davinci: enable ARCH_HAS_HOLES_MEMORYMODEL for DaVinci
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / cluster / heartbeat.c
blobeda5b8bcddd5db3a43a56a7965b9dffeeb193e16
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36 #include <linux/debugfs.h>
38 #include "heartbeat.h"
39 #include "tcp.h"
40 #include "nodemanager.h"
41 #include "quorum.h"
43 #include "masklog.h"
47 * The first heartbeat pass had one global thread that would serialize all hb
48 * callback calls. This global serializing sem should only be removed once
49 * we've made sure that all callees can deal with being called concurrently
50 * from multiple hb region threads.
52 static DECLARE_RWSEM(o2hb_callback_sem);
55 * multiple hb threads are watching multiple regions. A node is live
56 * whenever any of the threads sees activity from the node in its region.
58 static DEFINE_SPINLOCK(o2hb_live_lock);
59 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
60 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
61 static LIST_HEAD(o2hb_node_events);
62 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
64 #define O2HB_DEBUG_DIR "o2hb"
65 #define O2HB_DEBUG_LIVENODES "livenodes"
66 static struct dentry *o2hb_debug_dir;
67 static struct dentry *o2hb_debug_livenodes;
69 static LIST_HEAD(o2hb_all_regions);
71 static struct o2hb_callback {
72 struct list_head list;
73 } o2hb_callbacks[O2HB_NUM_CB];
75 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
77 #define O2HB_DEFAULT_BLOCK_BITS 9
79 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
81 /* Only sets a new threshold if there are no active regions.
83 * No locking or otherwise interesting code is required for reading
84 * o2hb_dead_threshold as it can't change once regions are active and
85 * it's not interesting to anyone until then anyway. */
86 static void o2hb_dead_threshold_set(unsigned int threshold)
88 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
89 spin_lock(&o2hb_live_lock);
90 if (list_empty(&o2hb_all_regions))
91 o2hb_dead_threshold = threshold;
92 spin_unlock(&o2hb_live_lock);
96 struct o2hb_node_event {
97 struct list_head hn_item;
98 enum o2hb_callback_type hn_event_type;
99 struct o2nm_node *hn_node;
100 int hn_node_num;
103 struct o2hb_disk_slot {
104 struct o2hb_disk_heartbeat_block *ds_raw_block;
105 u8 ds_node_num;
106 u64 ds_last_time;
107 u64 ds_last_generation;
108 u16 ds_equal_samples;
109 u16 ds_changed_samples;
110 struct list_head ds_live_item;
113 /* each thread owns a region.. when we're asked to tear down the region
114 * we ask the thread to stop, who cleans up the region */
115 struct o2hb_region {
116 struct config_item hr_item;
118 struct list_head hr_all_item;
119 unsigned hr_unclean_stop:1;
121 /* protected by the hr_callback_sem */
122 struct task_struct *hr_task;
124 unsigned int hr_blocks;
125 unsigned long long hr_start_block;
127 unsigned int hr_block_bits;
128 unsigned int hr_block_bytes;
130 unsigned int hr_slots_per_page;
131 unsigned int hr_num_pages;
133 struct page **hr_slot_data;
134 struct block_device *hr_bdev;
135 struct o2hb_disk_slot *hr_slots;
137 /* let the person setting up hb wait for it to return until it
138 * has reached a 'steady' state. This will be fixed when we have
139 * a more complete api that doesn't lead to this sort of fragility. */
140 atomic_t hr_steady_iterations;
142 char hr_dev_name[BDEVNAME_SIZE];
144 unsigned int hr_timeout_ms;
146 /* randomized as the region goes up and down so that a node
147 * recognizes a node going up and down in one iteration */
148 u64 hr_generation;
150 struct delayed_work hr_write_timeout_work;
151 unsigned long hr_last_timeout_start;
153 /* Used during o2hb_check_slot to hold a copy of the block
154 * being checked because we temporarily have to zero out the
155 * crc field. */
156 struct o2hb_disk_heartbeat_block *hr_tmp_block;
159 struct o2hb_bio_wait_ctxt {
160 atomic_t wc_num_reqs;
161 struct completion wc_io_complete;
162 int wc_error;
165 static void o2hb_write_timeout(struct work_struct *work)
167 struct o2hb_region *reg =
168 container_of(work, struct o2hb_region,
169 hr_write_timeout_work.work);
171 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
172 "milliseconds\n", reg->hr_dev_name,
173 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
174 o2quo_disk_timeout();
177 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
179 mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
180 O2HB_MAX_WRITE_TIMEOUT_MS);
182 cancel_delayed_work(&reg->hr_write_timeout_work);
183 reg->hr_last_timeout_start = jiffies;
184 schedule_delayed_work(&reg->hr_write_timeout_work,
185 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
188 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
190 cancel_delayed_work(&reg->hr_write_timeout_work);
191 flush_scheduled_work();
194 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
196 atomic_set(&wc->wc_num_reqs, 1);
197 init_completion(&wc->wc_io_complete);
198 wc->wc_error = 0;
201 /* Used in error paths too */
202 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
203 unsigned int num)
205 /* sadly atomic_sub_and_test() isn't available on all platforms. The
206 * good news is that the fast path only completes one at a time */
207 while(num--) {
208 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
209 BUG_ON(num > 0);
210 complete(&wc->wc_io_complete);
215 static void o2hb_wait_on_io(struct o2hb_region *reg,
216 struct o2hb_bio_wait_ctxt *wc)
218 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
220 blk_run_address_space(mapping);
221 o2hb_bio_wait_dec(wc, 1);
223 wait_for_completion(&wc->wc_io_complete);
226 static void o2hb_bio_end_io(struct bio *bio,
227 int error)
229 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
231 if (error) {
232 mlog(ML_ERROR, "IO Error %d\n", error);
233 wc->wc_error = error;
236 o2hb_bio_wait_dec(wc, 1);
237 bio_put(bio);
240 /* Setup a Bio to cover I/O against num_slots slots starting at
241 * start_slot. */
242 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
243 struct o2hb_bio_wait_ctxt *wc,
244 unsigned int *current_slot,
245 unsigned int max_slots)
247 int len, current_page;
248 unsigned int vec_len, vec_start;
249 unsigned int bits = reg->hr_block_bits;
250 unsigned int spp = reg->hr_slots_per_page;
251 unsigned int cs = *current_slot;
252 struct bio *bio;
253 struct page *page;
255 /* Testing has shown this allocation to take long enough under
256 * GFP_KERNEL that the local node can get fenced. It would be
257 * nicest if we could pre-allocate these bios and avoid this
258 * all together. */
259 bio = bio_alloc(GFP_ATOMIC, 16);
260 if (!bio) {
261 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
262 bio = ERR_PTR(-ENOMEM);
263 goto bail;
266 /* Must put everything in 512 byte sectors for the bio... */
267 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
268 bio->bi_bdev = reg->hr_bdev;
269 bio->bi_private = wc;
270 bio->bi_end_io = o2hb_bio_end_io;
272 vec_start = (cs << bits) % PAGE_CACHE_SIZE;
273 while(cs < max_slots) {
274 current_page = cs / spp;
275 page = reg->hr_slot_data[current_page];
