= pkt
);
870 static inline void pkt_set_state(struct packet_data
*pkt
, enum packet_data_state state
)
873 static const char *state_name
[] = {
874 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
876 enum packet_data_state old_state
= pkt
->state
;
877 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt
->id
, (unsigned long long)pkt
->sector
,
878 state_name
[old_state
], state_name
[state
]);
884 * Scan the work queue to see if we can start a new packet.
885 * returns non-zero if any work was done.
887 static int pkt_handle_queue(struct pktcdvd_device
*pd
)
889 struct packet_data
*pkt
, *p
;
890 struct bio
*bio
= NULL
;
891 sector_t zone
= 0; /* Suppress gcc warning */
892 struct pkt_rb_node
*node
, *first_node
;
895 VPRINTK("handle_queue\n");
897 atomic_set(&pd
->scan_queue
, 0);
899 if (list_empty(&pd
->cdrw
.pkt_free_list
)) {
900 VPRINTK("handle_queue: no pkt\n");
905 * Try to find a zone we are not already working on.
907 spin_lock(&pd
->lock
);
908 first_node
= pkt_rbtree_find(pd
, pd
->current_sector
);
910 n
= rb_first(&pd
->bio_queue
);
912 first_node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
917 zone
= ZONE(bio
->bi_sector
, pd
);
918 list_for_each_entry(p
, &pd
->cdrw
.pkt_active_list
, list
) {
919 if (p
->sector
== zone
) {
926 node
= pkt_rbtree_next(node
);
928 n
= rb_first(&pd
->bio_queue
);
930 node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
932 if (node
== first_node
)
935 spin_unlock(&pd
->lock
);
937 VPRINTK("handle_queue: no bio\n");
941 pkt
= pkt_get_packet_data(pd
, zone
);
943 pd
->current_sector
= zone
+ pd
->settings
.size
;
945 BUG_ON(pkt
->frames
!= pd
->settings
.size
>> 2);
949 * Scan work queue for bios in the same zone and link them
952 spin_lock(&pd
->lock
);
953 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone
);
954 while ((node
= pkt_rbtree_find(pd
, zone
)) != NULL
) {
956 VPRINTK("pkt_handle_queue: found zone=%llx\n",
957 (unsigned long long)ZONE(bio
->bi_sector
, pd
));
958 if (ZONE(bio
->bi_sector
, pd
) != zone
)
960 pkt_rbtree_erase(pd
, node
);
961 spin_lock(&pkt
->lock
);
962 pkt_add_list_last(bio
, &pkt
->orig_bios
, &pkt
->orig_bios_tail
);
963 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
964 spin_unlock(&pkt
->lock
);
966 spin_unlock(&pd
->lock
);
968 pkt
->sleep_time
= max(PACKET_WAIT_TIME
, 1);
969 pkt_set_state(pkt
, PACKET_WAITING_STATE
);
970 atomic_set(&pkt
->run_sm
, 1);
972 spin_lock(&pd
->cdrw
.active_list_lock
);
973 list_add(&pkt
->list
, &pd
->cdrw
.pkt_active_list
);
974 spin_unlock(&pd
->cdrw
.active_list_lock
);
980 * Assemble a bio to write one packet and queue the bio for processing
981 * by the underlying block device.
983 static void pkt_start_write(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
988 struct bio_vec
*bvec
= pkt
->w_bio
->bi_io_vec
;
990 for (f
= 0; f
< pkt
->frames
; f
++) {
991 bvec
[f
].bv_page
= pkt
->pages
[(f
* CD_FRAMESIZE
) / PAGE_SIZE
];
992 bvec
[f
].bv_offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
996 * Fill-in bvec with data from orig_bios.
999 spin_lock(&pkt
->lock
);
1000 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
1001 int segment
= bio
->bi_idx
;
1003 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
1004 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
1005 BUG_ON(first_frame
< 0);
1006 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
1007 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++) {
1008 struct bio_vec
*src_bvl
= bio_iovec_idx(bio
, segment
);
1010 while (src_offs
>= src_bvl
->bv_len
) {
1011 src_offs
-= src_bvl
->bv_len
;
1013 BUG_ON(segment
>= bio
->bi_vcnt
);
1014 src_bvl
= bio_iovec_idx(bio
, segment
);
1017 if (src_bvl
->bv_len
- src_offs
>= CD_FRAMESIZE
) {
1018 bvec
[f
].bv_page
= src_bvl
->bv_page
;
1019 bvec
[f
].bv_offset
= src_bvl
->bv_offset
+ src_offs
;
1021 pkt_copy_bio_data(bio
, segment
, src_offs
,
1022 bvec
[f
].bv_page
, bvec
[f
].bv_offset
);
1024 src_offs
+= CD_FRAMESIZE
;
1028 pkt_set_state(pkt
, PACKET_WRITE_WAIT_STATE
);
1029 spin_unlock(&pkt
->lock
);
1031 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1032 frames_write
, (unsigned long long)pkt
->sector
);
1033 BUG_ON(frames_write
!= pkt
->write_size
);
1035 if (test_bit(PACKET_MERGE_SEGS
, &pd
->flags
) || (pkt
->write_size
< pkt
->frames
)) {
1036 pkt_make_local_copy(pkt
, bvec
);
1037 pkt
->cache_valid
= 1;
1039 pkt
->cache_valid
= 0;
1042 /* Start the write request */
1043 bio_init(pkt
->w_bio
);
1044 pkt
->w_bio
->bi_max_vecs
= PACKET_MAX_SIZE
;
1045 pkt
->w_bio
->bi_sector
= pkt
->sector
;
1046 pkt
->w_bio
->bi_bdev
= pd
->bdev
;
1047 pkt
->w_bio
->bi_end_io
= pkt_end_io_packet_write
;
1048 pkt
->w_bio
->bi_private
= pkt
;
1049 for (f
= 0; f
< pkt
->frames
; f
++)
1050 if (!bio_add_page(pkt
->w_bio
, bvec
[f
].bv_page
, CD_FRAMESIZE
, bvec
[f
].bv_offset
))
1052 VPRINTK("pktcdvd: vcnt=%d\n", pkt
->w_bio
->bi_vcnt
);
1054 atomic_set(&pkt
->io_wait
, 1);
1055 pkt
->w_bio
->bi_rw
= WRITE
;
1056 pkt_queue_bio(pd
, pkt
->w_bio
);
1059 static void pkt_finish_packet(struct packet_data
*pkt
, int uptodate
)
1061 struct bio
*bio
, *next
;
1064 pkt
->cache_valid
= 0;
1066 /* Finish all bios corresponding to this packet */
1067 bio
= pkt
->orig_bios
;
1069 next
= bio
->bi_next
;
1070 bio
->bi_next
= NULL
;
1071 bio_endio(bio
, bio
->bi_size
, uptodate
? 0 : -EIO
);
1074 pkt
->orig_bios
= pkt
->orig_bios_tail
= NULL
;
