Linux 2.6.16.32-rc1
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-cpu-timers.c
blob11f36820c79152dd3f740e9b074e50489ec199d8
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock)
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
19 if (pid == 0)
20 return 0;
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
28 read_unlock(&tasklist_lock);
30 return error;
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
43 return ret;
46 static void sample_to_timespec(const clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
58 static inline int cpu_time_before(const clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
68 static inline void cpu_time_add(const clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
78 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
87 return a;
91 * Divide and limit the result to res >= 1
93 * This is necessary to prevent signal delivery starvation, when the result of
94 * the division would be rounded down to 0.
96 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
98 cputime_t res = cputime_div(time, div);
100 return max_t(cputime_t, res, 1);
104 * Update expiry time from increment, and increase overrun count,
105 * given the current clock sample.
107 static void bump_cpu_timer(struct k_itimer *timer,
108 union cpu_time_count now)
110 int i;
112 if (timer->it.cpu.incr.sched == 0)
113 return;
115 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
116 unsigned long long delta, incr;
118 if (now.sched < timer->it.cpu.expires.sched)
119 return;
120 incr = timer->it.cpu.incr.sched;
121 delta = now.sched + incr - timer->it.cpu.expires.sched;
122 /* Don't use (incr*2 < delta), incr*2 might overflow. */
123 for (i = 0; incr < delta - incr; i++)
124 incr = incr << 1;
125 for (; i >= 0; incr >>= 1, i--) {
126 if (delta < incr)
127 continue;
128 timer->it.cpu.expires.sched += incr;
129 timer->it_overrun += 1 << i;
130 delta -= incr;
132 } else {
133 cputime_t delta, incr;
135 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
136 return;
137 incr = timer->it.cpu.incr.cpu;
138 delta = cputime_sub(cputime_add(now.cpu, incr),
139 timer->it.cpu.expires.cpu);
140 /* Don't use (incr*2 < delta), incr*2 might overflow. */
141 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
142 incr = cputime_add(incr, incr);
143 for (; i >= 0; incr = cputime_halve(incr), i--) {
144 if (cputime_lt(delta, incr))
145 continue;
146 timer->it.cpu.expires.cpu =
147 cputime_add(timer->it.cpu.expires.cpu, incr);
148 timer->it_overrun += 1 << i;
149 delta = cputime_sub(delta, incr);
154 static inline cputime_t prof_ticks(struct task_struct *p)
156 return cputime_add(p->utime, p->stime);
158 static inline cputime_t virt_ticks(struct task_struct *p)
160 return p->utime;
162 static inline unsigned long long sched_ns(struct task_struct *p)
164 return (p == current) ? current_sched_time(p) : p->sched_time;
167 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
169 int error = check_clock(which_clock);
170 if (!error) {
171 tp->tv_sec = 0;
172 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
173 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
175 * If sched_clock is using a cycle counter, we
176 * don't have any idea of its true resolution
177 * exported, but it is much more than 1s/HZ.
179 tp->tv_nsec = 1;
182 return error;
185 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
188 * You can never reset a CPU clock, but we check for other errors
189 * in the call before failing with EPERM.
191 int error = check_clock(which_clock);
192 if (error == 0) {
193 error = -EPERM;
195 return error;
200 * Sample a per-thread clock for the given task.
202 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
203 union cpu_time_count *cpu)
205 switch (CPUCLOCK_WHICH(which_clock)) {
206 default:
207 return -EINVAL;
208 case CPUCLOCK_PROF:
209 cpu->cpu = prof_ticks(p);
210 break;
211 case CPUCLOCK_VIRT:
212 cpu->cpu = virt_ticks(p);
213 break;
214 case CPUCLOCK_SCHED:
215 cpu->sched = sched_ns(p);
216 break;
218 return 0;
222 * Sample a process (thread group) clock for the given group_leader task.
223 * Must be called with tasklist_lock held for reading.
224 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
226 static int cpu_clock_sample_group_locked(unsigned int clock_idx,
227 struct task_struct *p,
228 union cpu_time_count *cpu)
230 struct task_struct *t = p;
231 switch (clock_idx) {
232 default:
233 return -EINVAL;
234 case CPUCLOCK_PROF:
235 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
236 do {
237 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
238 t = next_thread(t);
239 } while (t != p);
240 break;
241 case CPUCLOCK_VIRT:
242 cpu->cpu = p->signal->utime;
243 do {
244 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
245 t = next_thread(t);
246 } while (t != p);
247 break;
248 case CPUCLOCK_SCHED:
249 cpu->sched = p->signal->sched_time;
250 /* Add in each other live thread. */
251 while ((t = next_thread(t)) != p) {
252 cpu->sched += t->sched_time;
254 cpu->sched += sched_ns(p);
255 break;
257 return 0;
261 * Sample a process (thread group) clock for the given group_leader task.
262 * Must be called with tasklist_lock held for reading.
264 static int cpu_clock_sample_group(const clockid_t which_clock,
265 struct task_struct *p,
266 union cpu_time_count *cpu)
268 int ret;
269 unsigned long flags;
270 spin_lock_irqsave(&p->sighand->siglock, flags);
271 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
272 cpu);
273 spin_unlock_irqrestore(&p->sighand->siglock, flags);
274 return ret;
278 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
280 const pid_t pid = CPUCLOCK_PID(which_clock);
281 int error = -EINVAL;
282 union cpu_time_count rtn;
284 if (pid == 0) {
286 * Special case constant value for our own clocks.
