KVM: x86: In DM_LOWEST, only deliver interrupts to vcpus with enabled LAPIC's
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory-failure.c
blob378b0f61fd3cf609a4b00a353ea771cbd5ee2082
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
33 #define DEBUG 1 /* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include <linux/slab.h>
48 #include <linux/swapops.h>
49 #include "internal.h"
51 int sysctl_memory_failure_early_kill __read_mostly = 0;
53 int sysctl_memory_failure_recovery __read_mostly = 1;
55 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
57 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
59 u32 hwpoison_filter_enable = 0;
60 u32 hwpoison_filter_dev_major = ~0U;
61 u32 hwpoison_filter_dev_minor = ~0U;
62 u64 hwpoison_filter_flags_mask;
63 u64 hwpoison_filter_flags_value;
64 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
65 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
66 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
67 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
68 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
70 static int hwpoison_filter_dev(struct page *p)
72 struct address_space *mapping;
73 dev_t dev;
75 if (hwpoison_filter_dev_major == ~0U &&
76 hwpoison_filter_dev_minor == ~0U)
77 return 0;
80 * page_mapping() does not accept slab page
82 if (PageSlab(p))
83 return -EINVAL;
85 mapping = page_mapping(p);
86 if (mapping == NULL || mapping->host == NULL)
87 return -EINVAL;
89 dev = mapping->host->i_sb->s_dev;
90 if (hwpoison_filter_dev_major != ~0U &&
91 hwpoison_filter_dev_major != MAJOR(dev))
92 return -EINVAL;
93 if (hwpoison_filter_dev_minor != ~0U &&
94 hwpoison_filter_dev_minor != MINOR(dev))
95 return -EINVAL;
97 return 0;
100 static int hwpoison_filter_flags(struct page *p)
102 if (!hwpoison_filter_flags_mask)
103 return 0;
105 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
106 hwpoison_filter_flags_value)
107 return 0;
108 else
109 return -EINVAL;
113 * This allows stress tests to limit test scope to a collection of tasks
114 * by putting them under some memcg. This prevents killing unrelated/important
115 * processes such as /sbin/init. Note that the target task may share clean
116 * pages with init (eg. libc text), which is harmless. If the target task
117 * share _dirty_ pages with another task B, the test scheme must make sure B
118 * is also included in the memcg. At last, due to race conditions this filter
119 * can only guarantee that the page either belongs to the memcg tasks, or is
120 * a freed page.
122 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
123 u64 hwpoison_filter_memcg;
124 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
125 static int hwpoison_filter_task(struct page *p)
127 struct mem_cgroup *mem;
128 struct cgroup_subsys_state *css;
129 unsigned long ino;
131 if (!hwpoison_filter_memcg)
132 return 0;
134 mem = try_get_mem_cgroup_from_page(p);
135 if (!mem)
136 return -EINVAL;
138 css = mem_cgroup_css(mem);
139 /* root_mem_cgroup has NULL dentries */
140 if (!css->cgroup->dentry)
141 return -EINVAL;
143 ino = css->cgroup->dentry->d_inode->i_ino;
144 css_put(css);
146 if (ino != hwpoison_filter_memcg)
147 return -EINVAL;
149 return 0;
151 #else
152 static int hwpoison_filter_task(struct page *p) { return 0; }
153 #endif
155 int hwpoison_filter(struct page *p)
157 if (!hwpoison_filter_enable)
158 return 0;
160 if (hwpoison_filter_dev(p))
161 return -EINVAL;
163 if (hwpoison_filter_flags(p))
164 return -EINVAL;
166 if (hwpoison_filter_task(p))
167 return -EINVAL;
169 return 0;
171 #else
172 int hwpoison_filter(struct page *p)
174 return 0;
176 #endif
178 EXPORT_SYMBOL_GPL(hwpoison_filter);
181 * Send all the processes who have the page mapped an ``action optional''
182 * signal.
184 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
185 unsigned long pfn)
187 struct siginfo si;
188 int ret;
190 printk(KERN_ERR
191 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
192 pfn, t->comm, t->pid);
193 si.si_signo = SIGBUS;
194 si.si_errno = 0;
195 si.si_code = BUS_MCEERR_AO;
196 si.si_addr = (void *)addr;
197 #ifdef __ARCH_SI_TRAPNO
198 si.si_trapno = trapno;
199 #endif
200 si.si_addr_lsb = PAGE_SHIFT;
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully noone will do that?
