4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
111 unsigned long zero_pfn __read_mostly
;
112 unsigned long highest_memmap_pfn __read_mostly
;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init
init_zero_pfn(void)
119 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
122 core_initcall(init_zero_pfn
);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t
*pgd
)
136 void pud_clear_bad(pud_t
*pud
)
142 void pmd_clear_bad(pmd_t
*pmd
)
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
155 pgtable_t token
= pmd_pgtable(*pmd
);
157 pte_free_tlb(tlb
, token
, addr
);
161 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
162 unsigned long addr
, unsigned long end
,
163 unsigned long floor
, unsigned long ceiling
)
170 pmd
= pmd_offset(pud
, addr
);
172 next
= pmd_addr_end(addr
, end
);
173 if (pmd_none_or_clear_bad(pmd
))
175 free_pte_range(tlb
, pmd
, addr
);
176 } while (pmd
++, addr
= next
, addr
!= end
);
186 if (end
- 1 > ceiling
- 1)
189 pmd
= pmd_offset(pud
, start
);
191 pmd_free_tlb(tlb
, pmd
, start
);
194 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 pud
= pud_offset(pgd
, addr
);
205 next
= pud_addr_end(addr
, end
);
206 if (pud_none_or_clear_bad(pud
))
208 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
209 } while (pud
++, addr
= next
, addr
!= end
);
215 ceiling
&= PGDIR_MASK
;
219 if (end
- 1 > ceiling
- 1)
222 pud
= pud_offset(pgd
, start
);
224 pud_free_tlb(tlb
, pud
, start
);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather
*tlb
,
233 unsigned long addr
, unsigned long end
,
234 unsigned long floor
, unsigned long ceiling
)
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
277 if (end
- 1 > ceiling
- 1)
283 pgd
= pgd_offset(tlb
->mm
, addr
);
285 next
= pgd_addr_end(addr
, end
);
286 if (pgd_none_or_clear_bad(pgd
))
288 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
289 } while (pgd
++, addr
= next
, addr
!= end
);
292 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
293 unsigned long floor
, unsigned long ceiling
)
296 struct vm_area_struct
*next
= vma
->vm_next
;
297 unsigned long addr
= vma
->vm_start
;
300 * Hide vma from rmap and truncate_pagecache before freeing
303 anon_vma_unlink(vma
);
304 unlink_file_vma(vma
);
306 if (is_vm_hugetlb_page(vma
)) {
307 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
308 floor
, next
? next
->vm_start
: ceiling
);
311 * Optimization: gather nearby vmas into one call down
313 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
314 && !is_vm_hugetlb_page(next
)) {
317 anon_vma_unlink(vma
);
318 unlink_file_vma(vma
);
320 free_pgd_range(tlb
, addr
, vma
->vm_end
,
321 floor
, next
? next
->vm_start
: ceiling
);
327 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
329 pgtable_t
new = pte_alloc_one(mm
, address
);
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348 spin_lock(&mm
->page_table_lock
);
349 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate(mm
, pmd
, new);
354 spin_unlock(&mm
->page_table_lock
);
360 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
362 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
366 smp_wmb(); /* See comment in __pte_alloc */
368 spin_lock(&init_mm
.page_table_lock
);
369 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm
, pmd
, new);
373 spin_unlock(&init_mm
.page_table_lock
);
375 pte_free_kernel(&init_mm
, new);
379 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
382 add_mm_counter(mm
, file_rss
, file_rss
);
384 add_mm_counter(mm
, anon_rss
, anon_rss
);
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
392 * The calling function must still handle the error.
394 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
395 pte_t pte
, struct page
*page
)
397 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
398 pud_t
*pud
= pud_offset(pgd
, addr
);
399 pmd_t
*pmd
= pmd_offset(pud
, addr
);
400 struct address_space
*mapping
;
402 static unsigned long resume
;
403 static unsigned long nr_shown
;
404 static unsigned long nr_unshown
;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown
== 60) {
411 if (time_before(jiffies
, resume
)) {
417 "BUG: Bad page map: %lu messages suppressed\n",
424 resume
= jiffies
+ 60 * HZ
;
426 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
427 index
= linear_page_index(vma
, addr
);
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
432 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page
, (void *)page
->flags
, page_count(page
),
437 page_mapcount(page
), page
->mapping
, page
->index
);
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
446 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
447 (unsigned long)vma
->vm_ops
->fault
);
448 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
449 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma
->vm_file
->f_op
->mmap
);
452 add_taint(TAINT_BAD_PAGE
);
455 static inline int is_cow_mapping(unsigned int flags
)
457 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
461 static inline int is_zero_pfn(unsigned long pfn
)
463 return pfn
== zero_pfn
;
468 static inline unsigned long my_zero_pfn(unsigned long addr
)
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
497 * And for normal mappings this is false.
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
519 # define HAVE_PTE_SPECIAL 0
521 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
524 unsigned long pfn
= pte_pfn(pte
);
526 if (HAVE_PTE_SPECIAL
) {
527 if (likely(!pte_special(pte
)))
529 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
531 if (!is_zero_pfn(pfn
))
532 print_bad_pte(vma
, addr
, pte
, NULL
);
536 /* !HAVE_PTE_SPECIAL case follows: */
538 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
539 if (vma
->vm_flags
& VM_MIXEDMAP
) {
545 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
546 if (pfn
== vma
->vm_pgoff
+ off
)
548 if (!is_cow_mapping(vma
->vm_flags
))
553 if (is_zero_pfn(pfn
))
556 if (unlikely(pfn
> highest_memmap_pfn
)) {
557 print_bad_pte(vma
, addr
, pte
, NULL
);
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
566 return pfn_to_page(pfn
);
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
576 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
577 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
578 unsigned long addr
, int *rss
)
580 unsigned long vm_flags
= vma
->vm_flags
;
581 pte_t pte
= *src_pte
;
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte
))) {
586 if (!pte_file(pte
)) {
587 swp_entry_t entry
= pte_to_swp_entry(pte
);
589 swap_duplicate(entry
);
590 /* make sure dst_mm is on swapoff's mmlist. */
591 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
592 spin_lock(&mmlist_lock
);
593 if (list_empty(&dst_mm
->mmlist
))
594 list_add(&dst_mm
->mmlist
,
596 spin_unlock(&mmlist_lock
);
598 if (is_write_migration_entry(entry
) &&
599 is_cow_mapping(vm_flags
)) {
601 * COW mappings require pages in both parent
602 * and child to be set to read.
604 make_migration_entry_read(&entry
);
605 pte
= swp_entry_to_pte(entry
);
606 set_pte_at(src_mm
, addr
, src_pte
, pte
);
613 * If it's a COW mapping, write protect it both
614 * in the parent and the child
616 if (is_cow_mapping(vm_flags
)) {
617 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
618 pte
= pte_wrprotect(pte
);
622 * If it's a shared mapping, mark it clean in
625 if (vm_flags
& VM_SHARED
)
626 pte
= pte_mkclean(pte
);
627 pte
= pte_mkold(pte
);
629 page
= vm_normal_page(vma
, addr
, pte
);
633 rss
[PageAnon(page
)]++;
637 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
640 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
641 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
642 unsigned long addr
, unsigned long end
)
644 pte_t
*orig_src_pte
, *orig_dst_pte
;
645 pte_t
*src_pte
, *dst_pte
;
646 spinlock_t
*src_ptl
, *dst_ptl
;
652 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
655 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
656 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
657 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
658 orig_src_pte
= src_pte
;
659 orig_dst_pte
= dst_pte
;
660 arch_enter_lazy_mmu_mode();
664 * We are holding two locks at this point - either of them
665 * could generate latencies in another task on another CPU.
667 if (progress
>= 32) {
669 if (need_resched() ||
670 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
673 if (pte_none(*src_pte
)) {
677 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
679 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
681 arch_leave_lazy_mmu_mode();
682 spin_unlock(src_ptl
);
683 pte_unmap_nested(orig_src_pte
);
684 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
685 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
692 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
693 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
694 unsigned long addr
, unsigned long end
)
696 pmd_t
*src_pmd
, *dst_pmd
;
699 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
702 src_pmd
= pmd_offset(src_pud
, addr
);
704 next
= pmd_addr_end(addr
, end
);
705 if (pmd_none_or_clear_bad(src_pmd
))
707 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
710 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
714 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
715 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
716 unsigned long addr
, unsigned long end
)
718 pud_t
*src_pud
, *dst_pud
;
721 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
724 src_pud
= pud_offset(src_pgd
, addr
);
726 next
= pud_addr_end(addr
, end
);
727 if (pud_none_or_clear_bad(src_pud
))
729 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
732 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
736 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
737 struct vm_area_struct
*vma
)
739 pgd_t
*src_pgd
, *dst_pgd
;
741 unsigned long addr
= vma
->vm_start
;
742 unsigned long end
= vma
->vm_end
;
746 * Don't copy ptes where a page fault will fill them correctly.
747 * Fork becomes much lighter when there are big shared or private
748 * readonly mappings. The tradeoff is that copy_page_range is more
749 * efficient than faulting.
