atm: br2864: sent packets truncated in VC routed mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob292afec036153e9c133ac5ecdc12d4fda1d15236
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags) (0)
42 #endif
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len) (addr)
46 #endif
48 static void unmap_region(struct mm_struct *mm,
49 struct vm_area_struct *vma, struct vm_area_struct *prev,
50 unsigned long start, unsigned long end);
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
56 #undef DEBUG_MM_RB
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
62 * map_type prot
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 pgprot_t protection_map[16] = {
74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 return __pgprot(pgprot_val(protection_map[vm_flags &
81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 EXPORT_SYMBOL(vm_get_page_prot);
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 unsigned long free, allowed;
111 vm_acct_memory(pages);
114 * Sometimes we want to use more memory than we have
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 unsigned long n;
122 free = global_page_state(NR_FILE_PAGES);
123 free += nr_swap_pages;
126 * Any slabs which are created with the
127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 * which are reclaimable, under pressure. The dentry
129 * cache and most inode caches should fall into this
131 free += global_page_state(NR_SLAB_RECLAIMABLE);
134 * Leave the last 3% for root
136 if (!cap_sys_admin)
137 free -= free / 32;
139 if (free > pages)
140 return 0;
143 * nr_free_pages() is very expensive on large systems,
144 * only call if we're about to fail.
146 n = nr_free_pages();
149 * Leave reserved pages. The pages are not for anonymous pages.
151 if (n <= totalreserve_pages)
152 goto error;
153 else
154 n -= totalreserve_pages;
157 * Leave the last 3% for root
159 if (!cap_sys_admin)
160 n -= n / 32;
161 free += n;
163 if (free > pages)
164 return 0;
166 goto error;
169 allowed = (totalram_pages - hugetlb_total_pages())
170 * sysctl_overcommit_ratio / 100;
172 * Leave the last 3% for root
174 if (!cap_sys_admin)
175 allowed -= allowed / 32;
176 allowed += total_swap_pages;
178 /* Don't let a single process grow too big:
179 leave 3% of the size of this process for other processes */
180 if (mm)
181 allowed -= mm->total_vm / 32;
183 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 return 0;
185 error:
186 vm_unacct_memory(pages);
188 return -ENOMEM;
192 * Requires inode->i_mapping->i_mmap_lock
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 struct file *file, struct address_space *mapping)
197 if (vma->vm_flags & VM_DENYWRITE)
198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 if (vma->vm_flags & VM_SHARED)
200 mapping->i_mmap_writable--;
202 flush_dcache_mmap_lock(mapping);
203 if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 list_del_init(&vma->shared.vm_set.list);
205 else
206 vma_prio_tree_remove(vma, &mapping->i_mmap);
207 flush_dcache_mmap_unlock(mapping);
211 * Unlink a file-based vm structure from its prio_tree, to hide
212 * vma from rmap and vmtruncate before freeing its page tables.
214 void unlink_file_vma(struct vm_area_struct *vma)
216 struct file *file = vma->vm_file;
218 if (file) {
219 struct address_space *mapping = file->f_mapping;
220 spin_lock(&mapping->i_mmap_lock);
221 __remove_shared_vm_struct(vma, file, mapping);
222 spin_unlock(&mapping->i_mmap_lock);
227 * Close a vm structure and free it, returning the next.
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 struct vm_area_struct *next = vma->vm_next;
233 might_sleep();
234 if (vma->vm_ops && vma->vm_ops->close)
235 vma->vm_ops->close(vma);
236 if (vma->vm_file) {
237 fput(vma->vm_file);
238 if (vma->vm_flags & VM_EXECUTABLE)
239 removed_exe_file_vma(vma->vm_mm);
241 mpol_put(vma_policy(vma));
242 kmem_cache_free(vm_area_cachep, vma);
243 return next;
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
253 down_write(&mm->mmap_sem);
255 #ifdef CONFIG_COMPAT_BRK
256 min_brk = mm->end_code;
257 #else
258 min_brk = mm->start_brk;
259 #endif
260 if (brk < min_brk)
261 goto out;
264 * Check against rlimit here. If this check is done later after the test
265 * of oldbrk with newbrk then it can escape the test and let the data
266 * segment grow beyond its set limit the in case where the limit is
267 * not page aligned -Ram Gupta
269 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 (mm->end_data - mm->start_data) > rlim)
272 goto out;
274 newbrk = PAGE_ALIGN(brk);
275 oldbrk = PAGE_ALIGN(mm->brk);
276 if (oldbrk == newbrk)
277 goto set_brk;
279 /* Always allow shrinking brk. */
280 if (brk <= mm->brk) {
281 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 goto set_brk;
283 goto out;
286 /* Check against existing mmap mappings. */
287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 goto out;
290 /* Ok, looks good - let it rip. */
291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 goto out;
293 set_brk:
294 mm->brk = brk;
295 out:
296 retval = mm->brk;
297 up_write(&mm->mmap_sem);
298 return retval;
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
304 int i = 0, j;
305 struct rb_node *nd, *pn = NULL;
306 unsigned long prev = 0, pend = 0;
308 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 struct vm_area_struct *vma;
310 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 if (vma->vm_start < prev)
312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 if (vma->vm_start < pend)
314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 if (vma->vm_start > vma->vm_end)
316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 i++;
318 pn = nd;
319 prev = vma->vm_start;
320 pend = vma->vm_end;
322 j = 0;
323 for (nd = pn; nd; nd = rb_prev(nd)) {
324 j++;
326 if (i != j)
327 printk("backwards %d, forwards %d\n", j, i), i = 0;
328 return i;
331 void validate_mm(struct mm_struct *mm)
333 int bug = 0;
334 int i = 0;
335 struct vm_area_struct *tmp = mm->mmap;
336 while (tmp) {
337 tmp = tmp->vm_next;
338 i++;
340 if (i != mm->map_count)
341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 i = browse_rb(&mm->mm_rb);
343 if (i != mm->map_count)
344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 BUG_ON(bug);
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 struct rb_node ** rb_parent)
356 struct vm_area_struct * vma;
357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359 __rb_link = &mm->mm_rb.rb_node;
360 rb_prev = __rb_parent = NULL;
361 vma = NULL;
363 while (*__rb_link) {
364 struct vm_area_struct *vma_tmp;
366 __rb_parent = *__rb_link;
367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369 if (vma_tmp->vm_end > addr) {
370 vma = vma_tmp;
371 if (vma_tmp->vm_start <= addr)
372 break;
373 __rb_link = &__rb_parent->rb_left;
374 } else {
375 rb_prev = __rb_parent;
376 __rb_link = &__rb_parent->rb_right;
380 *pprev = NULL;
381 if (rb_prev)
382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 *rb_link = __rb_link;
384 *rb_parent = __rb_parent;
385 return vma;
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 struct vm_area_struct *next;
394 vma->vm_prev = prev;
395 if (prev) {
396 next = prev->vm_next;
397 prev->vm_next = vma;
398 } else {
399 mm->mmap = vma;
400 if (rb_parent)
401 next = rb_entry(rb_parent,
402 struct vm_area_struct, vm_rb);
403 else
404 next = NULL;
406 vma->vm_next = next;
407 if (next)
408 next->vm_prev = vma;
411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
412 struct rb_node **rb_link, struct rb_node *rb_parent)
414 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
415 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
418 static void __vma_link_file(struct vm_area_struct *vma)
420 struct file *file;
422 file = vma->vm_file;
423 if (file) {
424 struct address_space *mapping = file->f_mapping;
426 if (vma->vm_flags & VM_DENYWRITE)
427 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
428 if (vma->vm_flags & VM_SHARED)
429 mapping->i_mmap_writable++;
431 flush_dcache_mmap_lock(mapping);
432 if (unlikely(vma->vm_flags & VM_NONLINEAR))
433 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
434 else
435 vma_prio_tree_insert(vma, &mapping->i_mmap);
436 flush_dcache_mmap_unlock(mapping);
440 static void
441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442 struct vm_area_struct *prev, struct rb_node **rb_link,
443 struct rb_node *rb_parent)
445 __vma_link_list(mm, vma, prev, rb_parent);
446 __vma_link_rb(mm, vma, rb_link, rb_parent);
447 __anon_vma_link(vma);
450 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
451 struct vm_area_struct *prev, struct rb_node **rb_link,
452 struct rb_node *rb_parent)
454 struct address_space *mapping = NULL;
456 if (vma->vm_file)
457 mapping = vma->vm_file->f_mapping;
459 if (mapping) {
460 spin_lock(&mapping->i_mmap_lock);
461 vma->vm_truncate_count = mapping->truncate_count;
463 anon_vma_lock(vma);
465 __vma_link(mm, vma, prev, rb_link, rb_parent);
466 __vma_link_file(vma);
468 anon_vma_unlock(vma);
469 if (mapping)
470 spin_unlock(&mapping->i_mmap_lock);
472 mm->map_count++;
473 validate_mm(mm);
477 * Helper for vma_adjust in the split_vma insert case:
478 * insert vm structure into list and rbtree and anon_vma,
479 * but it has already been inserted into prio_tree earlier.
