block: Use accessor functions for queue limits
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blobe9a73bb242b0935eefae2ce0744ed97965a2143d
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
21 #define DM_MSG_PREFIX "table"
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
45 /* btree table */
46 unsigned int depth;
47 unsigned int counts[MAX_DEPTH]; /* in nodes */
48 sector_t *index[MAX_DEPTH];
50 unsigned int num_targets;
51 unsigned int num_allocated;
52 sector_t *highs;
53 struct dm_target *targets;
56 * Indicates the rw permissions for the new logical
57 * device. This should be a combination of FMODE_READ
58 * and FMODE_WRITE.
60 fmode_t mode;
62 /* a list of devices used by this table */
63 struct list_head devices;
66 * These are optimistic limits taken from all the
67 * targets, some targets will need smaller limits.
69 struct io_restrictions limits;
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
77 * Similar to ceiling(log_size(n))
79 static unsigned int int_log(unsigned int n, unsigned int base)
81 int result = 0;
83 while (n > 1) {
84 n = dm_div_up(n, base);
85 result++;
88 return result;
92 * Returns the minimum that is _not_ zero, unless both are zero.
94 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
97 * Combine two io_restrictions, always taking the lower value.
99 static void combine_restrictions_low(struct io_restrictions *lhs,
100 struct io_restrictions *rhs)
102 lhs->max_sectors =
103 min_not_zero(lhs->max_sectors, rhs->max_sectors);
105 lhs->max_phys_segments =
106 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
108 lhs->max_hw_segments =
109 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
111 lhs->logical_block_size = max(lhs->logical_block_size,
112 rhs->logical_block_size);
114 lhs->max_segment_size =
115 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
117 lhs->max_hw_sectors =
118 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
120 lhs->seg_boundary_mask =
121 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
123 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
125 lhs->no_cluster |= rhs->no_cluster;
129 * Calculate the index of the child node of the n'th node k'th key.
131 static inline unsigned int get_child(unsigned int n, unsigned int k)
133 return (n * CHILDREN_PER_NODE) + k;
137 * Return the n'th node of level l from table t.
139 static inline sector_t *get_node(struct dm_table *t,
140 unsigned int l, unsigned int n)
142 return t->index[l] + (n * KEYS_PER_NODE);
146 * Return the highest key that you could lookup from the n'th
147 * node on level l of the btree.
149 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
151 for (; l < t->depth - 1; l++)
152 n = get_child(n, CHILDREN_PER_NODE - 1);
154 if (n >= t->counts[l])
155 return (sector_t) - 1;
157 return get_node(t, l, n)[KEYS_PER_NODE - 1];
161 * Fills in a level of the btree based on the highs of the level
162 * below it.
164 static int setup_btree_index(unsigned int l, struct dm_table *t)
166 unsigned int n, k;
167 sector_t *node;
169 for (n = 0U; n < t->counts[l]; n++) {
170 node = get_node(t, l, n);
172 for (k = 0U; k < KEYS_PER_NODE; k++)
173 node[k] = high(t, l + 1, get_child(n, k));
176 return 0;
179 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
181 unsigned long size;
182 void *addr;
185 * Check that we're not going to overflow.
187 if (nmemb > (ULONG_MAX / elem_size))
188 return NULL;
190 size = nmemb * elem_size;
191 addr = vmalloc(size);
192 if (addr)
193 memset(addr, 0, size);
195 return addr;
199 * highs, and targets are managed as dynamic arrays during a
200 * table load.
202 static int alloc_targets(struct dm_table *t, unsigned int num)
204 sector_t *n_highs;
205 struct dm_target *n_targets;
206 int n = t->num_targets;
209 * Allocate both the target array and offset array at once.
210 * Append an empty entry to catch sectors beyond the end of
211 * the device.