751 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
756 if (is_vm_hugetlb_page(vma
))
757 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
759 if (unlikely(is_pfn_mapping(vma
))) {
761 * We do not free on error cases below as remove_vma
762 * gets called on error from higher level routine
764 ret
= track_pfn_vma_copy(vma
);
770 * We need to invalidate the secondary MMU mappings only when
771 * there could be a permission downgrade on the ptes of the
772 * parent mm. And a permission downgrade will only happen if
773 * is_cow_mapping() returns true.
775 if (is_cow_mapping(vma
->vm_flags
))
776 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
779 dst_pgd
= pgd_offset(dst_mm
, addr
);
780 src_pgd
= pgd_offset(src_mm
, addr
);
782 next
= pgd_addr_end(addr
, end
);
783 if (pgd_none_or_clear_bad(src_pgd
))
785 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
790 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
792 if (is_cow_mapping(vma
->vm_flags
))
793 mmu_notifier_invalidate_range_end(src_mm
,
798 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
799 struct vm_area_struct
*vma
, pmd_t
*pmd
,
800 unsigned long addr
, unsigned long end
,
801 long *zap_work
, struct zap_details
*details
)
803 struct mm_struct
*mm
= tlb
->mm
;
809 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
810 arch_enter_lazy_mmu_mode();
813 if (pte_none(ptent
)) {
818 (*zap_work
) -= PAGE_SIZE
;
820 if (pte_present(ptent
)) {
823 page
= vm_normal_page(vma
, addr
, ptent
);
824 if (unlikely(details
) && page
) {
826 * unmap_shared_mapping_pages() wants to
827 * invalidate cache without truncating:
828 * unmap shared but keep private pages.
830 if (details
->check_mapping
&&
831 details
->check_mapping
!= page
->mapping
)
834 * Each page->index must be checked when
835 * invalidating or truncating nonlinear.
837 if (details
->nonlinear_vma
&&
838 (page
->index
< details
->first_index
||
839 page
->index
> details
->last_index
))
842 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
844 tlb_remove_tlb_entry(tlb
, pte
, addr
);
847 if (unlikely(details
) && details
->nonlinear_vma
848 && linear_page_index(details
->nonlinear_vma
,
849 addr
) != page
->index
)
850 set_pte_at(mm
, addr
, pte
,
851 pgoff_to_pte(page
->index
));
855 if (pte_dirty(ptent
))
856 set_page_dirty(page
);
857 if (pte_young(ptent
) &&
858 likely(!VM_SequentialReadHint(vma
)))
859 mark_page_accessed(page
);
862 page_remove_rmap(page
);
863 if (unlikely(page_mapcount(page
) < 0))
864 print_bad_pte(vma
, addr
, ptent
, page
);
865 tlb_remove_page(tlb
, page
);
869 * If details->check_mapping, we leave swap entries;
870 * if details->nonlinear_vma, we leave file entries.
872 if (unlikely(details
))
874 if (pte_file(ptent
)) {
875 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
876 print_bad_pte(vma
, addr
, ptent
, NULL
);
878 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
879 print_bad_pte(vma
, addr
, ptent
, NULL
);
880 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
881 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
883 add_mm_rss(mm
, file_rss
, anon_rss
);
884 arch_leave_lazy_mmu_mode();
885 pte_unmap_unlock(pte
- 1, ptl
);
890 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
891 struct vm_area_struct
*vma
, pud_t
*pud
,
892 unsigned long addr
, unsigned long end
,
893 long *zap_work
, struct zap_details
*details
)
898 pmd
= pmd_offset(pud
, addr
);
900 next
= pmd_addr_end(addr
, end
);
901 if (pmd_none_or_clear_bad(pmd
)) {
905 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
907 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
912 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
913 struct vm_area_struct
*vma
, pgd_t
*pgd
,
914 unsigned long addr
, unsigned long end
,
915 long *zap_work
, struct zap_details
*details
)
920 pud
= pud_offset(pgd
, addr
);
922 next
= pud_addr_end(addr
, end
);
923 if (pud_none_or_clear_bad(pud
)) {
927 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
929 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
934 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
935 struct vm_area_struct
*vma
,
936 unsigned long addr
, unsigned long end
,
937 long *zap_work
, struct zap_details
*details
)
942 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
946 tlb_start_vma(tlb
, vma
);
947 pgd
= pgd_offset(vma
->vm_mm
, addr
);
949 next
= pgd_addr_end(addr
, end
);
950 if (pgd_none_or_clear_bad(pgd
)) {
954 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
956 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
957 tlb_end_vma(tlb
, vma
);
962 #ifdef CONFIG_PREEMPT
963 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
965 /* No preempt: go for improved straight-line efficiency */
966 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
970 * unmap_vmas - unmap a range of memory covered by a list of vma's
971 * @tlbp: address of the caller's struct mmu_gather
972 * @vma: the starting vma
973 * @start_addr: virtual address at which to start unmapping
974 * @end_addr: virtual address at which to end unmapping
975 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
976 * @details: details of nonlinear truncation or shared cache invalidation
978 * Returns the end address of the unmapping (restart addr if interrupted).
980 * Unmap all pages in the vma list.
982 * We aim to not hold locks for too long (for scheduling latency reasons).
983 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
984 * return the ending mmu_gather to the caller.
986 * Only addresses between `start' and `end' will be unmapped.
988 * The VMA list must be sorted in ascending virtual address order.
990 * unmap_vmas() assumes that the caller will flush the whole unmapped address
991 * range after unmap_vmas() returns. So the only responsibility here is to
992 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
993 * drops the lock and schedules.
995 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
996 struct vm_area_struct
*vma
, unsigned long start_addr
,
997 unsigned long end_addr
, unsigned long *nr_accounted
,
998 struct zap_details
*details
)
1000 long zap_work
= ZAP_BLOCK_SIZE
;
1001 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1002 int tlb_start_valid
= 0;
1003 unsigned long start
= start_addr
;
1004 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1005 int fullmm
= (*tlbp
)->fullmm
;
1006 struct mm_struct
*mm
= vma
->vm_mm
;
1008 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1009 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1012 start
= max(vma
->vm_start
, start_addr
);
1013 if (start
>= vma
->vm_end
)
1015 end
= min(vma
->vm_end
, end_addr
);
1016 if (end
<= vma
->vm_start
)
1019 if (vma
->vm_flags
& VM_ACCOUNT
)
1020 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1022 if (unlikely(is_pfn_mapping(vma
)))
1023 untrack_pfn_vma(vma
, 0, 0);
1025 while (start
!= end
) {
1026 if (!tlb_start_valid
) {
1028 tlb_start_valid
= 1;
1031 if (unlikely(is_vm_hugetlb_page(vma
))) {
1033 * It is undesirable to test vma->vm_file as it
1034 * should be non-null for valid hugetlb area.
1035 * However, vm_file will be NULL in the error
1036 * cleanup path of do_mmap_pgoff. When
1037 * hugetlbfs ->mmap method fails,
1038 * do_mmap_pgoff() nullifies vma->vm_file
1039 * before calling this function to clean up.
1040 * Since no pte has actually been setup, it is
1041 * safe to do nothing in this case.
1044 unmap_hugepage_range(vma
, start
, end
, NULL
);
1045 zap_work
-= (end
- start
) /
1046 pages_per_huge_page(hstate_vma(vma
));
1051 start
= unmap_page_range(*tlbp
, vma
,
1052 start
, end
, &zap_work
, details
);
1055 BUG_ON(start
!= end
);
1059 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1061 if (need_resched() ||
1062 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1070 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1071 tlb_start_valid
= 0;
1072 zap_work
= ZAP_BLOCK_SIZE
;
1076 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1077 return start
; /* which is now the end (or restart) address */
1081 * zap_page_range - remove user pages in a given range
1082 * @vma: vm_area_struct holding the applicable pages
1083 * @address: starting address of pages to zap
1084 * @size: number of bytes to zap
1085 * @details: details of nonlinear truncation or shared cache invalidation
1087 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1088 unsigned long size
, struct zap_details
*details
)
1090 struct mm_struct
*mm
= vma
->vm_mm
;
1091 struct mmu_gather
*tlb
;
1092 unsigned long end
= address
+ size
;
1093 unsigned long nr_accounted
= 0;
1096 tlb
= tlb_gather_mmu(mm
, 0);
1097 update_hiwater_rss(mm
);
1098 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1100 tlb_finish_mmu(tlb
, address
, end
);
1105 * zap_vma_ptes - remove ptes mapping the vma
1106 * @vma: vm_area_struct holding ptes to be zapped
1107 * @address: starting address of pages to zap
1108 * @size: number of bytes to zap
1110 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1112 * The entire address range must be fully contained within the vma.
1114 * Returns 0 if successful.
1116 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1119 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1120 !(vma
->vm_flags
& VM_PFNMAP
))
1122 zap_page_range(vma
, address
, size
, NULL
);
1125 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1128 * Do a quick page-table lookup for a single page.