1077 static void pkt_run_state_machine(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1081 VPRINTK("run_state_machine: pkt %d\n", pkt
->id
);
1084 switch (pkt
->state
) {
1085 case PACKET_WAITING_STATE
:
1086 if ((pkt
->write_size
< pkt
->frames
) && (pkt
->sleep_time
> 0))
1089 pkt
->sleep_time
= 0;
1090 pkt_gather_data(pd
, pkt
);
1091 pkt_set_state(pkt
, PACKET_READ_WAIT_STATE
);
1094 case PACKET_READ_WAIT_STATE
:
1095 if (atomic_read(&pkt
->io_wait
) > 0)
1098 if (atomic_read(&pkt
->io_errors
) > 0) {
1099 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1101 pkt_start_write(pd
, pkt
);
1105 case PACKET_WRITE_WAIT_STATE
:
1106 if (atomic_read(&pkt
->io_wait
) > 0)
1109 if (test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
)) {
1110 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1112 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1116 case PACKET_RECOVERY_STATE
:
1117 if (pkt_start_recovery(pkt
)) {
1118 pkt_start_write(pd
, pkt
);
1120 VPRINTK("No recovery possible\n");
1121 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1125 case PACKET_FINISHED_STATE
:
1126 uptodate
= test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
);
1127 pkt_finish_packet(pkt
, uptodate
);
1137 static void pkt_handle_packets(struct pktcdvd_device
*pd
)
1139 struct packet_data
*pkt
, *next
;
1141 VPRINTK("pkt_handle_packets\n");
1144 * Run state machine for active packets
1146 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1147 if (atomic_read(&pkt
->run_sm
) > 0) {
1148 atomic_set(&pkt
->run_sm
, 0);
1149 pkt_run_state_machine(pd
, pkt
);
1154 * Move no longer active packets to the free list
1156 spin_lock(&pd
->cdrw
.active_list_lock
);
1157 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_active_list
, list
) {
1158 if (pkt
->state
== PACKET_FINISHED_STATE
) {
1159 list_del(&pkt
->list
);
1160 pkt_put_packet_data(pd
, pkt
);
1161 pkt_set_state(pkt
, PACKET_IDLE_STATE
);
1162 atomic_set(&pd
->scan_queue
, 1);
1165 spin_unlock(&pd
->cdrw
.active_list_lock
);
1168 static void pkt_count_states(struct pktcdvd_device
*pd
, int *states
)
1170 struct packet_data
*pkt
;
1173 for (i
= 0; i
< PACKET_NUM_STATES
; i
++)
1176 spin_lock(&pd
->cdrw
.active_list_lock
);
1177 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1178 states
[pkt
->state
]++;
1180 spin_unlock(&pd
->cdrw
.active_list_lock
);
1184 * kcdrwd is woken up when writes have been queued for one of our
1185 * registered devices
1187 static int kcdrwd(void *foobar
)
1189 struct pktcdvd_device
*pd
= foobar
;
1190 struct packet_data
*pkt
;
1191 long min_sleep_time
, residue
;
1193 set_user_nice(current
, -20);
1196 DECLARE_WAITQUEUE(wait
, current
);
1199 * Wait until there is something to do
1201 add_wait_queue(&pd
->wqueue
, &wait
);
1203 set_current_state(TASK_INTERRUPTIBLE
);
1205 /* Check if we need to run pkt_handle_queue */
1206 if (atomic_read(&pd
->scan_queue
) > 0)
1209 /* Check if we need to run the state machine for some packet */
1210 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1211 if (atomic_read(&pkt
->run_sm
) > 0)
1215 /* Check if we need to process the iosched queues */
1216 if (atomic_read(&pd
->iosched
.attention
) != 0)
1219 /* Otherwise, go to sleep */
1220 if (PACKET_DEBUG
> 1) {
1221 int states
[PACKET_NUM_STATES
];
1222 pkt_count_states(pd
, states
);
1223 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1224 states
[0], states
[1], states
[2], states
[3],
1225 states
[4], states
[5]);
1228 min_sleep_time
= MAX_SCHEDULE_TIMEOUT
;
1229 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1230 if (pkt
->sleep_time
&& pkt
->sleep_time
< min_sleep_time
)
1231 min_sleep_time
= pkt
->sleep_time
;
1234 generic_unplug_device(bdev_get_queue(pd
->bdev
));
1236 VPRINTK("kcdrwd: sleeping\n");
1237 residue
= schedule_timeout(min_sleep_time
);
1238 VPRINTK("kcdrwd: wake up\n");
1240 /* make swsusp happy with our thread */
1243 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1244 if (!pkt
->sleep_time
)
1246 pkt
->sleep_time
-= min_sleep_time
- residue
;
1247 if (pkt
->sleep_time
<= 0) {
1248 pkt
->sleep_time
= 0;
1249 atomic_inc(&pkt
->run_sm
);
1253 if (signal_pending(current
)) {
1254 flush_signals(current
);
1256 if (kthread_should_stop())
1260 set_current_state(TASK_RUNNING
);
1261 remove_wait_queue(&pd
->wqueue
, &wait
);
1263 if (kthread_should_stop())
1267 * if pkt_handle_queue returns true, we can queue
1270 while (pkt_handle_queue(pd
))
1274 * Handle packet state machine
1276 pkt_handle_packets(pd
);
1279 * Handle iosched queues
1281 pkt_iosched_process_queue(pd
);
1287 static void pkt_print_settings(struct pktcdvd_device
*pd
)
1289 printk("pktcdvd: %s packets, ", pd
->settings
.fp
? "Fixed" : "Variable");
1290 printk("%u blocks, ", pd
->settings
.size
>> 2);
1291 printk("Mode-%c disc\n", pd
->settings
.block_mode
== 8 ? '1' : '2');
1294 static int pkt_mode_sense(struct pktcdvd_device
*pd
, struct packet_command
*cgc
, int page_code
, int page_control
)
1296 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1298 cgc
->cmd
[0] = GPCMD_MODE_SENSE_10
;
1299 cgc
->cmd
[2] = page_code
| (page_control
<< 6);
1300 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1301 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1302 cgc
->data_direction
= CGC_DATA_READ
;
1303 return pkt_generic_packet(pd
, cgc
);
1306 static int pkt_mode_select(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