207 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
208 if (ret < 0)
209 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
210 t->comm, t->pid, ret);
211 return ret;
215 * When a unknown page type is encountered drain as many buffers as possible
216 * in the hope to turn the page into a LRU or free page, which we can handle.
218 void shake_page(struct page *p, int access)
220 if (!PageSlab(p)) {
221 lru_add_drain_all();
222 if (PageLRU(p))
223 return;
224 drain_all_pages();
225 if (PageLRU(p) || is_free_buddy_page(p))
226 return;
230 * Only all shrink_slab here (which would also
231 * shrink other caches) if access is not potentially fatal.
233 if (access) {
234 int nr;
235 do {
236 nr = shrink_slab(1000, GFP_KERNEL, 1000);
237 if (page_count(p) == 0)
238 break;
239 } while (nr > 10);
242 EXPORT_SYMBOL_GPL(shake_page);
245 * Kill all processes that have a poisoned page mapped and then isolate
246 * the page.
248 * General strategy:
249 * Find all processes having the page mapped and kill them.
250 * But we keep a page reference around so that the page is not
251 * actually freed yet.
252 * Then stash the page away
254 * There's no convenient way to get back to mapped processes
255 * from the VMAs. So do a brute-force search over all
256 * running processes.
258 * Remember that machine checks are not common (or rather
259 * if they are common you have other problems), so this shouldn't
260 * be a performance issue.
262 * Also there are some races possible while we get from the
263 * error detection to actually handle it.
266 struct to_kill {
267 struct list_head nd;
268 struct task_struct *tsk;
269 unsigned long addr;
270 unsigned addr_valid:1;
274 * Failure handling: if we can't find or can't kill a process there's
275 * not much we can do. We just print a message and ignore otherwise.
279 * Schedule a process for later kill.
280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
281 * TBD would GFP_NOIO be enough?
283 static void add_to_kill(struct task_struct *tsk, struct page *p,
284 struct vm_area_struct *vma,
285 struct list_head *to_kill,
286 struct to_kill **tkc)
288 struct to_kill *tk;
290 if (*tkc) {
291 tk = *tkc;
292 *tkc = NULL;
293 } else {
294 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
295 if (!tk) {
296 printk(KERN_ERR
297 "MCE: Out of memory while machine check handling\n");
298 return;
301 tk->addr = page_address_in_vma(p, vma);
302 tk->addr_valid = 1;
305 * In theory we don't have to kill when the page was
306 * munmaped. But it could be also a mremap. Since that's
307 * likely very rare kill anyways just out of paranoia, but use
308 * a SIGKILL because the error is not contained anymore.
310 if (tk->addr == -EFAULT) {
311 pr_debug("MCE: Unable to find user space address %lx in %s\n",
312 page_to_pfn(p), tsk->comm);
313 tk->addr_valid = 0;
315 get_task_struct(tsk);
316 tk->tsk = tsk;
317 list_add_tail(&tk->nd, to_kill);
321 * Kill the processes that have been collected earlier.
323 * Only do anything when DOIT is set, otherwise just free the list
324 * (this is used for clean pages which do not need killing)
325 * Also when FAIL is set do a force kill because something went
326 * wrong earlier.
328 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
329 int fail, unsigned long pfn)
331 struct to_kill *tk, *next;
333 list_for_each_entry_safe (tk, next, to_kill, nd) {
334 if (doit) {
336 * In case something went wrong with munmapping
337 * make sure the process doesn't catch the
338 * signal and then access the memory. Just kill it.
340 if (fail || tk->addr_valid == 0) {
341 printk(KERN_ERR
342 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
343 pfn, tk->tsk->comm, tk->tsk->pid);
344 force_sig(SIGKILL, tk->tsk);
348 * In theory the process could have mapped
349 * something else on the address in-between. We could
350 * check for that, but we need to tell the
351 * process anyways.
353 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
354 pfn) < 0)
355 printk(KERN_ERR
356 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
357 pfn, tk->tsk->comm, tk->tsk->pid);
359 put_task_struct(tk->tsk);
360 kfree(tk);
364 static int task_early_kill(struct task_struct *tsk)
366 if (!tsk->mm)
367 return 0;
368 if (tsk->flags & PF_MCE_PROCESS)
369 return !!(tsk->flags & PF_MCE_EARLY);
370 return sysctl_memory_failure_early_kill;
374 * Collect processes when the error hit an anonymous page.