1130 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1139 struct mm_struct
*mm
= vma
->vm_mm
;
1141 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1142 if (!IS_ERR(page
)) {
1143 BUG_ON(flags
& FOLL_GET
);
1148 pgd
= pgd_offset(mm
, address
);
1149 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1152 pud
= pud_offset(pgd
, address
);
1155 if (pud_huge(*pud
)) {
1156 BUG_ON(flags
& FOLL_GET
);
1157 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1160 if (unlikely(pud_bad(*pud
)))
1163 pmd
= pmd_offset(pud
, address
);
1166 if (pmd_huge(*pmd
)) {
1167 BUG_ON(flags
& FOLL_GET
);
1168 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1171 if (unlikely(pmd_bad(*pmd
)))
1174 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1177 if (!pte_present(pte
))
1179 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1182 page
= vm_normal_page(vma
, address
, pte
);
1183 if (unlikely(!page
)) {
1184 if ((flags
& FOLL_DUMP
) ||
1185 !is_zero_pfn(pte_pfn(pte
)))
1187 page
= pte_page(pte
);
1190 if (flags
& FOLL_GET
)
1192 if (flags
& FOLL_TOUCH
) {
1193 if ((flags
& FOLL_WRITE
) &&
1194 !pte_dirty(pte
) && !PageDirty(page
))
1195 set_page_dirty(page
);
1197 * pte_mkyoung() would be more correct here, but atomic care
1198 * is needed to avoid losing the dirty bit: it is easier to use
1199 * mark_page_accessed().
1201 mark_page_accessed(page
);
1204 pte_unmap_unlock(ptep
, ptl
);
1209 pte_unmap_unlock(ptep
, ptl
);
1210 return ERR_PTR(-EFAULT
);
1213 pte_unmap_unlock(ptep
, ptl
);
1219 * When core dumping an enormous anonymous area that nobody
1220 * has touched so far, we don't want to allocate unnecessary pages or
1221 * page tables. Return error instead of NULL to skip handle_mm_fault,
1222 * then get_dump_page() will return NULL to leave a hole in the dump.
1223 * But we can only make this optimization where a hole would surely
1224 * be zero-filled if handle_mm_fault() actually did handle it.
1226 if ((flags
& FOLL_DUMP
) &&
1227 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1228 return ERR_PTR(-EFAULT
);
1232 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1233 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1234 struct page
**pages
, struct vm_area_struct
**vmas
)
1237 unsigned long vm_flags
;
1242 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1245 * Require read or write permissions.
1246 * If FOLL_FORCE is set, we only require the "MAY" flags.
1248 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1249 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1250 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1251 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1255 struct vm_area_struct
*vma
;
1257 vma
= find_extend_vma(mm
, start
);
1258 if (!vma
&& in_gate_area(tsk
, start
)) {
1259 unsigned long pg
= start
& PAGE_MASK
;
1260 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1266 /* user gate pages are read-only */
1267 if (gup_flags
& FOLL_WRITE
)
1268 return i
? : -EFAULT
;
1270 pgd
= pgd_offset_k(pg
);
1272 pgd
= pgd_offset_gate(mm
, pg
);
1273 BUG_ON(pgd_none(*pgd
));
1274 pud
= pud_offset(pgd
, pg
);
1275 BUG_ON(pud_none(*pud
));
1276 pmd
= pmd_offset(pud
, pg
);
1278 return i
? : -EFAULT
;
1279 pte
= pte_offset_map(pmd
, pg
);
1280 if (pte_none(*pte
)) {
1282 return i
? : -EFAULT
;
1287 page
= vm_normal_page(gate_vma
, start
, *pte
);
1289 if (!(gup_flags
& FOLL_DUMP
) &&
1290 is_zero_pfn(pte_pfn(*pte
)))
1291 page
= pte_page(*pte
);
1294 return i
? : -EFAULT
;
1310 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1311 !(vm_flags
& vma
->vm_flags
))
1312 return i
? : -EFAULT
;
1314 if (is_vm_hugetlb_page(vma
)) {
1315 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1316 &start
, &nr_pages
, i
, gup_flags
);
1322 unsigned int foll_flags
= gup_flags
;
1325 * If we have a pending SIGKILL, don't keep faulting
1326 * pages and potentially allocating memory.
1328 if (unlikely(fatal_signal_pending(current
)))
1329 return i
? i
: -ERESTARTSYS
;
1332 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1335 ret
= handle_mm_fault(mm
, vma
, start
,
1336 (foll_flags
& FOLL_WRITE
) ?
1337 FAULT_FLAG_WRITE
: 0);
1339 if (ret
& VM_FAULT_ERROR
) {
1340 if (ret
& VM_FAULT_OOM
)
1341 return i
? i
: -ENOMEM
;
1343 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1344 return i
? i
: -EFAULT
;
1347 if (ret
& VM_FAULT_MAJOR
)
1353 * The VM_FAULT_WRITE bit tells us that
1354 * do_wp_page has broken COW when necessary,
1355 * even if maybe_mkwrite decided not to set
1356 * pte_write. We can thus safely do subsequent
1357 * page lookups as if they were reads. But only
1358 * do so when looping for pte_write is futile:
1359 * in some cases userspace may also be wanting
1360 * to write to the gotten user page, which a
1361 * read fault here might prevent (a readonly
1362 * page might get reCOWed by userspace write).
1364 if ((ret
& VM_FAULT_WRITE
) &&
1365 !(vma
->vm_flags
& VM_WRITE
))
1366 foll_flags
&= ~FOLL_WRITE
;
1371 return i
? i
: PTR_ERR(page
);
1375 flush_anon_page(vma
, page
, start
);
1376 flush_dcache_page(page
);
1383 } while (nr_pages
&& start
< vma
->vm_end
);
1389 * get_user_pages() - pin user pages in memory
1390 * @tsk: task_struct of target task
1391 * @mm: mm_struct of target mm
1392 * @start: starting user address
1393 * @nr_pages: number of pages from start to pin
1394 * @write: whether pages will be written to by the caller
1395 * @force: whether to force write access even if user mapping is
1396 * readonly. This will result in the page being COWed even
1397 * in MAP_SHARED mappings. You do not want this.
1398 * @pages: array that receives pointers to the pages pinned.
1399 * Should be at least nr_pages long. Or NULL, if caller
1400 * only intends to ensure the pages are faulted in.
1401 * @vmas: array of pointers to vmas corresponding to each page.
1402 * Or NULL if the caller does not require them.
1404 * Returns number of pages pinned. This may be fewer than the number
1405 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1406 * were pinned, returns -errno. Each page returned must be released
1407 * with a put_page() call when it is finished with. vmas will only
1408 * remain valid while mmap_sem is held.
1410 * Must be called with mmap_sem held for read or write.
1412 * get_user_pages walks a process's page tables and takes a reference to
1413 * each struct page that each user address corresponds to at a given
1414 * instant. That is, it takes the page that would be accessed if a user
1415 * thread accesses the given user virtual address at that instant.
1417 * This does not guarantee that the page exists in the user mappings when
1418 * get_user_pages returns, and there may even be a completely different
1419 * page there in some cases (eg. if mmapped pagecache has been invalidated
1420 * and subsequently re faulted). However it does guarantee that the page
1421 * won't be freed completely. And mostly callers simply care that the page
1422 * contains data that was valid *at some point in time*. Typically, an IO
1423 * or similar operation cannot guarantee anything stronger anyway because
1424 * locks can't be held over the syscall boundary.
1426 * If write=0, the page must not be written to. If the page is written to,
1427 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1428 * after the page is finished with, and before put_page is called.
1430 * get_user_pages is typically used for fewer-copy IO operations, to get a
1431 * handle on the memory by some means other than accesses via the user virtual
1432 * addresses. The pages may be submitted for DMA to devices or accessed via
1433 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1434 * use the correct cache flushing APIs.
1436 * See also get_user_pages_fast, for performance critical applications.
1438 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1439 unsigned long start
, int nr_pages
, int write
, int force
,
1440 struct page
**pages
, struct vm_area_struct
**vmas
)
1442 int flags
= FOLL_TOUCH
;
1447 flags
|= FOLL_WRITE
;
1449 flags
|= FOLL_FORCE
;
1451 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1453 EXPORT_SYMBOL(get_user_pages
);
1456 * get_dump_page() - pin user page in memory while writing it to core dump
1457 * @addr: user address
1459 * Returns struct page pointer of user page pinned for dump,
1460 * to be freed afterwards by page_cache_release() or put_page().
1462 * Returns NULL on any kind of failure - a hole must then be inserted into
1463 * the corefile, to preserve alignment with its headers; and also returns
1464 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1465 * allowing a hole to be left in the corefile to save diskspace.
1467 * Called without mmap_sem, but after all other threads have been killed.
1469 #ifdef CONFIG_ELF_CORE
1470 struct page
*get_dump_page(unsigned long addr
)
1472 struct vm_area_struct
*vma
;
1475 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1476 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1478 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1481 #endif /* CONFIG_ELF_CORE */
1483 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1486 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1487 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1489 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1491 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1497 * This is the old fallback for page remapping.