1308 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1309 memset(cgc
->buffer
, 0, 2);
1310 cgc
->cmd
[0] = GPCMD_MODE_SELECT_10
;
1311 cgc
->cmd
[1] = 0x10; /* PF */
1312 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1313 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1314 cgc
->data_direction
= CGC_DATA_WRITE
;
1315 return pkt_generic_packet(pd
, cgc
);
1318 static int pkt_get_disc_info(struct pktcdvd_device
*pd
, disc_information
*di
)
1320 struct packet_command cgc
;
1323 /* set up command and get the disc info */
1324 init_cdrom_command(&cgc
, di
, sizeof(*di
), CGC_DATA_READ
);
1325 cgc
.cmd
[0] = GPCMD_READ_DISC_INFO
;
1326 cgc
.cmd
[8] = cgc
.buflen
= 2;
1329 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1332 /* not all drives have the same disc_info length, so requeue
1333 * packet with the length the drive tells us it can supply
1335 cgc
.buflen
= be16_to_cpu(di
->disc_information_length
) +
1336 sizeof(di
->disc_information_length
);
1338 if (cgc
.buflen
> sizeof(disc_information
))
1339 cgc
.buflen
= sizeof(disc_information
);
1341 cgc
.cmd
[8] = cgc
.buflen
;
1342 return pkt_generic_packet(pd
, &cgc
);
1345 static int pkt_get_track_info(struct pktcdvd_device
*pd
, __u16 track
, __u8 type
, track_information
*ti
)
1347 struct packet_command cgc
;
1350 init_cdrom_command(&cgc
, ti
, 8, CGC_DATA_READ
);
1351 cgc
.cmd
[0] = GPCMD_READ_TRACK_RZONE_INFO
;
1352 cgc
.cmd
[1] = type
& 3;
1353 cgc
.cmd
[4] = (track
& 0xff00) >> 8;
1354 cgc
.cmd
[5] = track
& 0xff;
1358 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1361 cgc
.buflen
= be16_to_cpu(ti
->track_information_length
) +
1362 sizeof(ti
->track_information_length
);
1364 if (cgc
.buflen
> sizeof(track_information
))
1365 cgc
.buflen
= sizeof(track_information
);
1367 cgc
.cmd
[8] = cgc
.buflen
;
1368 return pkt_generic_packet(pd
, &cgc
);
1371 static int pkt_get_last_written(struct pktcdvd_device
*pd
, long *last_written
)
1373 disc_information di
;
1374 track_information ti
;
1378 if ((ret
= pkt_get_disc_info(pd
, &di
)))
1381 last_track
= (di
.last_track_msb
<< 8) | di
.last_track_lsb
;
1382 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1385 /* if this track is blank, try the previous. */
1388 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1392 /* if last recorded field is valid, return it. */
1394 *last_written
= be32_to_cpu(ti
.last_rec_address
);
1396 /* make it up instead */
1397 *last_written
= be32_to_cpu(ti
.track_start
) +
1398 be32_to_cpu(ti
.track_size
);
1400 *last_written
-= (be32_to_cpu(ti
.free_blocks
) + 7);
1406 * write mode select package based on pd->settings
1408 static int pkt_set_write_settings(struct pktcdvd_device
*pd
)
1410 struct packet_command cgc
;
1411 struct request_sense sense
;
1412 write_param_page
*wp
;
1416 /* doesn't apply to DVD+RW or DVD-RAM */
1417 if ((pd
->mmc3_profile
== 0x1a) || (pd
->mmc3_profile
== 0x12))
1420 memset(buffer
, 0, sizeof(buffer
));
1421 init_cdrom_command(&cgc
, buffer
, sizeof(*wp
), CGC_DATA_READ
);
1423 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1424 pkt_dump_sense(&cgc
);
1428 size
= 2 + ((buffer
[0] << 8) | (buffer
[1] & 0xff));
1429 pd
->mode_offset
= (buffer
[6] << 8) | (buffer
[7] & 0xff);
1430 if (size
> sizeof(buffer
))
1431 size
= sizeof(buffer
);
1436 init_cdrom_command(&cgc
, buffer
, size
, CGC_DATA_READ
);
1438 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1439 pkt_dump_sense(&cgc
);
1444 * write page is offset header + block descriptor length
1446 wp
= (write_param_page
*) &buffer
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1448 wp
->fp
= pd
->settings
.fp
;
1449 wp
->track_mode
= pd
->settings
.track_mode
;
1450 wp
->write_type
= pd
->settings
.write_type
;
1451 wp
->data_block_type
= pd
->settings
.block_mode
;
1453 wp
->multi_session
= 0;
1455 #ifdef PACKET_USE_LS
1460 if (wp
->data_block_type
== PACKET_BLOCK_MODE1
) {
1461 wp
->session_format
= 0;
1463 } else if (wp
->data_block_type
== PACKET_BLOCK_MODE2
) {
1464 wp
->session_format
= 0x20;
1468 memcpy(&wp
->mcn
[1], PACKET_MCN
, sizeof(wp
->mcn
) - 1);
1474 printk("pktcdvd: write mode wrong %d\n", wp
->data_block_type
);
1477 wp
->packet_size
= cpu_to_be32(pd
->settings
.size
>> 2);
1479 cgc
.buflen
= cgc
.cmd
[8] = size
;
1480 if ((ret
= pkt_mode_select(pd
, &cgc
))) {
1481 pkt_dump_sense(&cgc
);
1485 pkt_print_settings(pd
);
1490 * 1 -- we can write to this track, 0 -- we can't
1492 static int pkt_writable_track(struct pktcdvd_device
*pd
, track_information
*ti
)
1494 switch (pd
->mmc3_profile
) {
1495 case 0x1a: /* DVD+RW */
1496 case 0x12: /* DVD-RAM */
1497 /* The track is always writable on DVD+RW/DVD-RAM */
1503 if (!ti
->packet
|| !ti
->fp
)
1507 * "good" settings as per Mt Fuji.
1509 if (ti
->rt
== 0 && ti
->blank
== 0)
1512 if (ti
->rt
== 0 && ti
->blank
== 1)
1515 if (ti
->rt
== 1 && ti
->blank
== 0)
1518 printk("pktcdvd: bad state %d-%d-%d\n", ti
->rt
, ti
->blank
, ti
->packet
);
1523 * 1 -- we can write to this disc, 0 -- we can't
1525 static int pkt_writable_disc(struct pktcdvd_device
*pd
, disc_information
*di
)
1527 switch (pd
->mmc3_profile
) {
1528 case 0x0a: /* CD-RW */
1529 case 0xffff: /* MMC3 not supported */
1531 case 0x1a: /* DVD+RW */
1532 case 0x13: /* DVD-RW */
1533 case 0x12: /* DVD-RAM */
1536 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd
->mmc3_profile
);
1541 * for disc type 0xff we should probably reserve a new track.