277 vec_len = min(PAGE_CACHE_SIZE - vec_start,
278 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
280 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
281 current_page, vec_len, vec_start);
283 len = bio_add_page(bio, page, vec_len, vec_start);
284 if (len != vec_len) break;
286 cs += vec_len / (PAGE_CACHE_SIZE/spp);
287 vec_start = 0;
290 bail:
291 *current_slot = cs;
292 return bio;
295 static int o2hb_read_slots(struct o2hb_region *reg,
296 unsigned int max_slots)
298 unsigned int current_slot=0;
299 int status;
300 struct o2hb_bio_wait_ctxt wc;
301 struct bio *bio;
303 o2hb_bio_wait_init(&wc);
305 while(current_slot < max_slots) {
306 bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
307 if (IS_ERR(bio)) {
308 status = PTR_ERR(bio);
309 mlog_errno(status);
310 goto bail_and_wait;
313 atomic_inc(&wc.wc_num_reqs);
314 submit_bio(READ, bio);
317 status = 0;
319 bail_and_wait:
320 o2hb_wait_on_io(reg, &wc);
321 if (wc.wc_error && !status)
322 status = wc.wc_error;
324 return status;
327 static int o2hb_issue_node_write(struct o2hb_region *reg,
328 struct o2hb_bio_wait_ctxt *write_wc)
330 int status;
331 unsigned int slot;
332 struct bio *bio;
334 o2hb_bio_wait_init(write_wc);
336 slot = o2nm_this_node();
338 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
339 if (IS_ERR(bio)) {
340 status = PTR_ERR(bio);
341 mlog_errno(status);
342 goto bail;
345 atomic_inc(&write_wc->wc_num_reqs);
346 submit_bio(WRITE, bio);
348 status = 0;
349 bail:
350 return status;
353 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
354 struct o2hb_disk_heartbeat_block *hb_block)
356 __le32 old_cksum;
357 u32 ret;
359 /* We want to compute the block crc with a 0 value in the
360 * hb_cksum field. Save it off here and replace after the
361 * crc. */
362 old_cksum = hb_block->hb_cksum;
363 hb_block->hb_cksum = 0;
365 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
367 hb_block->hb_cksum = old_cksum;
369 return ret;
372 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
374 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
375 "cksum = 0x%x, generation 0x%llx\n",
376 (long long)le64_to_cpu(hb_block->hb_seq),
377 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
378 (long long)le64_to_cpu(hb_block->hb_generation));
381 static int o2hb_verify_crc(struct o2hb_region *reg,
382 struct o2hb_disk_heartbeat_block *hb_block)
384 u32 read, computed;
386 read = le32_to_cpu(hb_block->hb_cksum);
387 computed = o2hb_compute_block_crc_le(reg, hb_block);
389 return read == computed;
392 /* We want to make sure that nobody is heartbeating on top of us --
393 * this will help detect an invalid configuration. */
394 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
396 int node_num, ret;
397 struct o2hb_disk_slot *slot;
398 struct o2hb_disk_heartbeat_block *hb_block;
400 node_num = o2nm_this_node();
402 ret = 1;
403 slot = &reg->hr_slots[node_num];
404 /* Don't check on our 1st timestamp */
405 if (slot->ds_last_time) {
406 hb_block = slot->ds_raw_block;
408 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
409 ret = 0;
412 return ret;
415 static inline void o2hb_prepare_block(struct o2hb_region *reg,
416 u64 generation)
418 int node_num;
419 u64 cputime;
420 struct o2hb_disk_slot *slot;
421 struct o2hb_disk_heartbeat_block *hb_block;
423 node_num = o2nm_this_node();
424 slot = &reg->hr_slots[node_num];
426 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
427 memset(hb_block, 0, reg->hr_block_bytes);
428 /* TODO: time stuff */
429 cputime = CURRENT_TIME.tv_sec;
430 if (!cputime)
431 cputime = 1;
433 hb_block->hb_seq = cpu_to_le64(cputime);
434 hb_block->hb_node = node_num;
435 hb_block->hb_generation = cpu_to_le64(generation);
436 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
438 /* This step must always happen last! */
439 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
440 hb_block));
442 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
443 (long long)generation,
444 le32_to_cpu(hb_block->hb_cksum));
447 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
448 struct o2nm_node *node,
449 int idx)
451 struct list_head *iter;
452 struct o2hb_callback_func *f;
454 list_for_each(iter, &hbcall->list) {
455 f = list_entry(iter, struct o2hb_callback_func, hc_item);
456 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
457 (f->hc_func)(node, idx, f->hc_data);
461 /* Will run the list in order until we process the passed event */
462 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
464 int empty;
465 struct o2hb_callback *hbcall;
466 struct o2hb_node_event *event;
468 spin_lock(&o2hb_live_lock);
469 empty = list_empty(&queued_event->hn_item);
470 spin_unlock(&o2hb_live_lock);
471 if (empty)
472 return;
474 /* Holding callback sem assures we don't alter the callback
475 * lists when doing this, and serializes ourselves with other
476 * processes wanting callbacks. */
477 down_write(&o2hb_callback_sem);
479 spin_lock(&o2hb_live_lock);
480 while (!list_empty(&o2hb_node_events)
481 && !list_empty(&queued_event->hn_item)) {
482 event = list_entry(o2hb_node_events.next,
483 struct o2hb_node_event,
484 hn_item);
485 list_del_init(&event->hn_item);
486 spin_unlock(&o2hb_live_lock);
488 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
489 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
490 event->hn_node_num);
492 hbcall = hbcall_from_type(event->hn_event_type);
494 /* We should *never* have gotten on to the list with a
495 * bad type... This isn't something that we should try
496 * to recover from. */
497 BUG_ON(IS_ERR(hbcall));
499 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
501 spin_lock(&o2hb_live_lock);
503 spin_unlock(&o2hb_live_lock);
505 up_write(&o2hb_callback_sem);
508 static void o2hb_queue_node_event(struct o2hb_node_event *event,
509 enum o2hb_callback_type type,
510 struct o2nm_node *node,
511 int node_num)
513 assert_spin_locked(&o2hb_live_lock);
515 event->hn_event_type = type;
516 event->hn_node = node;
517 event->hn_node_num = node_num;
519 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
520 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
522 list_add_tail(&event->hn_item, &o2hb_node_events);
525 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
527 struct o2hb_node_event event =
528 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
529 struct o2nm_node *node;
531 node = o2nm_get_node_by_num(slot->ds_node_num);
532 if (!node)
533 return;
535 spin_lock(&o2hb_live_lock);
536 if (!list_empty(&slot->ds_live_item)) {
537 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
538 slot->ds_node_num);
540 list_del_init(&slot->ds_live_item);
542 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
543 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
545 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
546 slot->ds_node_num);
549 spin_unlock(&o2hb_live_lock);
551 o2hb_run_event_list(&event);
553 o2nm_node_put(node);
556 static int o2hb_check_slot(struct o2hb_region *reg,
557 struct o2hb_disk_slot *slot)
559 int changed = 0, gen_changed = 0;
560 struct o2hb_node_event event =
561 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
