4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t
*p
)
173 if (p
->static_prio
< NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
176 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t
;
190 unsigned int nr_active
;
191 unsigned long bitmap
[BITMAP_SIZE
];
192 struct list_head queue
[MAX_PRIO
];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running
;
211 unsigned long cpu_load
[3];
213 unsigned long long nr_switches
;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible
;
223 unsigned long expired_timestamp
;
224 unsigned long long timestamp_last_tick
;
226 struct mm_struct
*prev_mm
;
227 prio_array_t
*active
, *expired
, arrays
[2];
228 int best_expired_prio
;
232 struct sched_domain
*sd
;
234 /* For active balancing */
238 task_t
*migration_thread
;
239 struct list_head migration_queue
;
243 #ifdef CONFIG_SCHEDSTATS
245 struct sched_info rq_sched_info
;
247 /* sys_sched_yield() stats */
248 unsigned long yld_exp_empty
;
249 unsigned long yld_act_empty
;
250 unsigned long yld_both_empty
;
251 unsigned long yld_cnt
;
253 /* schedule() stats */
254 unsigned long sched_switch
;
255 unsigned long sched_cnt
;
256 unsigned long sched_goidle
;
258 /* try_to_wake_up() stats */
259 unsigned long ttwu_cnt
;
260 unsigned long ttwu_local
;
264 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
267 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
268 * See detach_destroy_domains: synchronize_sched for details.
270 * The domain tree of any CPU may only be accessed from within
271 * preempt-disabled sections.
273 #define for_each_domain(cpu, domain) \
274 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
276 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
277 #define this_rq() (&__get_cpu_var(runqueues))
278 #define task_rq(p) cpu_rq(task_cpu(p))
279 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
281 #ifndef prepare_arch_switch
282 # define prepare_arch_switch(next) do { } while (0)
284 #ifndef finish_arch_switch
285 # define finish_arch_switch(prev) do { } while (0)
288 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
289 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
291 return rq
->curr
== p
;
294 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
298 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
300 #ifdef CONFIG_DEBUG_SPINLOCK
301 /* this is a valid case when another task releases the spinlock */
302 rq
->lock
.owner
= current
;
304 spin_unlock_irq(&rq
->lock
);
307 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
308 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
313 return rq
->curr
== p
;
317 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
321 * We can optimise this out completely for !SMP, because the
322 * SMP rebalancing from interrupt is the only thing that cares
327 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
328 spin_unlock_irq(&rq
->lock
);
330 spin_unlock(&rq
->lock
);
334 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
338 * After ->oncpu is cleared, the task can be moved to a different CPU.
339 * We must ensure this doesn't happen until the switch is completely
345 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352 * task_rq_lock - lock the runqueue a given task resides on and disable
353 * interrupts. Note the ordering: we can safely lookup the task_rq without
354 * explicitly disabling preemption.
356 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
362 local_irq_save(*flags
);
364 spin_lock(&rq
->lock
);
365 if (unlikely(rq
!= task_rq(p
))) {
366 spin_unlock_irqrestore(&rq
->lock
, *flags
);
367 goto repeat_lock_task
;
372 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
375 spin_unlock_irqrestore(&rq
->lock
, *flags
);
378 #ifdef CONFIG_SCHEDSTATS
380 * bump this up when changing the output format or the meaning of an existing
381 * format, so that tools can adapt (or abort)
383 #define SCHEDSTAT_VERSION 12
385 static int show_schedstat(struct seq_file
*seq
, void *v
)
389 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
390 seq_printf(seq
, "timestamp %lu\n", jiffies
);
391 for_each_online_cpu(cpu
) {
392 runqueue_t
*rq
= cpu_rq(cpu
);
394 struct sched_domain
*sd
;
398 /* runqueue-specific stats */
400 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
401 cpu
, rq
->yld_both_empty
,
402 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
403 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
404 rq
->ttwu_cnt
, rq
->ttwu_local
,
405 rq
->rq_sched_info
.cpu_time
,
406 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
408 seq_printf(seq
, "\n");
411 /* domain-specific stats */
413 for_each_domain(cpu
, sd
) {
414 enum idle_type itype
;
415 char mask_str
[NR_CPUS
];
417 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
418 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
419 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
421 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
423 sd
->lb_balanced
[itype
],
424 sd
->lb_failed
[itype
],
425 sd
->lb_imbalance
[itype
],
426 sd
->lb_gained
[itype
],
427 sd
->lb_hot_gained
[itype
],
428 sd
->lb_nobusyq
[itype
],
429 sd
->lb_nobusyg
[itype
]);
431 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
432 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
433 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
434 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
435 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
443 static int schedstat_open(struct inode
*inode
, struct file
*file
)
445 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
446 char *buf
= kmalloc(size
, GFP_KERNEL
);
452 res
= single_open(file
, show_schedstat
, NULL
);
454 m
= file
->private_data
;
462 struct file_operations proc_schedstat_operations
= {
463 .open
= schedstat_open
,
466 .release
= single_release
,
469 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
470 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
471 #else /* !CONFIG_SCHEDSTATS */
472 # define schedstat_inc(rq, field) do { } while (0)
473 # define schedstat_add(rq, field, amt) do { } while (0)
477 * rq_lock - lock a given runqueue and disable interrupts.
479 static inline runqueue_t
*this_rq_lock(void)
486 spin_lock(&rq
->lock
);
491 #ifdef CONFIG_SCHEDSTATS
493 * Called when a process is dequeued from the active array and given
494 * the cpu. We should note that with the exception of interactive
495 * tasks, the expired queue will become the active queue after the active
496 * queue is empty, without explicitly dequeuing and requeuing tasks in the
497 * expired queue. (Interactive tasks may be requeued directly to the
498 * active queue, thus delaying tasks in the expired queue from running;
499 * see scheduler_tick()).
501 * This function is only called from sched_info_arrive(), rather than
502 * dequeue_task(). Even though a task may be queued and dequeued multiple
503 * times as it is shuffled about, we're really interested in knowing how
504 * long it was from the *first* time it was queued to the time that it
507 static inline void sched_info_dequeued(task_t
*t
)
509 t
->sched_info
.last_queued
= 0;
513 * Called when a task finally hits the cpu. We can now calculate how
514 * long it was waiting to run. We also note when it began so that we
515 * can keep stats on how long its timeslice is.
517 static void sched_info_arrive(task_t
*t
)
519 unsigned long now
= jiffies
, diff
= 0;
520 struct runqueue
*rq
= task_rq(t
);
522 if (t
->sched_info
.last_queued
)
523 diff
= now
- t
->sched_info
.last_queued
;
524 sched_info_dequeued(t
);
525 t
->sched_info
.run_delay
+= diff
;
526 t
->sched_info
.last_arrival
= now
;
527 t
->sched_info
.pcnt
++;
532 rq
->rq_sched_info
.run_delay
+= diff
;
533 rq
->rq_sched_info
.pcnt
++;
537 * Called when a process is queued into either the active or expired
538 * array. The time is noted and later used to determine how long we
539 * had to wait for us to reach the cpu. Since the expired queue will
540 * become the active queue after active queue is empty, without dequeuing
541 * and requeuing any tasks, we are interested in queuing to either. It
542 * is unusual but not impossible for tasks to be dequeued and immediately
543 * requeued in the same or another array: this can happen in sched_yield(),
544 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * This function is only called from enqueue_task(), but also only updates
548 * the timestamp if it is already not set. It's assumed that
549 * sched_info_dequeued() will clear that stamp when appropriate.
551 static inline void sched_info_queued(task_t
*t
)
553 if (!t
->sched_info
.last_queued
)
554 t
->sched_info
.last_queued
= jiffies
;
558 * Called when a process ceases being the active-running process, either
559 * voluntarily or involuntarily. Now we can calculate how long we ran.
561 static inline void sched_info_depart(task_t
*t
)
563 struct runqueue
*rq
= task_rq(t
);
564 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
566 t
->sched_info
.cpu_time
+= diff
;
569 rq
->rq_sched_info
.cpu_time
+= diff
;
573 * Called when tasks are switched involuntarily due, typically, to expiring
574 * their time slice. (This may also be called when switching to or from
575 * the idle task.) We are only called when prev != next.
577 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
579 struct runqueue
*rq
= task_rq(prev
);
582 * prev now departs the cpu. It's not interesting to record
583 * stats about how efficient we were at scheduling the idle
586 if (prev
!= rq
->idle
)
587 sched_info_depart(prev
);
589 if (next
!= rq
->idle
)
590 sched_info_arrive(next
);
593 #define sched_info_queued(t) do { } while (0)
594 #define sched_info_switch(t, next) do { } while (0)
595 #endif /* CONFIG_SCHEDSTATS */
598 * Adding/removing a task to/from a priority array:
600 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
603 list_del(&p
->run_list
);
604 if (list_empty(array
->queue
+ p
->prio
))
605 __clear_bit(p
->prio
, array
->bitmap
);
608 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
610 sched_info_queued(p
);
611 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
612 __set_bit(p
->prio
, array
->bitmap
);
618 * Put task to the end of the run list without the overhead of dequeue
619 * followed by enqueue.
621 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
623 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
626 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
628 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
629 __set_bit(p
->prio
, array
->bitmap
);
635 * effective_prio - return the priority that is based on the static
636 * priority but is modified by bonuses/penalties.
638 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
639 * into the -5 ... 0 ... +5 bonus/penalty range.
641 * We use 25% of the full 0...39 priority range so that:
643 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
644 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
646 * Both properties are important to certain workloads.
648 static int effective_prio(task_t
*p
)
655 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
657 prio
= p
->static_prio
- bonus
;
658 if (prio
< MAX_RT_PRIO
)
660 if (prio
> MAX_PRIO
-1)
666 * __activate_task - move a task to the runqueue.
668 static inline void __activate_task(task_t
*p
, runqueue_t
*rq
)
670 enqueue_task(p
, rq
->active
);
675 * __activate_idle_task - move idle task to the _front_ of runqueue.
677 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
679 enqueue_task_head(p
, rq
->active
);
683 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
685 /* Caller must always ensure 'now >= p->timestamp' */
686 unsigned long long __sleep_time
= now
- p
->timestamp
;
687 unsigned long sleep_time
;
689 if (unlikely(p
->policy
== SCHED_BATCH
))
692 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
693 sleep_time
= NS_MAX_SLEEP_AVG
;
695 sleep_time
= (unsigned long)__sleep_time
;
698 if (likely(sleep_time
> 0)) {
700 * User tasks that sleep a long time are categorised as
701 * idle and will get just interactive status to stay active &
702 * prevent them suddenly becoming cpu hogs and starving
705 if (p
->mm
&& p
->activated
!= -1 &&
706 sleep_time
> INTERACTIVE_SLEEP(p
)) {
707 p
->sleep_avg
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
711 * The lower the sleep avg a task has the more
712 * rapidly it will rise with sleep time.
714 sleep_time
*= (MAX_BONUS
- CURRENT_BONUS(p
)) ? : 1;
717 * Tasks waking from uninterruptible sleep are
718 * limited in their sleep_avg rise as they
719 * are likely to be waiting on I/O
721 if (p
->activated
== -1 && p
->mm
) {
722 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
724 else if (p
->sleep_avg
+ sleep_time
>=
725 INTERACTIVE_SLEEP(p
)) {
726 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
732 * This code gives a bonus to interactive tasks.
734 * The boost works by updating the 'average sleep time'
735 * value here, based on ->timestamp. The more time a
736 * task spends sleeping, the higher the average gets -
737 * and the higher the priority boost gets as well.
739 p
->sleep_avg
+= sleep_time
;
741 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
742 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
746 return effective_prio(p
);
750 * activate_task - move a task to the runqueue and do priority recalculation
752 * Update all the scheduling statistics stuff. (sleep average
753 * calculation, priority modifiers, etc.)
755 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
757 unsigned long long now
;
762 /* Compensate for drifting sched_clock */
763 runqueue_t
*this_rq
= this_rq();
764 now
= (now
- this_rq
->timestamp_last_tick
)
765 + rq
->timestamp_last_tick
;
770 p
->prio
= recalc_task_prio(p
, now
);
773 * This checks to make sure it's not an uninterruptible task
774 * that is now waking up.
778 * Tasks which were woken up by interrupts (ie. hw events)
779 * are most likely of interactive nature. So we give them
780 * the credit of extending their sleep time to the period
781 * of time they spend on the runqueue, waiting for execution
782 * on a CPU, first time around:
788 * Normal first-time wakeups get a credit too for
789 * on-runqueue time, but it will be weighted down:
796 __activate_task(p
, rq
);
800 * deactivate_task - remove a task from the runqueue.
802 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
805 dequeue_task(p
, p
->array
);
810 * resched_task - mark a task 'to be rescheduled now'.
812 * On UP this means the setting of the need_resched flag, on SMP it
813 * might also involve a cross-CPU call to trigger the scheduler on
817 static void resched_task(task_t
*p
)
821 assert_spin_locked(&task_rq(p
)->lock
);
823 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
826 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
829 if (cpu
== smp_processor_id())
832 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
834 if (!test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
))
835 smp_send_reschedule(cpu
);
838 static inline void resched_task(task_t
*p
)
840 assert_spin_locked(&task_rq(p
)->lock
);
841 set_tsk_need_resched(p
);
846 * task_curr - is this task currently executing on a CPU?
847 * @p: the task in question.
849 inline int task_curr(const task_t
*p
)
851 return cpu_curr(task_cpu(p
)) == p
;
856 struct list_head list
;
861 struct completion done
;
865 * The task's runqueue lock must be held.
866 * Returns true if you have to wait for migration thread.
868 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
870 runqueue_t
*rq
= task_rq(p
);
873 * If the task is not on a runqueue (and not running), then
874 * it is sufficient to simply update the task's cpu field.
876 if (!p
->array
&& !task_running(rq
, p
)) {
877 set_task_cpu(p
, dest_cpu
);
881 init_completion(&req
->done
);
883 req
->dest_cpu
= dest_cpu
;
884 list_add(&req
->list
, &rq
->migration_queue
);
889 * wait_task_inactive - wait for a thread to unschedule.
891 * The caller must ensure that the task *will* unschedule sometime soon,
892 * else this function might spin for a *long* time. This function can't
893 * be called with interrupts off, or it may introduce deadlock with
894 * smp_call_function() if an IPI is sent by the same process we are
895 * waiting to become inactive.
897 void wait_task_inactive(task_t
*p
)
904 rq
= task_rq_lock(p
, &flags
);
905 /* Must be off runqueue entirely, not preempted. */
906 if (unlikely(p
->array
|| task_running(rq
, p
))) {
907 /* If it's preempted, we yield. It could be a while. */
908 preempted
= !task_running(rq
, p
);
909 task_rq_unlock(rq
, &flags
);
915 task_rq_unlock(rq
, &flags
);
919 * kick_process - kick a running thread to enter/exit the kernel
920 * @p: the to-be-kicked thread
922 * Cause a process which is running on another CPU to enter
923 * kernel-mode, without any delay. (to get signals handled.)
925 * NOTE: this function doesnt have to take the runqueue lock,
926 * because all it wants to ensure is that the remote task enters
927 * the kernel. If the IPI races and the task has been migrated
928 * to another CPU then no harm is done and the purpose has been
931 void kick_process(task_t
*p
)
937 if ((cpu
!= smp_processor_id()) && task_curr(p
))
938 smp_send_reschedule(cpu
);
943 * Return a low guess at the load of a migration-source cpu.
945 * We want to under-estimate the load of migration sources, to
946 * balance conservatively.
948 static inline unsigned long source_load(int cpu
, int type
)
950 runqueue_t
*rq
= cpu_rq(cpu
);
951 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
955 return min(rq
->cpu_load
[type
-1], load_now
);
959 * Return a high guess at the load of a migration-target cpu
961 static inline unsigned long target_load(int cpu
, int type
)
963 runqueue_t
*rq
= cpu_rq(cpu
);
964 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
968 return max(rq
->cpu_load
[type
-1], load_now
);
972 * find_idlest_group finds and returns the least busy CPU group within the
975 static struct sched_group
*
976 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
978 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
979 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
980 int load_idx
= sd
->forkexec_idx
;
981 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
984 unsigned long load
, avg_load
;
988 /* Skip over this group if it has no CPUs allowed */
989 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
992 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
994 /* Tally up the load of all CPUs in the group */
997 for_each_cpu_mask(i
, group
->cpumask
) {
998 /* Bias balancing toward cpus of our domain */
1000 load
= source_load(i
, load_idx
);
1002 load
= target_load(i
, load_idx
);
1007 /* Adjust by relative CPU power of the group */
1008 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1011 this_load
= avg_load
;
1013 } else if (avg_load
< min_load
) {
1014 min_load
= avg_load
;
1018 group
= group
->next
;
1019 } while (group
!= sd
->groups
);
1021 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1027 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1030 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1033 unsigned long load
, min_load
= ULONG_MAX
;
1037 /* Traverse only the allowed CPUs */
1038 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1040 for_each_cpu_mask(i
, tmp
) {
1041 load
= source_load(i
, 0);
1043 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1053 * sched_balance_self: balance the current task (running on cpu) in domains
1054 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1057 * Balance, ie. select the least loaded group.