376 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
377 struct to_kill **tkc)
379 struct vm_area_struct *vma;
380 struct task_struct *tsk;
381 struct anon_vma *av;
383 read_lock(&tasklist_lock);
384 av = page_lock_anon_vma(page);
385 if (av == NULL) /* Not actually mapped anymore */
386 goto out;
387 for_each_process (tsk) {
388 struct anon_vma_chain *vmac;
390 if (!task_early_kill(tsk))
391 continue;
392 list_for_each_entry(vmac, &av->head, same_anon_vma) {
393 vma = vmac->vma;
394 if (!page_mapped_in_vma(page, vma))
395 continue;
396 if (vma->vm_mm == tsk->mm)
397 add_to_kill(tsk, page, vma, to_kill, tkc);
400 page_unlock_anon_vma(av);
401 out:
402 read_unlock(&tasklist_lock);
406 * Collect processes when the error hit a file mapped page.
408 static void collect_procs_file(struct page *page, struct list_head *to_kill,
409 struct to_kill **tkc)
411 struct vm_area_struct *vma;
412 struct task_struct *tsk;
413 struct prio_tree_iter iter;
414 struct address_space *mapping = page->mapping;
417 * A note on the locking order between the two locks.
418 * We don't rely on this particular order.
419 * If you have some other code that needs a different order
420 * feel free to switch them around. Or add a reverse link
421 * from mm_struct to task_struct, then this could be all
422 * done without taking tasklist_lock and looping over all tasks.
425 read_lock(&tasklist_lock);
426 spin_lock(&mapping->i_mmap_lock);
427 for_each_process(tsk) {
428 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
430 if (!task_early_kill(tsk))
431 continue;
433 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
434 pgoff) {
436 * Send early kill signal to tasks where a vma covers
437 * the page but the corrupted page is not necessarily
438 * mapped it in its pte.
439 * Assume applications who requested early kill want
440 * to be informed of all such data corruptions.
442 if (vma->vm_mm == tsk->mm)
443 add_to_kill(tsk, page, vma, to_kill, tkc);
446 spin_unlock(&mapping->i_mmap_lock);
447 read_unlock(&tasklist_lock);
451 * Collect the processes who have the corrupted page mapped to kill.
452 * This is done in two steps for locking reasons.
453 * First preallocate one tokill structure outside the spin locks,
454 * so that we can kill at least one process reasonably reliable.
456 static void collect_procs(struct page *page, struct list_head *tokill)
458 struct to_kill *tk;
460 if (!page->mapping)
461 return;
463 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
464 if (!tk)
465 return;
466 if (PageAnon(page))
467 collect_procs_anon(page, tokill, &tk);
468 else
469 collect_procs_file(page, tokill, &tk);
470 kfree(tk);
474 * Error handlers for various types of pages.
477 enum outcome {
478 IGNORED, /* Error: cannot be handled */
479 FAILED, /* Error: handling failed */
480 DELAYED, /* Will be handled later */
481 RECOVERED, /* Successfully recovered */
484 static const char *action_name[] = {
485 [IGNORED] = "Ignored",
486 [FAILED] = "Failed",
487 [DELAYED] = "Delayed",
488 [RECOVERED] = "Recovered",
492 * XXX: It is possible that a page is isolated from LRU cache,
493 * and then kept in swap cache or failed to remove from page cache.
494 * The page count will stop it from being freed by unpoison.
495 * Stress tests should be aware of this memory leak problem.
497 static int delete_from_lru_cache(struct page *p)
499 if (!isolate_lru_page(p)) {
501 * Clear sensible page flags, so that the buddy system won't
502 * complain when the page is unpoison-and-freed.
504 ClearPageActive(p);
505 ClearPageUnevictable(p);
507 * drop the page count elevated by isolate_lru_page()
509 page_cache_release(p);
510 return 0;
512 return -EIO;
516 * Error hit kernel page.
517 * Do nothing, try to be lucky and not touch this instead. For a few cases we
518 * could be more sophisticated.
520 static int me_kernel(struct page *p, unsigned long pfn)
522 return IGNORED;
526 * Page in unknown state. Do nothing.