562 struct o2nm_node *node;
563 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
564 u64 cputime;
565 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
566 unsigned int slot_dead_ms;
568 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
570 /* Is this correct? Do we assume that the node doesn't exist
571 * if we're not configured for him? */
572 node = o2nm_get_node_by_num(slot->ds_node_num);
573 if (!node)
574 return 0;
576 if (!o2hb_verify_crc(reg, hb_block)) {
577 /* all paths from here will drop o2hb_live_lock for
578 * us. */
579 spin_lock(&o2hb_live_lock);
581 /* Don't print an error on the console in this case -
582 * a freshly formatted heartbeat area will not have a
583 * crc set on it. */
584 if (list_empty(&slot->ds_live_item))
585 goto out;
587 /* The node is live but pushed out a bad crc. We
588 * consider it a transient miss but don't populate any
589 * other values as they may be junk. */
590 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
591 slot->ds_node_num, reg->hr_dev_name);
592 o2hb_dump_slot(hb_block);
594 slot->ds_equal_samples++;
595 goto fire_callbacks;
598 /* we don't care if these wrap.. the state transitions below
599 * clear at the right places */
600 cputime = le64_to_cpu(hb_block->hb_seq);
601 if (slot->ds_last_time != cputime)
602 slot->ds_changed_samples++;
603 else
604 slot->ds_equal_samples++;
605 slot->ds_last_time = cputime;
607 /* The node changed heartbeat generations. We assume this to
608 * mean it dropped off but came back before we timed out. We
609 * want to consider it down for the time being but don't want
610 * to lose any changed_samples state we might build up to
611 * considering it live again. */
612 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
613 gen_changed = 1;
614 slot->ds_equal_samples = 0;
615 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
616 "to 0x%llx)\n", slot->ds_node_num,
617 (long long)slot->ds_last_generation,
618 (long long)le64_to_cpu(hb_block->hb_generation));
621 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
623 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
624 "seq %llu last %llu changed %u equal %u\n",
625 slot->ds_node_num, (long long)slot->ds_last_generation,
626 le32_to_cpu(hb_block->hb_cksum),
627 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
628 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
629 slot->ds_equal_samples);
631 spin_lock(&o2hb_live_lock);
633 fire_callbacks:
634 /* dead nodes only come to life after some number of
635 * changes at any time during their dead time */
636 if (list_empty(&slot->ds_live_item) &&
637 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
638 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
639 slot->ds_node_num, (long long)slot->ds_last_generation);
641 /* first on the list generates a callback */
642 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
643 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
645 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
646 slot->ds_node_num);
648 changed = 1;
651 list_add_tail(&slot->ds_live_item,
652 &o2hb_live_slots[slot->ds_node_num]);
654 slot->ds_equal_samples = 0;
656 /* We want to be sure that all nodes agree on the
657 * number of milliseconds before a node will be
658 * considered dead. The self-fencing timeout is
659 * computed from this value, and a discrepancy might
660 * result in heartbeat calling a node dead when it
661 * hasn't self-fenced yet. */
662 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
663 if (slot_dead_ms && slot_dead_ms != dead_ms) {
664 /* TODO: Perhaps we can fail the region here. */
665 mlog(ML_ERROR, "Node %d on device %s has a dead count "
666 "of %u ms, but our count is %u ms.\n"
667 "Please double check your configuration values "
668 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
669 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
670 dead_ms);
672 goto out;
675 /* if the list is dead, we're done.. */
676 if (list_empty(&slot->ds_live_item))
677 goto out;
679 /* live nodes only go dead after enough consequtive missed
680 * samples.. reset the missed counter whenever we see
681 * activity */
682 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
683 mlog(ML_HEARTBEAT, "Node %d left my region\n",
684 slot->ds_node_num);
686 /* last off the live_slot generates a callback */
687 list_del_init(&slot->ds_live_item);
688 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
689 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
691 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
692 slot->ds_node_num);
694 changed = 1;
697 /* We don't clear this because the node is still
698 * actually writing new blocks. */
699 if (!gen_changed)
700 slot->ds_changed_samples = 0;
701 goto out;
703 if (slot->ds_changed_samples) {
704 slot->ds_changed_samples = 0;
705 slot->ds_equal_samples = 0;
707 out:
708 spin_unlock(&o2hb_live_lock);
710 o2hb_run_event_list(&event);
712 o2nm_node_put(node);
713 return changed;
716 /* This could be faster if we just implmented a find_last_bit, but I
717 * don't think the circumstances warrant it. */
718 static int o2hb_highest_node(unsigned long *nodes,
719 int numbits)
721 int highest, node;
723 highest = numbits;
724 node = -1;
725 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
726 if (node >= numbits)
727 break;
729 highest = node;
732 return highest;
735 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
737 int i, ret, highest_node, change = 0;
738 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
739 struct o2hb_bio_wait_ctxt write_wc;
741 ret = o2nm_configured_node_map(configured_nodes,
742 sizeof(configured_nodes));
743 if (ret) {
744 mlog_errno(ret);
745 return ret;
748 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
749 if (highest_node >= O2NM_MAX_NODES) {
750 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
751 return -EINVAL;
754 /* No sense in reading the slots of nodes that don't exist
755 * yet. Of course, if the node definitions have holes in them
756 * then we're reading an empty slot anyway... Consider this
757 * best-effort. */
758 ret = o2hb_read_slots(reg, highest_node + 1);
759 if (ret < 0) {
760 mlog_errno(ret);
761 return ret;
764 /* With an up to date view of the slots, we can check that no
765 * other node has been improperly configured to heartbeat in
766 * our slot. */
767 if (!o2hb_check_last_timestamp(reg))
768 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
769 "in our slot!\n", reg->hr_dev_name);
771 /* fill in the proper info for our next heartbeat */
772 o2hb_prepare_block(reg, reg->hr_generation);
774 /* And fire off the write. Note that we don't wait on this I/O
775 * until later. */
776 ret = o2hb_issue_node_write(reg, &write_wc);
777 if (ret < 0) {
778 mlog_errno(ret);
779 return ret;
782 i = -1;
783 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
785 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
789 * We have to be sure we've advertised ourselves on disk
790 * before we can go to steady state. This ensures that
791 * people we find in our steady state have seen us.