1059 * Returns the target CPU number, or the same CPU if no balancing is needed.
1061 * preempt must be disabled.
1063 static int sched_balance_self(int cpu
, int flag
)
1065 struct task_struct
*t
= current
;
1066 struct sched_domain
*tmp
, *sd
= NULL
;
1068 for_each_domain(cpu
, tmp
)
1069 if (tmp
->flags
& flag
)
1074 struct sched_group
*group
;
1079 group
= find_idlest_group(sd
, t
, cpu
);
1083 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1084 if (new_cpu
== -1 || new_cpu
== cpu
)
1087 /* Now try balancing at a lower domain level */
1091 weight
= cpus_weight(span
);
1092 for_each_domain(cpu
, tmp
) {
1093 if (weight
<= cpus_weight(tmp
->span
))
1095 if (tmp
->flags
& flag
)
1098 /* while loop will break here if sd == NULL */
1104 #endif /* CONFIG_SMP */
1107 * wake_idle() will wake a task on an idle cpu if task->cpu is
1108 * not idle and an idle cpu is available. The span of cpus to
1109 * search starts with cpus closest then further out as needed,
1110 * so we always favor a closer, idle cpu.
1112 * Returns the CPU we should wake onto.
1114 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1115 static int wake_idle(int cpu
, task_t
*p
)
1118 struct sched_domain
*sd
;
1124 for_each_domain(cpu
, sd
) {
1125 if (sd
->flags
& SD_WAKE_IDLE
) {
1126 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1127 for_each_cpu_mask(i
, tmp
) {
1138 static inline int wake_idle(int cpu
, task_t
*p
)
1145 * try_to_wake_up - wake up a thread
1146 * @p: the to-be-woken-up thread
1147 * @state: the mask of task states that can be woken
1148 * @sync: do a synchronous wakeup?
1150 * Put it on the run-queue if it's not already there. The "current"
1151 * thread is always on the run-queue (except when the actual
1152 * re-schedule is in progress), and as such you're allowed to do
1153 * the simpler "current->state = TASK_RUNNING" to mark yourself
1154 * runnable without the overhead of this.
1156 * returns failure only if the task is already active.
1158 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1160 int cpu
, this_cpu
, success
= 0;
1161 unsigned long flags
;
1165 unsigned long load
, this_load
;
1166 struct sched_domain
*sd
, *this_sd
= NULL
;
1170 rq
= task_rq_lock(p
, &flags
);
1171 old_state
= p
->state
;
1172 if (!(old_state
& state
))
1179 this_cpu
= smp_processor_id();
1182 if (unlikely(task_running(rq
, p
)))
1187 schedstat_inc(rq
, ttwu_cnt
);
1188 if (cpu
== this_cpu
) {
1189 schedstat_inc(rq
, ttwu_local
);
1193 for_each_domain(this_cpu
, sd
) {
1194 if (cpu_isset(cpu
, sd
->span
)) {
1195 schedstat_inc(sd
, ttwu_wake_remote
);
1201 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1205 * Check for affine wakeup and passive balancing possibilities.
1208 int idx
= this_sd
->wake_idx
;
1209 unsigned int imbalance
;
1211 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1213 load
= source_load(cpu
, idx
);
1214 this_load
= target_load(this_cpu
, idx
);
1216 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1218 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1219 unsigned long tl
= this_load
;
1221 * If sync wakeup then subtract the (maximum possible)
1222 * effect of the currently running task from the load
1223 * of the current CPU:
1226 tl
-= SCHED_LOAD_SCALE
;
1229 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1230 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1232 * This domain has SD_WAKE_AFFINE and
1233 * p is cache cold in this domain, and
1234 * there is no bad imbalance.
1236 schedstat_inc(this_sd
, ttwu_move_affine
);
1242 * Start passive balancing when half the imbalance_pct
1245 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1246 if (imbalance
*this_load
<= 100*load
) {
1247 schedstat_inc(this_sd
, ttwu_move_balance
);
1253 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1255 new_cpu
= wake_idle(new_cpu
, p
);
1256 if (new_cpu
!= cpu
) {
1257 set_task_cpu(p
, new_cpu
);
1258 task_rq_unlock(rq
, &flags
);
1259 /* might preempt at this point */
1260 rq
= task_rq_lock(p
, &flags
);
1261 old_state
= p
->state
;
1262 if (!(old_state
& state
))
1267 this_cpu
= smp_processor_id();
1272 #endif /* CONFIG_SMP */
1273 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1274 rq
->nr_uninterruptible
--;
1276 * Tasks on involuntary sleep don't earn
1277 * sleep_avg beyond just interactive state.
1283 * Tasks that have marked their sleep as noninteractive get
1284 * woken up without updating their sleep average. (i.e. their
1285 * sleep is handled in a priority-neutral manner, no priority
1286 * boost and no penalty.)
1288 if (old_state
& TASK_NONINTERACTIVE
)
1289 __activate_task(p
, rq
);
1291 activate_task(p
, rq
, cpu
== this_cpu
);
1293 * Sync wakeups (i.e. those types of wakeups where the waker
1294 * has indicated that it will leave the CPU in short order)
1295 * don't trigger a preemption, if the woken up task will run on
1296 * this cpu. (in this case the 'I will reschedule' promise of
1297 * the waker guarantees that the freshly woken up task is going
1298 * to be considered on this CPU.)
1300 if (!sync
|| cpu
!= this_cpu
) {
1301 if (TASK_PREEMPTS_CURR(p
, rq
))
1302 resched_task(rq
->curr
);
1307 p
->state
= TASK_RUNNING
;
1309 task_rq_unlock(rq
, &flags
);
1314 int fastcall
wake_up_process(task_t
*p
)
1316 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1317 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1320 EXPORT_SYMBOL(wake_up_process
);
1322 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1324 return try_to_wake_up(p
, state
, 0);
1328 * Perform scheduler related setup for a newly forked process p.
1329 * p is forked by current.
1331 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1333 int cpu
= get_cpu();
1336 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1338 set_task_cpu(p
, cpu
);
1341 * We mark the process as running here, but have not actually
1342 * inserted it onto the runqueue yet. This guarantees that
1343 * nobody will actually run it, and a signal or other external
1344 * event cannot wake it up and insert it on the runqueue either.
1346 p
->state
= TASK_RUNNING
;
1347 INIT_LIST_HEAD(&p
->run_list
);
1349 #ifdef CONFIG_SCHEDSTATS
1350 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1352 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1355 #ifdef CONFIG_PREEMPT
1356 /* Want to start with kernel preemption disabled. */
1357 task_thread_info(p
)->preempt_count
= 1;
1360 * Share the timeslice between parent and child, thus the
1361 * total amount of pending timeslices in the system doesn't change,
1362 * resulting in more scheduling fairness.
1364 local_irq_disable();
1365 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1367 * The remainder of the first timeslice might be recovered by
1368 * the parent if the child exits early enough.
1370 p
->first_time_slice
= 1;
1371 current
->time_slice
>>= 1;
1372 p
->timestamp
= sched_clock();
1373 if (unlikely(!current
->time_slice
)) {
1375 * This case is rare, it happens when the parent has only
1376 * a single jiffy left from its timeslice. Taking the
1377 * runqueue lock is not a problem.
1379 current
->time_slice
= 1;
1387 * wake_up_new_task - wake up a newly created task for the first time.
1389 * This function will do some initial scheduler statistics housekeeping
1390 * that must be done for every newly created context, then puts the task
1391 * on the runqueue and wakes it.
1393 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1395 unsigned long flags
;
1397 runqueue_t
*rq
, *this_rq
;
1399 rq
= task_rq_lock(p
, &flags
);
1400 BUG_ON(p
->state
!= TASK_RUNNING
);
1401 this_cpu
= smp_processor_id();
1405 * We decrease the sleep average of forking parents
1406 * and children as well, to keep max-interactive tasks
1407 * from forking tasks that are max-interactive. The parent
1408 * (current) is done further down, under its lock.
1410 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1411 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1413 p
->prio
= effective_prio(p
);
1415 if (likely(cpu
== this_cpu
)) {
1416 if (!(clone_flags
& CLONE_VM
)) {
1418 * The VM isn't cloned, so we're in a good position to
1419 * do child-runs-first in anticipation of an exec. This
1420 * usually avoids a lot of COW overhead.
1422 if (unlikely(!current
->array
))
1423 __activate_task(p
, rq
);
1425 p
->prio
= current
->prio
;
1426 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1427 p
->array
= current
->array
;
1428 p
->array
->nr_active
++;
1433 /* Run child last */
1434 __activate_task(p
, rq
);
1436 * We skip the following code due to cpu == this_cpu
1438 * task_rq_unlock(rq, &flags);
1439 * this_rq = task_rq_lock(current, &flags);
1443 this_rq
= cpu_rq(this_cpu
);
1446 * Not the local CPU - must adjust timestamp. This should
1447 * get optimised away in the !CONFIG_SMP case.
1449 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1450 + rq
->timestamp_last_tick
;
1451 __activate_task(p
, rq
);
1452 if (TASK_PREEMPTS_CURR(p
, rq
))
1453 resched_task(rq
->curr
);
1456 * Parent and child are on different CPUs, now get the
1457 * parent runqueue to update the parent's ->sleep_avg:
1459 task_rq_unlock(rq
, &flags
);
1460 this_rq
= task_rq_lock(current
, &flags
);
1462 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1463 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1464 task_rq_unlock(this_rq
, &flags
);
1468 * Potentially available exiting-child timeslices are
1469 * retrieved here - this way the parent does not get
1470 * penalized for creating too many threads.
1472 * (this cannot be used to 'generate' timeslices
1473 * artificially, because any timeslice recovered here
1474 * was given away by the parent in the first place.)
1476 void fastcall
sched_exit(task_t
*p
)
1478 unsigned long flags
;
1482 * If the child was a (relative-) CPU hog then decrease
1483 * the sleep_avg of the parent as well.
1485 rq
= task_rq_lock(p
->parent
, &flags
);
1486 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1487 p
->parent
->time_slice
+= p
->time_slice
;
1488 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1489 p
->parent
->time_slice
= task_timeslice(p
);
1491 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1492 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1493 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1495 task_rq_unlock(rq
, &flags
);
1499 * prepare_task_switch - prepare to switch tasks
1500 * @rq: the runqueue preparing to switch
1501 * @next: the task we are going to switch to.
1503 * This is called with the rq lock held and interrupts off. It must
1504 * be paired with a subsequent finish_task_switch after the context
1507 * prepare_task_switch sets up locking and calls architecture specific
1510 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1512 prepare_lock_switch(rq
, next
);
1513 prepare_arch_switch(next
);
1517 * finish_task_switch - clean up after a task-switch
1518 * @rq: runqueue associated with task-switch
1519 * @prev: the thread we just switched away from.
1521 * finish_task_switch must be called after the context switch, paired
1522 * with a prepare_task_switch call before the context switch.
1523 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1524 * and do any other architecture-specific cleanup actions.
1526 * Note that we may have delayed dropping an mm in context_switch(). If
1527 * so, we finish that here outside of the runqueue lock. (Doing it
1528 * with the lock held can cause deadlocks; see schedule() for
1531 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1532 __releases(rq
->lock
)
1534 struct mm_struct
*mm
= rq
->prev_mm
;
1535 unsigned long prev_task_flags
;
1540 * A task struct has one reference for the use as "current".
1541 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1542 * calls schedule one last time. The schedule call will never return,
1543 * and the scheduled task must drop that reference.
1544 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1545 * still held, otherwise prev could be scheduled on another cpu, die
1546 * there before we look at prev->state, and then the reference would
1548 * Manfred Spraul <manfred@colorfullife.com>
1550 prev_task_flags
= prev
->flags
;
1551 finish_arch_switch(prev
);
1552 finish_lock_switch(rq
, prev
);
1555 if (unlikely(prev_task_flags
& PF_DEAD
))
1556 put_task_struct(prev
);
1560 * schedule_tail - first thing a freshly forked thread must call.
1561 * @prev: the thread we just switched away from.
1563 asmlinkage
void schedule_tail(task_t
*prev
)
1564 __releases(rq
->lock
)
1566 runqueue_t
*rq
= this_rq();
1567 finish_task_switch(rq
, prev
);
1568 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1569 /* In this case, finish_task_switch does not reenable preemption */
1572 if (current
->set_child_tid
)
1573 put_user(current
->pid
, current
->set_child_tid
);
1577 * context_switch - switch to the new MM and the new
1578 * thread's register state.
1581 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1583 struct mm_struct
*mm
= next
->mm
;
1584 struct mm_struct
*oldmm
= prev
->active_mm
;
1586 if (unlikely(!mm
)) {
1587 next
->active_mm
= oldmm
;
1588 atomic_inc(&oldmm
->mm_count
);
1589 enter_lazy_tlb(oldmm
, next
);
1591 switch_mm(oldmm
, mm
, next
);
1593 if (unlikely(!prev
->mm
)) {
1594 prev
->active_mm
= NULL
;
1595 WARN_ON(rq
->prev_mm
);
1596 rq
->prev_mm
= oldmm
;
1599 /* Here we just switch the register state and the stack. */
1600 switch_to(prev
, next
, prev
);
1606 * nr_running, nr_uninterruptible and nr_context_switches:
1608 * externally visible scheduler statistics: current number of runnable
1609 * threads, current number of uninterruptible-sleeping threads, total
1610 * number of context switches performed since bootup.
1612 unsigned long nr_running(void)
1614 unsigned long i
, sum
= 0;
1616 for_each_online_cpu(i
)
1617 sum
+= cpu_rq(i
)->nr_running
;
1622 unsigned long nr_uninterruptible(void)
1624 unsigned long i
, sum
= 0;
1627 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1630 * Since we read the counters lockless, it might be slightly
1631 * inaccurate. Do not allow it to go below zero though:
1633 if (unlikely((long)sum
< 0))
1639 unsigned long long nr_context_switches(void)
1641 unsigned long long i
, sum
= 0;
1644 sum
+= cpu_rq(i
)->nr_switches
;
1649 unsigned long nr_iowait(void)
1651 unsigned long i
, sum
= 0;
1654 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1662 * double_rq_lock - safely lock two runqueues
1664 * We must take them in cpu order to match code in
1665 * dependent_sleeper and wake_dependent_sleeper.
1667 * Note this does not disable interrupts like task_rq_lock,
1668 * you need to do so manually before calling.
1670 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1671 __acquires(rq1
->lock
)
1672 __acquires(rq2
->lock
)
1675 spin_lock(&rq1
->lock
);
1676 __acquire(rq2
->lock
); /* Fake it out ;) */
1678 if (rq1
->cpu
< rq2
->cpu
) {
1679 spin_lock(&rq1
->lock
);
1680 spin_lock(&rq2
->lock
);
1682 spin_lock(&rq2
->lock
);
1683 spin_lock(&rq1
->lock
);
1689 * double_rq_unlock - safely unlock two runqueues
1691 * Note this does not restore interrupts like task_rq_unlock,
1692 * you need to do so manually after calling.
1694 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1695 __releases(rq1
->lock
)
1696 __releases(rq2
->lock
)
1698 spin_unlock(&rq1
->lock
);
1700 spin_unlock(&rq2
->lock
);
1702 __release(rq2
->lock
);
1706 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1708 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1709 __releases(this_rq
->lock
)
1710 __acquires(busiest
->lock
)
1711 __acquires(this_rq
->lock
)
1713 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1714 if (busiest
->cpu
< this_rq
->cpu
) {
1715 spin_unlock(&this_rq
->lock
);
1716 spin_lock(&busiest
->lock
);
1717 spin_lock(&this_rq
->lock
);
1719 spin_lock(&busiest
->lock
);
1724 * If dest_cpu is allowed for this process, migrate the task to it.
1725 * This is accomplished by forcing the cpu_allowed mask to only
1726 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1727 * the cpu_allowed mask is restored.