1542 * but i'm not sure, should we leave this to user apps? probably.
1544 if (di
->disc_type
== 0xff) {
1545 printk("pktcdvd: Unknown disc. No track?\n");
1549 if (di
->disc_type
!= 0x20 && di
->disc_type
!= 0) {
1550 printk("pktcdvd: Wrong disc type (%x)\n", di
->disc_type
);
1554 if (di
->erasable
== 0) {
1555 printk("pktcdvd: Disc not erasable\n");
1559 if (di
->border_status
== PACKET_SESSION_RESERVED
) {
1560 printk("pktcdvd: Can't write to last track (reserved)\n");
1567 static int pkt_probe_settings(struct pktcdvd_device
*pd
)
1569 struct packet_command cgc
;
1570 unsigned char buf
[12];
1571 disc_information di
;
1572 track_information ti
;
1575 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1576 cgc
.cmd
[0] = GPCMD_GET_CONFIGURATION
;
1578 ret
= pkt_generic_packet(pd
, &cgc
);
1579 pd
->mmc3_profile
= ret
? 0xffff : buf
[6] << 8 | buf
[7];
1581 memset(&di
, 0, sizeof(disc_information
));
1582 memset(&ti
, 0, sizeof(track_information
));
1584 if ((ret
= pkt_get_disc_info(pd
, &di
))) {
1585 printk("failed get_disc\n");
1589 if (!pkt_writable_disc(pd
, &di
))
1592 pd
->type
= di
.erasable
? PACKET_CDRW
: PACKET_CDR
;
1594 track
= 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1595 if ((ret
= pkt_get_track_info(pd
, track
, 1, &ti
))) {
1596 printk("pktcdvd: failed get_track\n");
1600 if (!pkt_writable_track(pd
, &ti
)) {
1601 printk("pktcdvd: can't write to this track\n");
1606 * we keep packet size in 512 byte units, makes it easier to
1607 * deal with request calculations.
1609 pd
->settings
.size
= be32_to_cpu(ti
.fixed_packet_size
) << 2;
1610 if (pd
->settings
.size
== 0) {
1611 printk("pktcdvd: detected zero packet size!\n");
1614 if (pd
->settings
.size
> PACKET_MAX_SECTORS
) {
1615 printk("pktcdvd: packet size is too big\n");
1618 pd
->settings
.fp
= ti
.fp
;
1619 pd
->offset
= (be32_to_cpu(ti
.track_start
) << 2) & (pd
->settings
.size
- 1);
1622 pd
->nwa
= be32_to_cpu(ti
.next_writable
);
1623 set_bit(PACKET_NWA_VALID
, &pd
->flags
);
1627 * in theory we could use lra on -RW media as well and just zero
1628 * blocks that haven't been written yet, but in practice that
1629 * is just a no-go. we'll use that for -R, naturally.
1632 pd
->lra
= be32_to_cpu(ti
.last_rec_address
);
1633 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1635 pd
->lra
= 0xffffffff;
1636 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1642 pd
->settings
.link_loss
= 7;
1643 pd
->settings
.write_type
= 0; /* packet */
1644 pd
->settings
.track_mode
= ti
.track_mode
;
1647 * mode1 or mode2 disc
1649 switch (ti
.data_mode
) {
1651 pd
->settings
.block_mode
= PACKET_BLOCK_MODE1
;
1654 pd
->settings
.block_mode
= PACKET_BLOCK_MODE2
;
1657 printk("pktcdvd: unknown data mode\n");
1664 * enable/disable write caching on drive
1666 static int pkt_write_caching(struct pktcdvd_device
*pd
, int set
)
1668 struct packet_command cgc
;
1669 struct request_sense sense
;
1670 unsigned char buf
[64];
1673 memset(buf
, 0, sizeof(buf
));
1674 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1676 cgc
.buflen
= pd
->mode_offset
+ 12;
1679 * caching mode page might not be there, so quiet this command
1683 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WCACHING_PAGE
, 0)))
1686 buf
[pd
->mode_offset
+ 10] |= (!!set
<< 2);
1688 cgc
.buflen
= cgc
.cmd
[8] = 2 + ((buf
[0] << 8) | (buf
[1] & 0xff));
1689 ret
= pkt_mode_select(pd
, &cgc
);
1691 printk("pktcdvd: write caching control failed\n");
1692 pkt_dump_sense(&cgc
);
1693 } else if (!ret
&& set
)
1694 printk("pktcdvd: enabled write caching on %s\n", pd
->name
);
1698 static int pkt_lock_door(struct pktcdvd_device
*pd
, int lockflag
)
1700 struct packet_command cgc
;
1702 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1703 cgc
.cmd
[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL
;
1704 cgc
.cmd
[4] = lockflag
? 1 : 0;
1705 return pkt_generic_packet(pd
, &cgc
);
1709 * Returns drive maximum write speed
1711 static int pkt_get_max_speed(struct pktcdvd_device
*pd
, unsigned *write_speed
)
1713 struct packet_command cgc
;
1714 struct request_sense sense
;
1715 unsigned char buf
[256+18];
1716 unsigned char *cap_buf
;
1719 memset(buf
, 0, sizeof(buf
));
1720 cap_buf
= &buf
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1721 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_UNKNOWN
);
1724 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1726 cgc
.buflen
= pd
->mode_offset
+ cap_buf
[1] + 2 +
1727 sizeof(struct mode_page_header
);
1728 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1730 pkt_dump_sense(&cgc
);
1735 offset
= 20; /* Obsoleted field, used by older drives */
1736 if (cap_buf
[1] >= 28)
1737 offset
= 28; /* Current write speed selected */
1738 if (cap_buf
[1] >= 30) {
1739 /* If the drive reports at least one "Logical Unit Write
1740 * Speed Performance Descriptor Block", use the information
1741 * in the first block. (contains the highest speed)
1743 int num_spdb
= (cap_buf
[30] << 8) + cap_buf
[31];
1748 *write_speed
= (cap_buf
[offset
] << 8) | cap_buf
[offset
+ 1];
1752 /* These tables from cdrecord - I don't have orange book */
1753 /* standard speed CD-RW (1-4x) */