793 o2hb_wait_on_io(reg, &write_wc);
794 if (write_wc.wc_error) {
795 /* Do not re-arm the write timeout on I/O error - we
796 * can't be sure that the new block ever made it to
797 * disk */
798 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
799 write_wc.wc_error, reg->hr_dev_name);
800 return write_wc.wc_error;
803 o2hb_arm_write_timeout(reg);
805 /* let the person who launched us know when things are steady */
806 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
807 if (atomic_dec_and_test(&reg->hr_steady_iterations))
808 wake_up(&o2hb_steady_queue);
811 return 0;
814 /* Subtract b from a, storing the result in a. a *must* have a larger
815 * value than b. */
816 static void o2hb_tv_subtract(struct timeval *a,
817 struct timeval *b)
819 /* just return 0 when a is after b */
820 if (a->tv_sec < b->tv_sec ||
821 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
822 a->tv_sec = 0;
823 a->tv_usec = 0;
824 return;
827 a->tv_sec -= b->tv_sec;
828 a->tv_usec -= b->tv_usec;
829 while ( a->tv_usec < 0 ) {
830 a->tv_sec--;
831 a->tv_usec += 1000000;
835 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
836 struct timeval *end)
838 struct timeval res = *end;
840 o2hb_tv_subtract(&res, start);
842 return res.tv_sec * 1000 + res.tv_usec / 1000;
846 * we ride the region ref that the region dir holds. before the region
847 * dir is removed and drops it ref it will wait to tear down this
848 * thread.
850 static int o2hb_thread(void *data)
852 int i, ret;
853 struct o2hb_region *reg = data;
854 struct o2hb_bio_wait_ctxt write_wc;
855 struct timeval before_hb, after_hb;
856 unsigned int elapsed_msec;
858 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
860 set_user_nice(current, -20);
862 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
863 /* We track the time spent inside
864 * o2hb_do_disk_heartbeat so that we avoid more than
865 * hr_timeout_ms between disk writes. On busy systems
866 * this should result in a heartbeat which is less
867 * likely to time itself out. */
868 do_gettimeofday(&before_hb);
870 i = 0;
871 do {
872 ret = o2hb_do_disk_heartbeat(reg);
873 } while (ret && ++i < 2);
875 do_gettimeofday(&after_hb);
876 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
878 mlog(ML_HEARTBEAT,
879 "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
880 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
881 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
882 elapsed_msec);
884 if (elapsed_msec < reg->hr_timeout_ms) {
885 /* the kthread api has blocked signals for us so no
886 * need to record the return value. */
887 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
891 o2hb_disarm_write_timeout(reg);
893 /* unclean stop is only used in very bad situation */
894 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
895 o2hb_shutdown_slot(&reg->hr_slots[i]);
897 /* Explicit down notification - avoid forcing the other nodes
898 * to timeout on this region when we could just as easily
899 * write a clear generation - thus indicating to them that
900 * this node has left this region.
902 * XXX: Should we skip this on unclean_stop? */
903 o2hb_prepare_block(reg, 0);
904 ret = o2hb_issue_node_write(reg, &write_wc);
905 if (ret == 0) {
906 o2hb_wait_on_io(reg, &write_wc);
907 } else {
908 mlog_errno(ret);
911 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
913 return 0;
916 #ifdef CONFIG_DEBUG_FS
917 static int o2hb_debug_open(struct inode *inode, struct file *file)
919 unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
920 char *buf = NULL;
921 int i = -1;
922 int out = 0;
924 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
925 if (!buf)
926 goto bail;
928 o2hb_fill_node_map(map, sizeof(map));
930 while ((i = find_next_bit(map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES)
931 out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
932 out += snprintf(buf + out, PAGE_SIZE - out, "\n");
934 i_size_write(inode, out);
936 file->private_data = buf;
938 return 0;
939 bail:
940 return -ENOMEM;
943 static int o2hb_debug_release(struct inode *inode, struct file *file)
945 kfree(file->private_data);
946 return 0;
949 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
950 size_t nbytes, loff_t *ppos)
952 return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
953 i_size_read(file->f_mapping->host));
955 #else
956 static int o2hb_debug_open(struct inode *inode, struct file *file)
958 return 0;
960 static int o2hb_debug_release(struct inode *inode, struct file *file)
962 return 0;
964 static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
965 size_t nbytes, loff_t *ppos)
967 return 0;
969 #endif /* CONFIG_DEBUG_FS */
971 static const struct file_operations o2hb_debug_fops = {
972 .open = o2hb_debug_open,
973 .release = o2hb_debug_release,
974 .read = o2hb_debug_read,
975 .llseek = generic_file_llseek,
978 void o2hb_exit(void)
980 if (o2hb_debug_livenodes)
981 debugfs_remove(o2hb_debug_livenodes);
982 if (o2hb_debug_dir)
983 debugfs_remove(o2hb_debug_dir);
986 int o2hb_init(void)
988 int i;
990 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
991 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
993 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
994 INIT_LIST_HEAD(&o2hb_live_slots[i]);
996 INIT_LIST_HEAD(&o2hb_node_events);
998 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1000 o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
1001 if (!o2hb_debug_dir) {
1002 mlog_errno(-ENOMEM);
1003 return -ENOMEM;
1006 o2hb_debug_livenodes = debugfs_create_file(O2HB_DEBUG_LIVENODES,
1007 S_IFREG|S_IRUSR,
1008 o2hb_debug_dir, NULL,
1009 &o2hb_debug_fops);
1010 if (!o2hb_debug_livenodes) {
1011 mlog_errno(-ENOMEM);
1012 debugfs_remove(o2hb_debug_dir);
1013 return -ENOMEM;
1016 return 0;
1019 /* if we're already in a callback then we're already serialized by the sem */
1020 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1021 unsigned bytes)
1023 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1025 memcpy(map, &o2hb_live_node_bitmap, bytes);
1029 * get a map of all nodes that are heartbeating in any regions
1031 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1033 /* callers want to serialize this map and callbacks so that they
1034 * can trust that they don't miss nodes coming to the party */
1035 down_read(&o2hb_callback_sem);
1036 spin_lock(&o2hb_live_lock);
1037 o2hb_fill_node_map_from_callback(map, bytes);
1038 spin_unlock(&o2hb_live_lock);
1039 up_read(&o2hb_callback_sem);
1041 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1044 * heartbeat configfs bits. The heartbeat set is a default set under
1045 * the cluster set in nodemanager.c.