1499 * For historical reasons, it only allows reserved pages. Only
1500 * old drivers should use this, and they needed to mark their
1501 * pages reserved for the old functions anyway.
1503 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1504 struct page
*page
, pgprot_t prot
)
1506 struct mm_struct
*mm
= vma
->vm_mm
;
1515 flush_dcache_page(page
);
1516 pte
= get_locked_pte(mm
, addr
, &ptl
);
1520 if (!pte_none(*pte
))
1523 /* Ok, finally just insert the thing.. */
1525 inc_mm_counter(mm
, file_rss
);
1526 page_add_file_rmap(page
);
1527 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1530 pte_unmap_unlock(pte
, ptl
);
1533 pte_unmap_unlock(pte
, ptl
);
1539 * vm_insert_page - insert single page into user vma
1540 * @vma: user vma to map to
1541 * @addr: target user address of this page
1542 * @page: source kernel page
1544 * This allows drivers to insert individual pages they've allocated
1547 * The page has to be a nice clean _individual_ kernel allocation.
1548 * If you allocate a compound page, you need to have marked it as
1549 * such (__GFP_COMP), or manually just split the page up yourself
1550 * (see split_page()).
1552 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1553 * took an arbitrary page protection parameter. This doesn't allow
1554 * that. Your vma protection will have to be set up correctly, which
1555 * means that if you want a shared writable mapping, you'd better
1556 * ask for a shared writable mapping!
1558 * The page does not need to be reserved.
1560 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1563 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1565 if (!page_count(page
))
1567 vma
->vm_flags
|= VM_INSERTPAGE
;
1568 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1570 EXPORT_SYMBOL(vm_insert_page
);
1572 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1573 unsigned long pfn
, pgprot_t prot
)
1575 struct mm_struct
*mm
= vma
->vm_mm
;
1581 pte
= get_locked_pte(mm
, addr
, &ptl
);
1585 if (!pte_none(*pte
))
1588 /* Ok, finally just insert the thing.. */
1589 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1590 set_pte_at(mm
, addr
, pte
, entry
);
1591 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1595 pte_unmap_unlock(pte
, ptl
);
1601 * vm_insert_pfn - insert single pfn into user vma
1602 * @vma: user vma to map to
1603 * @addr: target user address of this page
1604 * @pfn: source kernel pfn
1606 * Similar to vm_inert_page, this allows drivers to insert individual pages
1607 * they've allocated into a user vma. Same comments apply.
1609 * This function should only be called from a vm_ops->fault handler, and
1610 * in that case the handler should return NULL.
1612 * vma cannot be a COW mapping.
1614 * As this is called only for pages that do not currently exist, we
1615 * do not need to flush old virtual caches or the TLB.
1617 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1621 pgprot_t pgprot
= vma
->vm_page_prot
;
1623 * Technically, architectures with pte_special can avoid all these
1624 * restrictions (same for remap_pfn_range). However we would like
1625 * consistency in testing and feature parity among all, so we should
1626 * try to keep these invariants in place for everybody.
1628 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1629 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1630 (VM_PFNMAP
|VM_MIXEDMAP
));
1631 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1632 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1634 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1636 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1639 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1642 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1646 EXPORT_SYMBOL(vm_insert_pfn
);
1648 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1651 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1653 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1657 * If we don't have pte special, then we have to use the pfn_valid()
1658 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1659 * refcount the page if pfn_valid is true (hence insert_page rather
1660 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1661 * without pte special, it would there be refcounted as a normal page.
1663 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1666 page
= pfn_to_page(pfn
);
1667 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1669 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1671 EXPORT_SYMBOL(vm_insert_mixed
);
1674 * maps a range of physical memory into the requested pages. the old
1675 * mappings are removed. any references to nonexistent pages results
1676 * in null mappings (currently treated as "copy-on-access")
1678 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1679 unsigned long addr
, unsigned long end
,
1680 unsigned long pfn
, pgprot_t prot
)
1685 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1688 arch_enter_lazy_mmu_mode();
1690 BUG_ON(!pte_none(*pte
));
1691 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1693 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1694 arch_leave_lazy_mmu_mode();
1695 pte_unmap_unlock(pte
- 1, ptl
);
1699 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1700 unsigned long addr
, unsigned long end
,
1701 unsigned long pfn
, pgprot_t prot
)
1706 pfn
-= addr
>> PAGE_SHIFT
;
1707 pmd
= pmd_alloc(mm
, pud
, addr
);
1711 next
= pmd_addr_end(addr
, end
);
1712 if (remap_pte_range(mm
, pmd
, addr
, next
,
1713 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1715 } while (pmd
++, addr
= next
, addr
!= end
);
1719 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1720 unsigned long addr
, unsigned long end
,
1721 unsigned long pfn
, pgprot_t prot
)
1726 pfn
-= addr
>> PAGE_SHIFT
;
1727 pud
= pud_alloc(mm
, pgd
, addr
);
1731 next
= pud_addr_end(addr
, end
);
1732 if (remap_pmd_range(mm
, pud
, addr
, next
,
1733 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1735 } while (pud
++, addr
= next
, addr
!= end
);
1740 * remap_pfn_range - remap kernel memory to userspace
1741 * @vma: user vma to map to
1742 * @addr: target user address to start at
1743 * @pfn: physical address of kernel memory
1744 * @size: size of map area
1745 * @prot: page protection flags for this mapping
1747 * Note: this is only safe if the mm semaphore is held when called.
1749 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1750 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1754 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1755 struct mm_struct
*mm
= vma
->vm_mm
;
1759 * Physically remapped pages are special. Tell the
1760 * rest of the world about it:
1761 * VM_IO tells people not to look at these pages
1762 * (accesses can have side effects).
1763 * VM_RESERVED is specified all over the place, because
1764 * in 2.4 it kept swapout's vma scan off this vma; but
1765 * in 2.6 the LRU scan won't even find its pages, so this
1766 * flag means no more than count its pages in reserved_vm,
1767 * and omit it from core dump, even when VM_IO turned off.
1768 * VM_PFNMAP tells the core MM that the base pages are just
1769 * raw PFN mappings, and do not have a "struct page" associated
1772 * There's a horrible special case to handle copy-on-write
1773 * behaviour that some programs depend on. We mark the "original"
1774 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1776 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1777 vma
->vm_pgoff
= pfn
;
1778 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1779 } else if (is_cow_mapping(vma
->vm_flags
))
1782 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1784 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1787 * To indicate that track_pfn related cleanup is not
1788 * needed from higher level routine calling unmap_vmas
1790 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1791 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1795 BUG_ON(addr
>= end
);
1796 pfn
-= addr
>> PAGE_SHIFT
;
1797 pgd
= pgd_offset(mm
, addr
);
1798 flush_cache_range(vma
, addr
, end
);
1800 next
= pgd_addr_end(addr
, end
);
1801 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1802 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1805 } while (pgd
++, addr
= next
, addr
!= end
);
1808 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1812 EXPORT_SYMBOL(remap_pfn_range
);
1814 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1815 unsigned long addr
, unsigned long end
,
1816 pte_fn_t fn
, void *data
)
1821 spinlock_t
*uninitialized_var(ptl
);
1823 pte
= (mm
== &init_mm
) ?
1824 pte_alloc_kernel(pmd
, addr
) :
1825 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1829 BUG_ON(pmd_huge(*pmd
));
1831 arch_enter_lazy_mmu_mode();
1833 token
= pmd_pgtable(*pmd
);
1836 err
= fn(pte
++, token
, addr
, data
);
1839 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1841 arch_leave_lazy_mmu_mode();
1844 pte_unmap_unlock(pte
-1, ptl
);
1848 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1849 unsigned long addr
, unsigned long end
,
1850 pte_fn_t fn
, void *data
)
1856 BUG_ON(pud_huge(*pud
));
1858 pmd
= pmd_alloc(mm
, pud
, addr
);
1862 next
= pmd_addr_end(addr
, end
);
1863 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1866 } while (pmd
++, addr
= next
, addr
!= end
);
1870 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1871 unsigned long addr
, unsigned long end
,
1872 pte_fn_t fn
, void *data
)
1878 pud
= pud_alloc(mm
, pgd
, addr
);
1882 next
= pud_addr_end(addr
, end
);
1883 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1886 } while (pud
++, addr
= next
, addr
!= end
);
1891 * Scan a region of virtual memory, filling in page tables as necessary
1892 * and calling a provided function on each leaf page table.
1894 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1895 unsigned long size
, pte_fn_t fn
, void *data
)
1899 unsigned long start
= addr
, end
= addr
+ size
;
1902 BUG_ON(addr
>= end
);
1903 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1904 pgd
= pgd_offset(mm
, addr
);
1906 next
= pgd_addr_end(addr
, end
);
1907 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1910 } while (pgd
++, addr
= next
, addr
!= end
);
1911 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1914 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1917 * handle_pte_fault chooses page fault handler according to an entry
1918 * which was read non-atomically. Before making any commitment, on
1919 * those architectures or configurations (e.g. i386 with PAE) which
1920 * might give a mix of unmatched parts, do_swap_page and do_file_page
1921 * must check under lock before unmapping the pte and proceeding
1922 * (but do_wp_page is only called after already making such a check;
1923 * and do_anonymous_page and do_no_page can safely check later on).