213 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
214 sizeof(sector_t));
215 if (!n_highs)
216 return -ENOMEM;
218 n_targets = (struct dm_target *) (n_highs + num);
220 if (n) {
221 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
222 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
225 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
226 vfree(t->highs);
228 t->num_allocated = num;
229 t->highs = n_highs;
230 t->targets = n_targets;
232 return 0;
235 int dm_table_create(struct dm_table **result, fmode_t mode,
236 unsigned num_targets, struct mapped_device *md)
238 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
240 if (!t)
241 return -ENOMEM;
243 INIT_LIST_HEAD(&t->devices);
244 atomic_set(&t->holders, 0);
246 if (!num_targets)
247 num_targets = KEYS_PER_NODE;
249 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
251 if (alloc_targets(t, num_targets)) {
252 kfree(t);
253 t = NULL;
254 return -ENOMEM;
257 t->mode = mode;
258 t->md = md;
259 *result = t;
260 return 0;
263 static void free_devices(struct list_head *devices)
265 struct list_head *tmp, *next;
267 list_for_each_safe(tmp, next, devices) {
268 struct dm_dev_internal *dd =
269 list_entry(tmp, struct dm_dev_internal, list);
270 kfree(dd);
274 void dm_table_destroy(struct dm_table *t)
276 unsigned int i;
278 while (atomic_read(&t->holders))
279 msleep(1);
280 smp_mb();
282 /* free the indexes (see dm_table_complete) */
283 if (t->depth >= 2)
284 vfree(t->index[t->depth - 2]);
286 /* free the targets */
287 for (i = 0; i < t->num_targets; i++) {
288 struct dm_target *tgt = t->targets + i;
290 if (tgt->type->dtr)
291 tgt->type->dtr(tgt);
293 dm_put_target_type(tgt->type);
296 vfree(t->highs);
298 /* free the device list */
299 if (t->devices.next != &t->devices) {
300 DMWARN("devices still present during destroy: "
301 "dm_table_remove_device calls missing");
303 free_devices(&t->devices);
306 kfree(t);
309 void dm_table_get(struct dm_table *t)
311 atomic_inc(&t->holders);
314 void dm_table_put(struct dm_table *t)
316 if (!t)
317 return;
319 smp_mb__before_atomic_dec();
320 atomic_dec(&t->holders);
324 * Checks to see if we need to extend highs or targets.
326 static inline int check_space(struct dm_table *t)
328 if (t->num_targets >= t->num_allocated)
329 return alloc_targets(t, t->num_allocated * 2);
331 return 0;
335 * See if we've already got a device in the list.
337 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
339 struct dm_dev_internal *dd;
341 list_for_each_entry (dd, l, list)
342 if (dd->dm_dev.bdev->bd_dev == dev)
343 return dd;
345 return NULL;
349 * Open a device so we can use it as a map destination.
351 static int open_dev(struct dm_dev_internal *d, dev_t dev,
352 struct mapped_device *md)
354 static char *_claim_ptr = "I belong to device-mapper";
355 struct block_device *bdev;
357 int r;
359 BUG_ON(d->dm_dev.bdev);
361 bdev = open_by_devnum(dev, d->dm_dev.mode);
362 if (IS_ERR(bdev))
363 return PTR_ERR(bdev);
364 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
365 if (r)
366 blkdev_put(bdev, d->dm_dev.mode);
367 else
368 d->dm_dev.bdev = bdev;
369 return r;
373 * Close a device that we've been using.
375 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
377 if (!d->dm_dev.bdev)
378 return;
380 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
381 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
382 d->dm_dev.bdev = NULL;
386 * If possible, this checks an area of a destination device is valid.
388 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
389 sector_t len)
391 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
393 if (!dev_size)
394 return 1;
396 return ((start < dev_size) && (len <= (dev_size - start)));
400 * This upgrades the mode on an already open dm_dev, being
401 * careful to leave things as they were if we fail to reopen the
402 * device and not to touch the existing bdev field in case
403 * it is accessed concurrently inside dm_table_any_congested().
405 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
406 struct mapped_device *md)
408 int r;
409 struct dm_dev_internal dd_new, dd_old;
411 dd_new = dd_old = *dd;
413 dd_new.dm_dev.mode |= new_mode;
414 dd_new.dm_dev.bdev = NULL;
416 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
417 if (r)
418 return r;
420 dd->dm_dev.mode |= new_mode;
421 close_dev(&dd_old, md);
423 return 0;
427 * Add a device to the list, or just increment the usage count if
428 * it's already present.