528 static int me_unknown(struct page *p, unsigned long pfn)
530 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
531 return FAILED;
535 * Clean (or cleaned) page cache page.
537 static int me_pagecache_clean(struct page *p, unsigned long pfn)
539 int err;
540 int ret = FAILED;
541 struct address_space *mapping;
543 delete_from_lru_cache(p);
546 * For anonymous pages we're done the only reference left
547 * should be the one m_f() holds.
549 if (PageAnon(p))
550 return RECOVERED;
553 * Now truncate the page in the page cache. This is really
554 * more like a "temporary hole punch"
555 * Don't do this for block devices when someone else
556 * has a reference, because it could be file system metadata
557 * and that's not safe to truncate.
559 mapping = page_mapping(p);
560 if (!mapping) {
562 * Page has been teared down in the meanwhile
564 return FAILED;
568 * Truncation is a bit tricky. Enable it per file system for now.
570 * Open: to take i_mutex or not for this? Right now we don't.
572 if (mapping->a_ops->error_remove_page) {
573 err = mapping->a_ops->error_remove_page(mapping, p);
574 if (err != 0) {
575 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
576 pfn, err);
577 } else if (page_has_private(p) &&
578 !try_to_release_page(p, GFP_NOIO)) {
579 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
580 } else {
581 ret = RECOVERED;
583 } else {
585 * If the file system doesn't support it just invalidate
586 * This fails on dirty or anything with private pages
588 if (invalidate_inode_page(p))
589 ret = RECOVERED;
590 else
591 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
592 pfn);
594 return ret;
598 * Dirty cache page page
599 * Issues: when the error hit a hole page the error is not properly
600 * propagated.
602 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
604 struct address_space *mapping = page_mapping(p);
606 SetPageError(p);
607 /* TBD: print more information about the file. */
608 if (mapping) {
610 * IO error will be reported by write(), fsync(), etc.
611 * who check the mapping.
612 * This way the application knows that something went
613 * wrong with its dirty file data.
615 * There's one open issue:
617 * The EIO will be only reported on the next IO
618 * operation and then cleared through the IO map.
619 * Normally Linux has two mechanisms to pass IO error
620 * first through the AS_EIO flag in the address space
621 * and then through the PageError flag in the page.
622 * Since we drop pages on memory failure handling the
623 * only mechanism open to use is through AS_AIO.
625 * This has the disadvantage that it gets cleared on
626 * the first operation that returns an error, while
627 * the PageError bit is more sticky and only cleared
628 * when the page is reread or dropped. If an
629 * application assumes it will always get error on
630 * fsync, but does other operations on the fd before
631 * and the page is dropped inbetween then the error
632 * will not be properly reported.
634 * This can already happen even without hwpoisoned
635 * pages: first on metadata IO errors (which only
636 * report through AS_EIO) or when the page is dropped
637 * at the wrong time.
639 * So right now we assume that the application DTRT on
640 * the first EIO, but we're not worse than other parts
641 * of the kernel.
643 mapping_set_error(mapping, EIO);
646 return me_pagecache_clean(p, pfn);
650 * Clean and dirty swap cache.
652 * Dirty swap cache page is tricky to handle. The page could live both in page
653 * cache and swap cache(ie. page is freshly swapped in). So it could be
654 * referenced concurrently by 2 types of PTEs:
655 * normal PTEs and swap PTEs. We try to handle them consistently by calling
656 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
657 * and then
658 * - clear dirty bit to prevent IO
659 * - remove from LRU
660 * - but keep in the swap cache, so that when we return to it on
661 * a later page fault, we know the application is accessing
662 * corrupted data and shall be killed (we installed simple
663 * interception code in do_swap_page to catch it).
665 * Clean swap cache pages can be directly isolated. A later page fault will
666 * bring in the known good data from disk.
668 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
670 ClearPageDirty(p);
671 /* Trigger EIO in shmem: */
672 ClearPageUptodate(p);
674 if (!delete_from_lru_cache(p))
675 return DELAYED;
676 else
677 return FAILED;
680 static int me_swapcache_clean(struct page *p, unsigned long pfn)
682 delete_from_swap_cache(p);
684 if (!delete_from_lru_cache(p))
685 return RECOVERED;
686 else
687 return FAILED;
691 * Huge pages. Needs work.