481 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
483 struct vm_area_struct *__vma, *prev;
484 struct rb_node **rb_link, *rb_parent;
486 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
487 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
488 __vma_link(mm, vma, prev, rb_link, rb_parent);
489 mm->map_count++;
492 static inline void
493 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
494 struct vm_area_struct *prev)
496 struct vm_area_struct *next = vma->vm_next;
498 prev->vm_next = next;
499 if (next)
500 next->vm_prev = prev;
501 rb_erase(&vma->vm_rb, &mm->mm_rb);
502 if (mm->mmap_cache == vma)
503 mm->mmap_cache = prev;
507 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
508 * is already present in an i_mmap tree without adjusting the tree.
509 * The following helper function should be used when such adjustments
510 * are necessary. The "insert" vma (if any) is to be inserted
511 * before we drop the necessary locks.
513 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
514 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
516 struct mm_struct *mm = vma->vm_mm;
517 struct vm_area_struct *next = vma->vm_next;
518 struct vm_area_struct *importer = NULL;
519 struct address_space *mapping = NULL;
520 struct prio_tree_root *root = NULL;
521 struct file *file = vma->vm_file;
522 struct anon_vma *anon_vma = NULL;
523 long adjust_next = 0;
524 int remove_next = 0;
526 if (next && !insert) {
527 if (end >= next->vm_end) {
529 * vma expands, overlapping all the next, and
530 * perhaps the one after too (mprotect case 6).
532 again: remove_next = 1 + (end > next->vm_end);
533 end = next->vm_end;
534 anon_vma = next->anon_vma;
535 importer = vma;
536 } else if (end > next->vm_start) {
538 * vma expands, overlapping part of the next:
539 * mprotect case 5 shifting the boundary up.
541 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
542 anon_vma = next->anon_vma;
543 importer = vma;
544 } else if (end < vma->vm_end) {
546 * vma shrinks, and !insert tells it's not
547 * split_vma inserting another: so it must be
548 * mprotect case 4 shifting the boundary down.
550 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
551 anon_vma = next->anon_vma;
552 importer = next;
556 if (file) {
557 mapping = file->f_mapping;
558 if (!(vma->vm_flags & VM_NONLINEAR))
559 root = &mapping->i_mmap;
560 spin_lock(&mapping->i_mmap_lock);
561 if (importer &&
562 vma->vm_truncate_count != next->vm_truncate_count) {
564 * unmap_mapping_range might be in progress:
565 * ensure that the expanding vma is rescanned.
567 importer->vm_truncate_count = 0;
569 if (insert) {
570 insert->vm_truncate_count = vma->vm_truncate_count;
572 * Put into prio_tree now, so instantiated pages
573 * are visible to arm/parisc __flush_dcache_page
574 * throughout; but we cannot insert into address
575 * space until vma start or end is updated.
577 __vma_link_file(insert);
582 * When changing only vma->vm_end, we don't really need
583 * anon_vma lock.
585 if (vma->anon_vma && (insert || importer || start != vma->vm_start))
586 anon_vma = vma->anon_vma;
587 if (anon_vma) {
588 spin_lock(&anon_vma->lock);
590 * Easily overlooked: when mprotect shifts the boundary,
591 * make sure the expanding vma has anon_vma set if the
592 * shrinking vma had, to cover any anon pages imported.
594 if (importer && !importer->anon_vma) {
595 importer->anon_vma = anon_vma;
596 __anon_vma_link(importer);
600 if (root) {
601 flush_dcache_mmap_lock(mapping);
602 vma_prio_tree_remove(vma, root);
603 if (adjust_next)
604 vma_prio_tree_remove(next, root);
607 vma->vm_start = start;
608 vma->vm_end = end;
609 vma->vm_pgoff = pgoff;
610 if (adjust_next) {
611 next->vm_start += adjust_next << PAGE_SHIFT;
612 next->vm_pgoff += adjust_next;
615 if (root) {
616 if (adjust_next)
617 vma_prio_tree_insert(next, root);
618 vma_prio_tree_insert(vma, root);
619 flush_dcache_mmap_unlock(mapping);
622 if (remove_next) {
624 * vma_merge has merged next into vma, and needs
625 * us to remove next before dropping the locks.
627 __vma_unlink(mm, next, vma);
628 if (file)
629 __remove_shared_vm_struct(next, file, mapping);
630 if (next->anon_vma)
631 __anon_vma_merge(vma, next);
632 } else if (insert) {
634 * split_vma has split insert from vma, and needs
635 * us to insert it before dropping the locks
636 * (it may either follow vma or precede it).
638 __insert_vm_struct(mm, insert);
641 if (anon_vma)
642 spin_unlock(&anon_vma->lock);
643 if (mapping)
644 spin_unlock(&mapping->i_mmap_lock);
646 if (remove_next) {
647 if (file) {
648 fput(file);
649 if (next->vm_flags & VM_EXECUTABLE)
650 removed_exe_file_vma(mm);
652 mm->map_count--;
653 mpol_put(vma_policy(next));
654 kmem_cache_free(vm_area_cachep, next);
656 * In mprotect's case 6 (see comments on vma_merge),
657 * we must remove another next too. It would clutter
658 * up the code too much to do both in one go.
660 if (remove_next == 2) {
661 next = vma->vm_next;
662 goto again;
666 validate_mm(mm);
670 * If the vma has a ->close operation then the driver probably needs to release
671 * per-vma resources, so we don't attempt to merge those.
673 static inline int is_mergeable_vma(struct vm_area_struct *vma,
674 struct file *file, unsigned long vm_flags)
676 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
677 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
678 return 0;
679 if (vma->vm_file != file)
680 return 0;
681 if (vma->vm_ops && vma->vm_ops->close)
682 return 0;
683 return 1;
686 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
687 struct anon_vma *anon_vma2)
689 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
693 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
694 * in front of (at a lower virtual address and file offset than) the vma.
696 * We cannot merge two vmas if they have differently assigned (non-NULL)
697 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
699 * We don't check here for the merged mmap wrapping around the end of pagecache
700 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
701 * wrap, nor mmaps which cover the final page at index -1UL.
703 static int
704 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
705 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
707 if (is_mergeable_vma(vma, file, vm_flags) &&
708 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
709 if (vma->vm_pgoff == vm_pgoff)
710 return 1;
712 return 0;
716 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
717 * beyond (at a higher virtual address and file offset than) the vma.
719 * We cannot merge two vmas if they have differently assigned (non-NULL)
720 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
722 static int
723 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
724 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
726 if (is_mergeable_vma(vma, file, vm_flags) &&
727 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
728 pgoff_t vm_pglen;
729 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
730 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
731 return 1;
733 return 0;
737 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
738 * whether that can be merged with its predecessor or its successor.
739 * Or both (it neatly fills a hole).
741 * In most cases - when called for mmap, brk or mremap - [addr,end) is
742 * certain not to be mapped by the time vma_merge is called; but when
743 * called for mprotect, it is certain to be already mapped (either at
744 * an offset within prev, or at the start of next), and the flags of
745 * this area are about to be changed to vm_flags - and the no-change
746 * case has already been eliminated.