1729 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1731 migration_req_t req
;
1733 unsigned long flags
;
1735 rq
= task_rq_lock(p
, &flags
);
1736 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1737 || unlikely(cpu_is_offline(dest_cpu
)))
1740 /* force the process onto the specified CPU */
1741 if (migrate_task(p
, dest_cpu
, &req
)) {
1742 /* Need to wait for migration thread (might exit: take ref). */
1743 struct task_struct
*mt
= rq
->migration_thread
;
1744 get_task_struct(mt
);
1745 task_rq_unlock(rq
, &flags
);
1746 wake_up_process(mt
);
1747 put_task_struct(mt
);
1748 wait_for_completion(&req
.done
);
1752 task_rq_unlock(rq
, &flags
);
1756 * sched_exec - execve() is a valuable balancing opportunity, because at
1757 * this point the task has the smallest effective memory and cache footprint.
1759 void sched_exec(void)
1761 int new_cpu
, this_cpu
= get_cpu();
1762 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1764 if (new_cpu
!= this_cpu
)
1765 sched_migrate_task(current
, new_cpu
);
1769 * pull_task - move a task from a remote runqueue to the local runqueue.
1770 * Both runqueues must be locked.
1773 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1774 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1776 dequeue_task(p
, src_array
);
1777 src_rq
->nr_running
--;
1778 set_task_cpu(p
, this_cpu
);
1779 this_rq
->nr_running
++;
1780 enqueue_task(p
, this_array
);
1781 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1782 + this_rq
->timestamp_last_tick
;
1784 * Note that idle threads have a prio of MAX_PRIO, for this test
1785 * to be always true for them.
1787 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1788 resched_task(this_rq
->curr
);
1792 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1795 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1796 struct sched_domain
*sd
, enum idle_type idle
,
1800 * We do not migrate tasks that are:
1801 * 1) running (obviously), or
1802 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1803 * 3) are cache-hot on their current CPU.
1805 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1809 if (task_running(rq
, p
))
1813 * Aggressive migration if:
1814 * 1) task is cache cold, or
1815 * 2) too many balance attempts have failed.
1818 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1821 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1827 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1828 * as part of a balancing operation within "domain". Returns the number of
1831 * Called with both runqueues locked.
1833 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1834 unsigned long max_nr_move
, struct sched_domain
*sd
,
1835 enum idle_type idle
, int *all_pinned
)
1837 prio_array_t
*array
, *dst_array
;
1838 struct list_head
*head
, *curr
;
1839 int idx
, pulled
= 0, pinned
= 0;
1842 if (max_nr_move
== 0)
1848 * We first consider expired tasks. Those will likely not be
1849 * executed in the near future, and they are most likely to
1850 * be cache-cold, thus switching CPUs has the least effect
1853 if (busiest
->expired
->nr_active
) {
1854 array
= busiest
->expired
;
1855 dst_array
= this_rq
->expired
;
1857 array
= busiest
->active
;
1858 dst_array
= this_rq
->active
;
1862 /* Start searching at priority 0: */
1866 idx
= sched_find_first_bit(array
->bitmap
);
1868 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1869 if (idx
>= MAX_PRIO
) {
1870 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1871 array
= busiest
->active
;
1872 dst_array
= this_rq
->active
;
1878 head
= array
->queue
+ idx
;
1881 tmp
= list_entry(curr
, task_t
, run_list
);
1885 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1892 #ifdef CONFIG_SCHEDSTATS
1893 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1894 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1897 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1900 /* We only want to steal up to the prescribed number of tasks. */
1901 if (pulled
< max_nr_move
) {
1909 * Right now, this is the only place pull_task() is called,
1910 * so we can safely collect pull_task() stats here rather than
1911 * inside pull_task().
1913 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1916 *all_pinned
= pinned
;
1921 * find_busiest_group finds and returns the busiest CPU group within the
1922 * domain. It calculates and returns the number of tasks which should be
1923 * moved to restore balance via the imbalance parameter.
1925 static struct sched_group
*
1926 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1927 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
,
1930 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1931 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1932 unsigned long max_pull
;
1935 max_load
= this_load
= total_load
= total_pwr
= 0;
1936 if (idle
== NOT_IDLE
)
1937 load_idx
= sd
->busy_idx
;
1938 else if (idle
== NEWLY_IDLE
)
1939 load_idx
= sd
->newidle_idx
;
1941 load_idx
= sd
->idle_idx
;
1948 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1950 /* Tally up the load of all CPUs in the group */
1953 for_each_cpu_mask(i
, group
->cpumask
) {
1954 if (!cpu_isset(i
, *cpus
))
1957 if (*sd_idle
&& !idle_cpu(i
))
1960 /* Bias balancing toward cpus of our domain */
1962 load
= target_load(i
, load_idx
);
1964 load
= source_load(i
, load_idx
);
1969 total_load
+= avg_load
;
1970 total_pwr
+= group
->cpu_power
;
1972 /* Adjust by relative CPU power of the group */
1973 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1976 this_load
= avg_load
;
1978 } else if (avg_load
> max_load
) {
1979 max_load
= avg_load
;
1982 group
= group
->next
;
1983 } while (group
!= sd
->groups
);
1985 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
1988 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
1990 if (this_load
>= avg_load
||
1991 100*max_load
<= sd
->imbalance_pct
*this_load
)
1995 * We're trying to get all the cpus to the average_load, so we don't
1996 * want to push ourselves above the average load, nor do we wish to
1997 * reduce the max loaded cpu below the average load, as either of these
1998 * actions would just result in more rebalancing later, and ping-pong
1999 * tasks around. Thus we look for the minimum possible imbalance.
2000 * Negative imbalances (*we* are more loaded than anyone else) will
2001 * be counted as no imbalance for these purposes -- we can't fix that
2002 * by pulling tasks to us. Be careful of negative numbers as they'll
2003 * appear as very large values with unsigned longs.
2006 /* Don't want to pull so many tasks that a group would go idle */
2007 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2009 /* How much load to actually move to equalise the imbalance */
2010 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2011 (avg_load
- this_load
) * this->cpu_power
)
2014 if (*imbalance
< SCHED_LOAD_SCALE
) {
2015 unsigned long pwr_now
= 0, pwr_move
= 0;
2018 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2024 * OK, we don't have enough imbalance to justify moving tasks,
2025 * however we may be able to increase total CPU power used by
2029 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2030 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2031 pwr_now
/= SCHED_LOAD_SCALE
;
2033 /* Amount of load we'd subtract */
2034 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2036 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2039 /* Amount of load we'd add */
2040 if (max_load
*busiest
->cpu_power
<
2041 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2042 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2044 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2045 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2046 pwr_move
/= SCHED_LOAD_SCALE
;
2048 /* Move if we gain throughput */
2049 if (pwr_move
<= pwr_now
)
2056 /* Get rid of the scaling factor, rounding down as we divide */
2057 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2067 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2069 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2070 enum idle_type idle
, cpumask_t
*cpus
)
2072 unsigned long load
, max_load
= 0;
2073 runqueue_t
*busiest
= NULL
;
2076 for_each_cpu_mask(i
, group
->cpumask
) {
2077 if (!cpu_isset(i
, *cpus
))
2080 load
= source_load(i
, 0);
2082 if (load
> max_load
) {
2084 busiest
= cpu_rq(i
);
2092 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2093 * so long as it is large enough.
2095 #define MAX_PINNED_INTERVAL 512
2098 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2099 * tasks if there is an imbalance.
2101 * Called with this_rq unlocked.
2103 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2104 struct sched_domain
*sd
, enum idle_type idle
)
2106 struct sched_group
*group
;
2107 runqueue_t
*busiest
;
2108 unsigned long imbalance
;
2109 int nr_moved
, all_pinned
= 0;
2110 int active_balance
= 0;
2112 cpumask_t cpus
= CPU_MASK_ALL
;
2114 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2117 schedstat_inc(sd
, lb_cnt
[idle
]);
2120 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
2123 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2127 busiest
= find_busiest_queue(group
, idle
, &cpus
);
2129 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2133 BUG_ON(busiest
== this_rq
);
2135 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2138 if (busiest
->nr_running
> 1) {
2140 * Attempt to move tasks. If find_busiest_group has found
2141 * an imbalance but busiest->nr_running <= 1, the group is
2142 * still unbalanced. nr_moved simply stays zero, so it is
2143 * correctly treated as an imbalance.
2145 double_rq_lock(this_rq
, busiest
);
2146 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2147 imbalance
, sd
, idle
, &all_pinned
);
2148 double_rq_unlock(this_rq
, busiest
);
2150 /* All tasks on this runqueue were pinned by CPU affinity */
2151 if (unlikely(all_pinned
)) {
2152 cpu_clear(busiest
->cpu
, cpus
);
2153 if (!cpus_empty(cpus
))
2160 schedstat_inc(sd
, lb_failed
[idle
]);
2161 sd
->nr_balance_failed
++;
2163 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2165 spin_lock(&busiest
->lock
);
2167 /* don't kick the migration_thread, if the curr
2168 * task on busiest cpu can't be moved to this_cpu
2170 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2171 spin_unlock(&busiest
->lock
);
2173 goto out_one_pinned
;
2176 if (!busiest
->active_balance
) {
2177 busiest
->active_balance
= 1;
2178 busiest
->push_cpu
= this_cpu
;
2181 spin_unlock(&busiest
->lock
);
2183 wake_up_process(busiest
->migration_thread
);
2186 * We've kicked active balancing, reset the failure
2189 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2192 sd
->nr_balance_failed
= 0;
2194 if (likely(!active_balance
)) {
2195 /* We were unbalanced, so reset the balancing interval */
2196 sd
->balance_interval
= sd
->min_interval
;
2199 * If we've begun active balancing, start to back off. This
2200 * case may not be covered by the all_pinned logic if there
2201 * is only 1 task on the busy runqueue (because we don't call
2204 if (sd
->balance_interval
< sd
->max_interval
)
2205 sd
->balance_interval
*= 2;
2208 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2213 schedstat_inc(sd
, lb_balanced
[idle
]);
2215 sd
->nr_balance_failed
= 0;
2218 /* tune up the balancing interval */
2219 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2220 (sd
->balance_interval
< sd
->max_interval
))
2221 sd
->balance_interval
*= 2;
2223 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2230 * tasks if there is an imbalance.
2232 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2233 * this_rq is locked.
2235 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2236 struct sched_domain
*sd
)
2238 struct sched_group
*group
;
2239 runqueue_t
*busiest
= NULL
;
2240 unsigned long imbalance
;
2243 cpumask_t cpus
= CPU_MASK_ALL
;
2245 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2248 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2250 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
,
2253 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2257 busiest
= find_busiest_queue(group
, NEWLY_IDLE
, &cpus
);
2259 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2263 BUG_ON(busiest
== this_rq
);
2265 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2268 if (busiest
->nr_running
> 1) {
2269 /* Attempt to move tasks */
2270 double_lock_balance(this_rq
, busiest
);
2271 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2272 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2273 spin_unlock(&busiest
->lock
);
2276 cpu_clear(busiest
->cpu
, cpus
);
2277 if (!cpus_empty(cpus
))
2283 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2284 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2287 sd
->nr_balance_failed
= 0;
2292 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2293 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2295 sd
->nr_balance_failed
= 0;
2300 * idle_balance is called by schedule() if this_cpu is about to become
2301 * idle. Attempts to pull tasks from other CPUs.
2303 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2305 struct sched_domain
*sd
;
2307 for_each_domain(this_cpu
, sd
) {
2308 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2309 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2310 /* We've pulled tasks over so stop searching */
2318 * active_load_balance is run by migration threads. It pushes running tasks
2319 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2320 * running on each physical CPU where possible, and avoids physical /
2321 * logical imbalances.
2323 * Called with busiest_rq locked.
2325 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2327 struct sched_domain
*sd
;
2328 runqueue_t
*target_rq
;
2329 int target_cpu
= busiest_rq
->push_cpu
;
2331 if (busiest_rq
->nr_running
<= 1)
2332 /* no task to move */
2335 target_rq
= cpu_rq(target_cpu
);
2338 * This condition is "impossible", if it occurs
2339 * we need to fix it. Originally reported by
2340 * Bjorn Helgaas on a 128-cpu setup.
2342 BUG_ON(busiest_rq
== target_rq
);
2344 /* move a task from busiest_rq to target_rq */
2345 double_lock_balance(busiest_rq
, target_rq
);
2347 /* Search for an sd spanning us and the target CPU. */
2348 for_each_domain(target_cpu
, sd
)
2349 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2350 cpu_isset(busiest_cpu
, sd
->span
))
2353 if (unlikely(sd
== NULL
))
2356 schedstat_inc(sd
, alb_cnt
);
2358 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2359 schedstat_inc(sd
, alb_pushed
);
2361 schedstat_inc(sd
, alb_failed
);
2363 spin_unlock(&target_rq
->lock
);
2367 * rebalance_tick will get called every timer tick, on every CPU.
2369 * It checks each scheduling domain to see if it is due to be balanced,
2370 * and initiates a balancing operation if so.
2372 * Balancing parameters are set up in arch_init_sched_domains.
2375 /* Don't have all balancing operations going off at once */
2376 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2378 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2379 enum idle_type idle
)
2381 unsigned long old_load
, this_load
;
2382 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2383 struct sched_domain
*sd
;
2386 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2387 /* Update our load */
2388 for (i
= 0; i
< 3; i
++) {
2389 unsigned long new_load
= this_load
;
2391 old_load
= this_rq
->cpu_load
[i
];
2393 * Round up the averaging division if load is increasing. This
2394 * prevents us from getting stuck on 9 if the load is 10, for
2397 if (new_load
> old_load
)
2398 new_load
+= scale
-1;
2399 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2402 for_each_domain(this_cpu
, sd
) {
2403 unsigned long interval
;
2405 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2408 interval
= sd
->balance_interval
;
2409 if (idle
!= SCHED_IDLE
)
2410 interval
*= sd
->busy_factor
;
2412 /* scale ms to jiffies */
2413 interval
= msecs_to_jiffies(interval
);
2414 if (unlikely(!interval
))
2417 if (j
- sd
->last_balance
>= interval
) {
2418 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2420 * We've pulled tasks over so either we're no
2421 * longer idle, or one of our SMT siblings is
2426 sd
->last_balance
+= interval
;
2432 * on UP we do not need to balance between CPUs:
2434 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2437 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2442 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2445 #ifdef CONFIG_SCHED_SMT
2446 spin_lock(&rq
->lock
);
2448 * If an SMT sibling task has been put to sleep for priority
2449 * reasons reschedule the idle task to see if it can now run.
2451 if (rq
->nr_running
) {
2452 resched_task(rq
->idle
);
2455 spin_unlock(&rq
->lock
);
2460 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2462 EXPORT_PER_CPU_SYMBOL(kstat
);
2465 * This is called on clock ticks and on context switches.
2466 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2468 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2469 unsigned long long now
)
2471 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2472 p
->sched_time
+= now
- last
;
2476 * Return current->sched_time plus any more ns on the sched_clock
2477 * that have not yet been banked.
2479 unsigned long long current_sched_time(const task_t
*tsk
)
2481 unsigned long long ns
;
2482 unsigned long flags
;
2483 local_irq_save(flags
);
2484 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2485 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2486 local_irq_restore(flags
);
2491 * We place interactive tasks back into the active array, if possible.
2493 * To guarantee that this does not starve expired tasks we ignore the
2494 * interactivity of a task if the first expired task had to wait more
2495 * than a 'reasonable' amount of time. This deadline timeout is
2496 * load-dependent, as the frequency of array switched decreases with
2497 * increasing number of running tasks. We also ignore the interactivity
2498 * if a better static_prio task has expired:
2500 #define EXPIRED_STARVING(rq) \
2501 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2502 (jiffies - (rq)->expired_timestamp >= \
2503 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2504 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2507 * Account user cpu time to a process.
2508 * @p: the process that the cpu time gets accounted to
2509 * @hardirq_offset: the offset to subtract from hardirq_count()
2510 * @cputime: the cpu time spent in user space since the last update
2512 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2514 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2517 p
->utime
= cputime_add(p
->utime
, cputime
);
2519 /* Add user time to cpustat. */
2520 tmp
= cputime_to_cputime64(cputime
);
2521 if (TASK_NICE(p
) > 0)
2522 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2524 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2528 * Account system cpu time to a process.
2529 * @p: the process that the cpu time gets accounted to
2530 * @hardirq_offset: the offset to subtract from hardirq_count()
2531 * @cputime: the cpu time spent in kernel space since the last update
2533 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2536 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2537 runqueue_t
*rq
= this_rq();
2540 p
->stime
= cputime_add(p
->stime
, cputime
);
2542 /* Add system time to cpustat. */
2543 tmp
= cputime_to_cputime64(cputime
);
2544 if (hardirq_count() - hardirq_offset
)
2545 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2546 else if (softirq_count())
2547 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2548 else if (p
!= rq
->idle
)
2549 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2550 else if (atomic_read(&rq
->nr_iowait
) > 0)
2551 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2553 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2554 /* Account for system time used */
2555 acct_update_integrals(p
);
2559 * Account for involuntary wait time.