692 * Issues:
693 * No rmap support so we cannot find the original mapper. In theory could walk
694 * all MMs and look for the mappings, but that would be non atomic and racy.
695 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
696 * like just walking the current process and hoping it has it mapped (that
697 * should be usually true for the common "shared database cache" case)
698 * Should handle free huge pages and dequeue them too, but this needs to
699 * handle huge page accounting correctly.
701 static int me_huge_page(struct page *p, unsigned long pfn)
703 return FAILED;
707 * Various page states we can handle.
709 * A page state is defined by its current page->flags bits.
710 * The table matches them in order and calls the right handler.
712 * This is quite tricky because we can access page at any time
713 * in its live cycle, so all accesses have to be extremly careful.
715 * This is not complete. More states could be added.
716 * For any missing state don't attempt recovery.
719 #define dirty (1UL << PG_dirty)
720 #define sc (1UL << PG_swapcache)
721 #define unevict (1UL << PG_unevictable)
722 #define mlock (1UL << PG_mlocked)
723 #define writeback (1UL << PG_writeback)
724 #define lru (1UL << PG_lru)
725 #define swapbacked (1UL << PG_swapbacked)
726 #define head (1UL << PG_head)
727 #define tail (1UL << PG_tail)
728 #define compound (1UL << PG_compound)
729 #define slab (1UL << PG_slab)
730 #define reserved (1UL << PG_reserved)
732 static struct page_state {
733 unsigned long mask;
734 unsigned long res;
735 char *msg;
736 int (*action)(struct page *p, unsigned long pfn);
737 } error_states[] = {
738 { reserved, reserved, "reserved kernel", me_kernel },
740 * free pages are specially detected outside this table:
741 * PG_buddy pages only make a small fraction of all free pages.
745 * Could in theory check if slab page is free or if we can drop
746 * currently unused objects without touching them. But just
747 * treat it as standard kernel for now.
749 { slab, slab, "kernel slab", me_kernel },
751 #ifdef CONFIG_PAGEFLAGS_EXTENDED
752 { head, head, "huge", me_huge_page },
753 { tail, tail, "huge", me_huge_page },
754 #else
755 { compound, compound, "huge", me_huge_page },
756 #endif
758 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
759 { sc|dirty, sc, "swapcache", me_swapcache_clean },
761 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
762 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
764 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
765 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
767 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
768 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
771 * Catchall entry: must be at end.
773 { 0, 0, "unknown page state", me_unknown },
776 #undef dirty
777 #undef sc
778 #undef unevict
779 #undef mlock
780 #undef writeback
781 #undef lru
782 #undef swapbacked
783 #undef head
784 #undef tail
785 #undef compound
786 #undef slab
787 #undef reserved
789 static void action_result(unsigned long pfn, char *msg, int result)
791 struct page *page = pfn_to_page(pfn);
793 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
794 pfn,
795 PageDirty(page) ? "dirty " : "",
796 msg, action_name[result]);
799 static int page_action(struct page_state *ps, struct page *p,
800 unsigned long pfn)
802 int result;
803 int count;
805 result = ps->action(p, pfn);
806 action_result(pfn, ps->msg, result);
808 count = page_count(p) - 1;
809 if (ps->action == me_swapcache_dirty && result == DELAYED)
810 count--;
811 if (count != 0) {
812 printk(KERN_ERR
813 "MCE %#lx: %s page still referenced by %d users\n",
814 pfn, ps->msg, count);
815 result = FAILED;
818 /* Could do more checks here if page looks ok */
820 * Could adjust zone counters here to correct for the missing page.
823 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
826 #define N_UNMAP_TRIES 5
829 * Do all that is necessary to remove user space mappings. Unmap
830 * the pages and send SIGBUS to the processes if the data was dirty.
832 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
833 int trapno)
835 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
836 struct address_space *mapping;
837 LIST_HEAD(tokill);
838 int ret;
839 int i;
840 int kill = 1;
842 if (PageReserved(p) || PageSlab(p))
843 return SWAP_SUCCESS;
846 * This check implies we don't kill processes if their pages
847 * are in the swap cache early. Those are always late kills.
