2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent(log
->fs_info
->extent_root
,
280 eb
->start
, eb
->len
, 0);
282 if (btrfs_buffer_uptodate(eb
, gen
)) {
284 btrfs_write_tree_block(eb
);
286 btrfs_wait_tree_block_writeback(eb
);
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
306 struct btrfs_root
*root
,
307 struct btrfs_path
*path
,
308 struct extent_buffer
*eb
, int slot
,
309 struct btrfs_key
*key
)
313 u64 saved_i_size
= 0;
314 int save_old_i_size
= 0;
315 unsigned long src_ptr
;
316 unsigned long dst_ptr
;
317 int overwrite_root
= 0;
319 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
322 item_size
= btrfs_item_size_nr(eb
, slot
);
323 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
325 /* look for the key in the destination tree */
326 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
330 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
332 if (dst_size
!= item_size
)
335 if (item_size
== 0) {
336 btrfs_release_path(root
, path
);
339 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
340 src_copy
= kmalloc(item_size
, GFP_NOFS
);
341 if (!dst_copy
|| !src_copy
) {
342 btrfs_release_path(root
, path
);
348 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
350 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
351 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
353 ret
= memcmp(dst_copy
, src_copy
, item_size
);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
364 btrfs_release_path(root
, path
);
370 btrfs_release_path(root
, path
);
371 /* try to insert the key into the destination tree */
372 ret
= btrfs_insert_empty_item(trans
, root
, path
,
375 /* make sure any existing item is the correct size */
376 if (ret
== -EEXIST
) {
378 found_size
= btrfs_item_size_nr(path
->nodes
[0],
380 if (found_size
> item_size
) {
381 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
382 } else if (found_size
< item_size
) {
383 ret
= btrfs_extend_item(trans
, root
, path
,
384 item_size
- found_size
);
390 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
402 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
403 struct btrfs_inode_item
*src_item
;
404 struct btrfs_inode_item
*dst_item
;
406 src_item
= (struct btrfs_inode_item
*)src_ptr
;
407 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
409 if (btrfs_inode_generation(eb
, src_item
) == 0)
412 if (overwrite_root
&&
413 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
414 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
416 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
421 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
424 if (save_old_i_size
) {
425 struct btrfs_inode_item
*dst_item
;
426 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
427 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
430 /* make sure the generation is filled in */
431 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
432 struct btrfs_inode_item
*dst_item
;
433 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
434 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
435 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
440 btrfs_mark_buffer_dirty(path
->nodes
[0]);
441 btrfs_release_path(root
, path
);
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
449 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
452 struct btrfs_key key
;
455 key
.objectid
= objectid
;
456 key
.type
= BTRFS_INODE_ITEM_KEY
;
458 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
461 } else if (is_bad_inode(inode
)) {
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
480 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
481 struct btrfs_root
*root
,
482 struct btrfs_path
*path
,
483 struct extent_buffer
*eb
, int slot
,
484 struct btrfs_key
*key
)
487 u64 mask
= root
->sectorsize
- 1;
490 u64 start
= key
->offset
;
492 struct btrfs_file_extent_item
*item
;
493 struct inode
*inode
= NULL
;
497 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
498 found_type
= btrfs_file_extent_type(eb
, item
);
500 if (found_type
== BTRFS_FILE_EXTENT_REG
||
501 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
502 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
503 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
504 size
= btrfs_file_extent_inline_len(eb
, item
);
505 extent_end
= (start
+ size
+ mask
) & ~mask
;
511 inode
= read_one_inode(root
, key
->objectid
);
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
522 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
526 (found_type
== BTRFS_FILE_EXTENT_REG
||
527 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
528 struct btrfs_file_extent_item cmp1
;
529 struct btrfs_file_extent_item cmp2
;
530 struct btrfs_file_extent_item
*existing
;
531 struct extent_buffer
*leaf
;
533 leaf
= path
->nodes
[0];
534 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
535 struct btrfs_file_extent_item
);
537 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
539 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
546 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
547 btrfs_release_path(root
, path
);
551 btrfs_release_path(root
, path
);
553 saved_nbytes
= inode_get_bytes(inode
);
554 /* drop any overlapping extents */
555 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
559 if (found_type
== BTRFS_FILE_EXTENT_REG
||
560 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