1048 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1050 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1053 /* drop_item only drops its ref after killing the thread, nothing should
1054 * be using the region anymore. this has to clean up any state that
1055 * attributes might have built up. */
1056 static void o2hb_region_release(struct config_item *item)
1058 int i;
1059 struct page *page;
1060 struct o2hb_region *reg = to_o2hb_region(item);
1062 if (reg->hr_tmp_block)
1063 kfree(reg->hr_tmp_block);
1065 if (reg->hr_slot_data) {
1066 for (i = 0; i < reg->hr_num_pages; i++) {
1067 page = reg->hr_slot_data[i];
1068 if (page)
1069 __free_page(page);
1071 kfree(reg->hr_slot_data);
1074 if (reg->hr_bdev)
1075 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1077 if (reg->hr_slots)
1078 kfree(reg->hr_slots);
1080 spin_lock(&o2hb_live_lock);
1081 list_del(&reg->hr_all_item);
1082 spin_unlock(&o2hb_live_lock);
1084 kfree(reg);
1087 static int o2hb_read_block_input(struct o2hb_region *reg,
1088 const char *page,
1089 size_t count,
1090 unsigned long *ret_bytes,
1091 unsigned int *ret_bits)
1093 unsigned long bytes;
1094 char *p = (char *)page;
1096 bytes = simple_strtoul(p, &p, 0);
1097 if (!p || (*p && (*p != '\n')))
1098 return -EINVAL;
1100 /* Heartbeat and fs min / max block sizes are the same. */
1101 if (bytes > 4096 || bytes < 512)
1102 return -ERANGE;
1103 if (hweight16(bytes) != 1)
1104 return -EINVAL;
1106 if (ret_bytes)
1107 *ret_bytes = bytes;
1108 if (ret_bits)
1109 *ret_bits = ffs(bytes) - 1;
1111 return 0;
1114 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1115 char *page)
1117 return sprintf(page, "%u\n", reg->hr_block_bytes);
1120 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1121 const char *page,
1122 size_t count)
1124 int status;
1125 unsigned long block_bytes;
1126 unsigned int block_bits;
1128 if (reg->hr_bdev)
1129 return -EINVAL;
1131 status = o2hb_read_block_input(reg, page, count,
1132 &block_bytes, &block_bits);
1133 if (status)
1134 return status;
1136 reg->hr_block_bytes = (unsigned int)block_bytes;
1137 reg->hr_block_bits = block_bits;
1139 return count;
1142 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1143 char *page)
1145 return sprintf(page, "%llu\n", reg->hr_start_block);
1148 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1149 const char *page,
1150 size_t count)
1152 unsigned long long tmp;
1153 char *p = (char *)page;
1155 if (reg->hr_bdev)
1156 return -EINVAL;
1158 tmp = simple_strtoull(p, &p, 0);
1159 if (!p || (*p && (*p != '\n')))
1160 return -EINVAL;
1162 reg->hr_start_block = tmp;
1164 return count;
1167 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1168 char *page)
1170 return sprintf(page, "%d\n", reg->hr_blocks);
1173 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1174 const char *page,
1175 size_t count)
1177 unsigned long tmp;
1178 char *p = (char *)page;
1180 if (reg->hr_bdev)
1181 return -EINVAL;
1183 tmp = simple_strtoul(p, &p, 0);
1184 if (!p || (*p && (*p != '\n')))
1185 return -EINVAL;
1187 if (tmp > O2NM_MAX_NODES || tmp == 0)
1188 return -ERANGE;
1190 reg->hr_blocks = (unsigned int)tmp;
1192 return count;
1195 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1196 char *page)
1198 unsigned int ret = 0;
1200 if (reg->hr_bdev)
1201 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1203 return ret;
1206 static void o2hb_init_region_params(struct o2hb_region *reg)
1208 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1209 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1211 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1212 reg->hr_start_block, reg->hr_blocks);
1213 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1214 reg->hr_block_bytes, reg->hr_block_bits);
1215 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1216 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1219 static int o2hb_map_slot_data(struct o2hb_region *reg)
1221 int i, j;
1222 unsigned int last_slot;
1223 unsigned int spp = reg->hr_slots_per_page;
1224 struct page *page;
1225 char *raw;
1226 struct o2hb_disk_slot *slot;
1228 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1229 if (reg->hr_tmp_block == NULL) {
1230 mlog_errno(-ENOMEM);
1231 return -ENOMEM;
1234 reg->hr_slots = kcalloc(reg->hr_blocks,
1235 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1236 if (reg->hr_slots == NULL) {
1237 mlog_errno(-ENOMEM);
1238 return -ENOMEM;
1241 for(i = 0; i < reg->hr_blocks; i++) {
1242 slot = &reg->hr_slots[i];
1243 slot->ds_node_num = i;
1244 INIT_LIST_HEAD(&slot->ds_live_item);
1245 slot->ds_raw_block = NULL;
1248 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1249 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1250 "at %u blocks per page\n",
1251 reg->hr_num_pages, reg->hr_blocks, spp);
1253 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1254 GFP_KERNEL);
1255 if (!reg->hr_slot_data) {
1256 mlog_errno(-ENOMEM);
1257 return -ENOMEM;
1260 for(i = 0; i < reg->hr_num_pages; i++) {
1261 page = alloc_page(GFP_KERNEL);
1262 if (!page) {
1263 mlog_errno(-ENOMEM);
1264 return -ENOMEM;
1267 reg->hr_slot_data[i] = page;
1269 last_slot = i * spp;
1270 raw = page_address(page);
1271 for (j = 0;
1272 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1273 j++) {
1274 BUG_ON((j + last_slot) >= reg->hr_blocks);
1276 slot = &reg->hr_slots[j + last_slot];
1277 slot->ds_raw_block =
1278 (struct o2hb_disk_heartbeat_block *) raw;
1280 raw += reg->hr_block_bytes;
1284 return 0;
1287 /* Read in all the slots available and populate the tracking
1288 * structures so that we can start with a baseline idea of what's