849 if (!page_mapped(p))
850 return SWAP_SUCCESS;
852 if (PageCompound(p) || PageKsm(p))
853 return SWAP_FAIL;
855 if (PageSwapCache(p)) {
856 printk(KERN_ERR
857 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
858 ttu |= TTU_IGNORE_HWPOISON;
862 * Propagate the dirty bit from PTEs to struct page first, because we
863 * need this to decide if we should kill or just drop the page.
864 * XXX: the dirty test could be racy: set_page_dirty() may not always
865 * be called inside page lock (it's recommended but not enforced).
867 mapping = page_mapping(p);
868 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
869 if (page_mkclean(p)) {
870 SetPageDirty(p);
871 } else {
872 kill = 0;
873 ttu |= TTU_IGNORE_HWPOISON;
874 printk(KERN_INFO
875 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
876 pfn);
881 * First collect all the processes that have the page
882 * mapped in dirty form. This has to be done before try_to_unmap,
883 * because ttu takes the rmap data structures down.
885 * Error handling: We ignore errors here because
886 * there's nothing that can be done.
888 if (kill)
889 collect_procs(p, &tokill);
892 * try_to_unmap can fail temporarily due to races.
893 * Try a few times (RED-PEN better strategy?)
895 for (i = 0; i < N_UNMAP_TRIES; i++) {
896 ret = try_to_unmap(p, ttu);
897 if (ret == SWAP_SUCCESS)
898 break;
899 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
902 if (ret != SWAP_SUCCESS)
903 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
904 pfn, page_mapcount(p));
907 * Now that the dirty bit has been propagated to the
908 * struct page and all unmaps done we can decide if
909 * killing is needed or not. Only kill when the page
910 * was dirty, otherwise the tokill list is merely
911 * freed. When there was a problem unmapping earlier
912 * use a more force-full uncatchable kill to prevent
913 * any accesses to the poisoned memory.
915 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
916 ret != SWAP_SUCCESS, pfn);
918 return ret;
921 int __memory_failure(unsigned long pfn, int trapno, int flags)
923 struct page_state *ps;
924 struct page *p;
925 int res;
927 if (!sysctl_memory_failure_recovery)
928 panic("Memory failure from trap %d on page %lx", trapno, pfn);
930 if (!pfn_valid(pfn)) {
931 printk(KERN_ERR
932 "MCE %#lx: memory outside kernel control\n",
933 pfn);
934 return -ENXIO;
937 p = pfn_to_page(pfn);
938 if (TestSetPageHWPoison(p)) {
939 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
940 return 0;
943 atomic_long_add(1, &mce_bad_pages);
946 * We need/can do nothing about count=0 pages.
947 * 1) it's a free page, and therefore in safe hand:
948 * prep_new_page() will be the gate keeper.
949 * 2) it's part of a non-compound high order page.
950 * Implies some kernel user: cannot stop them from
951 * R/W the page; let's pray that the page has been
952 * used and will be freed some time later.
953 * In fact it's dangerous to directly bump up page count from 0,
954 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
956 if (!(flags & MF_COUNT_INCREASED) &&
957 !get_page_unless_zero(compound_head(p))) {
958 if (is_free_buddy_page(p)) {
959 action_result(pfn, "free buddy", DELAYED);
960 return 0;
961 } else {
962 action_result(pfn, "high order kernel", IGNORED);
963 return -EBUSY;
968 * We ignore non-LRU pages for good reasons.
969 * - PG_locked is only well defined for LRU pages and a few others
970 * - to avoid races with __set_page_locked()
971 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
972 * The check (unnecessarily) ignores LRU pages being isolated and
973 * walked by the page reclaim code, however that's not a big loss.
975 if (!PageLRU(p))
976 shake_page(p, 0);
977 if (!PageLRU(p)) {
979 * shake_page could have turned it free.
981 if (is_free_buddy_page(p)) {
982 action_result(pfn, "free buddy, 2nd try", DELAYED);
983 return 0;
985 action_result(pfn, "non LRU", IGNORED);
986 put_page(p);
987 return -EBUSY;
991 * Lock the page and wait for writeback to finish.
992 * It's very difficult to mess with pages currently under IO
993 * and in many cases impossible, so we just avoid it here.