1925 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1926 pte_t
*page_table
, pte_t orig_pte
)
1929 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1930 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1931 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1933 same
= pte_same(*page_table
, orig_pte
);
1937 pte_unmap(page_table
);
1942 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1943 * servicing faults for write access. In the normal case, do always want
1944 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1945 * that do not have writing enabled, when used by access_process_vm.
1947 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1949 if (likely(vma
->vm_flags
& VM_WRITE
))
1950 pte
= pte_mkwrite(pte
);
1954 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1957 * If the source page was a PFN mapping, we don't have
1958 * a "struct page" for it. We do a best-effort copy by
1959 * just copying from the original user address. If that
1960 * fails, we just zero-fill it. Live with it.
1962 if (unlikely(!src
)) {
1963 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1964 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1967 * This really shouldn't fail, because the page is there
1968 * in the page tables. But it might just be unreadable,
1969 * in which case we just give up and fill the result with
1972 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1973 memset(kaddr
, 0, PAGE_SIZE
);
1974 kunmap_atomic(kaddr
, KM_USER0
);
1975 flush_dcache_page(dst
);
1977 copy_user_highpage(dst
, src
, va
, vma
);
1981 * This routine handles present pages, when users try to write
1982 * to a shared page. It is done by copying the page to a new address
1983 * and decrementing the shared-page counter for the old page.
1985 * Note that this routine assumes that the protection checks have been
1986 * done by the caller (the low-level page fault routine in most cases).
1987 * Thus we can safely just mark it writable once we've done any necessary
1990 * We also mark the page dirty at this point even though the page will
1991 * change only once the write actually happens. This avoids a few races,
1992 * and potentially makes it more efficient.
1994 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1995 * but allow concurrent faults), with pte both mapped and locked.
1996 * We return with mmap_sem still held, but pte unmapped and unlocked.
1998 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1999 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2000 spinlock_t
*ptl
, pte_t orig_pte
)
2002 struct page
*old_page
, *new_page
;
2004 int reuse
= 0, ret
= 0;
2005 int page_mkwrite
= 0;
2006 struct page
*dirty_page
= NULL
;
2008 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2011 * VM_MIXEDMAP !pfn_valid() case
2013 * We should not cow pages in a shared writeable mapping.
2014 * Just mark the pages writable as we can't do any dirty
2015 * accounting on raw pfn maps.
2017 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2018 (VM_WRITE
|VM_SHARED
))
2024 * Take out anonymous pages first, anonymous shared vmas are
2025 * not dirty accountable.
2027 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2028 if (!trylock_page(old_page
)) {
2029 page_cache_get(old_page
);
2030 pte_unmap_unlock(page_table
, ptl
);
2031 lock_page(old_page
);
2032 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2034 if (!pte_same(*page_table
, orig_pte
)) {
2035 unlock_page(old_page
);
2036 page_cache_release(old_page
);
2039 page_cache_release(old_page
);
2041 reuse
= reuse_swap_page(old_page
);
2042 unlock_page(old_page
);
2043 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2044 (VM_WRITE
|VM_SHARED
))) {
2046 * Only catch write-faults on shared writable pages,
2047 * read-only shared pages can get COWed by
2048 * get_user_pages(.write=1, .force=1).
2050 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2051 struct vm_fault vmf
;
2054 vmf
.virtual_address
= (void __user
*)(address
&
2056 vmf
.pgoff
= old_page
->index
;
2057 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2058 vmf
.page
= old_page
;
2061 * Notify the address space that the page is about to
2062 * become writable so that it can prohibit this or wait
2063 * for the page to get into an appropriate state.
2065 * We do this without the lock held, so that it can
2066 * sleep if it needs to.
2068 page_cache_get(old_page
);
2069 pte_unmap_unlock(page_table
, ptl
);
2071 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2073 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2075 goto unwritable_page
;
2077 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2078 lock_page(old_page
);
2079 if (!old_page
->mapping
) {
2080 ret
= 0; /* retry the fault */
2081 unlock_page(old_page
);
2082 goto unwritable_page
;
2085 VM_BUG_ON(!PageLocked(old_page
));
2088 * Since we dropped the lock we need to revalidate
2089 * the PTE as someone else may have changed it. If
2090 * they did, we just return, as we can count on the
2091 * MMU to tell us if they didn't also make it writable.
2093 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2095 if (!pte_same(*page_table
, orig_pte
)) {
2096 unlock_page(old_page
);
2097 page_cache_release(old_page
);
2103 dirty_page
= old_page
;
2104 get_page(dirty_page
);
2110 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2111 entry
= pte_mkyoung(orig_pte
);
2112 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2113 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2114 update_mmu_cache(vma
, address
, entry
);
2115 ret
|= VM_FAULT_WRITE
;
2120 * Ok, we need to copy. Oh, well..
2122 page_cache_get(old_page
);
2124 pte_unmap_unlock(page_table
, ptl
);
2126 if (unlikely(anon_vma_prepare(vma
)))
2129 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2130 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2134 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2137 cow_user_page(new_page
, old_page
, address
, vma
);
2139 __SetPageUptodate(new_page
);
2142 * Don't let another task, with possibly unlocked vma,
2143 * keep the mlocked page.
2145 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2146 lock_page(old_page
); /* for LRU manipulation */
2147 clear_page_mlock(old_page
);
2148 unlock_page(old_page
);
2151 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2155 * Re-check the pte - we dropped the lock
2157 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2158 if (likely(pte_same(*page_table
, orig_pte
))) {
2160 if (!PageAnon(old_page
)) {
2161 dec_mm_counter(mm
, file_rss
);
2162 inc_mm_counter(mm
, anon_rss
);
2165 inc_mm_counter(mm
, anon_rss
);
2166 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2167 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2168 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2170 * Clear the pte entry and flush it first, before updating the
2171 * pte with the new entry. This will avoid a race condition
2172 * seen in the presence of one thread doing SMC and another
2175 ptep_clear_flush(vma
, address
, page_table
);
2176 page_add_new_anon_rmap(new_page
, vma
, address
);
2178 * We call the notify macro here because, when using secondary
2179 * mmu page tables (such as kvm shadow page tables), we want the
2180 * new page to be mapped directly into the secondary page table.
2182 set_pte_at_notify(mm
, address
, page_table
, entry
);
2183 update_mmu_cache(vma
, address
, entry
);
2186 * Only after switching the pte to the new page may
2187 * we remove the mapcount here. Otherwise another
2188 * process may come and find the rmap count decremented
2189 * before the pte is switched to the new page, and
2190 * "reuse" the old page writing into it while our pte
2191 * here still points into it and can be read by other
2194 * The critical issue is to order this
2195 * page_remove_rmap with the ptp_clear_flush above.
2196 * Those stores are ordered by (if nothing else,)
2197 * the barrier present in the atomic_add_negative
2198 * in page_remove_rmap.
2200 * Then the TLB flush in ptep_clear_flush ensures that
2201 * no process can access the old page before the
2202 * decremented mapcount is visible. And the old page
2203 * cannot be reused until after the decremented
2204 * mapcount is visible. So transitively, TLBs to
2205 * old page will be flushed before it can be reused.
2207 page_remove_rmap(old_page
);
2210 /* Free the old page.. */
2211 new_page
= old_page
;
2212 ret
|= VM_FAULT_WRITE
;
2214 mem_cgroup_uncharge_page(new_page
);
2217 page_cache_release(new_page
);
2219 page_cache_release(old_page
);
2221 pte_unmap_unlock(page_table
, ptl
);
2224 * Yes, Virginia, this is actually required to prevent a race
2225 * with clear_page_dirty_for_io() from clearing the page dirty
2226 * bit after it clear all dirty ptes, but before a racing
2227 * do_wp_page installs a dirty pte.
2229 * do_no_page is protected similarly.
2231 if (!page_mkwrite
) {
2232 wait_on_page_locked(dirty_page
);
2233 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2235 put_page(dirty_page
);
2237 struct address_space
*mapping
= dirty_page
->mapping
;
2239 set_page_dirty(dirty_page
);
2240 unlock_page(dirty_page
);
2241 page_cache_release(dirty_page
);
2244 * Some device drivers do not set page.mapping
2245 * but still dirty their pages
2247 balance_dirty_pages_ratelimited(mapping
);
2251 /* file_update_time outside page_lock */
2253 file_update_time(vma
->vm_file
);
2257 page_cache_release(new_page
);
2261 unlock_page(old_page
);
2262 page_cache_release(old_page
);
2264 page_cache_release(old_page
);
2266 return VM_FAULT_OOM
;
2269 page_cache_release(old_page
);
2274 * Helper functions for unmap_mapping_range().
2276 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2278 * We have to restart searching the prio_tree whenever we drop the lock,
2279 * since the iterator is only valid while the lock is held, and anyway
2280 * a later vma might be split and reinserted earlier while lock dropped.