748 * The following mprotect cases have to be considered, where AAAA is
749 * the area passed down from mprotect_fixup, never extending beyond one
750 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
752 * AAAA AAAA AAAA AAAA
753 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
754 * cannot merge might become might become might become
755 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
756 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
757 * mremap move: PPPPNNNNNNNN 8
758 * AAAA
759 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
760 * might become case 1 below case 2 below case 3 below
762 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
763 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
765 struct vm_area_struct *vma_merge(struct mm_struct *mm,
766 struct vm_area_struct *prev, unsigned long addr,
767 unsigned long end, unsigned long vm_flags,
768 struct anon_vma *anon_vma, struct file *file,
769 pgoff_t pgoff, struct mempolicy *policy)
771 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
772 struct vm_area_struct *area, *next;
775 * We later require that vma->vm_flags == vm_flags,
776 * so this tests vma->vm_flags & VM_SPECIAL, too.
778 if (vm_flags & VM_SPECIAL)
779 return NULL;
781 if (prev)
782 next = prev->vm_next;
783 else
784 next = mm->mmap;
785 area = next;
786 if (next && next->vm_end == end) /* cases 6, 7, 8 */
787 next = next->vm_next;
790 * Can it merge with the predecessor?
792 if (prev && prev->vm_end == addr &&
793 mpol_equal(vma_policy(prev), policy) &&
794 can_vma_merge_after(prev, vm_flags,
795 anon_vma, file, pgoff)) {
797 * OK, it can. Can we now merge in the successor as well?
799 if (next && end == next->vm_start &&
800 mpol_equal(policy, vma_policy(next)) &&
801 can_vma_merge_before(next, vm_flags,
802 anon_vma, file, pgoff+pglen) &&
803 is_mergeable_anon_vma(prev->anon_vma,
804 next->anon_vma)) {
805 /* cases 1, 6 */
806 vma_adjust(prev, prev->vm_start,
807 next->vm_end, prev->vm_pgoff, NULL);
808 } else /* cases 2, 5, 7 */
809 vma_adjust(prev, prev->vm_start,
810 end, prev->vm_pgoff, NULL);
811 return prev;
815 * Can this new request be merged in front of next?
817 if (next && end == next->vm_start &&
818 mpol_equal(policy, vma_policy(next)) &&
819 can_vma_merge_before(next, vm_flags,
820 anon_vma, file, pgoff+pglen)) {
821 if (prev && addr < prev->vm_end) /* case 4 */
822 vma_adjust(prev, prev->vm_start,
823 addr, prev->vm_pgoff, NULL);
824 else /* cases 3, 8 */
825 vma_adjust(area, addr, next->vm_end,
826 next->vm_pgoff - pglen, NULL);
827 return area;
830 return NULL;
834 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
835 * neighbouring vmas for a suitable anon_vma, before it goes off
836 * to allocate a new anon_vma. It checks because a repetitive
837 * sequence of mprotects and faults may otherwise lead to distinct
838 * anon_vmas being allocated, preventing vma merge in subsequent
839 * mprotect.
841 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
843 struct vm_area_struct *near;
844 unsigned long vm_flags;
846 near = vma->vm_next;
847 if (!near)
848 goto try_prev;
851 * Since only mprotect tries to remerge vmas, match flags
852 * which might be mprotected into each other later on.
853 * Neither mlock nor madvise tries to remerge at present,
854 * so leave their flags as obstructing a merge.
856 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
857 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
859 if (near->anon_vma && vma->vm_end == near->vm_start &&
860 mpol_equal(vma_policy(vma), vma_policy(near)) &&
861 can_vma_merge_before(near, vm_flags,
862 NULL, vma->vm_file, vma->vm_pgoff +
863 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
864 return near->anon_vma;
865 try_prev:
867 * It is potentially slow to have to call find_vma_prev here.
868 * But it's only on the first write fault on the vma, not
869 * every time, and we could devise a way to avoid it later
870 * (e.g. stash info in next's anon_vma_node when assigning
871 * an anon_vma, or when trying vma_merge). Another time.
873 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
874 if (!near)
875 goto none;
877 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
878 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
880 if (near->anon_vma && near->vm_end == vma->vm_start &&
881 mpol_equal(vma_policy(near), vma_policy(vma)) &&
882 can_vma_merge_after(near, vm_flags,
883 NULL, vma->vm_file, vma->vm_pgoff))
884 return near->anon_vma;
885 none:
887 * There's no absolute need to look only at touching neighbours:
888 * we could search further afield for "compatible" anon_vmas.
889 * But it would probably just be a waste of time searching,
890 * or lead to too many vmas hanging off the same anon_vma.
891 * We're trying to allow mprotect remerging later on,
892 * not trying to minimize memory used for anon_vmas.
894 return NULL;
897 #ifdef CONFIG_PROC_FS
898 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
899 struct file *file, long pages)
901 const unsigned long stack_flags
902 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
904 if (file) {
905 mm->shared_vm += pages;
906 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
907 mm->exec_vm += pages;
908 } else if (flags & stack_flags)
909 mm->stack_vm += pages;
910 if (flags & (VM_RESERVED|VM_IO))
911 mm->reserved_vm += pages;
913 #endif /* CONFIG_PROC_FS */
916 * The caller must hold down_write(&current->mm->mmap_sem).
919 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
920 unsigned long len, unsigned long prot,
921 unsigned long flags, unsigned long pgoff)
923 struct mm_struct * mm = current->mm;
924 struct inode *inode;
925 unsigned int vm_flags;
926 int error;
927 unsigned long reqprot = prot;
930 * Does the application expect PROT_READ to imply PROT_EXEC?
932 * (the exception is when the underlying filesystem is noexec
933 * mounted, in which case we dont add PROT_EXEC.)
935 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
936 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
937 prot |= PROT_EXEC;
939 if (!len)
940 return -EINVAL;
942 if (!(flags & MAP_FIXED))
943 addr = round_hint_to_min(addr);
945 /* Careful about overflows.. */
946 len = PAGE_ALIGN(len);
947 if (!len)
948 return -ENOMEM;
950 /* offset overflow? */
951 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
952 return -EOVERFLOW;
954 /* Too many mappings? */
955 if (mm->map_count > sysctl_max_map_count)
956 return -ENOMEM;
958 /* Obtain the address to map to. we verify (or select) it and ensure
959 * that it represents a valid section of the address space.
961 addr = get_unmapped_area(file, addr, len, pgoff, flags);
962 if (addr & ~PAGE_MASK)
963 return addr;
965 /* Do simple checking here so the lower-level routines won't have
966 * to. we assume access permissions have been handled by the open
967 * of the memory object, so we don't do any here.
969 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
970 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
972 if (flags & MAP_LOCKED)
973 if (!can_do_mlock())
974 return -EPERM;
976 /* mlock MCL_FUTURE? */
977 if (vm_flags & VM_LOCKED) {
978 unsigned long locked, lock_limit;
979 locked = len >> PAGE_SHIFT;
980 locked += mm->locked_vm;
981 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
982 lock_limit >>= PAGE_SHIFT;
983 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
984 return -EAGAIN;
987 inode = file ? file->f_path.dentry->d_inode : NULL;
989 if (file) {
990 switch (flags & MAP_TYPE) {
991 case MAP_SHARED:
992 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
993 return -EACCES;
996 * Make sure we don't allow writing to an append-only
997 * file..
999 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1000 return -EACCES;
1003 * Make sure there are no mandatory locks on the file.
1005 if (locks_verify_locked(inode))
1006 return -EAGAIN;
1008 vm_flags |= VM_SHARED | VM_MAYSHARE;
1009 if (!(file->f_mode & FMODE_WRITE))
1010 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1012 /* fall through */
1013 case MAP_PRIVATE:
1014 if (!(file->f_mode & FMODE_READ))
1015 return -EACCES;
1016 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1017 if (vm_flags & VM_EXEC)
1018 return -EPERM;
1019 vm_flags &= ~VM_MAYEXEC;
1022 if (!file->f_op || !file->f_op->mmap)
1023 return -ENODEV;
1024 break;
1026 default:
1027 return -EINVAL;
1029 } else {
1030 switch (flags & MAP_TYPE) {
1031 case MAP_SHARED:
1033 * Ignore pgoff.