995 lock_page_nosync(p);
998 * unpoison always clear PG_hwpoison inside page lock
1000 if (!PageHWPoison(p)) {
1001 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1002 res = 0;
1003 goto out;
1005 if (hwpoison_filter(p)) {
1006 if (TestClearPageHWPoison(p))
1007 atomic_long_dec(&mce_bad_pages);
1008 unlock_page(p);
1009 put_page(p);
1010 return 0;
1013 wait_on_page_writeback(p);
1016 * Now take care of user space mappings.
1017 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1019 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1020 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1021 res = -EBUSY;
1022 goto out;
1026 * Torn down by someone else?
1028 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1029 action_result(pfn, "already truncated LRU", IGNORED);
1030 res = -EBUSY;
1031 goto out;
1034 res = -EBUSY;
1035 for (ps = error_states;; ps++) {
1036 if ((p->flags & ps->mask) == ps->res) {
1037 res = page_action(ps, p, pfn);
1038 break;
1041 out:
1042 unlock_page(p);
1043 return res;
1045 EXPORT_SYMBOL_GPL(__memory_failure);
1048 * memory_failure - Handle memory failure of a page.
1049 * @pfn: Page Number of the corrupted page
1050 * @trapno: Trap number reported in the signal to user space.
1052 * This function is called by the low level machine check code
1053 * of an architecture when it detects hardware memory corruption
1054 * of a page. It tries its best to recover, which includes
1055 * dropping pages, killing processes etc.
1057 * The function is primarily of use for corruptions that
1058 * happen outside the current execution context (e.g. when
1059 * detected by a background scrubber)
1061 * Must run in process context (e.g. a work queue) with interrupts
1062 * enabled and no spinlocks hold.
1064 void memory_failure(unsigned long pfn, int trapno)
1066 __memory_failure(pfn, trapno, 0);
1070 * unpoison_memory - Unpoison a previously poisoned page
1071 * @pfn: Page number of the to be unpoisoned page
1073 * Software-unpoison a page that has been poisoned by
1074 * memory_failure() earlier.
1076 * This is only done on the software-level, so it only works
1077 * for linux injected failures, not real hardware failures
1079 * Returns 0 for success, otherwise -errno.
1081 int unpoison_memory(unsigned long pfn)
1083 struct page *page;
1084 struct page *p;
1085 int freeit = 0;
1087 if (!pfn_valid(pfn))
1088 return -ENXIO;
1090 p = pfn_to_page(pfn);
1091 page = compound_head(p);
1093 if (!PageHWPoison(p)) {
1094 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1095 return 0;
1098 if (!get_page_unless_zero(page)) {
1099 if (TestClearPageHWPoison(p))
1100 atomic_long_dec(&mce_bad_pages);
1101 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1102 return 0;
1105 lock_page_nosync(page);
1107 * This test is racy because PG_hwpoison is set outside of page lock.
1108 * That's acceptable because that won't trigger kernel panic. Instead,
1109 * the PG_hwpoison page will be caught and isolated on the entrance to
1110 * the free buddy page pool.
1112 if (TestClearPageHWPoison(p)) {
1113 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1114 atomic_long_dec(&mce_bad_pages);
1115 freeit = 1;
1117 unlock_page(page);
1119 put_page(page);
1120 if (freeit)
1121 put_page(page);
1123 return 0;
1125 EXPORT_SYMBOL(unpoison_memory);
1127 static struct page *new_page(struct page *p, unsigned long private, int **x)
1129 int nid = page_to_nid(p);
1130 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1134 * Safely get reference count of an arbitrary page.
1135 * Returns 0 for a free page, -EIO for a zero refcount page
1136 * that is not free, and 1 for any other page type.
1137 * For 1 the page is returned with increased page count, otherwise not.
1139 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1141 int ret;
1143 if (flags & MF_COUNT_INCREASED)
1144 return 1;
1147 * The lock_system_sleep prevents a race with memory hotplug,
1148 * because the isolation assumes there's only a single user.
1149 * This is a big hammer, a better would be nicer.
1151 lock_system_sleep();
1154 * Isolate the page, so that it doesn't get reallocated if it
1155 * was free.
1157 set_migratetype_isolate(p);
1158 if (!get_page_unless_zero(compound_head(p))) {
1159 if (is_free_buddy_page(p)) {
1160 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1161 /* Set hwpoison bit while page is still isolated */
1162 SetPageHWPoison(p);
1163 ret = 0;
1164 } else {
1165 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1166 pfn, p->flags);
1167 ret = -EIO;
1169 } else {
1170 /* Not a free page */
1171 ret = 1;
1173 unset_migratetype_isolate(p);
1174 unlock_system_sleep();
1175 return ret;
1179 * soft_offline_page - Soft offline a page.