287 * We don't have to do any lookup to find ourselves.
289 if (CPUCLOCK_PERTHREAD(which_clock)) {
291 * Sampling just ourselves we can do with no locking.
293 error = cpu_clock_sample(which_clock,
294 current, &rtn);
295 } else {
296 read_lock(&tasklist_lock);
297 error = cpu_clock_sample_group(which_clock,
298 current, &rtn);
299 read_unlock(&tasklist_lock);
301 } else {
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
306 struct task_struct *p;
307 read_lock(&tasklist_lock);
308 p = find_task_by_pid(pid);
309 if (p) {
310 if (CPUCLOCK_PERTHREAD(which_clock)) {
311 if (p->tgid == current->tgid) {
312 error = cpu_clock_sample(which_clock,
313 p, &rtn);
315 } else if (p->tgid == pid && p->signal) {
316 error = cpu_clock_sample_group(which_clock,
317 p, &rtn);
320 read_unlock(&tasklist_lock);
323 if (error)
324 return error;
325 sample_to_timespec(which_clock, rtn, tp);
326 return 0;
331 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
332 * This is called from sys_timer_create with the new timer already locked.
334 int posix_cpu_timer_create(struct k_itimer *new_timer)
336 int ret = 0;
337 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
338 struct task_struct *p;
340 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
341 return -EINVAL;
343 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
344 new_timer->it.cpu.incr.sched = 0;
345 new_timer->it.cpu.expires.sched = 0;
347 read_lock(&tasklist_lock);
348 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
349 if (pid == 0) {
350 p = current;
351 } else {
352 p = find_task_by_pid(pid);
353 if (p && p->tgid != current->tgid)
354 p = NULL;
356 } else {
357 if (pid == 0) {
358 p = current->group_leader;
359 } else {
360 p = find_task_by_pid(pid);
361 if (p && p->tgid != pid)
362 p = NULL;
365 new_timer->it.cpu.task = p;
366 if (p) {
367 get_task_struct(p);
368 } else {
369 ret = -EINVAL;
371 read_unlock(&tasklist_lock);
373 return ret;
377 * Clean up a CPU-clock timer that is about to be destroyed.
378 * This is called from timer deletion with the timer already locked.
379 * If we return TIMER_RETRY, it's necessary to release the timer's lock
380 * and try again. (This happens when the timer is in the middle of firing.)
382 int posix_cpu_timer_del(struct k_itimer *timer)
384 struct task_struct *p = timer->it.cpu.task;
385 int ret = 0;
387 if (likely(p != NULL)) {
388 read_lock(&tasklist_lock);
389 if (unlikely(p->signal == NULL)) {
391 * We raced with the reaping of the task.
392 * The deletion should have cleared us off the list.
394 BUG_ON(!list_empty(&timer->it.cpu.entry));
395 } else {
396 spin_lock(&p->sighand->siglock);
397 if (timer->it.cpu.firing)
398 ret = TIMER_RETRY;
399 else
400 list_del(&timer->it.cpu.entry);
401 spin_unlock(&p->sighand->siglock);
403 read_unlock(&tasklist_lock);
405 if (!ret)
406 put_task_struct(p);
409 return ret;
413 * Clean out CPU timers still ticking when a thread exited. The task
414 * pointer is cleared, and the expiry time is replaced with the residual
415 * time for later timer_gettime calls to return.
416 * This must be called with the siglock held.
418 static void cleanup_timers(struct list_head *head,
419 cputime_t utime, cputime_t stime,
420 unsigned long long sched_time)
422 struct cpu_timer_list *timer, *next;
423 cputime_t ptime = cputime_add(utime, stime);
425 list_for_each_entry_safe(timer, next, head, entry) {
426 list_del_init(&timer->entry);
427 if (cputime_lt(timer->expires.cpu, ptime)) {
428 timer->expires.cpu = cputime_zero;
429 } else {
430 timer->expires.cpu = cputime_sub(timer->expires.cpu,
431 ptime);
435 ++head;
436 list_for_each_entry_safe(timer, next, head, entry) {
437 list_del_init(&timer->entry);
438 if (cputime_lt(timer->expires.cpu, utime)) {
439 timer->expires.cpu = cputime_zero;
440 } else {
441 timer->expires.cpu = cputime_sub(timer->expires.cpu,
442 utime);
446 ++head;
447 list_for_each_entry_safe(timer, next, head, entry) {
448 list_del_init(&timer->entry);
449 if (timer->expires.sched < sched_time) {
450 timer->expires.sched = 0;
451 } else {
452 timer->expires.sched -= sched_time;
458 * These are both called with the siglock held, when the current thread
459 * is being reaped. When the final (leader) thread in the group is reaped,
460 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
462 void posix_cpu_timers_exit(struct task_struct *tsk)
464 cleanup_timers(tsk->cpu_timers,
465 tsk->utime, tsk->stime, tsk->sched_time);
468 void posix_cpu_timers_exit_group(struct task_struct *tsk)
470 cleanup_timers(tsk->signal->cpu_timers,
471 cputime_add(tsk->utime, tsk->signal->utime),
472 cputime_add(tsk->stime, tsk->signal->stime),
473 tsk->sched_time + tsk->signal->sched_time);
478 * Set the expiry times of all the threads in the process so one of them
479 * will go off before the process cumulative expiry total is reached.