2560 * @p: the process from which the cpu time has been stolen
2561 * @steal: the cpu time spent in involuntary wait
2563 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2565 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2566 cputime64_t tmp
= cputime_to_cputime64(steal
);
2567 runqueue_t
*rq
= this_rq();
2569 if (p
== rq
->idle
) {
2570 p
->stime
= cputime_add(p
->stime
, steal
);
2571 if (atomic_read(&rq
->nr_iowait
) > 0)
2572 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2574 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2576 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2580 * This function gets called by the timer code, with HZ frequency.
2581 * We call it with interrupts disabled.
2583 * It also gets called by the fork code, when changing the parent's
2586 void scheduler_tick(void)
2588 int cpu
= smp_processor_id();
2589 runqueue_t
*rq
= this_rq();
2590 task_t
*p
= current
;
2591 unsigned long long now
= sched_clock();
2593 update_cpu_clock(p
, rq
, now
);
2595 rq
->timestamp_last_tick
= now
;
2597 if (p
== rq
->idle
) {
2598 if (wake_priority_sleeper(rq
))
2600 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2604 /* Task might have expired already, but not scheduled off yet */
2605 if (p
->array
!= rq
->active
) {
2606 set_tsk_need_resched(p
);
2609 spin_lock(&rq
->lock
);
2611 * The task was running during this tick - update the
2612 * time slice counter. Note: we do not update a thread's
2613 * priority until it either goes to sleep or uses up its
2614 * timeslice. This makes it possible for interactive tasks
2615 * to use up their timeslices at their highest priority levels.
2619 * RR tasks need a special form of timeslice management.
2620 * FIFO tasks have no timeslices.
2622 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2623 p
->time_slice
= task_timeslice(p
);
2624 p
->first_time_slice
= 0;
2625 set_tsk_need_resched(p
);
2627 /* put it at the end of the queue: */
2628 requeue_task(p
, rq
->active
);
2632 if (!--p
->time_slice
) {
2633 dequeue_task(p
, rq
->active
);
2634 set_tsk_need_resched(p
);
2635 p
->prio
= effective_prio(p
);
2636 p
->time_slice
= task_timeslice(p
);
2637 p
->first_time_slice
= 0;
2639 if (!rq
->expired_timestamp
)
2640 rq
->expired_timestamp
= jiffies
;
2641 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2642 enqueue_task(p
, rq
->expired
);
2643 if (p
->static_prio
< rq
->best_expired_prio
)
2644 rq
->best_expired_prio
= p
->static_prio
;
2646 enqueue_task(p
, rq
->active
);
2649 * Prevent a too long timeslice allowing a task to monopolize
2650 * the CPU. We do this by splitting up the timeslice into
2653 * Note: this does not mean the task's timeslices expire or
2654 * get lost in any way, they just might be preempted by
2655 * another task of equal priority. (one with higher
2656 * priority would have preempted this task already.) We
2657 * requeue this task to the end of the list on this priority
2658 * level, which is in essence a round-robin of tasks with
2661 * This only applies to tasks in the interactive
2662 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2664 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2665 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2666 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2667 (p
->array
== rq
->active
)) {
2669 requeue_task(p
, rq
->active
);
2670 set_tsk_need_resched(p
);
2674 spin_unlock(&rq
->lock
);
2676 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2679 #ifdef CONFIG_SCHED_SMT
2680 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2682 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2683 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2684 resched_task(rq
->idle
);
2687 static void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2689 struct sched_domain
*tmp
, *sd
= NULL
;
2690 cpumask_t sibling_map
;
2693 for_each_domain(this_cpu
, tmp
)
2694 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2701 * Unlock the current runqueue because we have to lock in
2702 * CPU order to avoid deadlocks. Caller knows that we might
2703 * unlock. We keep IRQs disabled.
2705 spin_unlock(&this_rq
->lock
);
2707 sibling_map
= sd
->span
;
2709 for_each_cpu_mask(i
, sibling_map
)
2710 spin_lock(&cpu_rq(i
)->lock
);
2712 * We clear this CPU from the mask. This both simplifies the
2713 * inner loop and keps this_rq locked when we exit:
2715 cpu_clear(this_cpu
, sibling_map
);
2717 for_each_cpu_mask(i
, sibling_map
) {
2718 runqueue_t
*smt_rq
= cpu_rq(i
);
2720 wakeup_busy_runqueue(smt_rq
);
2723 for_each_cpu_mask(i
, sibling_map
)
2724 spin_unlock(&cpu_rq(i
)->lock
);
2726 * We exit with this_cpu's rq still held and IRQs
2732 * number of 'lost' timeslices this task wont be able to fully
2733 * utilize, if another task runs on a sibling. This models the
2734 * slowdown effect of other tasks running on siblings:
2736 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2738 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2741 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2743 struct sched_domain
*tmp
, *sd
= NULL
;
2744 cpumask_t sibling_map
;
2745 prio_array_t
*array
;
2749 for_each_domain(this_cpu
, tmp
)
2750 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2757 * The same locking rules and details apply as for
2758 * wake_sleeping_dependent():
2760 spin_unlock(&this_rq
->lock
);
2761 sibling_map
= sd
->span
;
2762 for_each_cpu_mask(i
, sibling_map
)
2763 spin_lock(&cpu_rq(i
)->lock
);
2764 cpu_clear(this_cpu
, sibling_map
);
2767 * Establish next task to be run - it might have gone away because
2768 * we released the runqueue lock above:
2770 if (!this_rq
->nr_running
)
2772 array
= this_rq
->active
;
2773 if (!array
->nr_active
)
2774 array
= this_rq
->expired
;
2775 BUG_ON(!array
->nr_active
);
2777 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2780 for_each_cpu_mask(i
, sibling_map
) {
2781 runqueue_t
*smt_rq
= cpu_rq(i
);
2782 task_t
*smt_curr
= smt_rq
->curr
;
2784 /* Kernel threads do not participate in dependent sleeping */
2785 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2786 goto check_smt_task
;
2789 * If a user task with lower static priority than the
2790 * running task on the SMT sibling is trying to schedule,
2791 * delay it till there is proportionately less timeslice
2792 * left of the sibling task to prevent a lower priority
2793 * task from using an unfair proportion of the
2794 * physical cpu's resources. -ck
2796 if (rt_task(smt_curr
)) {
2798 * With real time tasks we run non-rt tasks only
2799 * per_cpu_gain% of the time.
2801 if ((jiffies
% DEF_TIMESLICE
) >
2802 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2805 if (smt_curr
->static_prio
< p
->static_prio
&&
2806 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2807 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2811 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2815 wakeup_busy_runqueue(smt_rq
);
2820 * Reschedule a lower priority task on the SMT sibling for
2821 * it to be put to sleep, or wake it up if it has been put to
2822 * sleep for priority reasons to see if it should run now.
2825 if ((jiffies
% DEF_TIMESLICE
) >
2826 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2827 resched_task(smt_curr
);
2829 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2830 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2831 resched_task(smt_curr
);
2833 wakeup_busy_runqueue(smt_rq
);
2837 for_each_cpu_mask(i
, sibling_map
)
2838 spin_unlock(&cpu_rq(i
)->lock
);
2842 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2846 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2852 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2854 void fastcall
add_preempt_count(int val
)
2859 BUG_ON((preempt_count() < 0));
2860 preempt_count() += val
;
2862 * Spinlock count overflowing soon?
2864 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2866 EXPORT_SYMBOL(add_preempt_count
);
2868 void fastcall
sub_preempt_count(int val
)
2873 BUG_ON(val
> preempt_count());
2875 * Is the spinlock portion underflowing?
2877 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2878 preempt_count() -= val
;
2880 EXPORT_SYMBOL(sub_preempt_count
);
2885 * schedule() is the main scheduler function.
2887 asmlinkage
void __sched
schedule(void)
2890 task_t
*prev
, *next
;
2892 prio_array_t
*array
;
2893 struct list_head
*queue
;
2894 unsigned long long now
;
2895 unsigned long run_time
;
2896 int cpu
, idx
, new_prio
;
2899 * Test if we are atomic. Since do_exit() needs to call into
2900 * schedule() atomically, we ignore that path for now.
2901 * Otherwise, whine if we are scheduling when we should not be.
2903 if (likely(!current
->exit_state
)) {
2904 if (unlikely(in_atomic())) {
2905 printk(KERN_ERR
"scheduling while atomic: "
2907 current
->comm
, preempt_count(), current
->pid
);
2911 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2916 release_kernel_lock(prev
);
2917 need_resched_nonpreemptible
:
2921 * The idle thread is not allowed to schedule!
2922 * Remove this check after it has been exercised a bit.
2924 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2925 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2929 schedstat_inc(rq
, sched_cnt
);
2930 now
= sched_clock();
2931 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2932 run_time
= now
- prev
->timestamp
;
2933 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2936 run_time
= NS_MAX_SLEEP_AVG
;
2939 * Tasks charged proportionately less run_time at high sleep_avg to
2940 * delay them losing their interactive status
2942 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2944 spin_lock_irq(&rq
->lock
);
2946 if (unlikely(prev
->flags
& PF_DEAD
))
2947 prev
->state
= EXIT_DEAD
;
2949 switch_count
= &prev
->nivcsw
;
2950 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2951 switch_count
= &prev
->nvcsw
;
2952 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2953 unlikely(signal_pending(prev
))))
2954 prev
->state
= TASK_RUNNING
;
2956 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2957 rq
->nr_uninterruptible
++;
2958 deactivate_task(prev
, rq
);
2962 cpu
= smp_processor_id();
2963 if (unlikely(!rq
->nr_running
)) {
2965 idle_balance(cpu
, rq
);
2966 if (!rq
->nr_running
) {
2968 rq
->expired_timestamp
= 0;
2969 wake_sleeping_dependent(cpu
, rq
);
2971 * wake_sleeping_dependent() might have released
2972 * the runqueue, so break out if we got new
2975 if (!rq
->nr_running
)
2979 if (dependent_sleeper(cpu
, rq
)) {
2984 * dependent_sleeper() releases and reacquires the runqueue
2985 * lock, hence go into the idle loop if the rq went
2988 if (unlikely(!rq
->nr_running
))
2993 if (unlikely(!array
->nr_active
)) {
2995 * Switch the active and expired arrays.
2997 schedstat_inc(rq
, sched_switch
);
2998 rq
->active
= rq
->expired
;
2999 rq
->expired
= array
;
3001 rq
->expired_timestamp
= 0;
3002 rq
->best_expired_prio
= MAX_PRIO
;
3005 idx
= sched_find_first_bit(array
->bitmap
);
3006 queue
= array
->queue
+ idx
;
3007 next
= list_entry(queue
->next
, task_t
, run_list
);
3009 if (!rt_task(next
) && next
->activated
> 0) {
3010 unsigned long long delta
= now
- next
->timestamp
;
3011 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3014 if (next
->activated
== 1)
3015 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3017 array
= next
->array
;
3018 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3020 if (unlikely(next
->prio
!= new_prio
)) {
3021 dequeue_task(next
, array
);
3022 next
->prio
= new_prio
;
3023 enqueue_task(next
, array
);
3025 requeue_task(next
, array
);
3027 next
->activated
= 0;
3029 if (next
== rq
->idle
)
3030 schedstat_inc(rq
, sched_goidle
);
3032 prefetch_stack(next
);
3033 clear_tsk_need_resched(prev
);
3034 rcu_qsctr_inc(task_cpu(prev
));
3036 update_cpu_clock(prev
, rq
, now
);
3038 prev
->sleep_avg
-= run_time
;
3039 if ((long)prev
->sleep_avg
<= 0)
3040 prev
->sleep_avg
= 0;
3041 prev
->timestamp
= prev
->last_ran
= now
;
3043 sched_info_switch(prev
, next
);
3044 if (likely(prev
!= next
)) {
3045 next
->timestamp
= now
;
3050 prepare_task_switch(rq
, next
);
3051 prev
= context_switch(rq
, prev
, next
);
3054 * this_rq must be evaluated again because prev may have moved
3055 * CPUs since it called schedule(), thus the 'rq' on its stack
3056 * frame will be invalid.
3058 finish_task_switch(this_rq(), prev
);
3060 spin_unlock_irq(&rq
->lock
);
3063 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3064 goto need_resched_nonpreemptible
;
3065 preempt_enable_no_resched();
3066 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3070 EXPORT_SYMBOL(schedule
);
3072 #ifdef CONFIG_PREEMPT
3074 * this is is the entry point to schedule() from in-kernel preemption
3075 * off of preempt_enable. Kernel preemptions off return from interrupt
3076 * occur there and call schedule directly.
3078 asmlinkage
void __sched
preempt_schedule(void)
3080 struct thread_info
*ti
= current_thread_info();
3081 #ifdef CONFIG_PREEMPT_BKL
3082 struct task_struct
*task
= current
;
3083 int saved_lock_depth
;
3086 * If there is a non-zero preempt_count or interrupts are disabled,
3087 * we do not want to preempt the current task. Just return..
3089 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3093 add_preempt_count(PREEMPT_ACTIVE
);
3095 * We keep the big kernel semaphore locked, but we
3096 * clear ->lock_depth so that schedule() doesnt
3097 * auto-release the semaphore:
3099 #ifdef CONFIG_PREEMPT_BKL
3100 saved_lock_depth
= task
->lock_depth
;
3101 task
->lock_depth
= -1;
3104 #ifdef CONFIG_PREEMPT_BKL
3105 task
->lock_depth
= saved_lock_depth
;
3107 sub_preempt_count(PREEMPT_ACTIVE
);
3109 /* we could miss a preemption opportunity between schedule and now */
3111 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3115 EXPORT_SYMBOL(preempt_schedule
);
3118 * this is is the entry point to schedule() from kernel preemption
3119 * off of irq context.
3120 * Note, that this is called and return with irqs disabled. This will
3121 * protect us against recursive calling from irq.
3123 asmlinkage
void __sched
preempt_schedule_irq(void)
3125 struct thread_info
*ti
= current_thread_info();
3126 #ifdef CONFIG_PREEMPT_BKL
3127 struct task_struct
*task
= current
;
3128 int saved_lock_depth
;
3130 /* Catch callers which need to be fixed*/
3131 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3134 add_preempt_count(PREEMPT_ACTIVE
);
3136 * We keep the big kernel semaphore locked, but we
3137 * clear ->lock_depth so that schedule() doesnt
3138 * auto-release the semaphore:
3140 #ifdef CONFIG_PREEMPT_BKL
3141 saved_lock_depth
= task
->lock_depth
;
3142 task
->lock_depth
= -1;
3146 local_irq_disable();
3147 #ifdef CONFIG_PREEMPT_BKL
3148 task
->lock_depth
= saved_lock_depth
;
3150 sub_preempt_count(PREEMPT_ACTIVE
);
3152 /* we could miss a preemption opportunity between schedule and now */
3154 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3158 #endif /* CONFIG_PREEMPT */
3160 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3163 task_t
*p
= curr
->private;
3164 return try_to_wake_up(p
, mode
, sync
);
3167 EXPORT_SYMBOL(default_wake_function
);
3170 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3171 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3172 * number) then we wake all the non-exclusive tasks and one exclusive task.
3174 * There are circumstances in which we can try to wake a task which has already
3175 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3176 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3178 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3179 int nr_exclusive
, int sync
, void *key
)
3181 struct list_head
*tmp
, *next
;
3183 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3186 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3187 flags
= curr
->flags
;
3188 if (curr
->func(curr
, mode
, sync
, key
) &&
3189 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3196 * __wake_up - wake up threads blocked on a waitqueue.
3198 * @mode: which threads
3199 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3200 * @key: is directly passed to the wakeup function
3202 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3203 int nr_exclusive
, void *key
)
3205 unsigned long flags
;
3207 spin_lock_irqsave(&q
->lock
, flags
);
3208 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3209 spin_unlock_irqrestore(&q
->lock
, flags
);
3212 EXPORT_SYMBOL(__wake_up
);
3215 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3217 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3219 __wake_up_common(q
, mode
, 1, 0, NULL
);
3223 * __wake_up_sync - wake up threads blocked on a waitqueue.
3225 * @mode: which threads
3226 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3228 * The sync wakeup differs that the waker knows that it will schedule
3229 * away soon, so while the target thread will be woken up, it will not
3230 * be migrated to another CPU - ie. the two threads are 'synchronized'
3231 * with each other. This can prevent needless bouncing between CPUs.