1754 static char clv_to_speed
[16] = {
1755 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1756 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1758 /* high speed CD-RW (-10x) */
1759 static char hs_clv_to_speed
[16] = {
1760 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1761 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1763 /* ultra high speed CD-RW */
1764 static char us_clv_to_speed
[16] = {
1765 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1766 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1770 * reads the maximum media speed from ATIP
1772 static int pkt_media_speed(struct pktcdvd_device
*pd
, unsigned *speed
)
1774 struct packet_command cgc
;
1775 struct request_sense sense
;
1776 unsigned char buf
[64];
1777 unsigned int size
, st
, sp
;
1780 init_cdrom_command(&cgc
, buf
, 2, CGC_DATA_READ
);
1782 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1784 cgc
.cmd
[2] = 4; /* READ ATIP */
1786 ret
= pkt_generic_packet(pd
, &cgc
);
1788 pkt_dump_sense(&cgc
);
1791 size
= ((unsigned int) buf
[0]<<8) + buf
[1] + 2;
1792 if (size
> sizeof(buf
))
1795 init_cdrom_command(&cgc
, buf
, size
, CGC_DATA_READ
);
1797 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1801 ret
= pkt_generic_packet(pd
, &cgc
);
1803 pkt_dump_sense(&cgc
);
1807 if (!buf
[6] & 0x40) {
1808 printk("pktcdvd: Disc type is not CD-RW\n");
1811 if (!buf
[6] & 0x4) {
1812 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1816 st
= (buf
[6] >> 3) & 0x7; /* disc sub-type */
1818 sp
= buf
[16] & 0xf; /* max speed from ATIP A1 field */
1820 /* Info from cdrecord */
1822 case 0: /* standard speed */
1823 *speed
= clv_to_speed
[sp
];
1825 case 1: /* high speed */
1826 *speed
= hs_clv_to_speed
[sp
];
1828 case 2: /* ultra high speed */
1829 *speed
= us_clv_to_speed
[sp
];
1832 printk("pktcdvd: Unknown disc sub-type %d\n",st
);
1836 printk("pktcdvd: Max. media speed: %d\n",*speed
);
1839 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp
,st
);
1844 static int pkt_perform_opc(struct pktcdvd_device
*pd
)
1846 struct packet_command cgc
;
1847 struct request_sense sense
;
1850 VPRINTK("pktcdvd: Performing OPC\n");
1852 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1854 cgc
.timeout
= 60*HZ
;
1855 cgc
.cmd
[0] = GPCMD_SEND_OPC
;
1857 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1858 pkt_dump_sense(&cgc
);
1862 static int pkt_open_write(struct pktcdvd_device
*pd
)
1865 unsigned int write_speed
, media_write_speed
, read_speed
;
1867 if ((ret
= pkt_probe_settings(pd
))) {
1868 VPRINTK("pktcdvd: %s failed probe\n", pd
->name
);
1872 if ((ret
= pkt_set_write_settings(pd
))) {
1873 DPRINTK("pktcdvd: %s failed saving write settings\n", pd
->name
);
1877 pkt_write_caching(pd
, USE_WCACHING
);
1879 if ((ret
= pkt_get_max_speed(pd
, &write_speed
)))
1880 write_speed
= 16 * 177;
1881 switch (pd
->mmc3_profile
) {
1882 case 0x13: /* DVD-RW */
1883 case 0x1a: /* DVD+RW */
1884 case 0x12: /* DVD-RAM */
1885 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed
);
1888 if ((ret
= pkt_media_speed(pd
, &media_write_speed
)))
1889 media_write_speed
= 16;
1890 write_speed
= min(write_speed
, media_write_speed
* 177);
1891 DPRINTK("pktcdvd: write speed %ux\n", write_speed
/ 176);
1894 read_speed
= write_speed
;
1896 if ((ret
= pkt_set_speed(pd
, write_speed
, read_speed
))) {
1897 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd
->name
);
1900 pd
->write_speed
= write_speed
;
1901 pd
->read_speed
= read_speed
;
1903 if ((ret
= pkt_perform_opc(pd
))) {
1904 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd
->name
);
1911 * called at open time.
1913 static int pkt_open_dev(struct pktcdvd_device
*pd
, int write
)
1920 * We need to re-open the cdrom device without O_NONBLOCK to be able
1921 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1922 * so bdget() can't fail.
1924 bdget(pd
->bdev
->bd_dev
);
1925 if ((ret
= blkdev_get(pd
->bdev
, FMODE_READ
, O_RDONLY
)))
1928 if ((ret
= bd_claim(pd
->bdev
, pd
)))
1931 if ((ret
= pkt_get_last_written(pd
, &lba
))) {
1932 printk("pktcdvd: pkt_get_last_written failed\n");
1936 set_capacity(pd
->disk
, lba
<< 2);
1937 set_capacity(pd
->bdev
->bd_disk
, lba
<< 2);
1938 bd_set_size(pd
->bdev
, (loff_t
)lba
<< 11);
1940 q
= bdev_get_queue(pd
->bdev
);
1942 if ((ret
= pkt_open_write(pd
)))
1945 * Some CDRW drives can not handle writes larger than one packet,
1946 * even if the size is a multiple of the packet size.
1948 spin_lock_irq(q
->queue_lock
);
1949 blk_queue_max_sectors(q
, pd
->settings
.size
);
1950 spin_unlock_irq(q
->queue_lock
);
1951 set_bit(PACKET_WRITABLE
, &pd
->flags
);
1953 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
1954 clear_bit(PACKET_WRITABLE
, &pd
->flags
);
1957 if ((ret
= pkt_set_segment_merging(pd
, q
)))
1961 if (!pkt_grow_pktlist(pd
, CONFIG_CDROM_PKTCDVD_BUFFERS
)) {
1962 printk("pktcdvd: not enough memory for buffers\n");
1966 printk("pktcdvd: %lukB available on disc\n", lba
<< 1);
1972 bd_release(pd
->bdev
);
1974 blkdev_put(pd
->bdev
);
1980 * called when the device is closed. makes sure that the device flushes
1981 * the internal cache before we close.