430 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
431 const char *path, sector_t start, sector_t len,
432 fmode_t mode, struct dm_dev **result)
434 int r;
435 dev_t uninitialized_var(dev);
436 struct dm_dev_internal *dd;
437 unsigned int major, minor;
439 BUG_ON(!t);
441 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
442 /* Extract the major/minor numbers */
443 dev = MKDEV(major, minor);
444 if (MAJOR(dev) != major || MINOR(dev) != minor)
445 return -EOVERFLOW;
446 } else {
447 /* convert the path to a device */
448 struct block_device *bdev = lookup_bdev(path);
450 if (IS_ERR(bdev))
451 return PTR_ERR(bdev);
452 dev = bdev->bd_dev;
453 bdput(bdev);
456 dd = find_device(&t->devices, dev);
457 if (!dd) {
458 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
459 if (!dd)
460 return -ENOMEM;
462 dd->dm_dev.mode = mode;
463 dd->dm_dev.bdev = NULL;
465 if ((r = open_dev(dd, dev, t->md))) {
466 kfree(dd);
467 return r;
470 format_dev_t(dd->dm_dev.name, dev);
472 atomic_set(&dd->count, 0);
473 list_add(&dd->list, &t->devices);
475 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
476 r = upgrade_mode(dd, mode, t->md);
477 if (r)
478 return r;
480 atomic_inc(&dd->count);
482 if (!check_device_area(dd, start, len)) {
483 DMWARN("device %s too small for target", path);
484 dm_put_device(ti, &dd->dm_dev);
485 return -EINVAL;
488 *result = &dd->dm_dev;
490 return 0;
493 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
495 struct request_queue *q = bdev_get_queue(bdev);
496 struct io_restrictions *rs = &ti->limits;
497 char b[BDEVNAME_SIZE];
499 if (unlikely(!q)) {
500 DMWARN("%s: Cannot set limits for nonexistent device %s",
501 dm_device_name(ti->table->md), bdevname(bdev, b));
502 return;
506 * Combine the device limits low.
508 * FIXME: if we move an io_restriction struct
509 * into q this would just be a call to
510 * combine_restrictions_low()
512 rs->max_sectors =
513 min_not_zero(rs->max_sectors, queue_max_sectors(q));
516 * Check if merge fn is supported.
517 * If not we'll force DM to use PAGE_SIZE or
518 * smaller I/O, just to be safe.
521 if (q->merge_bvec_fn && !ti->type->merge)
522 rs->max_sectors =
523 min_not_zero(rs->max_sectors,
524 (unsigned int) (PAGE_SIZE >> 9));
526 rs->max_phys_segments =
527 min_not_zero(rs->max_phys_segments,
528 queue_max_phys_segments(q));
530 rs->max_hw_segments =
531 min_not_zero(rs->max_hw_segments, queue_max_hw_segments(q));
533 rs->logical_block_size = max(rs->logical_block_size,
534 queue_logical_block_size(q));
536 rs->max_segment_size =
537 min_not_zero(rs->max_segment_size, queue_max_segment_size(q));
539 rs->max_hw_sectors =
540 min_not_zero(rs->max_hw_sectors, queue_max_hw_sectors(q));
542 rs->seg_boundary_mask =
543 min_not_zero(rs->seg_boundary_mask,
544 queue_segment_boundary(q));
546 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, queue_bounce_pfn(q));
548 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
550 EXPORT_SYMBOL_GPL(dm_set_device_limits);
552 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
553 sector_t len, fmode_t mode, struct dm_dev **result)
555 int r = __table_get_device(ti->table, ti, path,
556 start, len, mode, result);
558 if (!r)
559 dm_set_device_limits(ti, (*result)->bdev);
561 return r;
565 * Decrement a devices use count and remove it if necessary.