3233 * On UP it can prevent extra preemption.
3236 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3238 unsigned long flags
;
3244 if (unlikely(!nr_exclusive
))
3247 spin_lock_irqsave(&q
->lock
, flags
);
3248 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3249 spin_unlock_irqrestore(&q
->lock
, flags
);
3251 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3253 void fastcall
complete(struct completion
*x
)
3255 unsigned long flags
;
3257 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3259 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3261 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3263 EXPORT_SYMBOL(complete
);
3265 void fastcall
complete_all(struct completion
*x
)
3267 unsigned long flags
;
3269 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3270 x
->done
+= UINT_MAX
/2;
3271 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3273 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3275 EXPORT_SYMBOL(complete_all
);
3277 void fastcall __sched
wait_for_completion(struct completion
*x
)
3280 spin_lock_irq(&x
->wait
.lock
);
3282 DECLARE_WAITQUEUE(wait
, current
);
3284 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3285 __add_wait_queue_tail(&x
->wait
, &wait
);
3287 __set_current_state(TASK_UNINTERRUPTIBLE
);
3288 spin_unlock_irq(&x
->wait
.lock
);
3290 spin_lock_irq(&x
->wait
.lock
);
3292 __remove_wait_queue(&x
->wait
, &wait
);
3295 spin_unlock_irq(&x
->wait
.lock
);
3297 EXPORT_SYMBOL(wait_for_completion
);
3299 unsigned long fastcall __sched
3300 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3304 spin_lock_irq(&x
->wait
.lock
);
3306 DECLARE_WAITQUEUE(wait
, current
);
3308 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3309 __add_wait_queue_tail(&x
->wait
, &wait
);
3311 __set_current_state(TASK_UNINTERRUPTIBLE
);
3312 spin_unlock_irq(&x
->wait
.lock
);
3313 timeout
= schedule_timeout(timeout
);
3314 spin_lock_irq(&x
->wait
.lock
);
3316 __remove_wait_queue(&x
->wait
, &wait
);
3320 __remove_wait_queue(&x
->wait
, &wait
);
3324 spin_unlock_irq(&x
->wait
.lock
);
3327 EXPORT_SYMBOL(wait_for_completion_timeout
);
3329 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3335 spin_lock_irq(&x
->wait
.lock
);
3337 DECLARE_WAITQUEUE(wait
, current
);
3339 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3340 __add_wait_queue_tail(&x
->wait
, &wait
);
3342 if (signal_pending(current
)) {
3344 __remove_wait_queue(&x
->wait
, &wait
);
3347 __set_current_state(TASK_INTERRUPTIBLE
);
3348 spin_unlock_irq(&x
->wait
.lock
);
3350 spin_lock_irq(&x
->wait
.lock
);
3352 __remove_wait_queue(&x
->wait
, &wait
);
3356 spin_unlock_irq(&x
->wait
.lock
);
3360 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3362 unsigned long fastcall __sched
3363 wait_for_completion_interruptible_timeout(struct completion
*x
,
3364 unsigned long timeout
)
3368 spin_lock_irq(&x
->wait
.lock
);
3370 DECLARE_WAITQUEUE(wait
, current
);
3372 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3373 __add_wait_queue_tail(&x
->wait
, &wait
);
3375 if (signal_pending(current
)) {
3376 timeout
= -ERESTARTSYS
;
3377 __remove_wait_queue(&x
->wait
, &wait
);
3380 __set_current_state(TASK_INTERRUPTIBLE
);
3381 spin_unlock_irq(&x
->wait
.lock
);
3382 timeout
= schedule_timeout(timeout
);
3383 spin_lock_irq(&x
->wait
.lock
);
3385 __remove_wait_queue(&x
->wait
, &wait
);
3389 __remove_wait_queue(&x
->wait
, &wait
);
3393 spin_unlock_irq(&x
->wait
.lock
);
3396 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3399 #define SLEEP_ON_VAR \
3400 unsigned long flags; \
3401 wait_queue_t wait; \
3402 init_waitqueue_entry(&wait, current);
3404 #define SLEEP_ON_HEAD \
3405 spin_lock_irqsave(&q->lock,flags); \
3406 __add_wait_queue(q, &wait); \
3407 spin_unlock(&q->lock);
3409 #define SLEEP_ON_TAIL \
3410 spin_lock_irq(&q->lock); \
3411 __remove_wait_queue(q, &wait); \
3412 spin_unlock_irqrestore(&q->lock, flags);
3414 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3418 current
->state
= TASK_INTERRUPTIBLE
;
3425 EXPORT_SYMBOL(interruptible_sleep_on
);
3427 long fastcall __sched
3428 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3432 current
->state
= TASK_INTERRUPTIBLE
;
3435 timeout
= schedule_timeout(timeout
);
3441 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3443 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3447 current
->state
= TASK_UNINTERRUPTIBLE
;
3454 EXPORT_SYMBOL(sleep_on
);
3456 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3460 current
->state
= TASK_UNINTERRUPTIBLE
;
3463 timeout
= schedule_timeout(timeout
);
3469 EXPORT_SYMBOL(sleep_on_timeout
);
3471 void set_user_nice(task_t
*p
, long nice
)
3473 unsigned long flags
;
3474 prio_array_t
*array
;
3476 int old_prio
, new_prio
, delta
;
3478 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3481 * We have to be careful, if called from sys_setpriority(),
3482 * the task might be in the middle of scheduling on another CPU.
3484 rq
= task_rq_lock(p
, &flags
);
3486 * The RT priorities are set via sched_setscheduler(), but we still
3487 * allow the 'normal' nice value to be set - but as expected
3488 * it wont have any effect on scheduling until the task is
3489 * not SCHED_NORMAL/SCHED_BATCH:
3492 p
->static_prio
= NICE_TO_PRIO(nice
);
3497 dequeue_task(p
, array
);
3500 new_prio
= NICE_TO_PRIO(nice
);
3501 delta
= new_prio
- old_prio
;
3502 p
->static_prio
= NICE_TO_PRIO(nice
);
3506 enqueue_task(p
, array
);
3508 * If the task increased its priority or is running and
3509 * lowered its priority, then reschedule its CPU:
3511 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3512 resched_task(rq
->curr
);
3515 task_rq_unlock(rq
, &flags
);
3518 EXPORT_SYMBOL(set_user_nice
);
3521 * can_nice - check if a task can reduce its nice value
3525 int can_nice(const task_t
*p
, const int nice
)
3527 /* convert nice value [19,-20] to rlimit style value [1,40] */
3528 int nice_rlim
= 20 - nice
;
3529 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3530 capable(CAP_SYS_NICE
));
3533 #ifdef __ARCH_WANT_SYS_NICE
3536 * sys_nice - change the priority of the current process.
3537 * @increment: priority increment
3539 * sys_setpriority is a more generic, but much slower function that
3540 * does similar things.
3542 asmlinkage
long sys_nice(int increment
)
3548 * Setpriority might change our priority at the same moment.
3549 * We don't have to worry. Conceptually one call occurs first
3550 * and we have a single winner.
3552 if (increment
< -40)
3557 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3563 if (increment
< 0 && !can_nice(current
, nice
))
3566 retval
= security_task_setnice(current
, nice
);
3570 set_user_nice(current
, nice
);
3577 * task_prio - return the priority value of a given task.
3578 * @p: the task in question.
3580 * This is the priority value as seen by users in /proc.
3581 * RT tasks are offset by -200. Normal tasks are centered
3582 * around 0, value goes from -16 to +15.
3584 int task_prio(const task_t
*p
)
3586 return p
->prio
- MAX_RT_PRIO
;
3590 * task_nice - return the nice value of a given task.
3591 * @p: the task in question.
3593 int task_nice(const task_t
*p
)
3595 return TASK_NICE(p
);
3597 EXPORT_SYMBOL_GPL(task_nice
);
3600 * idle_cpu - is a given cpu idle currently?
3601 * @cpu: the processor in question.
3603 int idle_cpu(int cpu
)
3605 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3609 * idle_task - return the idle task for a given cpu.
3610 * @cpu: the processor in question.
3612 task_t
*idle_task(int cpu
)
3614 return cpu_rq(cpu
)->idle
;
3618 * find_process_by_pid - find a process with a matching PID value.
3619 * @pid: the pid in question.
3621 static inline task_t
*find_process_by_pid(pid_t pid
)
3623 return pid
? find_task_by_pid(pid
) : current
;
3626 /* Actually do priority change: must hold rq lock. */
3627 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3631 p
->rt_priority
= prio
;
3632 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3633 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3635 p
->prio
= p
->static_prio
;
3637 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3639 if (policy
== SCHED_BATCH
)
3645 * sched_setscheduler - change the scheduling policy and/or RT priority of
3647 * @p: the task in question.
3648 * @policy: new policy.
3649 * @param: structure containing the new RT priority.
3651 int sched_setscheduler(struct task_struct
*p
, int policy
,
3652 struct sched_param
*param
)
3655 int oldprio
, oldpolicy
= -1;
3656 prio_array_t
*array
;
3657 unsigned long flags
;
3661 /* double check policy once rq lock held */
3663 policy
= oldpolicy
= p
->policy
;
3664 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3665 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3668 * Valid priorities for SCHED_FIFO and SCHED_RR are
3669 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3672 if (param
->sched_priority
< 0 ||
3673 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3674 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3676 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3677 != (param
->sched_priority
== 0))
3681 * Allow unprivileged RT tasks to decrease priority:
3683 if (!capable(CAP_SYS_NICE
)) {
3685 * can't change policy, except between SCHED_NORMAL
3688 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3689 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3690 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3692 /* can't increase priority */
3693 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3694 param
->sched_priority
> p
->rt_priority
&&
3695 param
->sched_priority
>
3696 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3698 /* can't change other user's priorities */
3699 if ((current
->euid
!= p
->euid
) &&
3700 (current
->euid
!= p
->uid
))
3704 retval
= security_task_setscheduler(p
, policy
, param
);
3708 * To be able to change p->policy safely, the apropriate
3709 * runqueue lock must be held.
3711 rq
= task_rq_lock(p
, &flags
);
3712 /* recheck policy now with rq lock held */
3713 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3714 policy
= oldpolicy
= -1;
3715 task_rq_unlock(rq
, &flags
);
3720 deactivate_task(p
, rq
);
3722 __setscheduler(p
, policy
, param
->sched_priority
);
3724 __activate_task(p
, rq
);
3726 * Reschedule if we are currently running on this runqueue and
3727 * our priority decreased, or if we are not currently running on
3728 * this runqueue and our priority is higher than the current's
3730 if (task_running(rq
, p
)) {
3731 if (p
->prio
> oldprio
)
3732 resched_task(rq
->curr
);
3733 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3734 resched_task(rq
->curr
);
3736 task_rq_unlock(rq
, &flags
);
3739 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3742 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3745 struct sched_param lparam
;
3746 struct task_struct
*p
;
3748 if (!param
|| pid
< 0)
3750 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3752 read_lock_irq(&tasklist_lock
);
3753 p
= find_process_by_pid(pid
);
3755 read_unlock_irq(&tasklist_lock
);
3758 retval
= sched_setscheduler(p
, policy
, &lparam
);
3759 read_unlock_irq(&tasklist_lock
);
3764 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3765 * @pid: the pid in question.
3766 * @policy: new policy.
3767 * @param: structure containing the new RT priority.
3769 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3770 struct sched_param __user
*param
)
3772 /* negative values for policy are not valid */
3776 return do_sched_setscheduler(pid
, policy
, param
);
3780 * sys_sched_setparam - set/change the RT priority of a thread
3781 * @pid: the pid in question.
3782 * @param: structure containing the new RT priority.
3784 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3786 return do_sched_setscheduler(pid
, -1, param
);
3790 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3791 * @pid: the pid in question.
3793 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3795 int retval
= -EINVAL
;
3802 read_lock(&tasklist_lock
);
3803 p
= find_process_by_pid(pid
);
3805 retval
= security_task_getscheduler(p
);
3809 read_unlock(&tasklist_lock
);
3816 * sys_sched_getscheduler - get the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the RT priority.
3820 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3822 struct sched_param lp
;
3823 int retval
= -EINVAL
;
3826 if (!param
|| pid
< 0)
3829 read_lock(&tasklist_lock
);
3830 p
= find_process_by_pid(pid
);
3835 retval
= security_task_getscheduler(p
);
3839 lp
.sched_priority
= p
->rt_priority
;
3840 read_unlock(&tasklist_lock
);
3843 * This one might sleep, we cannot do it with a spinlock held ...
3845 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3851 read_unlock(&tasklist_lock
);
3855 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3859 cpumask_t cpus_allowed
;
3862 read_lock(&tasklist_lock
);
3864 p
= find_process_by_pid(pid
);
3866 read_unlock(&tasklist_lock
);
3867 unlock_cpu_hotplug();
3872 * It is not safe to call set_cpus_allowed with the
3873 * tasklist_lock held. We will bump the task_struct's
3874 * usage count and then drop tasklist_lock.
3877 read_unlock(&tasklist_lock
);
3880 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3881 !capable(CAP_SYS_NICE
))
3884 cpus_allowed
= cpuset_cpus_allowed(p
);
3885 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3886 retval
= set_cpus_allowed(p
, new_mask
);
3890 unlock_cpu_hotplug();
3894 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3895 cpumask_t
*new_mask
)
3897 if (len
< sizeof(cpumask_t
)) {
3898 memset(new_mask
, 0, sizeof(cpumask_t
));
3899 } else if (len
> sizeof(cpumask_t
)) {
3900 len
= sizeof(cpumask_t
);
3902 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3906 * sys_sched_setaffinity - set the cpu affinity of a process
3907 * @pid: pid of the process
3908 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3909 * @user_mask_ptr: user-space pointer to the new cpu mask
3911 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3912 unsigned long __user
*user_mask_ptr
)
3917 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3921 return sched_setaffinity(pid
, new_mask
);
3925 * Represents all cpu's present in the system
3926 * In systems capable of hotplug, this map could dynamically grow
3927 * as new cpu's are detected in the system via any platform specific
3928 * method, such as ACPI for e.g.
3931 cpumask_t cpu_present_map __read_mostly
;
3932 EXPORT_SYMBOL(cpu_present_map
);
3935 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
3936 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
3939 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3945 read_lock(&tasklist_lock
);
3948 p
= find_process_by_pid(pid
);
3953 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
3956 read_unlock(&tasklist_lock
);
3957 unlock_cpu_hotplug();
3965 * sys_sched_getaffinity - get the cpu affinity of a process
3966 * @pid: pid of the process
3967 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3968 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3970 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3971 unsigned long __user
*user_mask_ptr
)
3976 if (len
< sizeof(cpumask_t
))
3979 ret
= sched_getaffinity(pid
, &mask
);
3983 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
3986 return sizeof(cpumask_t
);
3990 * sys_sched_yield - yield the current processor to other threads.
3992 * this function yields the current CPU by moving the calling thread
3993 * to the expired array. If there are no other threads running on this
3994 * CPU then this function will return.
3996 asmlinkage
long sys_sched_yield(void)
3998 runqueue_t
*rq
= this_rq_lock();
3999 prio_array_t
*array
= current
->array
;
4000 prio_array_t
*target
= rq
->expired
;
4002 schedstat_inc(rq
, yld_cnt
);
4004 * We implement yielding by moving the task into the expired
4007 * (special rule: RT tasks will just roundrobin in the active
4010 if (rt_task(current
))
4011 target
= rq
->active
;
4013 if (array
->nr_active
== 1) {
4014 schedstat_inc(rq
, yld_act_empty
);
4015 if (!rq
->expired
->nr_active
)
4016 schedstat_inc(rq
, yld_both_empty
);
4017 } else if (!rq
->expired
->nr_active
)
4018 schedstat_inc(rq
, yld_exp_empty
);
4020 if (array
!= target
) {
4021 dequeue_task(current
, array
);
4022 enqueue_task(current
, target
);
4025 * requeue_task is cheaper so perform that if possible.
4027 requeue_task(current
, array
);
4030 * Since we are going to call schedule() anyway, there's
4031 * no need to preempt or enable interrupts:
4033 __release(rq
->lock
);
4034 _raw_spin_unlock(&rq
->lock
);
4035 preempt_enable_no_resched();
4042 static inline void __cond_resched(void)
4045 * The BKS might be reacquired before we have dropped
4046 * PREEMPT_ACTIVE, which could trigger a second
4047 * cond_resched() call.