1983 static void pkt_release_dev(struct pktcdvd_device
*pd
, int flush
)
1985 if (flush
&& pkt_flush_cache(pd
))
1986 DPRINTK("pktcdvd: %s not flushing cache\n", pd
->name
);
1988 pkt_lock_door(pd
, 0);
1990 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
1991 bd_release(pd
->bdev
);
1992 blkdev_put(pd
->bdev
);
1994 pkt_shrink_pktlist(pd
);
1997 static struct pktcdvd_device
*pkt_find_dev_from_minor(int dev_minor
)
1999 if (dev_minor
>= MAX_WRITERS
)
2001 return pkt_devs
[dev_minor
];
2004 static int pkt_open(struct inode
*inode
, struct file
*file
)
2006 struct pktcdvd_device
*pd
= NULL
;
2009 VPRINTK("pktcdvd: entering open\n");
2011 mutex_lock(&ctl_mutex
);
2012 pd
= pkt_find_dev_from_minor(iminor(inode
));
2017 BUG_ON(pd
->refcnt
< 0);
2020 if (pd
->refcnt
> 1) {
2021 if ((file
->f_mode
& FMODE_WRITE
) &&
2022 !test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2027 ret
= pkt_open_dev(pd
, file
->f_mode
& FMODE_WRITE
);
2031 * needed here as well, since ext2 (among others) may change
2032 * the blocksize at mount time
2034 set_blocksize(inode
->i_bdev
, CD_FRAMESIZE
);
2037 mutex_unlock(&ctl_mutex
);
2043 VPRINTK("pktcdvd: failed open (%d)\n", ret
);
2044 mutex_unlock(&ctl_mutex
);
2048 static int pkt_close(struct inode
*inode
, struct file
*file
)
2050 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2053 mutex_lock(&ctl_mutex
);
2055 BUG_ON(pd
->refcnt
< 0);
2056 if (pd
->refcnt
== 0) {
2057 int flush
= test_bit(PACKET_WRITABLE
, &pd
->flags
);
2058 pkt_release_dev(pd
, flush
);
2060 mutex_unlock(&ctl_mutex
);
2065 static int pkt_end_io_read_cloned(struct bio
*bio
, unsigned int bytes_done
, int err
)
2067 struct packet_stacked_data
*psd
= bio
->bi_private
;
2068 struct pktcdvd_device
*pd
= psd
->pd
;
2074 bio_endio(psd
->bio
, psd
->bio
->bi_size
, err
);
2075 mempool_free(psd
, psd_pool
);
2076 pkt_bio_finished(pd
);
2080 static int pkt_make_request(request_queue_t
*q
, struct bio
*bio
)
2082 struct pktcdvd_device
*pd
;
2083 char b
[BDEVNAME_SIZE
];
2085 struct packet_data
*pkt
;
2086 int was_empty
, blocked_bio
;
2087 struct pkt_rb_node
*node
;
2091 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio
->bi_bdev
, b
));
2096 * Clone READ bios so we can have our own bi_end_io callback.
2098 if (bio_data_dir(bio
) == READ
) {
2099 struct bio
*cloned_bio
= bio_clone(bio
, GFP_NOIO
);
2100 struct packet_stacked_data
*psd
= mempool_alloc(psd_pool
, GFP_NOIO
);
2104 cloned_bio
->bi_bdev
= pd
->bdev
;
2105 cloned_bio
->bi_private
= psd
;
2106 cloned_bio
->bi_end_io
= pkt_end_io_read_cloned
;
2107 pd
->stats
.secs_r
+= bio
->bi_size
>> 9;
2108 pkt_queue_bio(pd
, cloned_bio
);
2112 if (!test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2113 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2114 pd
->name
, (unsigned long long)bio
->bi_sector
);
2118 if (!bio
->bi_size
|| (bio
->bi_size
% CD_FRAMESIZE
)) {
2119 printk("pktcdvd: wrong bio size\n");
2123 blk_queue_bounce(q
, &bio
);
2125 zone
= ZONE(bio
->bi_sector
, pd
);
2126 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2127 (unsigned long long)bio
->bi_sector
,
2128 (unsigned long long)(bio
->bi_sector
+ bio_sectors(bio
)));
2130 /* Check if we have to split the bio */
2132 struct bio_pair
*bp
;
2136 last_zone
= ZONE(bio
->bi_sector
+ bio_sectors(bio
) - 1, pd
);
2137 if (last_zone
!= zone
) {
2138 BUG_ON(last_zone
!= zone
+ pd
->settings
.size
);
2139 first_sectors
= last_zone
- bio
->bi_sector
;
2140 bp
= bio_split(bio
, bio_split_pool
, first_sectors
);
2142 pkt_make_request(q
, &bp
->bio1
);
2143 pkt_make_request(q
, &bp
->bio2
);
2144 bio_pair_release(bp
);
2150 * If we find a matching packet in state WAITING or READ_WAIT, we can
2151 * just append this bio to that packet.
2153 spin_lock(&pd
->cdrw
.active_list_lock
);
2155 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
2156 if (pkt
->sector
== zone
) {
2157 spin_lock(&pkt
->lock
);
2158 if ((pkt
->state
== PACKET_WAITING_STATE
) ||
2159 (pkt
->state
== PACKET_READ_WAIT_STATE
)) {
2160 pkt_add_list_last(bio
, &pkt
->orig_bios
,
2161 &pkt
->orig_bios_tail
);
2162 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
2163 if ((pkt
->write_size
>= pkt
->frames
) &&
2164 (pkt
->state
== PACKET_WAITING_STATE
)) {
2165 atomic_inc(&pkt
->run_sm
);
2166 wake_up(&pd
->wqueue
);
2168 spin_unlock(&pkt
->lock
);
2169 spin_unlock(&pd
->cdrw
.active_list_lock
);
2174 spin_unlock(&pkt
->lock
);
2177 spin_unlock(&pd
->cdrw
.active_list_lock
);
2180 * No matching packet found. Store the bio in the work queue.
2182 node
= mempool_alloc(pd
->rb_pool
, GFP_NOIO
);
2184 spin_lock(&pd
->lock
);
2185 BUG_ON(pd
->bio_queue_size
< 0);
2186 was_empty
= (pd
->bio_queue_size
== 0);
2187 pkt_rbtree_insert(pd
, node
);
2188 spin_unlock(&pd
->lock
);
2191 * Wake up the worker thread.
2193 atomic_set(&pd
->scan_queue
, 1);
2195 /* This wake_up is required for correct operation */
2196 wake_up(&pd
->wqueue
);
2197 } else if (!list_empty(&pd
->cdrw
.pkt_free_list
) && !blocked_bio
) {
2199 * This wake up is not required for correct operation,
2200 * but improves performance in some cases.
2202 wake_up(&pd
->wqueue
);
2206 bio_io_error(bio
, bio
->bi_size
);
2212 static int pkt_merge_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*bvec
)
2214 struct pktcdvd_device
*pd
= q
->queuedata
;
2215 sector_t zone
= ZONE(bio
->bi_sector
, pd
);
2216 int used
= ((bio
->bi_sector
- zone
) << 9) + bio
->bi_size
;
2217 int remaining
= (pd
->settings
.size
<< 9) - used
;
2221 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2222 * boundary, pkt_make_request() will split the bio.