1035 pgoff = 0;
1036 vm_flags |= VM_SHARED | VM_MAYSHARE;
1037 break;
1038 case MAP_PRIVATE:
1040 * Set pgoff according to addr for anon_vma.
1042 pgoff = addr >> PAGE_SHIFT;
1043 break;
1044 default:
1045 return -EINVAL;
1049 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050 if (error)
1051 return error;
1052 error = ima_file_mmap(file, prot);
1053 if (error)
1054 return error;
1056 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1058 EXPORT_SYMBOL(do_mmap_pgoff);
1061 * Some shared mappigns will want the pages marked read-only
1062 * to track write events. If so, we'll downgrade vm_page_prot
1063 * to the private version (using protection_map[] without the
1064 * VM_SHARED bit).
1066 int vma_wants_writenotify(struct vm_area_struct *vma)
1068 unsigned int vm_flags = vma->vm_flags;
1070 /* If it was private or non-writable, the write bit is already clear */
1071 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1072 return 0;
1074 /* The backer wishes to know when pages are first written to? */
1075 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1076 return 1;
1078 /* The open routine did something to the protections already? */
1079 if (pgprot_val(vma->vm_page_prot) !=
1080 pgprot_val(vm_get_page_prot(vm_flags)))
1081 return 0;
1083 /* Specialty mapping? */
1084 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1085 return 0;
1087 /* Can the mapping track the dirty pages? */
1088 return vma->vm_file && vma->vm_file->f_mapping &&
1089 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1093 * We account for memory if it's a private writeable mapping,
1094 * not hugepages and VM_NORESERVE wasn't set.
1096 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1099 * hugetlb has its own accounting separate from the core VM
1100 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1102 if (file && is_file_hugepages(file))
1103 return 0;
1105 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1108 unsigned long mmap_region(struct file *file, unsigned long addr,
1109 unsigned long len, unsigned long flags,
1110 unsigned int vm_flags, unsigned long pgoff)
1112 struct mm_struct *mm = current->mm;
1113 struct vm_area_struct *vma, *prev;
1114 int correct_wcount = 0;
1115 int error;
1116 struct rb_node **rb_link, *rb_parent;
1117 unsigned long charged = 0;
1118 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1120 /* Clear old maps */
1121 error = -ENOMEM;
1122 munmap_back:
1123 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1124 if (vma && vma->vm_start < addr + len) {
1125 if (do_munmap(mm, addr, len))
1126 return -ENOMEM;
1127 goto munmap_back;
1130 /* Check against address space limit. */
1131 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1132 return -ENOMEM;
1135 * Set 'VM_NORESERVE' if we should not account for the
1136 * memory use of this mapping.
1138 if ((flags & MAP_NORESERVE)) {
1139 /* We honor MAP_NORESERVE if allowed to overcommit */
1140 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1141 vm_flags |= VM_NORESERVE;
1143 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1144 if (file && is_file_hugepages(file))
1145 vm_flags |= VM_NORESERVE;
1149 * Private writable mapping: check memory availability
1151 if (accountable_mapping(file, vm_flags)) {
1152 charged = len >> PAGE_SHIFT;
1153 if (security_vm_enough_memory(charged))
1154 return -ENOMEM;
1155 vm_flags |= VM_ACCOUNT;
1159 * Can we just expand an old mapping?
1161 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1162 if (vma)
1163 goto out;
1166 * Determine the object being mapped and call the appropriate
1167 * specific mapper. the address has already been validated, but
1168 * not unmapped, but the maps are removed from the list.
1170 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1171 if (!vma) {
1172 error = -ENOMEM;
1173 goto unacct_error;
1176 vma->vm_mm = mm;
1177 vma->vm_start = addr;
1178 vma->vm_end = addr + len;
1179 vma->vm_flags = vm_flags;
1180 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1181 vma->vm_pgoff = pgoff;
1183 if (file) {
1184 error = -EINVAL;
1185 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1186 goto free_vma;
1187 if (vm_flags & VM_DENYWRITE) {
1188 error = deny_write_access(file);
1189 if (error)
1190 goto free_vma;
1191 correct_wcount = 1;
1193 vma->vm_file = file;
1194 get_file(file);
1195 error = file->f_op->mmap(file, vma);
1196 if (error)
1197 goto unmap_and_free_vma;
1198 if (vm_flags & VM_EXECUTABLE)
1199 added_exe_file_vma(mm);
1201 /* Can addr have changed??
1203 * Answer: Yes, several device drivers can do it in their
1204 * f_op->mmap method. -DaveM
1206 addr = vma->vm_start;
1207 pgoff = vma->vm_pgoff;
1208 vm_flags = vma->vm_flags;
1209 } else if (vm_flags & VM_SHARED) {
1210 error = shmem_zero_setup(vma);
1211 if (error)
1212 goto free_vma;
1215 if (vma_wants_writenotify(vma))
1216 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1218 vma_link(mm, vma, prev, rb_link, rb_parent);
1219 file = vma->vm_file;
1221 /* Once vma denies write, undo our temporary denial count */
1222 if (correct_wcount)
1223 atomic_inc(&inode->i_writecount);
1224 out:
1225 perf_event_mmap(vma);
1227 mm->total_vm += len >> PAGE_SHIFT;
1228 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1229 if (vm_flags & VM_LOCKED) {
1231 * makes pages present; downgrades, drops, reacquires mmap_sem
1233 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1234 if (nr_pages < 0)
1235 return nr_pages; /* vma gone! */
1236 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1237 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1238 make_pages_present(addr, addr + len);
1239 return addr;
1241 unmap_and_free_vma:
1242 if (correct_wcount)
1243 atomic_inc(&inode->i_writecount);
1244 vma->vm_file = NULL;
1245 fput(file);
1247 /* Undo any partial mapping done by a device driver. */
1248 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1249 charged = 0;
1250 free_vma:
1251 kmem_cache_free(vm_area_cachep, vma);
1252 unacct_error:
1253 if (charged)
1254 vm_unacct_memory(charged);
1255 return error;
1258 /* Get an address range which is currently unmapped.
1259 * For shmat() with addr=0.
1261 * Ugly calling convention alert:
1262 * Return value with the low bits set means error value,
1263 * ie
1264 * if (ret & ~PAGE_MASK)
1265 * error = ret;
1267 * This function "knows" that -ENOMEM has the bits set.
1269 #ifndef HAVE_ARCH_UNMAPPED_AREA
1270 unsigned long
1271 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1272 unsigned long len, unsigned long pgoff, unsigned long flags)
1274 struct mm_struct *mm = current->mm;
1275 struct vm_area_struct *vma;
1276 unsigned long start_addr;
1278 if (len > TASK_SIZE)
1279 return -ENOMEM;
1281 if (flags & MAP_FIXED)
1282 return addr;
1284 if (addr) {
1285 addr = PAGE_ALIGN(addr);
1286 vma = find_vma(mm, addr);
1287 if (TASK_SIZE - len >= addr &&
1288 (!vma || addr + len <= vma->vm_start))
1289 return addr;
1291 if (len > mm->cached_hole_size) {
1292 start_addr = addr = mm->free_area_cache;
1293 } else {
1294 start_addr = addr = TASK_UNMAPPED_BASE;
1295 mm->cached_hole_size = 0;
1298 full_search:
1299 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1300 /* At this point: (!vma || addr < vma->vm_end). */
1301 if (TASK_SIZE - len < addr) {
1303 * Start a new search - just in case we missed
1304 * some holes.