4049 if (unlikely(preempt_count()))
4051 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4054 add_preempt_count(PREEMPT_ACTIVE
);
4056 sub_preempt_count(PREEMPT_ACTIVE
);
4057 } while (need_resched());
4060 int __sched
cond_resched(void)
4062 if (need_resched()) {
4069 EXPORT_SYMBOL(cond_resched
);
4072 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4073 * call schedule, and on return reacquire the lock.
4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4079 int cond_resched_lock(spinlock_t
*lock
)
4083 if (need_lockbreak(lock
)) {
4089 if (need_resched()) {
4090 _raw_spin_unlock(lock
);
4091 preempt_enable_no_resched();
4099 EXPORT_SYMBOL(cond_resched_lock
);
4101 int __sched
cond_resched_softirq(void)
4103 BUG_ON(!in_softirq());
4105 if (need_resched()) {
4106 __local_bh_enable();
4114 EXPORT_SYMBOL(cond_resched_softirq
);
4118 * yield - yield the current processor to other threads.
4120 * this is a shortcut for kernel-space yielding - it marks the
4121 * thread runnable and calls sys_sched_yield().
4123 void __sched
yield(void)
4125 set_current_state(TASK_RUNNING
);
4129 EXPORT_SYMBOL(yield
);
4132 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4133 * that process accounting knows that this is a task in IO wait state.
4135 * But don't do that if it is a deliberate, throttling IO wait (this task
4136 * has set its backing_dev_info: the queue against which it should throttle)
4138 void __sched
io_schedule(void)
4140 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4142 atomic_inc(&rq
->nr_iowait
);
4144 atomic_dec(&rq
->nr_iowait
);
4147 EXPORT_SYMBOL(io_schedule
);
4149 long __sched
io_schedule_timeout(long timeout
)
4151 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4154 atomic_inc(&rq
->nr_iowait
);
4155 ret
= schedule_timeout(timeout
);
4156 atomic_dec(&rq
->nr_iowait
);
4161 * sys_sched_get_priority_max - return maximum RT priority.
4162 * @policy: scheduling class.
4164 * this syscall returns the maximum rt_priority that can be used
4165 * by a given scheduling class.
4167 asmlinkage
long sys_sched_get_priority_max(int policy
)
4174 ret
= MAX_USER_RT_PRIO
-1;
4185 * sys_sched_get_priority_min - return minimum RT priority.
4186 * @policy: scheduling class.
4188 * this syscall returns the minimum rt_priority that can be used
4189 * by a given scheduling class.
4191 asmlinkage
long sys_sched_get_priority_min(int policy
)
4208 * sys_sched_rr_get_interval - return the default timeslice of a process.
4209 * @pid: pid of the process.
4210 * @interval: userspace pointer to the timeslice value.
4212 * this syscall writes the default timeslice value of a given process
4213 * into the user-space timespec buffer. A value of '0' means infinity.
4216 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4218 int retval
= -EINVAL
;
4226 read_lock(&tasklist_lock
);
4227 p
= find_process_by_pid(pid
);
4231 retval
= security_task_getscheduler(p
);
4235 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4236 0 : task_timeslice(p
), &t
);
4237 read_unlock(&tasklist_lock
);
4238 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4242 read_unlock(&tasklist_lock
);
4246 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4248 if (list_empty(&p
->children
)) return NULL
;
4249 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4252 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4254 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4255 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4258 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4260 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4261 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4264 static void show_task(task_t
*p
)
4268 unsigned long free
= 0;
4269 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4271 printk("%-13.13s ", p
->comm
);
4272 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4273 if (state
< ARRAY_SIZE(stat_nam
))
4274 printk(stat_nam
[state
]);
4277 #if (BITS_PER_LONG == 32)
4278 if (state
== TASK_RUNNING
)
4279 printk(" running ");
4281 printk(" %08lX ", thread_saved_pc(p
));
4283 if (state
== TASK_RUNNING
)
4284 printk(" running task ");
4286 printk(" %016lx ", thread_saved_pc(p
));
4288 #ifdef CONFIG_DEBUG_STACK_USAGE
4290 unsigned long *n
= end_of_stack(p
);
4293 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4296 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4297 if ((relative
= eldest_child(p
)))
4298 printk("%5d ", relative
->pid
);
4301 if ((relative
= younger_sibling(p
)))
4302 printk("%7d", relative
->pid
);
4305 if ((relative
= older_sibling(p
)))
4306 printk(" %5d", relative
->pid
);
4310 printk(" (L-TLB)\n");
4312 printk(" (NOTLB)\n");
4314 if (state
!= TASK_RUNNING
)
4315 show_stack(p
, NULL
);
4318 void show_state(void)
4322 #if (BITS_PER_LONG == 32)
4325 printk(" task PC pid father child younger older\n");
4329 printk(" task PC pid father child younger older\n");
4331 read_lock(&tasklist_lock
);
4332 do_each_thread(g
, p
) {
4334 * reset the NMI-timeout, listing all files on a slow
4335 * console might take alot of time:
4337 touch_nmi_watchdog();
4339 } while_each_thread(g
, p
);
4341 read_unlock(&tasklist_lock
);
4342 mutex_debug_show_all_locks();
4346 * init_idle - set up an idle thread for a given CPU
4347 * @idle: task in question
4348 * @cpu: cpu the idle task belongs to
4350 * NOTE: this function does not set the idle thread's NEED_RESCHED
4351 * flag, to make booting more robust.
4353 void __devinit
init_idle(task_t
*idle
, int cpu
)
4355 runqueue_t
*rq
= cpu_rq(cpu
);
4356 unsigned long flags
;
4358 idle
->timestamp
= sched_clock();
4359 idle
->sleep_avg
= 0;
4361 idle
->prio
= MAX_PRIO
;
4362 idle
->state
= TASK_RUNNING
;
4363 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4364 set_task_cpu(idle
, cpu
);
4366 spin_lock_irqsave(&rq
->lock
, flags
);
4367 rq
->curr
= rq
->idle
= idle
;
4368 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4371 spin_unlock_irqrestore(&rq
->lock
, flags
);
4373 /* Set the preempt count _outside_ the spinlocks! */
4374 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4375 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4377 task_thread_info(idle
)->preempt_count
= 0;
4382 * In a system that switches off the HZ timer nohz_cpu_mask
4383 * indicates which cpus entered this state. This is used
4384 * in the rcu update to wait only for active cpus. For system
4385 * which do not switch off the HZ timer nohz_cpu_mask should
4386 * always be CPU_MASK_NONE.
4388 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4392 * This is how migration works:
4394 * 1) we queue a migration_req_t structure in the source CPU's
4395 * runqueue and wake up that CPU's migration thread.
4396 * 2) we down() the locked semaphore => thread blocks.
4397 * 3) migration thread wakes up (implicitly it forces the migrated
4398 * thread off the CPU)
4399 * 4) it gets the migration request and checks whether the migrated
4400 * task is still in the wrong runqueue.
4401 * 5) if it's in the wrong runqueue then the migration thread removes
4402 * it and puts it into the right queue.
4403 * 6) migration thread up()s the semaphore.
4404 * 7) we wake up and the migration is done.
4408 * Change a given task's CPU affinity. Migrate the thread to a
4409 * proper CPU and schedule it away if the CPU it's executing on
4410 * is removed from the allowed bitmask.
4412 * NOTE: the caller must have a valid reference to the task, the
4413 * task must not exit() & deallocate itself prematurely. The
4414 * call is not atomic; no spinlocks may be held.
4416 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4418 unsigned long flags
;
4420 migration_req_t req
;
4423 rq
= task_rq_lock(p
, &flags
);
4424 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4429 p
->cpus_allowed
= new_mask
;
4430 /* Can the task run on the task's current CPU? If so, we're done */
4431 if (cpu_isset(task_cpu(p
), new_mask
))
4434 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4435 /* Need help from migration thread: drop lock and wait. */
4436 task_rq_unlock(rq
, &flags
);
4437 wake_up_process(rq
->migration_thread
);
4438 wait_for_completion(&req
.done
);
4439 tlb_migrate_finish(p
->mm
);
4443 task_rq_unlock(rq
, &flags
);
4447 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4450 * Move (not current) task off this cpu, onto dest cpu. We're doing
4451 * this because either it can't run here any more (set_cpus_allowed()
4452 * away from this CPU, or CPU going down), or because we're
4453 * attempting to rebalance this task on exec (sched_exec).
4455 * So we race with normal scheduler movements, but that's OK, as long
4456 * as the task is no longer on this CPU.
4458 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4460 runqueue_t
*rq_dest
, *rq_src
;
4462 if (unlikely(cpu_is_offline(dest_cpu
)))
4465 rq_src
= cpu_rq(src_cpu
);
4466 rq_dest
= cpu_rq(dest_cpu
);
4468 double_rq_lock(rq_src
, rq_dest
);
4469 /* Already moved. */
4470 if (task_cpu(p
) != src_cpu
)
4472 /* Affinity changed (again). */
4473 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4476 set_task_cpu(p
, dest_cpu
);
4479 * Sync timestamp with rq_dest's before activating.
4480 * The same thing could be achieved by doing this step
4481 * afterwards, and pretending it was a local activate.
4482 * This way is cleaner and logically correct.
4484 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4485 + rq_dest
->timestamp_last_tick
;
4486 deactivate_task(p
, rq_src
);
4487 activate_task(p
, rq_dest
, 0);
4488 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4489 resched_task(rq_dest
->curr
);
4493 double_rq_unlock(rq_src
, rq_dest
);
4497 * migration_thread - this is a highprio system thread that performs
4498 * thread migration by bumping thread off CPU then 'pushing' onto
4501 static int migration_thread(void *data
)
4504 int cpu
= (long)data
;
4507 BUG_ON(rq
->migration_thread
!= current
);
4509 set_current_state(TASK_INTERRUPTIBLE
);
4510 while (!kthread_should_stop()) {
4511 struct list_head
*head
;
4512 migration_req_t
*req
;
4516 spin_lock_irq(&rq
->lock
);
4518 if (cpu_is_offline(cpu
)) {
4519 spin_unlock_irq(&rq
->lock
);
4523 if (rq
->active_balance
) {
4524 active_load_balance(rq
, cpu
);
4525 rq
->active_balance
= 0;
4528 head
= &rq
->migration_queue
;
4530 if (list_empty(head
)) {
4531 spin_unlock_irq(&rq
->lock
);
4533 set_current_state(TASK_INTERRUPTIBLE
);
4536 req
= list_entry(head
->next
, migration_req_t
, list
);
4537 list_del_init(head
->next
);
4539 spin_unlock(&rq
->lock
);
4540 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4543 complete(&req
->done
);
4545 __set_current_state(TASK_RUNNING
);
4549 /* Wait for kthread_stop */
4550 set_current_state(TASK_INTERRUPTIBLE
);
4551 while (!kthread_should_stop()) {
4553 set_current_state(TASK_INTERRUPTIBLE
);
4555 __set_current_state(TASK_RUNNING
);
4559 #ifdef CONFIG_HOTPLUG_CPU
4560 /* Figure out where task on dead CPU should go, use force if neccessary. */
4561 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4567 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4568 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4569 dest_cpu
= any_online_cpu(mask
);
4571 /* On any allowed CPU? */
4572 if (dest_cpu
== NR_CPUS
)
4573 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4575 /* No more Mr. Nice Guy. */
4576 if (dest_cpu
== NR_CPUS
) {
4577 cpus_setall(tsk
->cpus_allowed
);
4578 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4581 * Don't tell them about moving exiting tasks or
4582 * kernel threads (both mm NULL), since they never
4585 if (tsk
->mm
&& printk_ratelimit())
4586 printk(KERN_INFO
"process %d (%s) no "
4587 "longer affine to cpu%d\n",
4588 tsk
->pid
, tsk
->comm
, dead_cpu
);
4590 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4594 * While a dead CPU has no uninterruptible tasks queued at this point,
4595 * it might still have a nonzero ->nr_uninterruptible counter, because
4596 * for performance reasons the counter is not stricly tracking tasks to
4597 * their home CPUs. So we just add the counter to another CPU's counter,
4598 * to keep the global sum constant after CPU-down:
4600 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4602 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4603 unsigned long flags
;
4605 local_irq_save(flags
);
4606 double_rq_lock(rq_src
, rq_dest
);
4607 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4608 rq_src
->nr_uninterruptible
= 0;
4609 double_rq_unlock(rq_src
, rq_dest
);
4610 local_irq_restore(flags
);
4613 /* Run through task list and migrate tasks from the dead cpu. */
4614 static void migrate_live_tasks(int src_cpu
)
4616 struct task_struct
*tsk
, *t
;
4618 write_lock_irq(&tasklist_lock
);
4620 do_each_thread(t
, tsk
) {
4624 if (task_cpu(tsk
) == src_cpu
)
4625 move_task_off_dead_cpu(src_cpu
, tsk
);
4626 } while_each_thread(t
, tsk
);
4628 write_unlock_irq(&tasklist_lock
);
4631 /* Schedules idle task to be the next runnable task on current CPU.
4632 * It does so by boosting its priority to highest possible and adding it to
4633 * the _front_ of runqueue. Used by CPU offline code.
4635 void sched_idle_next(void)
4637 int cpu
= smp_processor_id();
4638 runqueue_t
*rq
= this_rq();
4639 struct task_struct
*p
= rq
->idle
;
4640 unsigned long flags
;
4642 /* cpu has to be offline */
4643 BUG_ON(cpu_online(cpu
));
4645 /* Strictly not necessary since rest of the CPUs are stopped by now
4646 * and interrupts disabled on current cpu.
4648 spin_lock_irqsave(&rq
->lock
, flags
);
4650 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4651 /* Add idle task to _front_ of it's priority queue */
4652 __activate_idle_task(p
, rq
);
4654 spin_unlock_irqrestore(&rq
->lock
, flags
);
4657 /* Ensures that the idle task is using init_mm right before its cpu goes
4660 void idle_task_exit(void)
4662 struct mm_struct
*mm
= current
->active_mm
;
4664 BUG_ON(cpu_online(smp_processor_id()));
4667 switch_mm(mm
, &init_mm
, current
);
4671 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4673 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4675 /* Must be exiting, otherwise would be on tasklist. */
4676 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4678 /* Cannot have done final schedule yet: would have vanished. */
4679 BUG_ON(tsk
->flags
& PF_DEAD
);
4681 get_task_struct(tsk
);
4684 * Drop lock around migration; if someone else moves it,
4685 * that's OK. No task can be added to this CPU, so iteration is
4688 spin_unlock_irq(&rq
->lock
);
4689 move_task_off_dead_cpu(dead_cpu
, tsk
);
4690 spin_lock_irq(&rq
->lock
);
4692 put_task_struct(tsk
);
4695 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4696 static void migrate_dead_tasks(unsigned int dead_cpu
)
4699 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4701 for (arr
= 0; arr
< 2; arr
++) {
4702 for (i
= 0; i
< MAX_PRIO
; i
++) {
4703 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4704 while (!list_empty(list
))
4705 migrate_dead(dead_cpu
,
4706 list_entry(list
->next
, task_t
,
4711 #endif /* CONFIG_HOTPLUG_CPU */
4714 * migration_call - callback that gets triggered when a CPU is added.
4715 * Here we can start up the necessary migration thread for the new CPU.
4717 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4720 int cpu
= (long)hcpu
;
4721 struct task_struct
*p
;
4722 struct runqueue
*rq
;
4723 unsigned long flags
;
4726 case CPU_UP_PREPARE
:
4727 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4730 p
->flags
|= PF_NOFREEZE
;
4731 kthread_bind(p
, cpu
);
4732 /* Must be high prio: stop_machine expects to yield to it. */
4733 rq
= task_rq_lock(p
, &flags
);
4734 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4735 task_rq_unlock(rq
, &flags
);
4736 cpu_rq(cpu
)->migration_thread
= p
;
4739 /* Strictly unneccessary, as first user will wake it. */
4740 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4742 #ifdef CONFIG_HOTPLUG_CPU
4743 case CPU_UP_CANCELED
:
4744 /* Unbind it from offline cpu so it can run. Fall thru. */
4745 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4746 any_online_cpu(cpu_online_map
));
4747 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4748 cpu_rq(cpu
)->migration_thread
= NULL
;
4751 migrate_live_tasks(cpu
);
4753 kthread_stop(rq
->migration_thread
);
4754 rq
->migration_thread
= NULL
;
4755 /* Idle task back to normal (off runqueue, low prio) */
4756 rq
= task_rq_lock(rq
->idle
, &flags
);
4757 deactivate_task(rq
->idle
, rq
);
4758 rq
->idle
->static_prio
= MAX_PRIO
;
4759 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4760 migrate_dead_tasks(cpu
);
4761 task_rq_unlock(rq
, &flags
);
4762 migrate_nr_uninterruptible(rq
);
4763 BUG_ON(rq
->nr_running
!= 0);
4765 /* No need to migrate the tasks: it was best-effort if
4766 * they didn't do lock_cpu_hotplug(). Just wake up
4767 * the requestors. */
4768 spin_lock_irq(&rq
->lock
);
4769 while (!list_empty(&rq
->migration_queue
)) {
4770 migration_req_t
*req
;
4771 req
= list_entry(rq
->migration_queue
.next
,
4772 migration_req_t
, list
);
4773 list_del_init(&req
->list
);
4774 complete(&req
->done
);
4776 spin_unlock_irq(&rq
->lock
);
4783 /* Register at highest priority so that task migration (migrate_all_tasks)
4784 * happens before everything else.