2224 remaining2
= PAGE_SIZE
- bio
->bi_size
;
2225 remaining
= max(remaining
, remaining2
);
2227 BUG_ON(remaining
< 0);
2231 static void pkt_init_queue(struct pktcdvd_device
*pd
)
2233 request_queue_t
*q
= pd
->disk
->queue
;
2235 blk_queue_make_request(q
, pkt_make_request
);
2236 blk_queue_hardsect_size(q
, CD_FRAMESIZE
);
2237 blk_queue_max_sectors(q
, PACKET_MAX_SECTORS
);
2238 blk_queue_merge_bvec(q
, pkt_merge_bvec
);
2242 static int pkt_seq_show(struct seq_file
*m
, void *p
)
2244 struct pktcdvd_device
*pd
= m
->private;
2246 char bdev_buf
[BDEVNAME_SIZE
];
2247 int states
[PACKET_NUM_STATES
];
2249 seq_printf(m
, "Writer %s mapped to %s:\n", pd
->name
,
2250 bdevname(pd
->bdev
, bdev_buf
));
2252 seq_printf(m
, "\nSettings:\n");
2253 seq_printf(m
, "\tpacket size:\t\t%dkB\n", pd
->settings
.size
/ 2);
2255 if (pd
->settings
.write_type
== 0)
2259 seq_printf(m
, "\twrite type:\t\t%s\n", msg
);
2261 seq_printf(m
, "\tpacket type:\t\t%s\n", pd
->settings
.fp
? "Fixed" : "Variable");
2262 seq_printf(m
, "\tlink loss:\t\t%d\n", pd
->settings
.link_loss
);
2264 seq_printf(m
, "\ttrack mode:\t\t%d\n", pd
->settings
.track_mode
);
2266 if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE1
)
2268 else if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE2
)
2272 seq_printf(m
, "\tblock mode:\t\t%s\n", msg
);
2274 seq_printf(m
, "\nStatistics:\n");
2275 seq_printf(m
, "\tpackets started:\t%lu\n", pd
->stats
.pkt_started
);
2276 seq_printf(m
, "\tpackets ended:\t\t%lu\n", pd
->stats
.pkt_ended
);
2277 seq_printf(m
, "\twritten:\t\t%lukB\n", pd
->stats
.secs_w
>> 1);
2278 seq_printf(m
, "\tread gather:\t\t%lukB\n", pd
->stats
.secs_rg
>> 1);
2279 seq_printf(m
, "\tread:\t\t\t%lukB\n", pd
->stats
.secs_r
>> 1);
2281 seq_printf(m
, "\nMisc:\n");
2282 seq_printf(m
, "\treference count:\t%d\n", pd
->refcnt
);
2283 seq_printf(m
, "\tflags:\t\t\t0x%lx\n", pd
->flags
);
2284 seq_printf(m
, "\tread speed:\t\t%ukB/s\n", pd
->read_speed
);
2285 seq_printf(m
, "\twrite speed:\t\t%ukB/s\n", pd
->write_speed
);
2286 seq_printf(m
, "\tstart offset:\t\t%lu\n", pd
->offset
);
2287 seq_printf(m
, "\tmode page offset:\t%u\n", pd
->mode_offset
);
2289 seq_printf(m
, "\nQueue state:\n");
2290 seq_printf(m
, "\tbios queued:\t\t%d\n", pd
->bio_queue_size
);
2291 seq_printf(m
, "\tbios pending:\t\t%d\n", atomic_read(&pd
->cdrw
.pending_bios
));
2292 seq_printf(m
, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd
->current_sector
);
2294 pkt_count_states(pd
, states
);
2295 seq_printf(m
, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2296 states
[0], states
[1], states
[2], states
[3], states
[4], states
[5]);
2301 static int pkt_seq_open(struct inode
*inode
, struct file
*file
)
2303 return single_open(file
, pkt_seq_show
, PDE(inode
)->data
);
2306 static struct file_operations pkt_proc_fops
= {
2307 .open
= pkt_seq_open
,
2309 .llseek
= seq_lseek
,
2310 .release
= single_release
2313 static int pkt_new_dev(struct pktcdvd_device
*pd
, dev_t dev
)
2317 char b
[BDEVNAME_SIZE
];
2318 struct proc_dir_entry
*proc
;
2319 struct block_device
*bdev
;
2321 if (pd
->pkt_dev
== dev
) {
2322 printk("pktcdvd: Recursive setup not allowed\n");
2325 for (i
= 0; i
< MAX_WRITERS
; i
++) {
2326 struct pktcdvd_device
*pd2
= pkt_devs
[i
];
2329 if (pd2
->bdev
->bd_dev
== dev
) {
2330 printk("pktcdvd: %s already setup\n", bdevname(pd2
->bdev
, b
));
2333 if (pd2
->pkt_dev
== dev
) {
2334 printk("pktcdvd: Can't chain pktcdvd devices\n");
2342 ret
= blkdev_get(bdev
, FMODE_READ
, O_RDONLY
| O_NONBLOCK
);
2346 /* This is safe, since we have a reference from open(). */
2347 __module_get(THIS_MODULE
);
2350 set_blocksize(bdev
, CD_FRAMESIZE
);
2354 atomic_set(&pd
->cdrw
.pending_bios
, 0);
2355 pd
->cdrw
.thread
= kthread_run(kcdrwd
, pd
, "%s", pd
->name
);
2356 if (IS_ERR(pd
->cdrw
.thread
)) {
2357 printk("pktcdvd: can't start kernel thread\n");
2362 proc
= create_proc_entry(pd
->name
, 0, pkt_proc
);
2365 proc
->proc_fops
= &pkt_proc_fops
;
2367 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd
->name
, bdevname(bdev
, b
));
2372 /* This is safe: open() is still holding a reference. */
2373 module_put(THIS_MODULE
);
2377 static int pkt_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2379 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2381 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd
, imajor(inode
), iminor(inode
));
2385 * forward selected CDROM ioctls to CD-ROM, for UDF
2387 case CDROMMULTISESSION
:
2388 case CDROMREADTOCENTRY
:
2389 case CDROM_LAST_WRITTEN
:
2390 case CDROM_SEND_PACKET
:
2391 case SCSI_IOCTL_SEND_COMMAND
:
2392 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2396 * The door gets locked when the device is opened, so we
2397 * have to unlock it or else the eject command fails.
2399 if (pd
->refcnt
== 1)
2400 pkt_lock_door(pd
, 0);
2401 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2404 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd
->name
, cmd
);
2411 static int pkt_media_changed(struct gendisk
*disk
)
2413 struct pktcdvd_device
*pd
= disk
->private_data
;
2414 struct gendisk
*attached_disk
;
2420 attached_disk
= pd
->bdev
->bd_disk
;
2423 return attached_disk
->fops
->media_changed(attached_disk
);
2426 static struct block_device_operations pktcdvd_ops
= {
2427 .owner
= THIS_MODULE
,
2429 .release
= pkt_close
,
2431 .media_changed
= pkt_media_changed
,
2435 * Set up mapping from pktcdvd device to CD-ROM device.