567 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
569 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
570 dm_dev);
572 if (atomic_dec_and_test(&dd->count)) {
573 close_dev(dd, ti->table->md);
574 list_del(&dd->list);
575 kfree(dd);
580 * Checks to see if the target joins onto the end of the table.
582 static int adjoin(struct dm_table *table, struct dm_target *ti)
584 struct dm_target *prev;
586 if (!table->num_targets)
587 return !ti->begin;
589 prev = &table->targets[table->num_targets - 1];
590 return (ti->begin == (prev->begin + prev->len));
594 * Used to dynamically allocate the arg array.
596 static char **realloc_argv(unsigned *array_size, char **old_argv)
598 char **argv;
599 unsigned new_size;
601 new_size = *array_size ? *array_size * 2 : 64;
602 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
603 if (argv) {
604 memcpy(argv, old_argv, *array_size * sizeof(*argv));
605 *array_size = new_size;
608 kfree(old_argv);
609 return argv;
613 * Destructively splits up the argument list to pass to ctr.
615 int dm_split_args(int *argc, char ***argvp, char *input)
617 char *start, *end = input, *out, **argv = NULL;
618 unsigned array_size = 0;
620 *argc = 0;
622 if (!input) {
623 *argvp = NULL;
624 return 0;
627 argv = realloc_argv(&array_size, argv);
628 if (!argv)
629 return -ENOMEM;
631 while (1) {
632 start = end;
634 /* Skip whitespace */
635 while (*start && isspace(*start))
636 start++;
638 if (!*start)
639 break; /* success, we hit the end */
641 /* 'out' is used to remove any back-quotes */
642 end = out = start;
643 while (*end) {
644 /* Everything apart from '\0' can be quoted */
645 if (*end == '\\' && *(end + 1)) {
646 *out++ = *(end + 1);
647 end += 2;
648 continue;
651 if (isspace(*end))
652 break; /* end of token */
654 *out++ = *end++;
657 /* have we already filled the array ? */
658 if ((*argc + 1) > array_size) {
659 argv = realloc_argv(&array_size, argv);
660 if (!argv)
661 return -ENOMEM;
664 /* we know this is whitespace */
665 if (*end)
666 end++;
668 /* terminate the string and put it in the array */
669 *out = '\0';
670 argv[*argc] = start;
671 (*argc)++;
674 *argvp = argv;
675 return 0;
678 static void check_for_valid_limits(struct io_restrictions *rs)
680 if (!rs->max_sectors)
681 rs->max_sectors = SAFE_MAX_SECTORS;
682 if (!rs->max_hw_sectors)
683 rs->max_hw_sectors = SAFE_MAX_SECTORS;
684 if (!rs->max_phys_segments)
685 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
686 if (!rs->max_hw_segments)
687 rs->max_hw_segments = MAX_HW_SEGMENTS;
688 if (!rs->logical_block_size)
689 rs->logical_block_size = 1 << SECTOR_SHIFT;
690 if (!rs->max_segment_size)
691 rs->max_segment_size = MAX_SEGMENT_SIZE;
692 if (!rs->seg_boundary_mask)
693 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
694 if (!rs->bounce_pfn)
695 rs->bounce_pfn = -1;
698 int dm_table_add_target(struct dm_table *t, const char *type,
699 sector_t start, sector_t len, char *params)
701 int r = -EINVAL, argc;
702 char **argv;
703 struct dm_target *tgt;
705 if ((r = check_space(t)))
706 return r;
708 tgt = t->targets + t->num_targets;
709 memset(tgt, 0, sizeof(*tgt));
711 if (!len) {
712 DMERR("%s: zero-length target", dm_device_name(t->md));
713 return -EINVAL;
716 tgt->type = dm_get_target_type(type);
717 if (!tgt->type) {
718 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
719 type);
720 return -EINVAL;
723 tgt->table = t;
724 tgt->begin = start;
725 tgt->len = len;
726 tgt->error = "Unknown error";
729 * Does this target adjoin the previous one ?