481 static void process_timer_rebalance(struct task_struct *p,
482 unsigned int clock_idx,
483 union cpu_time_count expires,
484 union cpu_time_count val)
486 cputime_t ticks, left;
487 unsigned long long ns, nsleft;
488 struct task_struct *t = p;
489 unsigned int nthreads = atomic_read(&p->signal->live);
491 if (!nthreads)
492 return;
494 switch (clock_idx) {
495 default:
496 BUG();
497 break;
498 case CPUCLOCK_PROF:
499 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
500 nthreads);
501 do {
502 if (likely(!(t->flags & PF_EXITING))) {
503 ticks = cputime_add(prof_ticks(t), left);
504 if (cputime_eq(t->it_prof_expires,
505 cputime_zero) ||
506 cputime_gt(t->it_prof_expires, ticks)) {
507 t->it_prof_expires = ticks;
510 t = next_thread(t);
511 } while (t != p);
512 break;
513 case CPUCLOCK_VIRT:
514 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
515 nthreads);
516 do {
517 if (likely(!(t->flags & PF_EXITING))) {
518 ticks = cputime_add(virt_ticks(t), left);
519 if (cputime_eq(t->it_virt_expires,
520 cputime_zero) ||
521 cputime_gt(t->it_virt_expires, ticks)) {
522 t->it_virt_expires = ticks;
525 t = next_thread(t);
526 } while (t != p);
527 break;
528 case CPUCLOCK_SCHED:
529 nsleft = expires.sched - val.sched;
530 do_div(nsleft, nthreads);
531 nsleft = max_t(unsigned long long, nsleft, 1);
532 do {
533 if (likely(!(t->flags & PF_EXITING))) {
534 ns = t->sched_time + nsleft;
535 if (t->it_sched_expires == 0 ||
536 t->it_sched_expires > ns) {
537 t->it_sched_expires = ns;
540 t = next_thread(t);
541 } while (t != p);
542 break;
546 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
549 * That's all for this thread or process.
550 * We leave our residual in expires to be reported.
552 put_task_struct(timer->it.cpu.task);
553 timer->it.cpu.task = NULL;
554 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
555 timer->it.cpu.expires,
556 now);
560 * Insert the timer on the appropriate list before any timers that
561 * expire later. This must be called with the tasklist_lock held
562 * for reading, and interrupts disabled.
564 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
566 struct task_struct *p = timer->it.cpu.task;
567 struct list_head *head, *listpos;
568 struct cpu_timer_list *const nt = &timer->it.cpu;
569 struct cpu_timer_list *next;
570 unsigned long i;
572 if (CPUCLOCK_PERTHREAD(timer->it_clock) && (p->flags & PF_EXITING))
573 return;
575 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
576 p->cpu_timers : p->signal->cpu_timers);
577 head += CPUCLOCK_WHICH(timer->it_clock);
579 BUG_ON(!irqs_disabled());
580 spin_lock(&p->sighand->siglock);
582 listpos = head;
583 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
584 list_for_each_entry(next, head, entry) {
585 if (next->expires.sched > nt->expires.sched)
586 break;
587 listpos = &next->entry;
589 } else {
590 list_for_each_entry(next, head, entry) {
591 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
592 break;
593 listpos = &next->entry;
596 list_add(&nt->entry, listpos);
598 if (listpos == head) {
600 * We are the new earliest-expiring timer.
601 * If we are a thread timer, there can always
602 * be a process timer telling us to stop earlier.
605 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
606 switch (CPUCLOCK_WHICH(timer->it_clock)) {
607 default:
608 BUG();
609 case CPUCLOCK_PROF:
610 if (cputime_eq(p->it_prof_expires,
611 cputime_zero) ||
612 cputime_gt(p->it_prof_expires,
613 nt->expires.cpu))
614 p->it_prof_expires = nt->expires.cpu;
615 break;
616 case CPUCLOCK_VIRT:
617 if (cputime_eq(p->it_virt_expires,
618 cputime_zero) ||
619 cputime_gt(p->it_virt_expires,
620 nt->expires.cpu))
621 p->it_virt_expires = nt->expires.cpu;
622 break;
623 case CPUCLOCK_SCHED:
624 if (p->it_sched_expires == 0 ||
625 p->it_sched_expires > nt->expires.sched)
626 p->it_sched_expires = nt->expires.sched;
627 break;
629 } else {
631 * For a process timer, we must balance
632 * all the live threads' expirations.