2437 static int pkt_setup_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2441 struct pktcdvd_device
*pd
;
2442 struct gendisk
*disk
;
2443 dev_t dev
= new_decode_dev(ctrl_cmd
->dev
);
2445 for (idx
= 0; idx
< MAX_WRITERS
; idx
++)
2448 if (idx
== MAX_WRITERS
) {
2449 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS
);
2453 pd
= kzalloc(sizeof(struct pktcdvd_device
), GFP_KERNEL
);
2457 pd
->rb_pool
= mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE
,
2458 sizeof(struct pkt_rb_node
));
2462 disk
= alloc_disk(1);
2467 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
2468 INIT_LIST_HEAD(&pd
->cdrw
.pkt_active_list
);
2469 spin_lock_init(&pd
->cdrw
.active_list_lock
);
2471 spin_lock_init(&pd
->lock
);
2472 spin_lock_init(&pd
->iosched
.lock
);
2473 sprintf(pd
->name
, "pktcdvd%d", idx
);
2474 init_waitqueue_head(&pd
->wqueue
);
2475 pd
->bio_queue
= RB_ROOT
;
2477 disk
->major
= pkt_major
;
2478 disk
->first_minor
= idx
;
2479 disk
->fops
= &pktcdvd_ops
;
2480 disk
->flags
= GENHD_FL_REMOVABLE
;
2481 sprintf(disk
->disk_name
, "pktcdvd%d", idx
);
2482 disk
->private_data
= pd
;
2483 disk
->queue
= blk_alloc_queue(GFP_KERNEL
);
2487 pd
->pkt_dev
= MKDEV(disk
->major
, disk
->first_minor
);
2488 ret
= pkt_new_dev(pd
, dev
);
2494 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2498 blk_cleanup_queue(disk
->queue
);
2503 mempool_destroy(pd
->rb_pool
);
2509 * Tear down mapping from pktcdvd device to CD-ROM device.
2511 static int pkt_remove_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2513 struct pktcdvd_device
*pd
;
2515 dev_t pkt_dev
= new_decode_dev(ctrl_cmd
->pkt_dev
);
2517 for (idx
= 0; idx
< MAX_WRITERS
; idx
++) {
2519 if (pd
&& (pd
->pkt_dev
== pkt_dev
))
2522 if (idx
== MAX_WRITERS
) {
2523 DPRINTK("pktcdvd: dev not setup\n");
2530 if (!IS_ERR(pd
->cdrw
.thread
))
2531 kthread_stop(pd
->cdrw
.thread
);
2533 blkdev_put(pd
->bdev
);
2535 remove_proc_entry(pd
->name
, pkt_proc
);
2536 DPRINTK("pktcdvd: writer %s unmapped\n", pd
->name
);
2538 del_gendisk(pd
->disk
);
2539 blk_cleanup_queue(pd
->disk
->queue
);
2542 pkt_devs
[idx
] = NULL
;
2543 mempool_destroy(pd
->rb_pool
);
2546 /* This is safe: open() is still holding a reference. */
2547 module_put(THIS_MODULE
);
2551 static void pkt_get_status(struct pkt_ctrl_command
*ctrl_cmd
)
2553 struct pktcdvd_device
*pd
= pkt_find_dev_from_minor(ctrl_cmd
->dev_index
);
2555 ctrl_cmd
->dev
= new_encode_dev(pd
->bdev
->bd_dev
);
2556 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2559 ctrl_cmd
->pkt_dev
= 0;
2561 ctrl_cmd
->num_devices
= MAX_WRITERS
;
2564 static int pkt_ctl_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2566 void __user
*argp
= (void __user
*)arg
;
2567 struct pkt_ctrl_command ctrl_cmd
;
2570 if (cmd
!= PACKET_CTRL_CMD
)
2573 if (copy_from_user(&ctrl_cmd
, argp
, sizeof(struct pkt_ctrl_command
)))
2576 switch (ctrl_cmd
.command
) {
2577 case PKT_CTRL_CMD_SETUP
:
2578 if (!capable(CAP_SYS_ADMIN
))
2580 mutex_lock(&ctl_mutex
);
2581 ret
= pkt_setup_dev(&ctrl_cmd
);
2582 mutex_unlock(&ctl_mutex
);
2584 case PKT_CTRL_CMD_TEARDOWN
:
2585 if (!capable(CAP_SYS_ADMIN
))
2587 mutex_lock(&ctl_mutex
);
2588 ret
= pkt_remove_dev(&ctrl_cmd
);
2589 mutex_unlock(&ctl_mutex
);
2591 case PKT_CTRL_CMD_STATUS
:
2592 mutex_lock(&ctl_mutex
);
2593 pkt_get_status(&ctrl_cmd
);
2594 mutex_unlock(&ctl_mutex
);
2600 if (copy_to_user(argp
, &ctrl_cmd
, sizeof(struct pkt_ctrl_command
)))
2606 static struct file_operations pkt_ctl_fops
= {
2607 .ioctl
= pkt_ctl_ioctl
,
2608 .owner
= THIS_MODULE
,
2611 static struct miscdevice pkt_misc
= {
2612 .minor
= MISC_DYNAMIC_MINOR
,
2614 .fops
= &pkt_ctl_fops
2617 static int __init
pkt_init(void)
2621 psd_pool
= mempool_create_kmalloc_pool(PSD_POOL_SIZE
,
2622 sizeof(struct packet_stacked_data
));
2626 ret
= register_blkdev(pkt_major
, "pktcdvd");
2628 printk("pktcdvd: Unable to register block device\n");
2634 ret
= misc_register(&pkt_misc
);
2636 printk("pktcdvd: Unable to register misc device\n");
2640 mutex_init(&ctl_mutex
);
2642 pkt_proc
= proc_mkdir("pktcdvd", proc_root_driver
);
2647 unregister_blkdev(pkt_major
, "pktcdvd");
2649 mempool_destroy(psd_pool
);
2653 static void __exit
pkt_exit(void)
2655 remove_proc_entry("pktcdvd", proc_root_driver
);
2656 misc_deregister(&pkt_misc
);
2657 unregister_blkdev(pkt_major
, "pktcdvd");
2658 mempool_destroy(psd_pool
);
2661 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2662 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2663 MODULE_LICENSE("GPL");
2665 module_init(pkt_init
);
2666 module_exit(pkt_exit
);