1289 * there. */
1290 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1292 int ret, i;
1293 struct o2hb_disk_slot *slot;
1294 struct o2hb_disk_heartbeat_block *hb_block;
1296 mlog_entry_void();
1298 ret = o2hb_read_slots(reg, reg->hr_blocks);
1299 if (ret) {
1300 mlog_errno(ret);
1301 goto out;
1304 /* We only want to get an idea of the values initially in each
1305 * slot, so we do no verification - o2hb_check_slot will
1306 * actually determine if each configured slot is valid and
1307 * whether any values have changed. */
1308 for(i = 0; i < reg->hr_blocks; i++) {
1309 slot = &reg->hr_slots[i];
1310 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1312 /* Only fill the values that o2hb_check_slot uses to
1313 * determine changing slots */
1314 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1315 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1318 out:
1319 mlog_exit(ret);
1320 return ret;
1323 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1324 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1325 const char *page,
1326 size_t count)
1328 struct task_struct *hb_task;
1329 long fd;
1330 int sectsize;
1331 char *p = (char *)page;
1332 struct file *filp = NULL;
1333 struct inode *inode = NULL;
1334 ssize_t ret = -EINVAL;
1336 if (reg->hr_bdev)
1337 goto out;
1339 /* We can't heartbeat without having had our node number
1340 * configured yet. */
1341 if (o2nm_this_node() == O2NM_MAX_NODES)
1342 goto out;
1344 fd = simple_strtol(p, &p, 0);
1345 if (!p || (*p && (*p != '\n')))
1346 goto out;
1348 if (fd < 0 || fd >= INT_MAX)
1349 goto out;
1351 filp = fget(fd);
1352 if (filp == NULL)
1353 goto out;
1355 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1356 reg->hr_block_bytes == 0)
1357 goto out;
1359 inode = igrab(filp->f_mapping->host);
1360 if (inode == NULL)
1361 goto out;
1363 if (!S_ISBLK(inode->i_mode))
1364 goto out;
1366 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1367 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ);
1368 if (ret) {
1369 reg->hr_bdev = NULL;
1370 goto out;
1372 inode = NULL;
1374 bdevname(reg->hr_bdev, reg->hr_dev_name);
1376 sectsize = bdev_logical_block_size(reg->hr_bdev);
1377 if (sectsize != reg->hr_block_bytes) {
1378 mlog(ML_ERROR,
1379 "blocksize %u incorrect for device, expected %d",
1380 reg->hr_block_bytes, sectsize);
1381 ret = -EINVAL;
1382 goto out;
1385 o2hb_init_region_params(reg);
1387 /* Generation of zero is invalid */
1388 do {
1389 get_random_bytes(&reg->hr_generation,
1390 sizeof(reg->hr_generation));
1391 } while (reg->hr_generation == 0);
1393 ret = o2hb_map_slot_data(reg);
1394 if (ret) {
1395 mlog_errno(ret);
1396 goto out;
1399 ret = o2hb_populate_slot_data(reg);
1400 if (ret) {
1401 mlog_errno(ret);
1402 goto out;
1405 INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1408 * A node is considered live after it has beat LIVE_THRESHOLD
1409 * times. We're not steady until we've given them a chance
1410 * _after_ our first read.
1412 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1414 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1415 reg->hr_item.ci_name);
1416 if (IS_ERR(hb_task)) {
1417 ret = PTR_ERR(hb_task);
1418 mlog_errno(ret);
1419 goto out;
1422 spin_lock(&o2hb_live_lock);
1423 reg->hr_task = hb_task;
1424 spin_unlock(&o2hb_live_lock);
1426 ret = wait_event_interruptible(o2hb_steady_queue,
1427 atomic_read(&reg->hr_steady_iterations) == 0);
1428 if (ret) {
1429 /* We got interrupted (hello ptrace!). Clean up */
1430 spin_lock(&o2hb_live_lock);
1431 hb_task = reg->hr_task;
1432 reg->hr_task = NULL;
1433 spin_unlock(&o2hb_live_lock);
1435 if (hb_task)
1436 kthread_stop(hb_task);
1437 goto out;
1440 /* Ok, we were woken. Make sure it wasn't by drop_item() */
1441 spin_lock(&o2hb_live_lock);
1442 hb_task = reg->hr_task;
1443 spin_unlock(&o2hb_live_lock);
1445 if (hb_task)
1446 ret = count;
1447 else
1448 ret = -EIO;
1450 out:
1451 if (filp)
1452 fput(filp);
1453 if (inode)
1454 iput(inode);
1455 if (ret < 0) {
1456 if (reg->hr_bdev) {
1457 blkdev_put(reg->hr_bdev, FMODE_READ|FMODE_WRITE);
1458 reg->hr_bdev = NULL;
1461 return ret;
1464 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1465 char *page)
1467 pid_t pid = 0;
1469 spin_lock(&o2hb_live_lock);
1470 if (reg->hr_task)
1471 pid = task_pid_nr(reg->hr_task);
1472 spin_unlock(&o2hb_live_lock);
1474 if (!pid)
1475 return 0;
1477 return sprintf(page, "%u\n", pid);
1480 struct o2hb_region_attribute {
1481 struct configfs_attribute attr;
1482 ssize_t (*show)(struct o2hb_region *, char *);
1483 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1486 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1487 .attr = { .ca_owner = THIS_MODULE,
1488 .ca_name = "block_bytes",
1489 .ca_mode = S_IRUGO | S_IWUSR },
1490 .show = o2hb_region_block_bytes_read,
1491 .store = o2hb_region_block_bytes_write,
1494 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1495 .attr = { .ca_owner = THIS_MODULE,
1496 .ca_name = "start_block",
1497 .ca_mode = S_IRUGO | S_IWUSR },
1498 .show = o2hb_region_start_block_read,
1499 .store = o2hb_region_start_block_write,
1502 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1503 .attr = { .ca_owner = THIS_MODULE,
1504 .ca_name = "blocks",
1505 .ca_mode = S_IRUGO | S_IWUSR },
1506 .show = o2hb_region_blocks_read,
1507 .store = o2hb_region_blocks_write,
1510 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1511 .attr = { .ca_owner = THIS_MODULE,
1512 .ca_name = "dev",
1513 .ca_mode = S_IRUGO | S_IWUSR },
1514 .show = o2hb_region_dev_read,
1515 .store = o2hb_region_dev_write,
1518 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1519 .attr = { .ca_owner = THIS_MODULE,