634 switch (CPUCLOCK_WHICH(timer->it_clock)) {
635 default:
636 BUG();
637 case CPUCLOCK_VIRT:
638 if (!cputime_eq(p->signal->it_virt_expires,
639 cputime_zero) &&
640 cputime_lt(p->signal->it_virt_expires,
641 timer->it.cpu.expires.cpu))
642 break;
643 goto rebalance;
644 case CPUCLOCK_PROF:
645 if (!cputime_eq(p->signal->it_prof_expires,
646 cputime_zero) &&
647 cputime_lt(p->signal->it_prof_expires,
648 timer->it.cpu.expires.cpu))
649 break;
650 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
651 if (i != RLIM_INFINITY &&
652 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
653 break;
654 goto rebalance;
655 case CPUCLOCK_SCHED:
656 rebalance:
657 process_timer_rebalance(
658 timer->it.cpu.task,
659 CPUCLOCK_WHICH(timer->it_clock),
660 timer->it.cpu.expires, now);
661 break;
666 spin_unlock(&p->sighand->siglock);
670 * The timer is locked, fire it and arrange for its reload.
672 static void cpu_timer_fire(struct k_itimer *timer)
674 if (unlikely(timer->sigq == NULL)) {
676 * This a special case for clock_nanosleep,
677 * not a normal timer from sys_timer_create.
679 wake_up_process(timer->it_process);
680 timer->it.cpu.expires.sched = 0;
681 } else if (timer->it.cpu.incr.sched == 0) {
683 * One-shot timer. Clear it as soon as it's fired.
685 posix_timer_event(timer, 0);
686 timer->it.cpu.expires.sched = 0;
687 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
689 * The signal did not get queued because the signal
690 * was ignored, so we won't get any callback to
691 * reload the timer. But we need to keep it
692 * ticking in case the signal is deliverable next time.
694 posix_cpu_timer_schedule(timer);
699 * Guts of sys_timer_settime for CPU timers.
700 * This is called with the timer locked and interrupts disabled.
701 * If we return TIMER_RETRY, it's necessary to release the timer's lock
702 * and try again. (This happens when the timer is in the middle of firing.)
704 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
705 struct itimerspec *new, struct itimerspec *old)
707 struct task_struct *p = timer->it.cpu.task;
708 union cpu_time_count old_expires, new_expires, val;
709 int ret;
711 if (unlikely(p == NULL)) {
713 * Timer refers to a dead task's clock.
715 return -ESRCH;
718 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
720 read_lock(&tasklist_lock);
722 * We need the tasklist_lock to protect against reaping that
723 * clears p->signal. If p has just been reaped, we can no
724 * longer get any information about it at all.
726 if (unlikely(p->signal == NULL)) {
727 read_unlock(&tasklist_lock);
728 put_task_struct(p);
729 timer->it.cpu.task = NULL;
730 return -ESRCH;
734 * Disarm any old timer after extracting its expiry time.
736 BUG_ON(!irqs_disabled());
738 ret = 0;
739 spin_lock(&p->sighand->siglock);
740 old_expires = timer->it.cpu.expires;
741 if (unlikely(timer->it.cpu.firing)) {
742 timer->it.cpu.firing = -1;
743 ret = TIMER_RETRY;
744 } else
745 list_del_init(&timer->it.cpu.entry);
746 spin_unlock(&p->sighand->siglock);
749 * We need to sample the current value to convert the new
750 * value from to relative and absolute, and to convert the
751 * old value from absolute to relative. To set a process
752 * timer, we need a sample to balance the thread expiry
753 * times (in arm_timer). With an absolute time, we must
754 * check if it's already passed. In short, we need a sample.
756 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
757 cpu_clock_sample(timer->it_clock, p, &val);
758 } else {
759 cpu_clock_sample_group(timer->it_clock, p, &val);
762 if (old) {
763 if (old_expires.sched == 0) {
764 old->it_value.tv_sec = 0;
765 old->it_value.tv_nsec = 0;
766 } else {
768 * Update the timer in case it has
769 * overrun already. If it has,
770 * we'll report it as having overrun
771 * and with the next reloaded timer
772 * already ticking, though we are
773 * swallowing that pending
774 * notification here to install the
775 * new setting.
777 bump_cpu_timer(timer, val);
778 if (cpu_time_before(timer->it_clock, val,
779 timer->it.cpu.expires)) {
780 old_expires = cpu_time_sub(
781 timer->it_clock,
782 timer->it.cpu.expires, val);
783 sample_to_timespec(timer->it_clock,
784 old_expires,
785 &old->it_value);
786 } else {
787 old->it_value.tv_nsec = 1;
788 old->it_value.tv_sec = 0;
793 if (unlikely(ret)) {
795 * We are colliding with the timer actually firing.
796 * Punt after filling in the timer's old value, and
797 * disable this firing since we are already reporting
798 * it as an overrun (thanks to bump_cpu_timer above).
800 read_unlock(&tasklist_lock);
801 goto out;
804 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
805 cpu_time_add(timer->it_clock, &new_expires, val);
809 * Install the new expiry time (or zero).
810 * For a timer with no notification action, we don't actually
811 * arm the timer (we'll just fake it for timer_gettime).
813 timer->it.cpu.expires = new_expires;
814 if (new_expires.sched != 0 &&
815 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
816 cpu_time_before(timer->it_clock, val, new_expires)) {
817 arm_timer(timer, val);
820 read_unlock(&tasklist_lock);
823 * Install the new reload setting, and
824 * set up the signal and overrun bookkeeping.
826 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
827 &new->it_interval);
830 * This acts as a modification timestamp for the timer,
831 * so any automatic reload attempt will punt on seeing
832 * that we have reset the timer manually.