2282 * The list of nonlinear vmas could be handled more efficiently, using
2283 * a placeholder, but handle it in the same way until a need is shown.
2284 * It is important to search the prio_tree before nonlinear list: a vma
2285 * may become nonlinear and be shifted from prio_tree to nonlinear list
2286 * while the lock is dropped; but never shifted from list to prio_tree.
2288 * In order to make forward progress despite restarting the search,
2289 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2290 * quickly skip it next time around. Since the prio_tree search only
2291 * shows us those vmas affected by unmapping the range in question, we
2292 * can't efficiently keep all vmas in step with mapping->truncate_count:
2293 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2294 * mapping->truncate_count and vma->vm_truncate_count are protected by
2297 * In order to make forward progress despite repeatedly restarting some
2298 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2299 * and restart from that address when we reach that vma again. It might
2300 * have been split or merged, shrunk or extended, but never shifted: so
2301 * restart_addr remains valid so long as it remains in the vma's range.
2302 * unmap_mapping_range forces truncate_count to leap over page-aligned
2303 * values so we can save vma's restart_addr in its truncate_count field.
2305 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2307 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2309 struct vm_area_struct
*vma
;
2310 struct prio_tree_iter iter
;
2312 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2313 vma
->vm_truncate_count
= 0;
2314 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2315 vma
->vm_truncate_count
= 0;
2318 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2319 unsigned long start_addr
, unsigned long end_addr
,
2320 struct zap_details
*details
)
2322 unsigned long restart_addr
;
2326 * files that support invalidating or truncating portions of the
2327 * file from under mmaped areas must have their ->fault function
2328 * return a locked page (and set VM_FAULT_LOCKED in the return).
2329 * This provides synchronisation against concurrent unmapping here.
2333 restart_addr
= vma
->vm_truncate_count
;
2334 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2335 start_addr
= restart_addr
;
2336 if (start_addr
>= end_addr
) {
2337 /* Top of vma has been split off since last time */
2338 vma
->vm_truncate_count
= details
->truncate_count
;
2343 restart_addr
= zap_page_range(vma
, start_addr
,
2344 end_addr
- start_addr
, details
);
2345 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2347 if (restart_addr
>= end_addr
) {
2348 /* We have now completed this vma: mark it so */
2349 vma
->vm_truncate_count
= details
->truncate_count
;
2353 /* Note restart_addr in vma's truncate_count field */
2354 vma
->vm_truncate_count
= restart_addr
;
2359 spin_unlock(details
->i_mmap_lock
);
2361 spin_lock(details
->i_mmap_lock
);
2365 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2366 struct zap_details
*details
)
2368 struct vm_area_struct
*vma
;
2369 struct prio_tree_iter iter
;
2370 pgoff_t vba
, vea
, zba
, zea
;
2373 vma_prio_tree_foreach(vma
, &iter
, root
,
2374 details
->first_index
, details
->last_index
) {
2375 /* Skip quickly over those we have already dealt with */
2376 if (vma
->vm_truncate_count
== details
->truncate_count
)
2379 vba
= vma
->vm_pgoff
;
2380 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2381 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2382 zba
= details
->first_index
;
2385 zea
= details
->last_index
;
2389 if (unmap_mapping_range_vma(vma
,
2390 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2391 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2397 static inline void unmap_mapping_range_list(struct list_head
*head
,
2398 struct zap_details
*details
)
2400 struct vm_area_struct
*vma
;
2403 * In nonlinear VMAs there is no correspondence between virtual address
2404 * offset and file offset. So we must perform an exhaustive search
2405 * across *all* the pages in each nonlinear VMA, not just the pages
2406 * whose virtual address lies outside the file truncation point.
2409 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2410 /* Skip quickly over those we have already dealt with */
2411 if (vma
->vm_truncate_count
== details
->truncate_count
)
2413 details
->nonlinear_vma
= vma
;
2414 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2415 vma
->vm_end
, details
) < 0)
2421 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2422 * @mapping: the address space containing mmaps to be unmapped.
2423 * @holebegin: byte in first page to unmap, relative to the start of
2424 * the underlying file. This will be rounded down to a PAGE_SIZE
2425 * boundary. Note that this is different from truncate_pagecache(), which
2426 * must keep the partial page. In contrast, we must get rid of
2428 * @holelen: size of prospective hole in bytes. This will be rounded
2429 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2431 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432 * but 0 when invalidating pagecache, don't throw away private data.
2434 void unmap_mapping_range(struct address_space
*mapping
,
2435 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2437 struct zap_details details
;
2438 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2439 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2441 /* Check for overflow. */
2442 if (sizeof(holelen
) > sizeof(hlen
)) {
2444 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2445 if (holeend
& ~(long long)ULONG_MAX
)
2446 hlen
= ULONG_MAX
- hba
+ 1;
2449 details
.check_mapping
= even_cows
? NULL
: mapping
;
2450 details
.nonlinear_vma
= NULL
;
2451 details
.first_index
= hba
;
2452 details
.last_index
= hba
+ hlen
- 1;
2453 if (details
.last_index
< details
.first_index
)
2454 details
.last_index
= ULONG_MAX
;
2455 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2457 mutex_lock(&mapping
->unmap_mutex
);
2458 spin_lock(&mapping
->i_mmap_lock
);
2460 /* Protect against endless unmapping loops */
2461 mapping
->truncate_count
++;
2462 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2463 if (mapping
->truncate_count
== 0)
2464 reset_vma_truncate_counts(mapping
);
2465 mapping
->truncate_count
++;
2467 details
.truncate_count
= mapping
->truncate_count
;
2469 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2470 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2471 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2472 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2473 spin_unlock(&mapping
->i_mmap_lock
);
2474 mutex_unlock(&mapping
->unmap_mutex
);
2476 EXPORT_SYMBOL(unmap_mapping_range
);
2478 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2480 struct address_space
*mapping
= inode
->i_mapping
;
2483 * If the underlying filesystem is not going to provide
2484 * a way to truncate a range of blocks (punch a hole) -
2485 * we should return failure right now.
2487 if (!inode
->i_op
->truncate_range
)
2490 mutex_lock(&inode
->i_mutex
);
2491 down_write(&inode
->i_alloc_sem
);
2492 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2493 truncate_inode_pages_range(mapping
, offset
, end
);
2494 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2495 inode
->i_op
->truncate_range(inode
, offset
, end
);
2496 up_write(&inode
->i_alloc_sem
);
2497 mutex_unlock(&inode
->i_mutex
);
2503 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2504 * but allow concurrent faults), and pte mapped but not yet locked.
2505 * We return with mmap_sem still held, but pte unmapped and unlocked.
2507 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2508 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2509 unsigned int flags
, pte_t orig_pte
)
2515 struct mem_cgroup
*ptr
= NULL
;
2518 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2521 entry
= pte_to_swp_entry(orig_pte
);
2522 if (unlikely(non_swap_entry(entry
))) {
2523 if (is_migration_entry(entry
)) {
2524 migration_entry_wait(mm
, pmd
, address
);
2525 } else if (is_hwpoison_entry(entry
)) {
2526 ret
= VM_FAULT_HWPOISON
;
2528 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2529 ret
= VM_FAULT_SIGBUS
;
2533 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2534 page
= lookup_swap_cache(entry
);
2536 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2537 page
= swapin_readahead(entry
,
2538 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2541 * Back out if somebody else faulted in this pte
2542 * while we released the pte lock.
2544 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2545 if (likely(pte_same(*page_table
, orig_pte
)))
2547 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2551 /* Had to read the page from swap area: Major fault */
2552 ret
= VM_FAULT_MAJOR
;
2553 count_vm_event(PGMAJFAULT
);
2554 } else if (PageHWPoison(page
)) {
2555 ret
= VM_FAULT_HWPOISON
;
2556 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2561 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2563 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2569 * Back out if somebody else already faulted in this pte.
2571 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2572 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2575 if (unlikely(!PageUptodate(page
))) {
2576 ret
= VM_FAULT_SIGBUS
;
2581 * The page isn't present yet, go ahead with the fault.
2583 * Be careful about the sequence of operations here.
2584 * To get its accounting right, reuse_swap_page() must be called
2585 * while the page is counted on swap but not yet in mapcount i.e.
2586 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2587 * must be called after the swap_free(), or it will never succeed.
2588 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2589 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2590 * in page->private. In this case, a record in swap_cgroup is silently
2591 * discarded at swap_free().
2594 inc_mm_counter(mm
, anon_rss
);
2595 pte
= mk_pte(page
, vma
->vm_page_prot
);
2596 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2597 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2598 flags
&= ~FAULT_FLAG_WRITE
;
2600 flush_icache_page(vma
, page
);
2601 set_pte_at(mm
, address
, page_table
, pte
);
2602 page_add_anon_rmap(page
, vma
, address
);
2603 /* It's better to call commit-charge after rmap is established */
2604 mem_cgroup_commit_charge_swapin(page
, ptr
);
2607 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2608 try_to_free_swap(page
);
2611 if (flags
& FAULT_FLAG_WRITE
) {
2612 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2613 if (ret
& VM_FAULT_ERROR
)
2614 ret
&= VM_FAULT_ERROR
;
2618 /* No need to invalidate - it was non-present before */
2619 update_mmu_cache(vma
, address
, pte
);
2621 pte_unmap_unlock(page_table
, ptl
);
2625 mem_cgroup_cancel_charge_swapin(ptr
);
2626 pte_unmap_unlock(page_table
, ptl
);
2630 page_cache_release(page
);
2635 * This is like a special single-page "expand_{down|up}wards()",
2636 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2637 * doesn't hit another vma.