1306 if (start_addr != TASK_UNMAPPED_BASE) {
1307 addr = TASK_UNMAPPED_BASE;
1308 start_addr = addr;
1309 mm->cached_hole_size = 0;
1310 goto full_search;
1312 return -ENOMEM;
1314 if (!vma || addr + len <= vma->vm_start) {
1316 * Remember the place where we stopped the search:
1318 mm->free_area_cache = addr + len;
1319 return addr;
1321 if (addr + mm->cached_hole_size < vma->vm_start)
1322 mm->cached_hole_size = vma->vm_start - addr;
1323 addr = vma->vm_end;
1326 #endif
1328 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1331 * Is this a new hole at the lowest possible address?
1333 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1334 mm->free_area_cache = addr;
1335 mm->cached_hole_size = ~0UL;
1340 * This mmap-allocator allocates new areas top-down from below the
1341 * stack's low limit (the base):
1343 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1344 unsigned long
1345 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1346 const unsigned long len, const unsigned long pgoff,
1347 const unsigned long flags)
1349 struct vm_area_struct *vma;
1350 struct mm_struct *mm = current->mm;
1351 unsigned long addr = addr0;
1353 /* requested length too big for entire address space */
1354 if (len > TASK_SIZE)
1355 return -ENOMEM;
1357 if (flags & MAP_FIXED)
1358 return addr;
1360 /* requesting a specific address */
1361 if (addr) {
1362 addr = PAGE_ALIGN(addr);
1363 vma = find_vma(mm, addr);
1364 if (TASK_SIZE - len >= addr &&
1365 (!vma || addr + len <= vma->vm_start))
1366 return addr;
1369 /* check if free_area_cache is useful for us */
1370 if (len <= mm->cached_hole_size) {
1371 mm->cached_hole_size = 0;
1372 mm->free_area_cache = mm->mmap_base;
1375 /* either no address requested or can't fit in requested address hole */
1376 addr = mm->free_area_cache;
1378 /* make sure it can fit in the remaining address space */
1379 if (addr > len) {
1380 vma = find_vma(mm, addr-len);
1381 if (!vma || addr <= vma->vm_start)
1382 /* remember the address as a hint for next time */
1383 return (mm->free_area_cache = addr-len);
1386 if (mm->mmap_base < len)
1387 goto bottomup;
1389 addr = mm->mmap_base-len;
1391 do {
1393 * Lookup failure means no vma is above this address,
1394 * else if new region fits below vma->vm_start,
1395 * return with success:
1397 vma = find_vma(mm, addr);
1398 if (!vma || addr+len <= vma->vm_start)
1399 /* remember the address as a hint for next time */
1400 return (mm->free_area_cache = addr);
1402 /* remember the largest hole we saw so far */
1403 if (addr + mm->cached_hole_size < vma->vm_start)
1404 mm->cached_hole_size = vma->vm_start - addr;
1406 /* try just below the current vma->vm_start */
1407 addr = vma->vm_start-len;
1408 } while (len < vma->vm_start);
1410 bottomup:
1412 * A failed mmap() very likely causes application failure,
1413 * so fall back to the bottom-up function here. This scenario
1414 * can happen with large stack limits and large mmap()
1415 * allocations.
1417 mm->cached_hole_size = ~0UL;
1418 mm->free_area_cache = TASK_UNMAPPED_BASE;
1419 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1421 * Restore the topdown base:
1423 mm->free_area_cache = mm->mmap_base;
1424 mm->cached_hole_size = ~0UL;
1426 return addr;
1428 #endif
1430 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1433 * Is this a new hole at the highest possible address?
1435 if (addr > mm->free_area_cache)
1436 mm->free_area_cache = addr;
1438 /* dont allow allocations above current base */
1439 if (mm->free_area_cache > mm->mmap_base)
1440 mm->free_area_cache = mm->mmap_base;
1443 unsigned long
1444 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1445 unsigned long pgoff, unsigned long flags)
1447 unsigned long (*get_area)(struct file *, unsigned long,
1448 unsigned long, unsigned long, unsigned long);
1450 unsigned long error = arch_mmap_check(addr, len, flags);
1451 if (error)
1452 return error;
1454 /* Careful about overflows.. */
1455 if (len > TASK_SIZE)
1456 return -ENOMEM;
1458 get_area = current->mm->get_unmapped_area;
1459 if (file && file->f_op && file->f_op->get_unmapped_area)
1460 get_area = file->f_op->get_unmapped_area;
1461 addr = get_area(file, addr, len, pgoff, flags);
1462 if (IS_ERR_VALUE(addr))
1463 return addr;
1465 if (addr > TASK_SIZE - len)
1466 return -ENOMEM;
1467 if (addr & ~PAGE_MASK)
1468 return -EINVAL;
1470 return arch_rebalance_pgtables(addr, len);
1473 EXPORT_SYMBOL(get_unmapped_area);
1475 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1476 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1478 struct vm_area_struct *vma = NULL;
1480 if (mm) {
1481 /* Check the cache first. */
1482 /* (Cache hit rate is typically around 35%.) */
1483 vma = mm->mmap_cache;
1484 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1485 struct rb_node * rb_node;
1487 rb_node = mm->mm_rb.rb_node;
1488 vma = NULL;
1490 while (rb_node) {
1491 struct vm_area_struct * vma_tmp;
1493 vma_tmp = rb_entry(rb_node,
1494 struct vm_area_struct, vm_rb);
1496 if (vma_tmp->vm_end > addr) {
1497 vma = vma_tmp;
1498 if (vma_tmp->vm_start <= addr)
1499 break;
1500 rb_node = rb_node->rb_left;
1501 } else
1502 rb_node = rb_node->rb_right;
1504 if (vma)
1505 mm->mmap_cache = vma;
1508 return vma;
1511 EXPORT_SYMBOL(find_vma);
1513 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1514 struct vm_area_struct *
1515 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1516 struct vm_area_struct **pprev)
1518 struct vm_area_struct *vma = NULL, *prev = NULL;
1519 struct rb_node *rb_node;
1520 if (!mm)
1521 goto out;
1523 /* Guard against addr being lower than the first VMA */
1524 vma = mm->mmap;
1526 /* Go through the RB tree quickly. */
1527 rb_node = mm->mm_rb.rb_node;
1529 while (rb_node) {
1530 struct vm_area_struct *vma_tmp;
1531 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1533 if (addr < vma_tmp->vm_end) {
1534 rb_node = rb_node->rb_left;
1535 } else {
1536 prev = vma_tmp;
1537 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1538 break;
1539 rb_node = rb_node->rb_right;
1543 out:
1544 *pprev = prev;
1545 return prev ? prev->vm_next : vma;
1549 * Verify that the stack growth is acceptable and
1550 * update accounting. This is shared with both the
1551 * grow-up and grow-down cases.
1553 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1555 struct mm_struct *mm = vma->vm_mm;
1556 struct rlimit *rlim = current->signal->rlim;
1557 unsigned long new_start;
1559 /* address space limit tests */
1560 if (!may_expand_vm(mm, grow))
1561 return -ENOMEM;
1563 /* Stack limit test */
1564 if (size > rlim[RLIMIT_STACK].rlim_cur)
1565 return -ENOMEM;
1567 /* mlock limit tests */
1568 if (vma->vm_flags & VM_LOCKED) {
1569 unsigned long locked;
1570 unsigned long limit;
1571 locked = mm->locked_vm + grow;
1572 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1573 if (locked > limit && !capable(CAP_IPC_LOCK))
1574 return -ENOMEM;
1577 /* Check to ensure the stack will not grow into a hugetlb-only region */
1578 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1579 vma->vm_end - size;
1580 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1581 return -EFAULT;
1584 * Overcommit.. This must be the final test, as it will
1585 * update security statistics.
1587 if (security_vm_enough_memory_mm(mm, grow))
1588 return -ENOMEM;
1590 /* Ok, everything looks good - let it rip */
1591 mm->total_vm += grow;
1592 if (vma->vm_flags & VM_LOCKED)
1593 mm->locked_vm += grow;
1594 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1595 return 0;
1598 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1600 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1601 * vma is the last one with address > vma->vm_end. Have to extend vma.
1603 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1605 int error;
1607 if (!(vma->vm_flags & VM_GROWSUP))
1608 return -EFAULT;
1611 * We must make sure the anon_vma is allocated
1612 * so that the anon_vma locking is not a noop.