834 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
835 ~REQUEUE_PENDING;
836 timer->it_overrun_last = 0;
837 timer->it_overrun = -1;
839 if (new_expires.sched != 0 &&
840 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
841 !cpu_time_before(timer->it_clock, val, new_expires)) {
843 * The designated time already passed, so we notify
844 * immediately, even if the thread never runs to
845 * accumulate more time on this clock.
847 cpu_timer_fire(timer);
850 ret = 0;
851 out:
852 if (old) {
853 sample_to_timespec(timer->it_clock,
854 timer->it.cpu.incr, &old->it_interval);
856 return ret;
859 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
861 union cpu_time_count now;
862 struct task_struct *p = timer->it.cpu.task;
863 int clear_dead;
866 * Easy part: convert the reload time.
868 sample_to_timespec(timer->it_clock,
869 timer->it.cpu.incr, &itp->it_interval);
871 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
872 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
873 return;
876 if (unlikely(p == NULL)) {
878 * This task already died and the timer will never fire.
879 * In this case, expires is actually the dead value.
881 dead:
882 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
883 &itp->it_value);
884 return;
888 * Sample the clock to take the difference with the expiry time.
890 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
891 cpu_clock_sample(timer->it_clock, p, &now);
892 clear_dead = p->exit_state;
893 } else {
894 read_lock(&tasklist_lock);
895 if (unlikely(p->signal == NULL)) {
897 * The process has been reaped.
898 * We can't even collect a sample any more.
899 * Call the timer disarmed, nothing else to do.
901 put_task_struct(p);
902 timer->it.cpu.task = NULL;
903 timer->it.cpu.expires.sched = 0;
904 read_unlock(&tasklist_lock);
905 goto dead;
906 } else {
907 cpu_clock_sample_group(timer->it_clock, p, &now);
908 clear_dead = (unlikely(p->exit_state) &&
909 thread_group_empty(p));
911 read_unlock(&tasklist_lock);
914 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
915 if (timer->it.cpu.incr.sched == 0 &&
916 cpu_time_before(timer->it_clock,
917 timer->it.cpu.expires, now)) {
919 * Do-nothing timer expired and has no reload,
920 * so it's as if it was never set.
922 timer->it.cpu.expires.sched = 0;
923 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
924 return;
927 * Account for any expirations and reloads that should
928 * have happened.
930 bump_cpu_timer(timer, now);
933 if (unlikely(clear_dead)) {
935 * We've noticed that the thread is dead, but
936 * not yet reaped. Take this opportunity to
937 * drop our task ref.
939 clear_dead_task(timer, now);
940 goto dead;
943 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
944 sample_to_timespec(timer->it_clock,
945 cpu_time_sub(timer->it_clock,
946 timer->it.cpu.expires, now),
947 &itp->it_value);
948 } else {
950 * The timer should have expired already, but the firing
951 * hasn't taken place yet. Say it's just about to expire.
953 itp->it_value.tv_nsec = 1;
954 itp->it_value.tv_sec = 0;
959 * Check for any per-thread CPU timers that have fired and move them off
960 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
961 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
963 static void check_thread_timers(struct task_struct *tsk,
964 struct list_head *firing)
966 int maxfire;
967 struct list_head *timers = tsk->cpu_timers;
969 maxfire = 20;
970 tsk->it_prof_expires = cputime_zero;
971 while (!list_empty(timers)) {
972 struct cpu_timer_list *t = list_entry(timers->next,
973 struct cpu_timer_list,
974 entry);
975 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
976 tsk->it_prof_expires = t->expires.cpu;
977 break;
979 t->firing = 1;
980 list_move_tail(&t->entry, firing);
983 ++timers;
984 maxfire = 20;
985 tsk->it_virt_expires = cputime_zero;
986 while (!list_empty(timers)) {
987 struct cpu_timer_list *t = list_entry(timers->next,
988 struct cpu_timer_list,
989 entry);
990 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
991 tsk->it_virt_expires = t->expires.cpu;
992 break;
994 t->firing = 1;
995 list_move_tail(&t->entry, firing);
998 ++timers;
999 maxfire = 20;
1000 tsk->it_sched_expires = 0;
1001 while (!list_empty(timers)) {
1002 struct cpu_timer_list *t = list_entry(timers->next,
1003 struct cpu_timer_list,
1004 entry);
1005 if (!--maxfire || tsk->sched_time < t->expires.sched) {
1006 tsk->it_sched_expires = t->expires.sched;
1007 break;
1009 t->firing = 1;
1010 list_move_tail(&t->entry, firing);
1015 * Check for any per-thread CPU timers that have fired and move them
1016 * off the tsk->*_timers list onto the firing list. Per-thread timers
1017 * have already been taken off.
1019 static void check_process_timers(struct task_struct *tsk,
1020 struct list_head *firing)
1022 int maxfire;
1023 struct signal_struct *const sig = tsk->signal;
1024 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1025 unsigned long long sched_time, sched_expires;
1026 struct task_struct *t;
1027 struct list_head *timers = sig->cpu_timers;
1030 * Don't sample the current process CPU clocks if there are no timers.
1032 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1033 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1034 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1035 list_empty(&timers[CPUCLOCK_VIRT]) &&
1036 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1037 list_empty(&timers[CPUCLOCK_SCHED]))
1038 return;
1041 * Collect the current process totals.