2639 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2641 address
&= PAGE_MASK
;
2642 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2643 struct vm_area_struct
*prev
= vma
->vm_prev
;
2646 * Is there a mapping abutting this one below?
2648 * That's only ok if it's the same stack mapping
2649 * that has gotten split..
2651 if (prev
&& prev
->vm_end
== address
)
2652 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2654 expand_stack(vma
, address
- PAGE_SIZE
);
2656 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2657 struct vm_area_struct
*next
= vma
->vm_next
;
2659 /* As VM_GROWSDOWN but s/below/above/ */
2660 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2661 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2663 expand_upwards(vma
, address
+ PAGE_SIZE
);
2669 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2670 * but allow concurrent faults), and pte mapped but not yet locked.
2671 * We return with mmap_sem still held, but pte unmapped and unlocked.
2673 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2674 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2681 pte_unmap(page_table
);
2683 /* Check if we need to add a guard page to the stack */
2684 if (check_stack_guard_page(vma
, address
) < 0)
2685 return VM_FAULT_SIGBUS
;
2687 /* Use the zero-page for reads */
2688 if (!(flags
& FAULT_FLAG_WRITE
)) {
2689 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2690 vma
->vm_page_prot
));
2691 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2692 if (!pte_none(*page_table
))
2697 /* Allocate our own private page. */
2698 if (unlikely(anon_vma_prepare(vma
)))
2700 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2703 __SetPageUptodate(page
);
2705 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2708 entry
= mk_pte(page
, vma
->vm_page_prot
);
2709 if (vma
->vm_flags
& VM_WRITE
)
2710 entry
= pte_mkwrite(pte_mkdirty(entry
));
2712 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2713 if (!pte_none(*page_table
))
2716 inc_mm_counter(mm
, anon_rss
);
2717 page_add_new_anon_rmap(page
, vma
, address
);
2719 set_pte_at(mm
, address
, page_table
, entry
);
2721 /* No need to invalidate - it was non-present before */
2722 update_mmu_cache(vma
, address
, entry
);
2724 pte_unmap_unlock(page_table
, ptl
);
2727 mem_cgroup_uncharge_page(page
);
2728 page_cache_release(page
);
2731 page_cache_release(page
);
2733 return VM_FAULT_OOM
;
2737 * __do_fault() tries to create a new page mapping. It aggressively
2738 * tries to share with existing pages, but makes a separate copy if
2739 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2740 * the next page fault.
2742 * As this is called only for pages that do not currently exist, we
2743 * do not need to flush old virtual caches or the TLB.
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte neither mapped nor locked.
2747 * We return with mmap_sem still held, but pte unmapped and unlocked.
2749 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2750 unsigned long address
, pmd_t
*pmd
,
2751 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2759 struct page
*dirty_page
= NULL
;
2760 struct vm_fault vmf
;
2762 int page_mkwrite
= 0;
2764 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2769 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2770 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2773 if (unlikely(PageHWPoison(vmf
.page
))) {
2774 if (ret
& VM_FAULT_LOCKED
)
2775 unlock_page(vmf
.page
);
2776 return VM_FAULT_HWPOISON
;
2780 * For consistency in subsequent calls, make the faulted page always
2783 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2784 lock_page(vmf
.page
);
2786 VM_BUG_ON(!PageLocked(vmf
.page
));
2789 * Should we do an early C-O-W break?
2792 if (flags
& FAULT_FLAG_WRITE
) {
2793 if (!(vma
->vm_flags
& VM_SHARED
)) {
2795 if (unlikely(anon_vma_prepare(vma
))) {
2799 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2805 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2807 page_cache_release(page
);
2812 * Don't let another task, with possibly unlocked vma,
2813 * keep the mlocked page.
2815 if (vma
->vm_flags
& VM_LOCKED
)
2816 clear_page_mlock(vmf
.page
);
2817 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2818 __SetPageUptodate(page
);
2821 * If the page will be shareable, see if the backing
2822 * address space wants to know that the page is about
2823 * to become writable
2825 if (vma
->vm_ops
->page_mkwrite
) {
2829 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2830 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2832 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2834 goto unwritable_page
;
2836 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2838 if (!page
->mapping
) {
2839 ret
= 0; /* retry the fault */
2841 goto unwritable_page
;
2844 VM_BUG_ON(!PageLocked(page
));
2851 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2854 * This silly early PAGE_DIRTY setting removes a race
2855 * due to the bad i386 page protection. But it's valid
2856 * for other architectures too.
2858 * Note that if FAULT_FLAG_WRITE is set, we either now have
2859 * an exclusive copy of the page, or this is a shared mapping,
2860 * so we can make it writable and dirty to avoid having to
2861 * handle that later.
2863 /* Only go through if we didn't race with anybody else... */
2864 if (likely(pte_same(*page_table
, orig_pte
))) {
2865 flush_icache_page(vma
, page
);
2866 entry
= mk_pte(page
, vma
->vm_page_prot
);
2867 if (flags
& FAULT_FLAG_WRITE
)
2868 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2870 inc_mm_counter(mm
, anon_rss
);
2871 page_add_new_anon_rmap(page
, vma
, address
);
2873 inc_mm_counter(mm
, file_rss
);
2874 page_add_file_rmap(page
);
2875 if (flags
& FAULT_FLAG_WRITE
) {
2877 get_page(dirty_page
);
2880 set_pte_at(mm
, address
, page_table
, entry
);
2882 /* no need to invalidate: a not-present page won't be cached */
2883 update_mmu_cache(vma
, address
, entry
);
2886 mem_cgroup_uncharge_page(page
);
2888 page_cache_release(page
);
2890 anon
= 1; /* no anon but release faulted_page */
2893 pte_unmap_unlock(page_table
, ptl
);
2897 struct address_space
*mapping
= page
->mapping
;
2899 if (set_page_dirty(dirty_page
))
2901 unlock_page(dirty_page
);
2902 put_page(dirty_page
);
2903 if (page_mkwrite
&& mapping
) {
2905 * Some device drivers do not set page.mapping but still
2908 balance_dirty_pages_ratelimited(mapping
);
2911 /* file_update_time outside page_lock */
2913 file_update_time(vma
->vm_file
);
2915 unlock_page(vmf
.page
);
2917 page_cache_release(vmf
.page
);
2923 page_cache_release(page
);
2927 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2928 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2929 unsigned int flags
, pte_t orig_pte
)
2931 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2932 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2934 pte_unmap(page_table
);
2935 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2939 * Fault of a previously existing named mapping. Repopulate the pte
2940 * from the encoded file_pte if possible. This enables swappable
2943 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2944 * but allow concurrent faults), and pte mapped but not yet locked.
2945 * We return with mmap_sem still held, but pte unmapped and unlocked.
2947 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2948 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2949 unsigned int flags
, pte_t orig_pte
)
2953 flags
|= FAULT_FLAG_NONLINEAR
;
2955 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2958 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2960 * Page table corrupted: show pte and kill process.
2962 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2963 return VM_FAULT_SIGBUS
;
2966 pgoff
= pte_to_pgoff(orig_pte
);
2967 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2971 * These routines also need to handle stuff like marking pages dirty
2972 * and/or accessed for architectures that don't do it in hardware (most
2973 * RISC architectures). The early dirtying is also good on the i386.
2975 * There is also a hook called "update_mmu_cache()" that architectures
2976 * with external mmu caches can use to update those (ie the Sparc or
2977 * PowerPC hashed page tables that act as extended TLBs).
2979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2980 * but allow concurrent faults), and pte mapped but not yet locked.
2981 * We return with mmap_sem still held, but pte unmapped and unlocked.
2983 static inline int handle_pte_fault(struct mm_struct
*mm
,
2984 struct vm_area_struct
*vma
, unsigned long address
,
2985 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
2991 if (!pte_present(entry
)) {
2992 if (pte_none(entry
)) {
2994 if (likely(vma
->vm_ops
->fault
))
2995 return do_linear_fault(mm
, vma
, address
,
2996 pte
, pmd
, flags
, entry
);
2998 return do_anonymous_page(mm
, vma
, address
,
3001 if (pte_file(entry
))
3002 return do_nonlinear_fault(mm
, vma
, address
,
3003 pte
, pmd
, flags
, entry
);
3004 return do_swap_page(mm
, vma
, address
,
3005 pte
, pmd
, flags
, entry
);
3008 ptl
= pte_lockptr(mm
, pmd
);
3010 if (unlikely(!pte_same(*pte
, entry
)))
3012 if (flags
& FAULT_FLAG_WRITE
) {
3013 if (!pte_write(entry
))
3014 return do_wp_page(mm
, vma
, address
,
3015 pte
, pmd
, ptl
, entry
);
3016 entry
= pte_mkdirty(entry
);
3018 entry
= pte_mkyoung(entry
);
3019 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3020 update_mmu_cache(vma
, address
, entry
);
3023 * This is needed only for protection faults but the arch code
3024 * is not yet telling us if this is a protection fault or not.