1614 if (unlikely(anon_vma_prepare(vma)))
1615 return -ENOMEM;
1616 anon_vma_lock(vma);
1619 * vma->vm_start/vm_end cannot change under us because the caller
1620 * is required to hold the mmap_sem in read mode. We need the
1621 * anon_vma lock to serialize against concurrent expand_stacks.
1622 * Also guard against wrapping around to address 0.
1624 if (address < PAGE_ALIGN(address+4))
1625 address = PAGE_ALIGN(address+4);
1626 else {
1627 anon_vma_unlock(vma);
1628 return -ENOMEM;
1630 error = 0;
1632 /* Somebody else might have raced and expanded it already */
1633 if (address > vma->vm_end) {
1634 unsigned long size, grow;
1636 size = address - vma->vm_start;
1637 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1639 error = acct_stack_growth(vma, size, grow);
1640 if (!error)
1641 vma->vm_end = address;
1643 anon_vma_unlock(vma);
1644 return error;
1646 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1649 * vma is the first one with address < vma->vm_start. Have to extend vma.
1651 static int expand_downwards(struct vm_area_struct *vma,
1652 unsigned long address)
1654 int error;
1657 * We must make sure the anon_vma is allocated
1658 * so that the anon_vma locking is not a noop.
1660 if (unlikely(anon_vma_prepare(vma)))
1661 return -ENOMEM;
1663 address &= PAGE_MASK;
1664 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1665 if (error)
1666 return error;
1668 anon_vma_lock(vma);
1671 * vma->vm_start/vm_end cannot change under us because the caller
1672 * is required to hold the mmap_sem in read mode. We need the
1673 * anon_vma lock to serialize against concurrent expand_stacks.
1676 /* Somebody else might have raced and expanded it already */
1677 if (address < vma->vm_start) {
1678 unsigned long size, grow;
1680 size = vma->vm_end - address;
1681 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1683 error = acct_stack_growth(vma, size, grow);
1684 if (!error) {
1685 vma->vm_start = address;
1686 vma->vm_pgoff -= grow;
1689 anon_vma_unlock(vma);
1690 return error;
1693 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1695 return expand_downwards(vma, address);
1698 #ifdef CONFIG_STACK_GROWSUP
1699 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1701 return expand_upwards(vma, address);
1704 struct vm_area_struct *
1705 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1707 struct vm_area_struct *vma, *prev;
1709 addr &= PAGE_MASK;
1710 vma = find_vma_prev(mm, addr, &prev);
1711 if (vma && (vma->vm_start <= addr))
1712 return vma;
1713 if (!prev || expand_stack(prev, addr))
1714 return NULL;
1715 if (prev->vm_flags & VM_LOCKED) {
1716 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1717 return NULL; /* vma gone! */
1719 return prev;
1721 #else
1722 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1724 return expand_downwards(vma, address);
1727 struct vm_area_struct *
1728 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1730 struct vm_area_struct * vma;
1731 unsigned long start;
1733 addr &= PAGE_MASK;
1734 vma = find_vma(mm,addr);
1735 if (!vma)
1736 return NULL;
1737 if (vma->vm_start <= addr)
1738 return vma;
1739 if (!(vma->vm_flags & VM_GROWSDOWN))
1740 return NULL;
1741 start = vma->vm_start;
1742 if (expand_stack(vma, addr))
1743 return NULL;
1744 if (vma->vm_flags & VM_LOCKED) {
1745 if (mlock_vma_pages_range(vma, addr, start) < 0)
1746 return NULL; /* vma gone! */
1748 return vma;
1750 #endif
1753 * Ok - we have the memory areas we should free on the vma list,
1754 * so release them, and do the vma updates.
1756 * Called with the mm semaphore held.
1758 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1760 /* Update high watermark before we lower total_vm */
1761 update_hiwater_vm(mm);
1762 do {
1763 long nrpages = vma_pages(vma);
1765 mm->total_vm -= nrpages;
1766 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1767 vma = remove_vma(vma);
1768 } while (vma);
1769 validate_mm(mm);
1773 * Get rid of page table information in the indicated region.
1775 * Called with the mm semaphore held.
1777 static void unmap_region(struct mm_struct *mm,
1778 struct vm_area_struct *vma, struct vm_area_struct *prev,
1779 unsigned long start, unsigned long end)
1781 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1782 struct mmu_gather *tlb;
1783 unsigned long nr_accounted = 0;
1785 lru_add_drain();
1786 tlb = tlb_gather_mmu(mm, 0);
1787 update_hiwater_rss(mm);
1788 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1789 vm_unacct_memory(nr_accounted);
1790 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1791 next? next->vm_start: 0);
1792 tlb_finish_mmu(tlb, start, end);
1796 * Create a list of vma's touched by the unmap, removing them from the mm's
1797 * vma list as we go..
1799 static void
1800 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1801 struct vm_area_struct *prev, unsigned long end)
1803 struct vm_area_struct **insertion_point;
1804 struct vm_area_struct *tail_vma = NULL;
1805 unsigned long addr;
1807 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1808 vma->vm_prev = NULL;
1809 do {
1810 rb_erase(&vma->vm_rb, &mm->mm_rb);
1811 mm->map_count--;
1812 tail_vma = vma;
1813 vma = vma->vm_next;
1814 } while (vma && vma->vm_start < end);
1815 *insertion_point = vma;
1816 if (vma)
1817 vma->vm_prev = prev;
1818 tail_vma->vm_next = NULL;
1819 if (mm->unmap_area == arch_unmap_area)
1820 addr = prev ? prev->vm_end : mm->mmap_base;
1821 else
1822 addr = vma ? vma->vm_start : mm->mmap_base;
1823 mm->unmap_area(mm, addr);
1824 mm->mmap_cache = NULL; /* Kill the cache. */
1828 * Split a vma into two pieces at address 'addr', a new vma is allocated
1829 * either for the first part or the tail.
1831 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1832 unsigned long addr, int new_below)
1834 struct mempolicy *pol;
1835 struct vm_area_struct *new;
1837 if (is_vm_hugetlb_page(vma) && (addr &
1838 ~(huge_page_mask(hstate_vma(vma)))))
1839 return -EINVAL;
1841 if (mm->map_count >= sysctl_max_map_count)
1842 return -ENOMEM;
1844 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1845 if (!new)
1846 return -ENOMEM;
1848 /* most fields are the same, copy all, and then fixup */
1849 *new = *vma;
1851 if (new_below)
1852 new->vm_end = addr;
1853 else {
1854 new->vm_start = addr;
1855 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1858 pol = mpol_dup(vma_policy(vma));
1859 if (IS_ERR(pol)) {
1860 kmem_cache_free(vm_area_cachep, new);
1861 return PTR_ERR(pol);
1863 vma_set_policy(new, pol);
1865 if (new->vm_file) {
1866 get_file(new->vm_file);
1867 if (vma->vm_flags & VM_EXECUTABLE)
1868 added_exe_file_vma(mm);
1871 if (new->vm_ops && new->vm_ops->open)
1872 new->vm_ops->open(new);
1874 if (new_below)
1875 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1876 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1877 else
1878 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1880 return 0;
1883 /* Munmap is split into 2 main parts -- this part which finds
1884 * what needs doing, and the areas themselves, which do the
1885 * work. This now handles partial unmappings.
1886 * Jeremy Fitzhardinge <jeremy@goop.org>
1888 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1890 unsigned long end;
1891 struct vm_area_struct *vma, *prev, *last;
1893 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1894 return -EINVAL;
1896 if ((len = PAGE_ALIGN(len)) == 0)
1897 return -EINVAL;
1899 /* Find the first overlapping VMA */
1900 vma = find_vma_prev(mm, start, &prev);
1901 if (!vma)
1902 return 0;
1903 /* we have start < vma->vm_end */
1905 /* if it doesn't overlap, we have nothing.. */
1906 end = start + len;
1907 if (vma->vm_start >= end)
1908 return 0;
1911 * If we need to split any vma, do it now to save pain later.