4786 static struct notifier_block __devinitdata migration_notifier
= {
4787 .notifier_call
= migration_call
,
4791 int __init
migration_init(void)
4793 void *cpu
= (void *)(long)smp_processor_id();
4794 /* Start one for boot CPU. */
4795 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4796 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4797 register_cpu_notifier(&migration_notifier
);
4803 #undef SCHED_DOMAIN_DEBUG
4804 #ifdef SCHED_DOMAIN_DEBUG
4805 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4810 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4814 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4819 struct sched_group
*group
= sd
->groups
;
4820 cpumask_t groupmask
;
4822 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4823 cpus_clear(groupmask
);
4826 for (i
= 0; i
< level
+ 1; i
++)
4828 printk("domain %d: ", level
);
4830 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4831 printk("does not load-balance\n");
4833 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4837 printk("span %s\n", str
);
4839 if (!cpu_isset(cpu
, sd
->span
))
4840 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4841 if (!cpu_isset(cpu
, group
->cpumask
))
4842 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4845 for (i
= 0; i
< level
+ 2; i
++)
4851 printk(KERN_ERR
"ERROR: group is NULL\n");
4855 if (!group
->cpu_power
) {
4857 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4860 if (!cpus_weight(group
->cpumask
)) {
4862 printk(KERN_ERR
"ERROR: empty group\n");
4865 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4867 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4870 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4872 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4875 group
= group
->next
;
4876 } while (group
!= sd
->groups
);
4879 if (!cpus_equal(sd
->span
, groupmask
))
4880 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4886 if (!cpus_subset(groupmask
, sd
->span
))
4887 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4893 #define sched_domain_debug(sd, cpu) {}
4896 static int sd_degenerate(struct sched_domain
*sd
)
4898 if (cpus_weight(sd
->span
) == 1)
4901 /* Following flags need at least 2 groups */
4902 if (sd
->flags
& (SD_LOAD_BALANCE
|
4903 SD_BALANCE_NEWIDLE
|
4906 if (sd
->groups
!= sd
->groups
->next
)
4910 /* Following flags don't use groups */
4911 if (sd
->flags
& (SD_WAKE_IDLE
|
4919 static int sd_parent_degenerate(struct sched_domain
*sd
,
4920 struct sched_domain
*parent
)
4922 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4924 if (sd_degenerate(parent
))
4927 if (!cpus_equal(sd
->span
, parent
->span
))
4930 /* Does parent contain flags not in child? */
4931 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4932 if (cflags
& SD_WAKE_AFFINE
)
4933 pflags
&= ~SD_WAKE_BALANCE
;
4934 /* Flags needing groups don't count if only 1 group in parent */
4935 if (parent
->groups
== parent
->groups
->next
) {
4936 pflags
&= ~(SD_LOAD_BALANCE
|
4937 SD_BALANCE_NEWIDLE
|
4941 if (~cflags
& pflags
)
4948 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4949 * hold the hotplug lock.
4951 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4953 runqueue_t
*rq
= cpu_rq(cpu
);
4954 struct sched_domain
*tmp
;
4956 /* Remove the sched domains which do not contribute to scheduling. */
4957 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4958 struct sched_domain
*parent
= tmp
->parent
;
4961 if (sd_parent_degenerate(tmp
, parent
))
4962 tmp
->parent
= parent
->parent
;
4965 if (sd
&& sd_degenerate(sd
))
4968 sched_domain_debug(sd
, cpu
);
4970 rcu_assign_pointer(rq
->sd
, sd
);
4973 /* cpus with isolated domains */
4974 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4976 /* Setup the mask of cpus configured for isolated domains */
4977 static int __init
isolated_cpu_setup(char *str
)
4979 int ints
[NR_CPUS
], i
;
4981 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
4982 cpus_clear(cpu_isolated_map
);
4983 for (i
= 1; i
<= ints
[0]; i
++)
4984 if (ints
[i
] < NR_CPUS
)
4985 cpu_set(ints
[i
], cpu_isolated_map
);
4989 __setup ("isolcpus=", isolated_cpu_setup
);
4992 * init_sched_build_groups takes an array of groups, the cpumask we wish
4993 * to span, and a pointer to a function which identifies what group a CPU
4994 * belongs to. The return value of group_fn must be a valid index into the
4995 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4996 * keep track of groups covered with a cpumask_t).
4998 * init_sched_build_groups will build a circular linked list of the groups
4999 * covered by the given span, and will set each group's ->cpumask correctly,
5000 * and ->cpu_power to 0.
5002 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5003 int (*group_fn
)(int cpu
))
5005 struct sched_group
*first
= NULL
, *last
= NULL
;
5006 cpumask_t covered
= CPU_MASK_NONE
;
5009 for_each_cpu_mask(i
, span
) {
5010 int group
= group_fn(i
);
5011 struct sched_group
*sg
= &groups
[group
];
5014 if (cpu_isset(i
, covered
))
5017 sg
->cpumask
= CPU_MASK_NONE
;
5020 for_each_cpu_mask(j
, span
) {
5021 if (group_fn(j
) != group
)
5024 cpu_set(j
, covered
);
5025 cpu_set(j
, sg
->cpumask
);
5036 #define SD_NODES_PER_DOMAIN 16
5039 * Self-tuning task migration cost measurement between source and target CPUs.
5041 * This is done by measuring the cost of manipulating buffers of varying
5042 * sizes. For a given buffer-size here are the steps that are taken:
5044 * 1) the source CPU reads+dirties a shared buffer
5045 * 2) the target CPU reads+dirties the same shared buffer
5047 * We measure how long they take, in the following 4 scenarios:
5049 * - source: CPU1, target: CPU2 | cost1
5050 * - source: CPU2, target: CPU1 | cost2
5051 * - source: CPU1, target: CPU1 | cost3
5052 * - source: CPU2, target: CPU2 | cost4
5054 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5055 * the cost of migration.
5057 * We then start off from a small buffer-size and iterate up to larger
5058 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5059 * doing a maximum search for the cost. (The maximum cost for a migration
5060 * normally occurs when the working set size is around the effective cache
5063 #define SEARCH_SCOPE 2
5064 #define MIN_CACHE_SIZE (64*1024U)
5065 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5066 #define ITERATIONS 1
5067 #define SIZE_THRESH 130
5068 #define COST_THRESH 130
5071 * The migration cost is a function of 'domain distance'. Domain
5072 * distance is the number of steps a CPU has to iterate down its
5073 * domain tree to share a domain with the other CPU. The farther
5074 * two CPUs are from each other, the larger the distance gets.
5076 * Note that we use the distance only to cache measurement results,
5077 * the distance value is not used numerically otherwise. When two
5078 * CPUs have the same distance it is assumed that the migration
5079 * cost is the same. (this is a simplification but quite practical)
5081 #define MAX_DOMAIN_DISTANCE 32
5083 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5084 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5086 * Architectures may override the migration cost and thus avoid
5087 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5088 * virtualized hardware:
5090 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5091 CONFIG_DEFAULT_MIGRATION_COST
5098 * Allow override of migration cost - in units of microseconds.
5099 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5100 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5102 static int __init
migration_cost_setup(char *str
)
5104 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5106 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5108 printk("#ints: %d\n", ints
[0]);
5109 for (i
= 1; i
<= ints
[0]; i
++) {
5110 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5111 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5116 __setup ("migration_cost=", migration_cost_setup
);
5119 * Global multiplier (divisor) for migration-cutoff values,
5120 * in percentiles. E.g. use a value of 150 to get 1.5 times
5121 * longer cache-hot cutoff times.
5123 * (We scale it from 100 to 128 to long long handling easier.)
5126 #define MIGRATION_FACTOR_SCALE 128
5128 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5130 static int __init
setup_migration_factor(char *str
)
5132 get_option(&str
, &migration_factor
);
5133 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5137 __setup("migration_factor=", setup_migration_factor
);
5140 * Estimated distance of two CPUs, measured via the number of domains
5141 * we have to pass for the two CPUs to be in the same span:
5143 static unsigned long domain_distance(int cpu1
, int cpu2
)
5145 unsigned long distance
= 0;
5146 struct sched_domain
*sd
;
5148 for_each_domain(cpu1
, sd
) {
5149 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5150 if (cpu_isset(cpu2
, sd
->span
))
5154 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5156 distance
= MAX_DOMAIN_DISTANCE
-1;
5162 static unsigned int migration_debug
;
5164 static int __init
setup_migration_debug(char *str
)
5166 get_option(&str
, &migration_debug
);
5170 __setup("migration_debug=", setup_migration_debug
);
5173 * Maximum cache-size that the scheduler should try to measure.
5174 * Architectures with larger caches should tune this up during
5175 * bootup. Gets used in the domain-setup code (i.e. during SMP
5178 unsigned int max_cache_size
;
5180 static int __init
setup_max_cache_size(char *str
)
5182 get_option(&str
, &max_cache_size
);
5186 __setup("max_cache_size=", setup_max_cache_size
);
5189 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5190 * is the operation that is timed, so we try to generate unpredictable
5191 * cachemisses that still end up filling the L2 cache:
5193 static void touch_cache(void *__cache
, unsigned long __size
)
5195 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5197 unsigned long *cache
= __cache
;
5200 for (i
= 0; i
< size
/6; i
+= 8) {
5203 case 1: cache
[size
-1-i
]++;
5204 case 2: cache
[chunk1
-i
]++;
5205 case 3: cache
[chunk1
+i
]++;
5206 case 4: cache
[chunk2
-i
]++;
5207 case 5: cache
[chunk2
+i
]++;
5213 * Measure the cache-cost of one task migration. Returns in units of nsec.
5215 static unsigned long long measure_one(void *cache
, unsigned long size
,
5216 int source
, int target
)
5218 cpumask_t mask
, saved_mask
;
5219 unsigned long long t0
, t1
, t2
, t3
, cost
;
5221 saved_mask
= current
->cpus_allowed
;
5224 * Flush source caches to RAM and invalidate them:
5229 * Migrate to the source CPU:
5231 mask
= cpumask_of_cpu(source
);
5232 set_cpus_allowed(current
, mask
);
5233 WARN_ON(smp_processor_id() != source
);
5236 * Dirty the working set:
5239 touch_cache(cache
, size
);
5243 * Migrate to the target CPU, dirty the L2 cache and access
5244 * the shared buffer. (which represents the working set
5245 * of a migrated task.)
5247 mask
= cpumask_of_cpu(target
);
5248 set_cpus_allowed(current
, mask
);
5249 WARN_ON(smp_processor_id() != target
);
5252 touch_cache(cache
, size
);
5255 cost
= t1
-t0
+ t3
-t2
;
5257 if (migration_debug
>= 2)
5258 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5259 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5261 * Flush target caches to RAM and invalidate them:
5265 set_cpus_allowed(current
, saved_mask
);
5271 * Measure a series of task migrations and return the average
5272 * result. Since this code runs early during bootup the system
5273 * is 'undisturbed' and the average latency makes sense.
5275 * The algorithm in essence auto-detects the relevant cache-size,
5276 * so it will properly detect different cachesizes for different
5277 * cache-hierarchies, depending on how the CPUs are connected.
5279 * Architectures can prime the upper limit of the search range via
5280 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5282 static unsigned long long
5283 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5285 unsigned long long cost1
, cost2
;
5289 * Measure the migration cost of 'size' bytes, over an
5290 * average of 10 runs:
5292 * (We perturb the cache size by a small (0..4k)
5293 * value to compensate size/alignment related artifacts.
5294 * We also subtract the cost of the operation done on
5300 * dry run, to make sure we start off cache-cold on cpu1,
5301 * and to get any vmalloc pagefaults in advance:
5303 measure_one(cache
, size
, cpu1
, cpu2
);
5304 for (i
= 0; i
< ITERATIONS
; i
++)
5305 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5307 measure_one(cache
, size
, cpu2
, cpu1
);
5308 for (i
= 0; i
< ITERATIONS
; i
++)
5309 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5312 * (We measure the non-migrating [cached] cost on both
5313 * cpu1 and cpu2, to handle CPUs with different speeds)
5317 measure_one(cache
, size
, cpu1
, cpu1
);
5318 for (i
= 0; i
< ITERATIONS
; i
++)
5319 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5321 measure_one(cache
, size
, cpu2
, cpu2
);
5322 for (i
= 0; i
< ITERATIONS
; i
++)
5323 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5326 * Get the per-iteration migration cost:
5328 do_div(cost1
, 2*ITERATIONS
);
5329 do_div(cost2
, 2*ITERATIONS
);
5331 return cost1
- cost2
;
5334 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5336 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5337 unsigned int max_size
, size
, size_found
= 0;
5338 long long cost
= 0, prev_cost
;
5342 * Search from max_cache_size*5 down to 64K - the real relevant
5343 * cachesize has to lie somewhere inbetween.
5345 if (max_cache_size
) {
5346 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5347 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5350 * Since we have no estimation about the relevant
5353 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5354 size
= MIN_CACHE_SIZE
;
5357 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5358 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5363 * Allocate the working set:
5365 cache
= vmalloc(max_size
);
5367 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5368 return 1000000; // return 1 msec on very small boxen
5371 while (size
<= max_size
) {
5373 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5379 if (max_cost
< cost
) {
5385 * Calculate average fluctuation, we use this to prevent
5386 * noise from triggering an early break out of the loop:
5388 fluct
= abs(cost
- prev_cost
);
5389 avg_fluct
= (avg_fluct
+ fluct
)/2;
5391 if (migration_debug
)
5392 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5394 (long)cost
/ 1000000,
5395 ((long)cost
/ 100000) % 10,
5396 (long)max_cost
/ 1000000,
5397 ((long)max_cost
/ 100000) % 10,
5398 domain_distance(cpu1
, cpu2
),
5402 * If we iterated at least 20% past the previous maximum,
5403 * and the cost has dropped by more than 20% already,
5404 * (taking fluctuations into account) then we assume to
5405 * have found the maximum and break out of the loop early:
5407 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5408 if (cost
+avg_fluct
<= 0 ||
5409 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5411 if (migration_debug
)
5412 printk("-> found max.\n");
5416 * Increase the cachesize in 10% steps:
5418 size
= size
* 10 / 9;
5421 if (migration_debug
)
5422 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5423 cpu1
, cpu2
, size_found
, max_cost
);
5428 * A task is considered 'cache cold' if at least 2 times
5429 * the worst-case cost of migration has passed.
5431 * (this limit is only listened to if the load-balancing
5432 * situation is 'nice' - if there is a large imbalance we
5433 * ignore it for the sake of CPU utilization and
5434 * processing fairness.)
5436 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5439 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5441 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5442 unsigned long j0
, j1
, distance
, max_distance
= 0;
5443 struct sched_domain
*sd
;
5448 * First pass - calculate the cacheflush times:
5450 for_each_cpu_mask(cpu1
, *cpu_map
) {
5451 for_each_cpu_mask(cpu2
, *cpu_map
) {
5454 distance
= domain_distance(cpu1
, cpu2
);
5455 max_distance
= max(max_distance
, distance
);
5457 * No result cached yet?
5459 if (migration_cost
[distance
] == -1LL)
5460 migration_cost
[distance
] =
5461 measure_migration_cost(cpu1
, cpu2
);
5465 * Second pass - update the sched domain hierarchy with
5466 * the new cache-hot-time estimations:
5468 for_each_cpu_mask(cpu
, *cpu_map
) {
5470 for_each_domain(cpu
, sd
) {
5471 sd
->cache_hot_time
= migration_cost
[distance
];
5478 if (migration_debug
)
5479 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5487 if (system_state
== SYSTEM_BOOTING
) {
5488 printk("migration_cost=");
5489 for (distance
= 0; distance
<= max_distance
; distance
++) {
5492 printk("%ld", (long)migration_cost
[distance
] / 1000);
5497 if (migration_debug
)
5498 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5501 * Move back to the original CPU. NUMA-Q gets confused
5502 * if we migrate to another quad during bootup.