1520 .ca_name = "pid",
1521 .ca_mode = S_IRUGO | S_IRUSR },
1522 .show = o2hb_region_pid_read,
1525 static struct configfs_attribute *o2hb_region_attrs[] = {
1526 &o2hb_region_attr_block_bytes.attr,
1527 &o2hb_region_attr_start_block.attr,
1528 &o2hb_region_attr_blocks.attr,
1529 &o2hb_region_attr_dev.attr,
1530 &o2hb_region_attr_pid.attr,
1531 NULL,
1534 static ssize_t o2hb_region_show(struct config_item *item,
1535 struct configfs_attribute *attr,
1536 char *page)
1538 struct o2hb_region *reg = to_o2hb_region(item);
1539 struct o2hb_region_attribute *o2hb_region_attr =
1540 container_of(attr, struct o2hb_region_attribute, attr);
1541 ssize_t ret = 0;
1543 if (o2hb_region_attr->show)
1544 ret = o2hb_region_attr->show(reg, page);
1545 return ret;
1548 static ssize_t o2hb_region_store(struct config_item *item,
1549 struct configfs_attribute *attr,
1550 const char *page, size_t count)
1552 struct o2hb_region *reg = to_o2hb_region(item);
1553 struct o2hb_region_attribute *o2hb_region_attr =
1554 container_of(attr, struct o2hb_region_attribute, attr);
1555 ssize_t ret = -EINVAL;
1557 if (o2hb_region_attr->store)
1558 ret = o2hb_region_attr->store(reg, page, count);
1559 return ret;
1562 static struct configfs_item_operations o2hb_region_item_ops = {
1563 .release = o2hb_region_release,
1564 .show_attribute = o2hb_region_show,
1565 .store_attribute = o2hb_region_store,
1568 static struct config_item_type o2hb_region_type = {
1569 .ct_item_ops = &o2hb_region_item_ops,
1570 .ct_attrs = o2hb_region_attrs,
1571 .ct_owner = THIS_MODULE,
1574 /* heartbeat set */
1576 struct o2hb_heartbeat_group {
1577 struct config_group hs_group;
1578 /* some stuff? */
1581 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1583 return group ?
1584 container_of(group, struct o2hb_heartbeat_group, hs_group)
1585 : NULL;
1588 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1589 const char *name)
1591 struct o2hb_region *reg = NULL;
1593 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1594 if (reg == NULL)
1595 return ERR_PTR(-ENOMEM);
1597 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1599 spin_lock(&o2hb_live_lock);
1600 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1601 spin_unlock(&o2hb_live_lock);
1603 return &reg->hr_item;
1606 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1607 struct config_item *item)
1609 struct task_struct *hb_task;
1610 struct o2hb_region *reg = to_o2hb_region(item);
1612 /* stop the thread when the user removes the region dir */
1613 spin_lock(&o2hb_live_lock);
1614 hb_task = reg->hr_task;
1615 reg->hr_task = NULL;
1616 spin_unlock(&o2hb_live_lock);
1618 if (hb_task)
1619 kthread_stop(hb_task);
1622 * If we're racing a dev_write(), we need to wake them. They will
1623 * check reg->hr_task
1625 if (atomic_read(&reg->hr_steady_iterations) != 0) {
1626 atomic_set(&reg->hr_steady_iterations, 0);
1627 wake_up(&o2hb_steady_queue);
1630 config_item_put(item);
1633 struct o2hb_heartbeat_group_attribute {
1634 struct configfs_attribute attr;
1635 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1636 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1639 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1640 struct configfs_attribute *attr,
1641 char *page)
1643 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1644 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1645 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1646 ssize_t ret = 0;
1648 if (o2hb_heartbeat_group_attr->show)
1649 ret = o2hb_heartbeat_group_attr->show(reg, page);
1650 return ret;
1653 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1654 struct configfs_attribute *attr,
1655 const char *page, size_t count)
1657 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1658 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1659 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1660 ssize_t ret = -EINVAL;
1662 if (o2hb_heartbeat_group_attr->store)
1663 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1664 return ret;
1667 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1668 char *page)
1670 return sprintf(page, "%u\n", o2hb_dead_threshold);
1673 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1674 const char *page,
1675 size_t count)
1677 unsigned long tmp;
1678 char *p = (char *)page;
1680 tmp = simple_strtoul(p, &p, 10);
1681 if (!p || (*p && (*p != '\n')))
1682 return -EINVAL;
1684 /* this will validate ranges for us. */
1685 o2hb_dead_threshold_set((unsigned int) tmp);
1687 return count;
1690 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1691 .attr = { .ca_owner = THIS_MODULE,
1692 .ca_name = "dead_threshold",
1693 .ca_mode = S_IRUGO | S_IWUSR },
1694 .show = o2hb_heartbeat_group_threshold_show,
1695 .store = o2hb_heartbeat_group_threshold_store,
1698 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1699 &o2hb_heartbeat_group_attr_threshold.attr,
1700 NULL,
1703 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1704 .show_attribute = o2hb_heartbeat_group_show,
1705 .store_attribute = o2hb_heartbeat_group_store,
1708 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1709 .make_item = o2hb_heartbeat_group_make_item,
1710 .drop_item = o2hb_heartbeat_group_drop_item,
1713 static struct config_item_type o2hb_heartbeat_group_type = {
1714 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1715 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1716 .ct_attrs = o2hb_heartbeat_group_attrs,
1717 .ct_owner = THIS_MODULE,
1720 /* this is just here to avoid touching group in heartbeat.h which the
1721 * entire damn world #includes */