1180 * @page: page to offline
1181 * @flags: flags. Same as memory_failure().
1183 * Returns 0 on success, otherwise negated errno.
1185 * Soft offline a page, by migration or invalidation,
1186 * without killing anything. This is for the case when
1187 * a page is not corrupted yet (so it's still valid to access),
1188 * but has had a number of corrected errors and is better taken
1189 * out.
1191 * The actual policy on when to do that is maintained by
1192 * user space.
1194 * This should never impact any application or cause data loss,
1195 * however it might take some time.
1197 * This is not a 100% solution for all memory, but tries to be
1198 * ``good enough'' for the majority of memory.
1200 int soft_offline_page(struct page *page, int flags)
1202 int ret;
1203 unsigned long pfn = page_to_pfn(page);
1205 ret = get_any_page(page, pfn, flags);
1206 if (ret < 0)
1207 return ret;
1208 if (ret == 0)
1209 goto done;
1212 * Page cache page we can handle?
1214 if (!PageLRU(page)) {
1216 * Try to free it.
1218 put_page(page);
1219 shake_page(page, 1);
1222 * Did it turn free?
1224 ret = get_any_page(page, pfn, 0);
1225 if (ret < 0)
1226 return ret;
1227 if (ret == 0)
1228 goto done;
1230 if (!PageLRU(page)) {
1231 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1232 pfn, page->flags);
1233 return -EIO;
1236 lock_page(page);
1237 wait_on_page_writeback(page);
1240 * Synchronized using the page lock with memory_failure()
1242 if (PageHWPoison(page)) {
1243 unlock_page(page);
1244 put_page(page);
1245 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1246 return -EBUSY;
1250 * Try to invalidate first. This should work for
1251 * non dirty unmapped page cache pages.
1253 ret = invalidate_inode_page(page);
1254 unlock_page(page);
1257 * Drop count because page migration doesn't like raised
1258 * counts. The page could get re-allocated, but if it becomes
1259 * LRU the isolation will just fail.
1260 * RED-PEN would be better to keep it isolated here, but we
1261 * would need to fix isolation locking first.
1263 put_page(page);
1264 if (ret == 1) {
1265 ret = 0;
1266 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1267 goto done;
1271 * Simple invalidation didn't work.
1272 * Try to migrate to a new page instead. migrate.c
1273 * handles a large number of cases for us.
1275 ret = isolate_lru_page(page);
1276 if (!ret) {
1277 LIST_HEAD(pagelist);
1279 list_add(&page->lru, &pagelist);
1280 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1281 if (ret) {
1282 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1283 pfn, ret, page->flags);
1284 if (ret > 0)
1285 ret = -EIO;
1287 } else {
1288 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1289 pfn, ret, page_count(page), page->flags);
1291 if (ret)
1292 return ret;
1294 done:
1295 atomic_long_add(1, &mce_bad_pages);
1296 SetPageHWPoison(page);
1297 /* keep elevated page count for bad page */
1298 return ret;
1301 int is_hwpoison_address(unsigned long addr)
1303 pgd_t *pgdp;
1304 pud_t pud, *pudp;
1305 pmd_t pmd, *pmdp;
1306 pte_t pte, *ptep;
1307 swp_entry_t entry;
1309 pgdp = pgd_offset(current->mm, addr);
1310 if (!pgd_present(*pgdp))
1311 return 0;
1312 pudp = pud_offset(pgdp, addr);
1313 pud = *pudp;
1314 if (!pud_present(pud) || pud_large(pud))
1315 return 0;
1316 pmdp = pmd_offset(pudp, addr);
1317 pmd = *pmdp;
1318 if (!pmd_present(pmd) || pmd_large(pmd))
1319 return 0;
1320 ptep = pte_offset_map(pmdp, addr);
1321 pte = *ptep;
1322 pte_unmap(ptep);
1323 if (!is_swap_pte(pte))
1324 return 0;
1325 entry = pte_to_swp_entry(pte);
1326 return is_hwpoison_entry(entry);
1328 EXPORT_SYMBOL_GPL(is_hwpoison_address);