731 if (!adjoin(t, tgt)) {
732 tgt->error = "Gap in table";
733 r = -EINVAL;
734 goto bad;
737 r = dm_split_args(&argc, &argv, params);
738 if (r) {
739 tgt->error = "couldn't split parameters (insufficient memory)";
740 goto bad;
743 r = tgt->type->ctr(tgt, argc, argv);
744 kfree(argv);
745 if (r)
746 goto bad;
748 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
750 /* FIXME: the plan is to combine high here and then have
751 * the merge fn apply the target level restrictions. */
752 combine_restrictions_low(&t->limits, &tgt->limits);
753 return 0;
755 bad:
756 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
757 dm_put_target_type(tgt->type);
758 return r;
761 static int setup_indexes(struct dm_table *t)
763 int i;
764 unsigned int total = 0;
765 sector_t *indexes;
767 /* allocate the space for *all* the indexes */
768 for (i = t->depth - 2; i >= 0; i--) {
769 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
770 total += t->counts[i];
773 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
774 if (!indexes)
775 return -ENOMEM;
777 /* set up internal nodes, bottom-up */
778 for (i = t->depth - 2; i >= 0; i--) {
779 t->index[i] = indexes;
780 indexes += (KEYS_PER_NODE * t->counts[i]);
781 setup_btree_index(i, t);
784 return 0;
788 * Builds the btree to index the map.
790 int dm_table_complete(struct dm_table *t)
792 int r = 0;
793 unsigned int leaf_nodes;
795 check_for_valid_limits(&t->limits);
797 /* how many indexes will the btree have ? */
798 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
799 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
801 /* leaf layer has already been set up */
802 t->counts[t->depth - 1] = leaf_nodes;
803 t->index[t->depth - 1] = t->highs;
805 if (t->depth >= 2)
806 r = setup_indexes(t);
808 return r;
811 static DEFINE_MUTEX(_event_lock);
812 void dm_table_event_callback(struct dm_table *t,
813 void (*fn)(void *), void *context)
815 mutex_lock(&_event_lock);
816 t->event_fn = fn;
817 t->event_context = context;
818 mutex_unlock(&_event_lock);
821 void dm_table_event(struct dm_table *t)
824 * You can no longer call dm_table_event() from interrupt
825 * context, use a bottom half instead.
827 BUG_ON(in_interrupt());
829 mutex_lock(&_event_lock);
830 if (t->event_fn)
831 t->event_fn(t->event_context);
832 mutex_unlock(&_event_lock);
835 sector_t dm_table_get_size(struct dm_table *t)
837 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
840 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
842 if (index >= t->num_targets)
843 return NULL;
845 return t->targets + index;
849 * Search the btree for the correct target.
851 * Caller should check returned pointer with dm_target_is_valid()
852 * to trap I/O beyond end of device.
854 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
856 unsigned int l, n = 0, k = 0;
857 sector_t *node;
859 for (l = 0; l < t->depth; l++) {
860 n = get_child(n, k);
861 node = get_node(t, l, n);
863 for (k = 0; k < KEYS_PER_NODE; k++)
864 if (node[k] >= sector)
865 break;
868 return &t->targets[(KEYS_PER_NODE * n) + k];
872 * Set the integrity profile for this device if all devices used have
873 * matching profiles.
875 static void dm_table_set_integrity(struct dm_table *t)
877 struct list_head *devices = dm_table_get_devices(t);
878 struct dm_dev_internal *prev = NULL, *dd = NULL;
880 if (!blk_get_integrity(dm_disk(t->md)))
881 return;
883 list_for_each_entry(dd, devices, list) {
884 if (prev &&
885 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
886 dd->dm_dev.bdev->bd_disk) < 0) {
887 DMWARN("%s: integrity not set: %s and %s mismatch",
888 dm_device_name(t->md),
889 prev->dm_dev.bdev->bd_disk->disk_name,
890 dd->dm_dev.bdev->bd_disk->disk_name);
891 goto no_integrity;
893 prev = dd;
896 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
897 goto no_integrity;
899 blk_integrity_register(dm_disk(t->md),
900 bdev_get_integrity(prev->dm_dev.bdev));
902 return;
904 no_integrity:
905 blk_integrity_register(dm_disk(t->md), NULL);
907 return;
910 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
913 * Make sure we obey the optimistic sub devices
914 * restrictions.