1722 struct config_group *o2hb_alloc_hb_set(void)
1724 struct o2hb_heartbeat_group *hs = NULL;
1725 struct config_group *ret = NULL;
1727 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1728 if (hs == NULL)
1729 goto out;
1731 config_group_init_type_name(&hs->hs_group, "heartbeat",
1732 &o2hb_heartbeat_group_type);
1734 ret = &hs->hs_group;
1735 out:
1736 if (ret == NULL)
1737 kfree(hs);
1738 return ret;
1741 void o2hb_free_hb_set(struct config_group *group)
1743 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1744 kfree(hs);
1747 /* hb callback registration and issueing */
1749 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1751 if (type == O2HB_NUM_CB)
1752 return ERR_PTR(-EINVAL);
1754 return &o2hb_callbacks[type];
1757 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1758 enum o2hb_callback_type type,
1759 o2hb_cb_func *func,
1760 void *data,
1761 int priority)
1763 INIT_LIST_HEAD(&hc->hc_item);
1764 hc->hc_func = func;
1765 hc->hc_data = data;
1766 hc->hc_priority = priority;
1767 hc->hc_type = type;
1768 hc->hc_magic = O2HB_CB_MAGIC;
1770 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1772 static struct o2hb_region *o2hb_find_region(const char *region_uuid)
1774 struct o2hb_region *p, *reg = NULL;
1776 assert_spin_locked(&o2hb_live_lock);
1778 list_for_each_entry(p, &o2hb_all_regions, hr_all_item) {
1779 if (!strcmp(region_uuid, config_item_name(&p->hr_item))) {
1780 reg = p;
1781 break;
1785 return reg;
1788 static int o2hb_region_get(const char *region_uuid)
1790 int ret = 0;
1791 struct o2hb_region *reg;
1793 spin_lock(&o2hb_live_lock);
1795 reg = o2hb_find_region(region_uuid);
1796 if (!reg)
1797 ret = -ENOENT;
1798 spin_unlock(&o2hb_live_lock);
1800 if (ret)
1801 goto out;
1803 ret = o2nm_depend_this_node();
1804 if (ret)
1805 goto out;
1807 ret = o2nm_depend_item(&reg->hr_item);
1808 if (ret)
1809 o2nm_undepend_this_node();
1811 out:
1812 return ret;
1815 static void o2hb_region_put(const char *region_uuid)
1817 struct o2hb_region *reg;
1819 spin_lock(&o2hb_live_lock);
1821 reg = o2hb_find_region(region_uuid);
1823 spin_unlock(&o2hb_live_lock);
1825 if (reg) {
1826 o2nm_undepend_item(&reg->hr_item);
1827 o2nm_undepend_this_node();
1831 int o2hb_register_callback(const char *region_uuid,
1832 struct o2hb_callback_func *hc)
1834 struct o2hb_callback_func *tmp;
1835 struct list_head *iter;
1836 struct o2hb_callback *hbcall;
1837 int ret;
1839 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1840 BUG_ON(!list_empty(&hc->hc_item));
1842 hbcall = hbcall_from_type(hc->hc_type);
1843 if (IS_ERR(hbcall)) {
1844 ret = PTR_ERR(hbcall);
1845 goto out;
1848 if (region_uuid) {
1849 ret = o2hb_region_get(region_uuid);
1850 if (ret)
1851 goto out;
1854 down_write(&o2hb_callback_sem);
1856 list_for_each(iter, &hbcall->list) {
1857 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1858 if (hc->hc_priority < tmp->hc_priority) {
1859 list_add_tail(&hc->hc_item, iter);
1860 break;
1863 if (list_empty(&hc->hc_item))
1864 list_add_tail(&hc->hc_item, &hbcall->list);
1866 up_write(&o2hb_callback_sem);
1867 ret = 0;
1868 out:
1869 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1870 ret, __builtin_return_address(0), hc);
1871 return ret;
1873 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1875 void o2hb_unregister_callback(const char *region_uuid,
1876 struct o2hb_callback_func *hc)
1878 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1880 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1881 __builtin_return_address(0), hc);
1883 /* XXX Can this happen _with_ a region reference? */
1884 if (list_empty(&hc->hc_item))
1885 return;
1887 if (region_uuid)
1888 o2hb_region_put(region_uuid);
1890 down_write(&o2hb_callback_sem);
1892 list_del_init(&hc->hc_item);
1894 up_write(&o2hb_callback_sem);
1896 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1898 int o2hb_check_node_heartbeating(u8 node_num)
1900 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1902 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1903 if (!test_bit(node_num, testing_map)) {
1904 mlog(ML_HEARTBEAT,
1905 "node (%u) does not have heartbeating enabled.\n",
1906 node_num);
1907 return 0;
1910 return 1;
1912 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1914 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1916 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1918 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1919 if (!test_bit(node_num, testing_map)) {
1920 mlog(ML_HEARTBEAT,
1921 "node (%u) does not have heartbeating enabled.\n",
1922 node_num);
1923 return 0;
1926 return 1;
1928 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1930 /* Makes sure our local node is configured with a node number, and is
1931 * heartbeating. */
1932 int o2hb_check_local_node_heartbeating(void)
1934 u8 node_num;
1936 /* if this node was set then we have networking */
1937 node_num = o2nm_this_node();
1938 if (node_num == O2NM_MAX_NODES) {
1939 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1940 return 0;
1943 return o2hb_check_node_heartbeating(node_num);
1945 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1948 * this is just a hack until we get the plumbing which flips file systems
1949 * read only and drops the hb ref instead of killing the node dead.
1951 void o2hb_stop_all_regions(void)
1953 struct o2hb_region *reg;
1955 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1957 spin_lock(&o2hb_live_lock);
1959 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1960 reg->hr_unclean_stop = 1;
1962 spin_unlock(&o2hb_live_lock);
1964 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);