5504 if (raw_smp_processor_id() != orig_cpu
) {
5505 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5506 saved_mask
= current
->cpus_allowed
;
5508 set_cpus_allowed(current
, mask
);
5509 set_cpus_allowed(current
, saved_mask
);
5516 * find_next_best_node - find the next node to include in a sched_domain
5517 * @node: node whose sched_domain we're building
5518 * @used_nodes: nodes already in the sched_domain
5520 * Find the next node to include in a given scheduling domain. Simply
5521 * finds the closest node not already in the @used_nodes map.
5523 * Should use nodemask_t.
5525 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5527 int i
, n
, val
, min_val
, best_node
= 0;
5531 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5532 /* Start at @node */
5533 n
= (node
+ i
) % MAX_NUMNODES
;
5535 if (!nr_cpus_node(n
))
5538 /* Skip already used nodes */
5539 if (test_bit(n
, used_nodes
))
5542 /* Simple min distance search */
5543 val
= node_distance(node
, n
);
5545 if (val
< min_val
) {
5551 set_bit(best_node
, used_nodes
);
5556 * sched_domain_node_span - get a cpumask for a node's sched_domain
5557 * @node: node whose cpumask we're constructing
5558 * @size: number of nodes to include in this span
5560 * Given a node, construct a good cpumask for its sched_domain to span. It
5561 * should be one that prevents unnecessary balancing, but also spreads tasks
5564 static cpumask_t
sched_domain_node_span(int node
)
5567 cpumask_t span
, nodemask
;
5568 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5571 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5573 nodemask
= node_to_cpumask(node
);
5574 cpus_or(span
, span
, nodemask
);
5575 set_bit(node
, used_nodes
);
5577 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5578 int next_node
= find_next_best_node(node
, used_nodes
);
5579 nodemask
= node_to_cpumask(next_node
);
5580 cpus_or(span
, span
, nodemask
);
5588 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5589 * can switch it on easily if needed.
5591 #ifdef CONFIG_SCHED_SMT
5592 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5593 static struct sched_group sched_group_cpus
[NR_CPUS
];
5594 static int cpu_to_cpu_group(int cpu
)
5600 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5601 static struct sched_group sched_group_phys
[NR_CPUS
];
5602 static int cpu_to_phys_group(int cpu
)
5604 #ifdef CONFIG_SCHED_SMT
5605 return first_cpu(cpu_sibling_map
[cpu
]);
5613 * The init_sched_build_groups can't handle what we want to do with node
5614 * groups, so roll our own. Now each node has its own list of groups which
5615 * gets dynamically allocated.
5617 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5618 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5620 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5621 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5623 static int cpu_to_allnodes_group(int cpu
)
5625 return cpu_to_node(cpu
);
5630 * Build sched domains for a given set of cpus and attach the sched domains
5631 * to the individual cpus
5633 void build_sched_domains(const cpumask_t
*cpu_map
)
5637 struct sched_group
**sched_group_nodes
= NULL
;
5638 struct sched_group
*sched_group_allnodes
= NULL
;
5641 * Allocate the per-node list of sched groups
5643 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5645 if (!sched_group_nodes
) {
5646 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5649 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5653 * Set up domains for cpus specified by the cpu_map.
5655 for_each_cpu_mask(i
, *cpu_map
) {
5657 struct sched_domain
*sd
= NULL
, *p
;
5658 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5660 cpus_and(nodemask
, nodemask
, *cpu_map
);
5663 if (cpus_weight(*cpu_map
)
5664 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5665 if (!sched_group_allnodes
) {
5666 sched_group_allnodes
5667 = kmalloc(sizeof(struct sched_group
)
5670 if (!sched_group_allnodes
) {
5672 "Can not alloc allnodes sched group\n");
5675 sched_group_allnodes_bycpu
[i
]
5676 = sched_group_allnodes
;
5678 sd
= &per_cpu(allnodes_domains
, i
);
5679 *sd
= SD_ALLNODES_INIT
;
5680 sd
->span
= *cpu_map
;
5681 group
= cpu_to_allnodes_group(i
);
5682 sd
->groups
= &sched_group_allnodes
[group
];
5687 sd
= &per_cpu(node_domains
, i
);
5689 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5691 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5695 sd
= &per_cpu(phys_domains
, i
);
5696 group
= cpu_to_phys_group(i
);
5698 sd
->span
= nodemask
;
5700 sd
->groups
= &sched_group_phys
[group
];
5702 #ifdef CONFIG_SCHED_SMT
5704 sd
= &per_cpu(cpu_domains
, i
);
5705 group
= cpu_to_cpu_group(i
);
5706 *sd
= SD_SIBLING_INIT
;
5707 sd
->span
= cpu_sibling_map
[i
];
5708 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5710 sd
->groups
= &sched_group_cpus
[group
];
5714 #ifdef CONFIG_SCHED_SMT
5715 /* Set up CPU (sibling) groups */
5716 for_each_cpu_mask(i
, *cpu_map
) {
5717 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5718 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5719 if (i
!= first_cpu(this_sibling_map
))
5722 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5727 /* Set up physical groups */
5728 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5729 cpumask_t nodemask
= node_to_cpumask(i
);
5731 cpus_and(nodemask
, nodemask
, *cpu_map
);
5732 if (cpus_empty(nodemask
))
5735 init_sched_build_groups(sched_group_phys
, nodemask
,
5736 &cpu_to_phys_group
);
5740 /* Set up node groups */
5741 if (sched_group_allnodes
)
5742 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5743 &cpu_to_allnodes_group
);
5745 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5746 /* Set up node groups */
5747 struct sched_group
*sg
, *prev
;
5748 cpumask_t nodemask
= node_to_cpumask(i
);
5749 cpumask_t domainspan
;
5750 cpumask_t covered
= CPU_MASK_NONE
;
5753 cpus_and(nodemask
, nodemask
, *cpu_map
);
5754 if (cpus_empty(nodemask
)) {
5755 sched_group_nodes
[i
] = NULL
;
5759 domainspan
= sched_domain_node_span(i
);
5760 cpus_and(domainspan
, domainspan
, *cpu_map
);
5762 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5763 sched_group_nodes
[i
] = sg
;
5764 for_each_cpu_mask(j
, nodemask
) {
5765 struct sched_domain
*sd
;
5766 sd
= &per_cpu(node_domains
, j
);
5768 if (sd
->groups
== NULL
) {
5769 /* Turn off balancing if we have no groups */
5775 "Can not alloc domain group for node %d\n", i
);
5779 sg
->cpumask
= nodemask
;
5780 cpus_or(covered
, covered
, nodemask
);
5783 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5784 cpumask_t tmp
, notcovered
;
5785 int n
= (i
+ j
) % MAX_NUMNODES
;
5787 cpus_complement(notcovered
, covered
);
5788 cpus_and(tmp
, notcovered
, *cpu_map
);
5789 cpus_and(tmp
, tmp
, domainspan
);
5790 if (cpus_empty(tmp
))
5793 nodemask
= node_to_cpumask(n
);
5794 cpus_and(tmp
, tmp
, nodemask
);
5795 if (cpus_empty(tmp
))
5798 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5801 "Can not alloc domain group for node %d\n", j
);
5806 cpus_or(covered
, covered
, tmp
);
5810 prev
->next
= sched_group_nodes
[i
];
5814 /* Calculate CPU power for physical packages and nodes */
5815 for_each_cpu_mask(i
, *cpu_map
) {
5817 struct sched_domain
*sd
;
5818 #ifdef CONFIG_SCHED_SMT
5819 sd
= &per_cpu(cpu_domains
, i
);
5820 power
= SCHED_LOAD_SCALE
;
5821 sd
->groups
->cpu_power
= power
;
5824 sd
= &per_cpu(phys_domains
, i
);
5825 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5826 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5827 sd
->groups
->cpu_power
= power
;
5830 sd
= &per_cpu(allnodes_domains
, i
);
5832 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5833 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5834 sd
->groups
->cpu_power
= power
;
5840 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5841 struct sched_group
*sg
= sched_group_nodes
[i
];
5847 for_each_cpu_mask(j
, sg
->cpumask
) {
5848 struct sched_domain
*sd
;
5851 sd
= &per_cpu(phys_domains
, j
);
5852 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5854 * Only add "power" once for each
5859 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5860 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5862 sg
->cpu_power
+= power
;
5865 if (sg
!= sched_group_nodes
[i
])
5870 /* Attach the domains */
5871 for_each_cpu_mask(i
, *cpu_map
) {
5872 struct sched_domain
*sd
;
5873 #ifdef CONFIG_SCHED_SMT
5874 sd
= &per_cpu(cpu_domains
, i
);
5876 sd
= &per_cpu(phys_domains
, i
);
5878 cpu_attach_domain(sd
, i
);
5881 * Tune cache-hot values:
5883 calibrate_migration_costs(cpu_map
);
5886 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5888 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5890 cpumask_t cpu_default_map
;
5893 * Setup mask for cpus without special case scheduling requirements.
5894 * For now this just excludes isolated cpus, but could be used to
5895 * exclude other special cases in the future.
5897 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5899 build_sched_domains(&cpu_default_map
);
5902 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5908 for_each_cpu_mask(cpu
, *cpu_map
) {
5909 struct sched_group
*sched_group_allnodes
5910 = sched_group_allnodes_bycpu
[cpu
];
5911 struct sched_group
**sched_group_nodes
5912 = sched_group_nodes_bycpu
[cpu
];
5914 if (sched_group_allnodes
) {
5915 kfree(sched_group_allnodes
);
5916 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5919 if (!sched_group_nodes
)
5922 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5923 cpumask_t nodemask
= node_to_cpumask(i
);
5924 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5926 cpus_and(nodemask
, nodemask
, *cpu_map
);
5927 if (cpus_empty(nodemask
))
5937 if (oldsg
!= sched_group_nodes
[i
])
5940 kfree(sched_group_nodes
);
5941 sched_group_nodes_bycpu
[cpu
] = NULL
;
5947 * Detach sched domains from a group of cpus specified in cpu_map
5948 * These cpus will now be attached to the NULL domain
5950 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
5954 for_each_cpu_mask(i
, *cpu_map
)
5955 cpu_attach_domain(NULL
, i
);
5956 synchronize_sched();
5957 arch_destroy_sched_domains(cpu_map
);
5961 * Partition sched domains as specified by the cpumasks below.
5962 * This attaches all cpus from the cpumasks to the NULL domain,
5963 * waits for a RCU quiescent period, recalculates sched
5964 * domain information and then attaches them back to the
5965 * correct sched domains
5966 * Call with hotplug lock held
5968 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
5970 cpumask_t change_map
;
5972 cpus_and(*partition1
, *partition1
, cpu_online_map
);
5973 cpus_and(*partition2
, *partition2
, cpu_online_map
);
5974 cpus_or(change_map
, *partition1
, *partition2
);
5976 /* Detach sched domains from all of the affected cpus */
5977 detach_destroy_domains(&change_map
);
5978 if (!cpus_empty(*partition1
))
5979 build_sched_domains(partition1
);
5980 if (!cpus_empty(*partition2
))
5981 build_sched_domains(partition2
);
5984 #ifdef CONFIG_HOTPLUG_CPU
5986 * Force a reinitialization of the sched domains hierarchy. The domains
5987 * and groups cannot be updated in place without racing with the balancing
5988 * code, so we temporarily attach all running cpus to the NULL domain
5989 * which will prevent rebalancing while the sched domains are recalculated.
5991 static int update_sched_domains(struct notifier_block
*nfb
,
5992 unsigned long action
, void *hcpu
)
5995 case CPU_UP_PREPARE
:
5996 case CPU_DOWN_PREPARE
:
5997 detach_destroy_domains(&cpu_online_map
);
6000 case CPU_UP_CANCELED
:
6001 case CPU_DOWN_FAILED
:
6005 * Fall through and re-initialise the domains.
6012 /* The hotplug lock is already held by cpu_up/cpu_down */
6013 arch_init_sched_domains(&cpu_online_map
);
6019 void __init
sched_init_smp(void)
6022 arch_init_sched_domains(&cpu_online_map
);
6023 unlock_cpu_hotplug();
6024 /* XXX: Theoretical race here - CPU may be hotplugged now */
6025 hotcpu_notifier(update_sched_domains
, 0);
6028 void __init
sched_init_smp(void)
6031 #endif /* CONFIG_SMP */
6033 int in_sched_functions(unsigned long addr
)
6035 /* Linker adds these: start and end of __sched functions */
6036 extern char __sched_text_start
[], __sched_text_end
[];
6037 return in_lock_functions(addr
) ||
6038 (addr
>= (unsigned long)__sched_text_start
6039 && addr
< (unsigned long)__sched_text_end
);
6042 void __init
sched_init(void)
6048 prio_array_t
*array
;
6051 spin_lock_init(&rq
->lock
);
6053 rq
->active
= rq
->arrays
;
6054 rq
->expired
= rq
->arrays
+ 1;
6055 rq
->best_expired_prio
= MAX_PRIO
;
6059 for (j
= 1; j
< 3; j
++)
6060 rq
->cpu_load
[j
] = 0;
6061 rq
->active_balance
= 0;
6064 rq
->migration_thread
= NULL
;
6065 INIT_LIST_HEAD(&rq
->migration_queue
);
6068 atomic_set(&rq
->nr_iowait
, 0);
6070 for (j
= 0; j
< 2; j
++) {
6071 array
= rq
->arrays
+ j
;
6072 for (k
= 0; k
< MAX_PRIO
; k
++) {
6073 INIT_LIST_HEAD(array
->queue
+ k
);
6074 __clear_bit(k
, array
->bitmap
);
6076 // delimiter for bitsearch
6077 __set_bit(MAX_PRIO
, array
->bitmap
);
6082 * The boot idle thread does lazy MMU switching as well:
6084 atomic_inc(&init_mm
.mm_count
);
6085 enter_lazy_tlb(&init_mm
, current
);
6088 * Make us the idle thread. Technically, schedule() should not be
6089 * called from this thread, however somewhere below it might be,
6090 * but because we are the idle thread, we just pick up running again
6091 * when this runqueue becomes "idle".
6093 init_idle(current
, smp_processor_id());
6096 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6097 void __might_sleep(char *file
, int line
)
6099 #if defined(in_atomic)
6100 static unsigned long prev_jiffy
; /* ratelimiting */
6102 if ((in_atomic() || irqs_disabled()) &&
6103 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6104 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6106 prev_jiffy
= jiffies
;
6107 printk(KERN_ERR
"Debug: sleeping function called from invalid"
6108 " context at %s:%d\n", file
, line
);
6109 printk("in_atomic():%d, irqs_disabled():%d\n",
6110 in_atomic(), irqs_disabled());
6115 EXPORT_SYMBOL(__might_sleep
);
6118 #ifdef CONFIG_MAGIC_SYSRQ
6119 void normalize_rt_tasks(void)
6121 struct task_struct
*p
;
6122 prio_array_t
*array
;
6123 unsigned long flags
;
6126 read_lock_irq(&tasklist_lock
);
6127 for_each_process (p
) {
6131 rq
= task_rq_lock(p
, &flags
);
6135 deactivate_task(p
, task_rq(p
));
6136 __setscheduler(p
, SCHED_NORMAL
, 0);
6138 __activate_task(p
, task_rq(p
));
6139 resched_task(rq
->curr
);
6142 task_rq_unlock(rq
, &flags
);
6144 read_unlock_irq(&tasklist_lock
);
6147 #endif /* CONFIG_MAGIC_SYSRQ */
6151 * These functions are only useful for the IA64 MCA handling.
6153 * They can only be called when the whole system has been
6154 * stopped - every CPU needs to be quiescent, and no scheduling
6155 * activity can take place. Using them for anything else would
6156 * be a serious bug, and as a result, they aren't even visible
6157 * under any other configuration.
6161 * curr_task - return the current task for a given cpu.
6162 * @cpu: the processor in question.
6164 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6166 task_t
*curr_task(int cpu
)
6168 return cpu_curr(cpu
);
6172 * set_curr_task - set the current task for a given cpu.
6173 * @cpu: the processor in question.
6174 * @p: the task pointer to set.
6176 * Description: This function must only be used when non-maskable interrupts
6177 * are serviced on a separate stack. It allows the architecture to switch the
6178 * notion of the current task on a cpu in a non-blocking manner. This function
6179 * must be called with all CPU's synchronized, and interrupts disabled, the
6180 * and caller must save the original value of the current task (see
6181 * curr_task() above) and restore that value before reenabling interrupts and
6182 * re-starting the system.
6184 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6186 void set_curr_task(int cpu
, task_t
*p
)