916 blk_queue_max_sectors(q, t->limits.max_sectors);
917 blk_queue_max_phys_segments(q, t->limits.max_phys_segments);
918 blk_queue_max_hw_segments(q, t->limits.max_hw_segments);
919 blk_queue_logical_block_size(q, t->limits.logical_block_size);
920 blk_queue_max_segment_size(q, t->limits.max_segment_size);
921 blk_queue_max_hw_sectors(q, t->limits.max_hw_sectors);
922 blk_queue_segment_boundary(q, t->limits.seg_boundary_mask);
923 blk_queue_bounce_limit(q, t->limits.bounce_pfn);
925 if (t->limits.no_cluster)
926 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
927 else
928 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
930 dm_table_set_integrity(t);
933 unsigned int dm_table_get_num_targets(struct dm_table *t)
935 return t->num_targets;
938 struct list_head *dm_table_get_devices(struct dm_table *t)
940 return &t->devices;
943 fmode_t dm_table_get_mode(struct dm_table *t)
945 return t->mode;
948 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
950 int i = t->num_targets;
951 struct dm_target *ti = t->targets;
953 while (i--) {
954 if (postsuspend) {
955 if (ti->type->postsuspend)
956 ti->type->postsuspend(ti);
957 } else if (ti->type->presuspend)
958 ti->type->presuspend(ti);
960 ti++;
964 void dm_table_presuspend_targets(struct dm_table *t)
966 if (!t)
967 return;
969 suspend_targets(t, 0);
972 void dm_table_postsuspend_targets(struct dm_table *t)
974 if (!t)
975 return;
977 suspend_targets(t, 1);
980 int dm_table_resume_targets(struct dm_table *t)
982 int i, r = 0;
984 for (i = 0; i < t->num_targets; i++) {
985 struct dm_target *ti = t->targets + i;
987 if (!ti->type->preresume)
988 continue;
990 r = ti->type->preresume(ti);
991 if (r)
992 return r;
995 for (i = 0; i < t->num_targets; i++) {
996 struct dm_target *ti = t->targets + i;
998 if (ti->type->resume)
999 ti->type->resume(ti);
1002 return 0;
1005 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1007 struct dm_dev_internal *dd;
1008 struct list_head *devices = dm_table_get_devices(t);
1009 int r = 0;
1011 list_for_each_entry(dd, devices, list) {
1012 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1013 char b[BDEVNAME_SIZE];
1015 if (likely(q))
1016 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1017 else
1018 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1019 dm_device_name(t->md),
1020 bdevname(dd->dm_dev.bdev, b));
1023 return r;
1026 void dm_table_unplug_all(struct dm_table *t)
1028 struct dm_dev_internal *dd;
1029 struct list_head *devices = dm_table_get_devices(t);
1031 list_for_each_entry(dd, devices, list) {
1032 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1033 char b[BDEVNAME_SIZE];
1035 if (likely(q))
1036 blk_unplug(q);
1037 else
1038 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1039 dm_device_name(t->md),
1040 bdevname(dd->dm_dev.bdev, b));
1044 struct mapped_device *dm_table_get_md(struct dm_table *t)
1046 dm_get(t->md);
1048 return t->md;
1051 EXPORT_SYMBOL(dm_vcalloc);
1052 EXPORT_SYMBOL(dm_get_device);
1053 EXPORT_SYMBOL(dm_put_device);
1054 EXPORT_SYMBOL(dm_table_event);
1055 EXPORT_SYMBOL(dm_table_get_size);
1056 EXPORT_SYMBOL(dm_table_get_mode);
1057 EXPORT_SYMBOL(dm_table_get_md);
1058 EXPORT_SYMBOL(dm_table_put);
1059 EXPORT_SYMBOL(dm_table_get);
1060 EXPORT_SYMBOL(dm_table_unplug_all);