1043 utime = sig->utime;
1044 stime = sig->stime;
1045 sched_time = sig->sched_time;
1046 t = tsk;
1047 do {
1048 utime = cputime_add(utime, t->utime);
1049 stime = cputime_add(stime, t->stime);
1050 sched_time += t->sched_time;
1051 t = next_thread(t);
1052 } while (t != tsk);
1053 ptime = cputime_add(utime, stime);
1055 maxfire = 20;
1056 prof_expires = cputime_zero;
1057 while (!list_empty(timers)) {
1058 struct cpu_timer_list *t = list_entry(timers->next,
1059 struct cpu_timer_list,
1060 entry);
1061 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1062 prof_expires = t->expires.cpu;
1063 break;
1065 t->firing = 1;
1066 list_move_tail(&t->entry, firing);
1069 ++timers;
1070 maxfire = 20;
1071 virt_expires = cputime_zero;
1072 while (!list_empty(timers)) {
1073 struct cpu_timer_list *t = list_entry(timers->next,
1074 struct cpu_timer_list,
1075 entry);
1076 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1077 virt_expires = t->expires.cpu;
1078 break;
1080 t->firing = 1;
1081 list_move_tail(&t->entry, firing);
1084 ++timers;
1085 maxfire = 20;
1086 sched_expires = 0;
1087 while (!list_empty(timers)) {
1088 struct cpu_timer_list *t = list_entry(timers->next,
1089 struct cpu_timer_list,
1090 entry);
1091 if (!--maxfire || sched_time < t->expires.sched) {
1092 sched_expires = t->expires.sched;
1093 break;
1095 t->firing = 1;
1096 list_move_tail(&t->entry, firing);
1100 * Check for the special case process timers.
1102 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1103 if (cputime_ge(ptime, sig->it_prof_expires)) {
1104 /* ITIMER_PROF fires and reloads. */
1105 sig->it_prof_expires = sig->it_prof_incr;
1106 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1107 sig->it_prof_expires = cputime_add(
1108 sig->it_prof_expires, ptime);
1110 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1112 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1113 (cputime_eq(prof_expires, cputime_zero) ||
1114 cputime_lt(sig->it_prof_expires, prof_expires))) {
1115 prof_expires = sig->it_prof_expires;
1118 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1119 if (cputime_ge(utime, sig->it_virt_expires)) {
1120 /* ITIMER_VIRTUAL fires and reloads. */
1121 sig->it_virt_expires = sig->it_virt_incr;
1122 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1123 sig->it_virt_expires = cputime_add(
1124 sig->it_virt_expires, utime);
1126 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1128 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1129 (cputime_eq(virt_expires, cputime_zero) ||
1130 cputime_lt(sig->it_virt_expires, virt_expires))) {
1131 virt_expires = sig->it_virt_expires;
1134 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1135 unsigned long psecs = cputime_to_secs(ptime);
1136 cputime_t x;
1137 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1139 * At the hard limit, we just die.
1140 * No need to calculate anything else now.
1142 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1143 return;
1145 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1147 * At the soft limit, send a SIGXCPU every second.
1149 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1150 if (sig->rlim[RLIMIT_CPU].rlim_cur
1151 < sig->rlim[RLIMIT_CPU].rlim_max) {
1152 sig->rlim[RLIMIT_CPU].rlim_cur++;
1155 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1156 if (cputime_eq(prof_expires, cputime_zero) ||
1157 cputime_lt(x, prof_expires)) {
1158 prof_expires = x;
1162 if (!cputime_eq(prof_expires, cputime_zero) ||
1163 !cputime_eq(virt_expires, cputime_zero) ||
1164 sched_expires != 0) {
1166 * Rebalance the threads' expiry times for the remaining
1167 * process CPU timers.
1170 cputime_t prof_left, virt_left, ticks;
1171 unsigned long long sched_left, sched;
1172 const unsigned int nthreads = atomic_read(&sig->live);
1174 if (!nthreads)
1175 return;
1177 prof_left = cputime_sub(prof_expires, utime);
1178 prof_left = cputime_sub(prof_left, stime);
1179 prof_left = cputime_div_non_zero(prof_left, nthreads);
1180 virt_left = cputime_sub(virt_expires, utime);
1181 virt_left = cputime_div_non_zero(virt_left, nthreads);
1182 if (sched_expires) {
1183 sched_left = sched_expires - sched_time;
1184 do_div(sched_left, nthreads);
1185 sched_left = max_t(unsigned long long, sched_left, 1);
1186 } else {
1187 sched_left = 0;
1189 t = tsk;
1190 do {
1191 if (unlikely(t->flags & PF_EXITING))
1192 continue;
1194 ticks = cputime_add(cputime_add(t->utime, t->stime),
1195 prof_left);
1196 if (!cputime_eq(prof_expires, cputime_zero) &&
1197 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1198 cputime_gt(t->it_prof_expires, ticks))) {
1199 t->it_prof_expires = ticks;
1202 ticks = cputime_add(t->utime, virt_left);
1203 if (!cputime_eq(virt_expires, cputime_zero) &&
1204 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1205 cputime_gt(t->it_virt_expires, ticks))) {
1206 t->it_virt_expires = ticks;
1209 sched = t->sched_time + sched_left;
1210 if (sched_expires && (t->it_sched_expires == 0 ||
1211 t->it_sched_expires > sched)) {
1212 t->it_sched_expires = sched;
1214 } while ((t = next_thread(t)) != tsk);
1219 * This is called from the signal code (via do_schedule_next_timer)
1220 * when the last timer signal was delivered and we have to reload the timer.