1913 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1914 * unmapped vm_area_struct will remain in use: so lower split_vma
1915 * places tmp vma above, and higher split_vma places tmp vma below.
1917 if (start > vma->vm_start) {
1918 int error = split_vma(mm, vma, start, 0);
1919 if (error)
1920 return error;
1921 prev = vma;
1924 /* Does it split the last one? */
1925 last = find_vma(mm, end);
1926 if (last && end > last->vm_start) {
1927 int error = split_vma(mm, last, end, 1);
1928 if (error)
1929 return error;
1931 vma = prev? prev->vm_next: mm->mmap;
1934 * unlock any mlock()ed ranges before detaching vmas
1936 if (mm->locked_vm) {
1937 struct vm_area_struct *tmp = vma;
1938 while (tmp && tmp->vm_start < end) {
1939 if (tmp->vm_flags & VM_LOCKED) {
1940 mm->locked_vm -= vma_pages(tmp);
1941 munlock_vma_pages_all(tmp);
1943 tmp = tmp->vm_next;
1948 * Remove the vma's, and unmap the actual pages
1950 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1951 unmap_region(mm, vma, prev, start, end);
1953 /* Fix up all other VM information */
1954 remove_vma_list(mm, vma);
1956 return 0;
1959 EXPORT_SYMBOL(do_munmap);
1961 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1963 int ret;
1964 struct mm_struct *mm = current->mm;
1966 profile_munmap(addr);
1968 down_write(&mm->mmap_sem);
1969 ret = do_munmap(mm, addr, len);
1970 up_write(&mm->mmap_sem);
1971 return ret;
1974 static inline void verify_mm_writelocked(struct mm_struct *mm)
1976 #ifdef CONFIG_DEBUG_VM
1977 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1978 WARN_ON(1);
1979 up_read(&mm->mmap_sem);
1981 #endif
1985 * this is really a simplified "do_mmap". it only handles
1986 * anonymous maps. eventually we may be able to do some
1987 * brk-specific accounting here.
1989 unsigned long do_brk(unsigned long addr, unsigned long len)
1991 struct mm_struct * mm = current->mm;
1992 struct vm_area_struct * vma, * prev;
1993 unsigned long flags;
1994 struct rb_node ** rb_link, * rb_parent;
1995 pgoff_t pgoff = addr >> PAGE_SHIFT;
1996 int error;
1998 len = PAGE_ALIGN(len);
1999 if (!len)
2000 return addr;
2002 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2003 if (error)
2004 return error;
2006 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2008 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2009 if (error & ~PAGE_MASK)
2010 return error;
2013 * mlock MCL_FUTURE?
2015 if (mm->def_flags & VM_LOCKED) {
2016 unsigned long locked, lock_limit;
2017 locked = len >> PAGE_SHIFT;
2018 locked += mm->locked_vm;
2019 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2020 lock_limit >>= PAGE_SHIFT;
2021 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2022 return -EAGAIN;
2026 * mm->mmap_sem is required to protect against another thread
2027 * changing the mappings in case we sleep.
2029 verify_mm_writelocked(mm);
2032 * Clear old maps. this also does some error checking for us
2034 munmap_back:
2035 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2036 if (vma && vma->vm_start < addr + len) {
2037 if (do_munmap(mm, addr, len))
2038 return -ENOMEM;
2039 goto munmap_back;
2042 /* Check against address space limits *after* clearing old maps... */
2043 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2044 return -ENOMEM;
2046 if (mm->map_count > sysctl_max_map_count)
2047 return -ENOMEM;
2049 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2050 return -ENOMEM;
2052 /* Can we just expand an old private anonymous mapping? */
2053 vma = vma_merge(mm, prev, addr, addr + len, flags,
2054 NULL, NULL, pgoff, NULL);
2055 if (vma)
2056 goto out;
2059 * create a vma struct for an anonymous mapping
2061 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2062 if (!vma) {
2063 vm_unacct_memory(len >> PAGE_SHIFT);
2064 return -ENOMEM;
2067 vma->vm_mm = mm;
2068 vma->vm_start = addr;
2069 vma->vm_end = addr + len;
2070 vma->vm_pgoff = pgoff;
2071 vma->vm_flags = flags;
2072 vma->vm_page_prot = vm_get_page_prot(flags);
2073 vma_link(mm, vma, prev, rb_link, rb_parent);
2074 out:
2075 mm->total_vm += len >> PAGE_SHIFT;
2076 if (flags & VM_LOCKED) {
2077 if (!mlock_vma_pages_range(vma, addr, addr + len))
2078 mm->locked_vm += (len >> PAGE_SHIFT);
2080 return addr;
2083 EXPORT_SYMBOL(do_brk);
2085 /* Release all mmaps. */
2086 void exit_mmap(struct mm_struct *mm)
2088 struct mmu_gather *tlb;
2089 struct vm_area_struct *vma;
2090 unsigned long nr_accounted = 0;
2091 unsigned long end;
2093 /* mm's last user has gone, and its about to be pulled down */
2094 mmu_notifier_release(mm);
2096 if (mm->locked_vm) {
2097 vma = mm->mmap;
2098 while (vma) {
2099 if (vma->vm_flags & VM_LOCKED)
2100 munlock_vma_pages_all(vma);
2101 vma = vma->vm_next;
2105 arch_exit_mmap(mm);
2107 vma = mm->mmap;
2108 if (!vma) /* Can happen if dup_mmap() received an OOM */
2109 return;
2111 lru_add_drain();
2112 flush_cache_mm(mm);
2113 tlb = tlb_gather_mmu(mm, 1);
2114 /* update_hiwater_rss(mm) here? but nobody should be looking */
2115 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2116 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2117 vm_unacct_memory(nr_accounted);
2119 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2120 tlb_finish_mmu(tlb, 0, end);
2123 * Walk the list again, actually closing and freeing it,
2124 * with preemption enabled, without holding any MM locks.
2126 while (vma)
2127 vma = remove_vma(vma);
2129 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2132 /* Insert vm structure into process list sorted by address
2133 * and into the inode's i_mmap tree. If vm_file is non-NULL
2134 * then i_mmap_lock is taken here.
2136 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2138 struct vm_area_struct * __vma, * prev;
2139 struct rb_node ** rb_link, * rb_parent;
2142 * The vm_pgoff of a purely anonymous vma should be irrelevant
2143 * until its first write fault, when page's anon_vma and index
2144 * are set. But now set the vm_pgoff it will almost certainly
2145 * end up with (unless mremap moves it elsewhere before that
2146 * first wfault), so /proc/pid/maps tells a consistent story.
2148 * By setting it to reflect the virtual start address of the
2149 * vma, merges and splits can happen in a seamless way, just
2150 * using the existing file pgoff checks and manipulations.
2151 * Similarly in do_mmap_pgoff and in do_brk.
2153 if (!vma->vm_file) {
2154 BUG_ON(vma->anon_vma);
2155 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2157 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2158 if (__vma && __vma->vm_start < vma->vm_end)
2159 return -ENOMEM;
2160 if ((vma->vm_flags & VM_ACCOUNT) &&
2161 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2162 return -ENOMEM;
2163 vma_link(mm, vma, prev, rb_link, rb_parent);
2164 return 0;
2168 * Copy the vma structure to a new location in the same mm,
2169 * prior to moving page table entries, to effect an mremap move.
2171 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2172 unsigned long addr, unsigned long len, pgoff_t pgoff)
2174 struct vm_area_struct *vma = *vmap;
2175 unsigned long vma_start = vma->vm_start;
2176 struct mm_struct *mm = vma->vm_mm;
2177 struct vm_area_struct *new_vma, *prev;
2178 struct rb_node **rb_link, *rb_parent;
2179 struct mempolicy *pol;
2182 * If anonymous vma has not yet been faulted, update new pgoff
2183 * to match new location, to increase its chance of merging.