3025 * This still avoids useless tlb flushes for .text page faults
3028 if (flags
& FAULT_FLAG_WRITE
)
3029 flush_tlb_page(vma
, address
);
3032 pte_unmap_unlock(pte
, ptl
);
3037 * By the time we get here, we already hold the mm semaphore
3039 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3040 unsigned long address
, unsigned int flags
)
3047 __set_current_state(TASK_RUNNING
);
3049 count_vm_event(PGFAULT
);
3051 if (unlikely(is_vm_hugetlb_page(vma
)))
3052 return hugetlb_fault(mm
, vma
, address
, flags
);
3054 pgd
= pgd_offset(mm
, address
);
3055 pud
= pud_alloc(mm
, pgd
, address
);
3057 return VM_FAULT_OOM
;
3058 pmd
= pmd_alloc(mm
, pud
, address
);
3060 return VM_FAULT_OOM
;
3061 pte
= pte_alloc_map(mm
, pmd
, address
);
3063 return VM_FAULT_OOM
;
3065 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3068 #ifndef __PAGETABLE_PUD_FOLDED
3070 * Allocate page upper directory.
3071 * We've already handled the fast-path in-line.
3073 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3075 pud_t
*new = pud_alloc_one(mm
, address
);
3079 smp_wmb(); /* See comment in __pte_alloc */
3081 spin_lock(&mm
->page_table_lock
);
3082 if (pgd_present(*pgd
)) /* Another has populated it */
3085 pgd_populate(mm
, pgd
, new);
3086 spin_unlock(&mm
->page_table_lock
);
3089 #endif /* __PAGETABLE_PUD_FOLDED */
3091 #ifndef __PAGETABLE_PMD_FOLDED
3093 * Allocate page middle directory.
3094 * We've already handled the fast-path in-line.
3096 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3098 pmd_t
*new = pmd_alloc_one(mm
, address
);
3102 smp_wmb(); /* See comment in __pte_alloc */
3104 spin_lock(&mm
->page_table_lock
);
3105 #ifndef __ARCH_HAS_4LEVEL_HACK
3106 if (pud_present(*pud
)) /* Another has populated it */
3109 pud_populate(mm
, pud
, new);
3111 if (pgd_present(*pud
)) /* Another has populated it */
3114 pgd_populate(mm
, pud
, new);
3115 #endif /* __ARCH_HAS_4LEVEL_HACK */
3116 spin_unlock(&mm
->page_table_lock
);
3119 #endif /* __PAGETABLE_PMD_FOLDED */
3121 int make_pages_present(unsigned long addr
, unsigned long end
)
3123 int ret
, len
, write
;
3124 struct vm_area_struct
* vma
;
3126 vma
= find_vma(current
->mm
, addr
);
3129 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3130 BUG_ON(addr
>= end
);
3131 BUG_ON(end
> vma
->vm_end
);
3132 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3133 ret
= get_user_pages(current
, current
->mm
, addr
,
3134 len
, write
, 0, NULL
, NULL
);
3137 return ret
== len
? 0 : -EFAULT
;
3140 #if !defined(__HAVE_ARCH_GATE_AREA)
3142 #if defined(AT_SYSINFO_EHDR)
3143 static struct vm_area_struct gate_vma
;
3145 static int __init
gate_vma_init(void)
3147 gate_vma
.vm_mm
= NULL
;
3148 gate_vma
.vm_start
= FIXADDR_USER_START
;
3149 gate_vma
.vm_end
= FIXADDR_USER_END
;
3150 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3151 gate_vma
.vm_page_prot
= __P101
;
3153 * Make sure the vDSO gets into every core dump.
3154 * Dumping its contents makes post-mortem fully interpretable later
3155 * without matching up the same kernel and hardware config to see
3156 * what PC values meant.
3158 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3161 __initcall(gate_vma_init
);
3164 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3166 #ifdef AT_SYSINFO_EHDR
3173 int in_gate_area_no_task(unsigned long addr
)
3175 #ifdef AT_SYSINFO_EHDR
3176 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3182 #endif /* __HAVE_ARCH_GATE_AREA */
3184 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3185 pte_t
**ptepp
, spinlock_t
**ptlp
)
3192 pgd
= pgd_offset(mm
, address
);
3193 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3196 pud
= pud_offset(pgd
, address
);
3197 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3200 pmd
= pmd_offset(pud
, address
);
3201 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3204 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3208 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3211 if (!pte_present(*ptep
))
3216 pte_unmap_unlock(ptep
, *ptlp
);
3222 * follow_pfn - look up PFN at a user virtual address
3223 * @vma: memory mapping
3224 * @address: user virtual address
3225 * @pfn: location to store found PFN
3227 * Only IO mappings and raw PFN mappings are allowed.
3229 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3231 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3238 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3241 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3244 *pfn
= pte_pfn(*ptep
);
3245 pte_unmap_unlock(ptep
, ptl
);
3248 EXPORT_SYMBOL(follow_pfn
);
3250 #ifdef CONFIG_HAVE_IOREMAP_PROT
3251 int follow_phys(struct vm_area_struct
*vma
,
3252 unsigned long address
, unsigned int flags
,
3253 unsigned long *prot
, resource_size_t
*phys
)
3259 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3262 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3266 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3269 *prot
= pgprot_val(pte_pgprot(pte
));
3270 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3274 pte_unmap_unlock(ptep
, ptl
);
3279 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3280 void *buf
, int len
, int write
)
3282 resource_size_t phys_addr
;
3283 unsigned long prot
= 0;
3284 void __iomem
*maddr
;
3285 int offset
= addr
& (PAGE_SIZE
-1);
3287 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3290 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3292 memcpy_toio(maddr
+ offset
, buf
, len
);
3294 memcpy_fromio(buf
, maddr
+ offset
, len
);
3302 * Access another process' address space.
3303 * Source/target buffer must be kernel space,
3304 * Do not walk the page table directly, use get_user_pages
3306 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3308 struct mm_struct
*mm
;
3309 struct vm_area_struct
*vma
;
3310 void *old_buf
= buf
;
3312 mm
= get_task_mm(tsk
);
3316 down_read(&mm
->mmap_sem
);
3317 /* ignore errors, just check how much was successfully transferred */
3319 int bytes
, ret
, offset
;
3321 struct page
*page
= NULL
;
3323 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3324 write
, 1, &page
, &vma
);
3327 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3328 * we can access using slightly different code.
3330 #ifdef CONFIG_HAVE_IOREMAP_PROT
3331 vma
= find_vma(mm
, addr
);
3334 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3335 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3343 offset
= addr
& (PAGE_SIZE
-1);
3344 if (bytes
> PAGE_SIZE
-offset
)
3345 bytes
= PAGE_SIZE
-offset
;
3349 copy_to_user_page(vma
, page
, addr
,
3350 maddr
+ offset
, buf
, bytes
);
3351 set_page_dirty_lock(page
);
3353 copy_from_user_page(vma
, page
, addr
,
3354 buf
, maddr
+ offset
, bytes
);
3357 page_cache_release(page
);
3363 up_read(&mm
->mmap_sem
);
3366 return buf
- old_buf
;
3370 * Print the name of a VMA.
3372 void print_vma_addr(char *prefix
, unsigned long ip
)
3374 struct mm_struct
*mm
= current
->mm
;
3375 struct vm_area_struct
*vma
;
3378 * Do not print if we are in atomic
3379 * contexts (in exception stacks, etc.):
3381 if (preempt_count())
3384 down_read(&mm
->mmap_sem
);
3385 vma
= find_vma(mm
, ip
);
3386 if (vma
&& vma
->vm_file
) {
3387 struct file
*f
= vma
->vm_file
;
3388 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3392 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3395 s
= strrchr(p
, '/');
3398 printk("%s%s[%lx+%lx]", prefix
, p
,
3400 vma
->vm_end
- vma
->vm_start
);
3401 free_page((unsigned long)buf
);
3404 up_read(¤t
->mm
->mmap_sem
);
3407 #ifdef CONFIG_PROVE_LOCKING
3408 void might_fault(void)
3411 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3412 * holding the mmap_sem, this is safe because kernel memory doesn't
3413 * get paged out, therefore we'll never actually fault, and the
3414 * below annotations will generate false positives.
3416 if (segment_eq(get_fs(), KERNEL_DS
))
3421 * it would be nicer only to annotate paths which are not under
3422 * pagefault_disable, however that requires a larger audit and
3423 * providing helpers like get_user_atomic.
3425 if (!in_atomic() && current
->mm
)
3426 might_lock_read(¤t
->mm
->mmap_sem
);
3428 EXPORT_SYMBOL(might_fault
);