1222 void posix_cpu_timer_schedule(struct k_itimer *timer)
1224 struct task_struct *p = timer->it.cpu.task;
1225 union cpu_time_count now;
1227 if (unlikely(p == NULL))
1229 * The task was cleaned up already, no future firings.
1231 goto out;
1234 * Fetch the current sample and update the timer's expiry time.
1236 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1237 cpu_clock_sample(timer->it_clock, p, &now);
1238 bump_cpu_timer(timer, now);
1239 if (unlikely(p->exit_state)) {
1240 clear_dead_task(timer, now);
1241 goto out;
1243 read_lock(&tasklist_lock); /* arm_timer needs it. */
1244 } else {
1245 read_lock(&tasklist_lock);
1246 if (unlikely(p->signal == NULL)) {
1248 * The process has been reaped.
1249 * We can't even collect a sample any more.
1251 put_task_struct(p);
1252 timer->it.cpu.task = p = NULL;
1253 timer->it.cpu.expires.sched = 0;
1254 goto out_unlock;
1255 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1257 * We've noticed that the thread is dead, but
1258 * not yet reaped. Take this opportunity to
1259 * drop our task ref.
1261 clear_dead_task(timer, now);
1262 goto out_unlock;
1264 cpu_clock_sample_group(timer->it_clock, p, &now);
1265 bump_cpu_timer(timer, now);
1266 /* Leave the tasklist_lock locked for the call below. */
1270 * Now re-arm for the new expiry time.
1272 arm_timer(timer, now);
1274 out_unlock:
1275 read_unlock(&tasklist_lock);
1277 out:
1278 timer->it_overrun_last = timer->it_overrun;
1279 timer->it_overrun = -1;
1280 ++timer->it_requeue_pending;
1284 * This is called from the timer interrupt handler. The irq handler has
1285 * already updated our counts. We need to check if any timers fire now.
1286 * Interrupts are disabled.
1288 void run_posix_cpu_timers(struct task_struct *tsk)
1290 LIST_HEAD(firing);
1291 struct k_itimer *timer, *next;
1293 BUG_ON(!irqs_disabled());
1295 #define UNEXPIRED(clock) \
1296 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1297 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1299 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1300 (tsk->it_sched_expires == 0 ||
1301 tsk->sched_time < tsk->it_sched_expires))
1302 return;
1304 #undef UNEXPIRED
1307 * Double-check with locks held.
1309 read_lock(&tasklist_lock);
1310 if (likely(tsk->signal != NULL)) {
1311 spin_lock(&tsk->sighand->siglock);
1314 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1315 * all the timers that are firing, and put them on the firing list.
1317 check_thread_timers(tsk, &firing);
1318 check_process_timers(tsk, &firing);
1321 * We must release these locks before taking any timer's lock.
1322 * There is a potential race with timer deletion here, as the
1323 * siglock now protects our private firing list. We have set
1324 * the firing flag in each timer, so that a deletion attempt
1325 * that gets the timer lock before we do will give it up and
1326 * spin until we've taken care of that timer below.
1328 spin_unlock(&tsk->sighand->siglock);
1330 read_unlock(&tasklist_lock);
1333 * Now that all the timers on our list have the firing flag,
1334 * noone will touch their list entries but us. We'll take
1335 * each timer's lock before clearing its firing flag, so no
1336 * timer call will interfere.
1338 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1339 int firing;
1340 spin_lock(&timer->it_lock);
1341 list_del_init(&timer->it.cpu.entry);
1342 firing = timer->it.cpu.firing;
1343 timer->it.cpu.firing = 0;
1345 * The firing flag is -1 if we collided with a reset
1346 * of the timer, which already reported this
1347 * almost-firing as an overrun. So don't generate an event.
1349 if (likely(firing >= 0)) {
1350 cpu_timer_fire(timer);
1352 spin_unlock(&timer->it_lock);
1357 * Set one of the process-wide special case CPU timers.
1358 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1359 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1360 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1361 * it to be absolute, *oldval is absolute and we update it to be relative.
1363 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1364 cputime_t *newval, cputime_t *oldval)
1366 union cpu_time_count now;
1367 struct list_head *head;
1369 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1370 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1372 if (oldval) {
1373 if (!cputime_eq(*oldval, cputime_zero)) {
1374 if (cputime_le(*oldval, now.cpu)) {
1375 /* Just about to fire. */
1376 *oldval = jiffies_to_cputime(1);
1377 } else {
1378 *oldval = cputime_sub(*oldval, now.cpu);
1382 if (cputime_eq(*newval, cputime_zero))
1383 return;
1384 *newval = cputime_add(*newval, now.cpu);
1387 * If the RLIMIT_CPU timer will expire before the
1388 * ITIMER_PROF timer, we have nothing else to do.