2185 if (!vma->vm_file && !vma->anon_vma)
2186 pgoff = addr >> PAGE_SHIFT;
2188 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2189 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2190 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2191 if (new_vma) {
2193 * Source vma may have been merged into new_vma
2195 if (vma_start >= new_vma->vm_start &&
2196 vma_start < new_vma->vm_end)
2197 *vmap = new_vma;
2198 } else {
2199 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2200 if (new_vma) {
2201 *new_vma = *vma;
2202 pol = mpol_dup(vma_policy(vma));
2203 if (IS_ERR(pol)) {
2204 kmem_cache_free(vm_area_cachep, new_vma);
2205 return NULL;
2207 vma_set_policy(new_vma, pol);
2208 new_vma->vm_start = addr;
2209 new_vma->vm_end = addr + len;
2210 new_vma->vm_pgoff = pgoff;
2211 if (new_vma->vm_file) {
2212 get_file(new_vma->vm_file);
2213 if (vma->vm_flags & VM_EXECUTABLE)
2214 added_exe_file_vma(mm);
2216 if (new_vma->vm_ops && new_vma->vm_ops->open)
2217 new_vma->vm_ops->open(new_vma);
2218 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2221 return new_vma;
2225 * Return true if the calling process may expand its vm space by the passed
2226 * number of pages
2228 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2230 unsigned long cur = mm->total_vm; /* pages */
2231 unsigned long lim;
2233 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2235 if (cur + npages > lim)
2236 return 0;
2237 return 1;
2241 static int special_mapping_fault(struct vm_area_struct *vma,
2242 struct vm_fault *vmf)
2244 pgoff_t pgoff;
2245 struct page **pages;
2248 * special mappings have no vm_file, and in that case, the mm
2249 * uses vm_pgoff internally. So we have to subtract it from here.
2250 * We are allowed to do this because we are the mm; do not copy
2251 * this code into drivers!
2253 pgoff = vmf->pgoff - vma->vm_pgoff;
2255 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2256 pgoff--;
2258 if (*pages) {
2259 struct page *page = *pages;
2260 get_page(page);
2261 vmf->page = page;
2262 return 0;
2265 return VM_FAULT_SIGBUS;
2269 * Having a close hook prevents vma merging regardless of flags.
2271 static void special_mapping_close(struct vm_area_struct *vma)
2275 static const struct vm_operations_struct special_mapping_vmops = {
2276 .close = special_mapping_close,
2277 .fault = special_mapping_fault,
2281 * Called with mm->mmap_sem held for writing.
2282 * Insert a new vma covering the given region, with the given flags.
2283 * Its pages are supplied by the given array of struct page *.
2284 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2285 * The region past the last page supplied will always produce SIGBUS.
2286 * The array pointer and the pages it points to are assumed to stay alive
2287 * for as long as this mapping might exist.
2289 int install_special_mapping(struct mm_struct *mm,
2290 unsigned long addr, unsigned long len,
2291 unsigned long vm_flags, struct page **pages)
2293 int ret;
2294 struct vm_area_struct *vma;
2296 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2297 if (unlikely(vma == NULL))
2298 return -ENOMEM;
2300 vma->vm_mm = mm;
2301 vma->vm_start = addr;
2302 vma->vm_end = addr + len;
2304 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2305 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2307 vma->vm_ops = &special_mapping_vmops;
2308 vma->vm_private_data = pages;
2310 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2311 if (ret)
2312 goto out;
2314 ret = insert_vm_struct(mm, vma);
2315 if (ret)
2316 goto out;
2318 mm->total_vm += len >> PAGE_SHIFT;
2320 perf_event_mmap(vma);
2322 return 0;
2324 out:
2325 kmem_cache_free(vm_area_cachep, vma);
2326 return ret;
2329 static DEFINE_MUTEX(mm_all_locks_mutex);
2331 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2333 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2335 * The LSB of head.next can't change from under us
2336 * because we hold the mm_all_locks_mutex.
2338 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2340 * We can safely modify head.next after taking the
2341 * anon_vma->lock. If some other vma in this mm shares
2342 * the same anon_vma we won't take it again.
2344 * No need of atomic instructions here, head.next
2345 * can't change from under us thanks to the
2346 * anon_vma->lock.
2348 if (__test_and_set_bit(0, (unsigned long *)
2349 &anon_vma->head.next))
2350 BUG();
2354 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2356 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2358 * AS_MM_ALL_LOCKS can't change from under us because
2359 * we hold the mm_all_locks_mutex.
2361 * Operations on ->flags have to be atomic because
2362 * even if AS_MM_ALL_LOCKS is stable thanks to the
2363 * mm_all_locks_mutex, there may be other cpus
2364 * changing other bitflags in parallel to us.
2366 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2367 BUG();
2368 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2373 * This operation locks against the VM for all pte/vma/mm related
2374 * operations that could ever happen on a certain mm. This includes
2375 * vmtruncate, try_to_unmap, and all page faults.
2377 * The caller must take the mmap_sem in write mode before calling
2378 * mm_take_all_locks(). The caller isn't allowed to release the
2379 * mmap_sem until mm_drop_all_locks() returns.
2381 * mmap_sem in write mode is required in order to block all operations
2382 * that could modify pagetables and free pages without need of
2383 * altering the vma layout (for example populate_range() with
2384 * nonlinear vmas). It's also needed in write mode to avoid new
2385 * anon_vmas to be associated with existing vmas.
2387 * A single task can't take more than one mm_take_all_locks() in a row
2388 * or it would deadlock.
2390 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2391 * mapping->flags avoid to take the same lock twice, if more than one
2392 * vma in this mm is backed by the same anon_vma or address_space.
2394 * We can take all the locks in random order because the VM code
2395 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2396 * takes more than one of them in a row. Secondly we're protected
2397 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2399 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2400 * that may have to take thousand of locks.
2402 * mm_take_all_locks() can fail if it's interrupted by signals.
2404 int mm_take_all_locks(struct mm_struct *mm)
2406 struct vm_area_struct *vma;
2407 int ret = -EINTR;
2409 BUG_ON(down_read_trylock(&mm->mmap_sem));
2411 mutex_lock(&mm_all_locks_mutex);
2413 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2414 if (signal_pending(current))
2415 goto out_unlock;
2416 if (vma->vm_file && vma->vm_file->f_mapping)
2417 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2420 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2421 if (signal_pending(current))
2422 goto out_unlock;
2423 if (vma->anon_vma)
2424 vm_lock_anon_vma(mm, vma->anon_vma);
2427 ret = 0;
2429 out_unlock:
2430 if (ret)
2431 mm_drop_all_locks(mm);
2433 return ret;
2436 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2438 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2440 * The LSB of head.next can't change to 0 from under
2441 * us because we hold the mm_all_locks_mutex.
2443 * We must however clear the bitflag before unlocking
2444 * the vma so the users using the anon_vma->head will
2445 * never see our bitflag.
2447 * No need of atomic instructions here, head.next
2448 * can't change from under us until we release the
2449 * anon_vma->lock.
2451 if (!__test_and_clear_bit(0, (unsigned long *)
2452 &anon_vma->head.next))
2453 BUG();
2454 spin_unlock(&anon_vma->lock);
2458 static void vm_unlock_mapping(struct address_space *mapping)
2460 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2462 * AS_MM_ALL_LOCKS can't change to 0 from under us
2463 * because we hold the mm_all_locks_mutex.
2465 spin_unlock(&mapping->i_mmap_lock);
2466 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2467 &mapping->flags))
2468 BUG();
2473 * The mmap_sem cannot be released by the caller until
2474 * mm_drop_all_locks() returns.
2476 void mm_drop_all_locks(struct mm_struct *mm)
2478 struct vm_area_struct *vma;
2480 BUG_ON(down_read_trylock(&mm->mmap_sem));
2481 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2483 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2484 if (vma->anon_vma)
2485 vm_unlock_anon_vma(vma->anon_vma);
2486 if (vma->vm_file && vma->vm_file->f_mapping)
2487 vm_unlock_mapping(vma->vm_file->f_mapping);
2490 mutex_unlock(&mm_all_locks_mutex);
2494 * initialise the VMA slab
2496 void __init mmap_init(void)
2498 int ret;
2500 ret = percpu_counter_init(&vm_committed_as, 0);
2501 VM_BUG_ON(ret);