1390 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1391 < cputime_to_secs(*newval))
1392 return;
1396 * Check whether there are any process timers already set to fire
1397 * before this one. If so, we don't have anything more to do.
1399 head = &tsk->signal->cpu_timers[clock_idx];
1400 if (list_empty(head) ||
1401 cputime_ge(list_entry(head->next,
1402 struct cpu_timer_list, entry)->expires.cpu,
1403 *newval)) {
1405 * Rejigger each thread's expiry time so that one will
1406 * notice before we hit the process-cumulative expiry time.
1408 union cpu_time_count expires = { .sched = 0 };
1409 expires.cpu = *newval;
1410 process_timer_rebalance(tsk, clock_idx, expires, now);
1414 static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1416 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1417 struct timespec *rqtp, struct timespec __user *rmtp)
1419 struct restart_block *restart_block =
1420 &current_thread_info()->restart_block;
1421 struct k_itimer timer;
1422 int error;
1425 * Diagnose required errors first.
1427 if (CPUCLOCK_PERTHREAD(which_clock) &&
1428 (CPUCLOCK_PID(which_clock) == 0 ||
1429 CPUCLOCK_PID(which_clock) == current->pid))
1430 return -EINVAL;
1433 * Set up a temporary timer and then wait for it to go off.
1435 memset(&timer, 0, sizeof timer);
1436 spin_lock_init(&timer.it_lock);
1437 timer.it_clock = which_clock;
1438 timer.it_overrun = -1;
1439 error = posix_cpu_timer_create(&timer);
1440 timer.it_process = current;
1441 if (!error) {
1442 static struct itimerspec zero_it;
1443 struct itimerspec it = { .it_value = *rqtp,
1444 .it_interval = {} };
1446 spin_lock_irq(&timer.it_lock);
1447 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1448 if (error) {
1449 spin_unlock_irq(&timer.it_lock);
1450 return error;
1453 while (!signal_pending(current)) {
1454 if (timer.it.cpu.expires.sched == 0) {
1456 * Our timer fired and was reset.
1458 spin_unlock_irq(&timer.it_lock);
1459 return 0;
1463 * Block until cpu_timer_fire (or a signal) wakes us.
1465 __set_current_state(TASK_INTERRUPTIBLE);
1466 spin_unlock_irq(&timer.it_lock);
1467 schedule();
1468 spin_lock_irq(&timer.it_lock);
1472 * We were interrupted by a signal.
1474 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1475 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1476 spin_unlock_irq(&timer.it_lock);
1478 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1480 * It actually did fire already.
1482 return 0;
1486 * Report back to the user the time still remaining.
1488 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1489 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1490 return -EFAULT;
1492 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1493 /* Caller already set restart_block->arg1 */
1494 restart_block->arg0 = which_clock;
1495 restart_block->arg1 = (unsigned long) rmtp;
1496 restart_block->arg2 = rqtp->tv_sec;
1497 restart_block->arg3 = rqtp->tv_nsec;
1499 error = -ERESTART_RESTARTBLOCK;
1502 return error;
1505 static long
1506 posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1508 clockid_t which_clock = restart_block->arg0;
1509 struct timespec __user *rmtp;
1510 struct timespec t;
1512 rmtp = (struct timespec __user *) restart_block->arg1;
1513 t.tv_sec = restart_block->arg2;
1514 t.tv_nsec = restart_block->arg3;
1516 restart_block->fn = do_no_restart_syscall;
1517 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t, rmtp);
1521 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1522 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1524 static int process_cpu_clock_getres(const clockid_t which_clock,
1525 struct timespec *tp)
1527 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1529 static int process_cpu_clock_get(const clockid_t which_clock,
1530 struct timespec *tp)
1532 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1534 static int process_cpu_timer_create(struct k_itimer *timer)
1536 timer->it_clock = PROCESS_CLOCK;
1537 return posix_cpu_timer_create(timer);
1539 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1540 struct timespec *rqtp,
1541 struct timespec __user *rmtp)
1543 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1545 static int thread_cpu_clock_getres(const clockid_t which_clock,
1546 struct timespec *tp)
1548 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1550 static int thread_cpu_clock_get(const clockid_t which_clock,
1551 struct timespec *tp)
1553 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1555 static int thread_cpu_timer_create(struct k_itimer *timer)
1557 timer->it_clock = THREAD_CLOCK;
1558 return posix_cpu_timer_create(timer);
1560 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1561 struct timespec *rqtp, struct timespec __user *rmtp)
1563 return -EINVAL;
1566 static __init int init_posix_cpu_timers(void)
1568 struct k_clock process = {
1569 .clock_getres = process_cpu_clock_getres,
1570 .clock_get = process_cpu_clock_get,
1571 .clock_set = do_posix_clock_nosettime,
1572 .timer_create = process_cpu_timer_create,
1573 .nsleep = process_cpu_nsleep,
1575 struct k_clock thread = {
1576 .clock_getres = thread_cpu_clock_getres,
1577 .clock_get = thread_cpu_clock_get,
1578 .clock_set = do_posix_clock_nosettime,
1579 .timer_create = thread_cpu_timer_create,
1580 .nsleep = thread_cpu_nsleep,
1583 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1584 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1586 return 0;
1588 __initcall(init_posix_cpu_timers);