562 unsigned long dest_offset
;
563 struct btrfs_key ins
;
565 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
568 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
570 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
571 (unsigned long)item
, sizeof(*item
));
573 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
574 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
575 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
576 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
578 if (ins
.objectid
> 0) {
581 LIST_HEAD(ordered_sums
);
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
586 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
589 ret
= btrfs_inc_extent_ref(trans
, root
,
590 ins
.objectid
, ins
.offset
,
591 0, root
->root_key
.objectid
,
592 key
->objectid
, offset
);
595 * insert the extent pointer in the extent
598 ret
= btrfs_alloc_logged_file_extent(trans
,
599 root
, root
->root_key
.objectid
,
600 key
->objectid
, offset
, &ins
);
603 btrfs_release_path(root
, path
);
605 if (btrfs_file_extent_compression(eb
, item
)) {
606 csum_start
= ins
.objectid
;
607 csum_end
= csum_start
+ ins
.offset
;
609 csum_start
= ins
.objectid
+
610 btrfs_file_extent_offset(eb
, item
);
611 csum_end
= csum_start
+
612 btrfs_file_extent_num_bytes(eb
, item
);
615 ret
= btrfs_lookup_csums_range(root
->log_root
,
616 csum_start
, csum_end
- 1,
619 while (!list_empty(&ordered_sums
)) {
620 struct btrfs_ordered_sum
*sums
;
621 sums
= list_entry(ordered_sums
.next
,
622 struct btrfs_ordered_sum
,
624 ret
= btrfs_csum_file_blocks(trans
,
625 root
->fs_info
->csum_root
,
628 list_del(&sums
->list
);
632 btrfs_release_path(root
, path
);
634 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
635 /* inline extents are easy, we just overwrite them */
636 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
640 inode_set_bytes(inode
, saved_nbytes
);
641 btrfs_update_inode(trans
, root
, inode
);
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
656 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
657 struct btrfs_root
*root
,
658 struct btrfs_path
*path
,
660 struct btrfs_dir_item
*di
)
665 struct extent_buffer
*leaf
;
666 struct btrfs_key location
;
669 leaf
= path
->nodes
[0];
671 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
672 name_len
= btrfs_dir_name_len(leaf
, di
);
673 name
= kmalloc(name_len
, GFP_NOFS
);
677 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
678 btrfs_release_path(root
, path
);
680 inode
= read_one_inode(root
, location
.objectid
);
683 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
686 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
699 static noinline
int inode_in_dir(struct btrfs_root
*root
,
700 struct btrfs_path
*path
,
701 u64 dirid
, u64 objectid
, u64 index
,
702 const char *name
, int name_len
)
704 struct btrfs_dir_item
*di
;
705 struct btrfs_key location
;
708 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
709 index
, name
, name_len
, 0);
710 if (di
&& !IS_ERR(di
)) {
711 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
712 if (location
.objectid
!= objectid
)
716 btrfs_release_path(root
, path
);
718 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
719 if (di
&& !IS_ERR(di
)) {
720 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
721 if (location
.objectid
!= objectid
)
727 btrfs_release_path(root
, path
);
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
741 static noinline
int backref_in_log(struct btrfs_root
*log
,
742 struct btrfs_key
*key
,
743 char *name
, int namelen
)
745 struct btrfs_path
*path
;
746 struct btrfs_inode_ref
*ref
;
748 unsigned long ptr_end
;
749 unsigned long name_ptr
;
755 path
= btrfs_alloc_path();
759 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
763 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
764 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
765 ptr_end
= ptr
+ item_size
;
766 while (ptr
< ptr_end
) {
767 ref
= (struct btrfs_inode_ref
*)ptr
;
768 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
769 if (found_name_len
== namelen
) {
770 name_ptr
= (unsigned long)(ref
+ 1);
771 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
778 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
781 btrfs_free_path(path
);
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
792 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
793 struct btrfs_root
*root
,
794 struct btrfs_root
*log
,
795 struct btrfs_path
*path
,
796 struct extent_buffer
*eb
, int slot
,
797 struct btrfs_key
*key
)
801 struct btrfs_inode_ref
*ref
;
805 unsigned long ref_ptr
;
806 unsigned long ref_end
;
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
815 dir
= read_one_inode(root
, key
->offset
);
819 inode
= read_one_inode(root
, key
->objectid
);
822 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
823 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
826 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
828 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
829 name
= kmalloc(namelen
, GFP_NOFS
);
832 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
836 btrfs_inode_ref_index(eb
, ref
),
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
852 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
856 struct btrfs_inode_ref
*victim_ref
;
858 unsigned long ptr_end
;
859 struct extent_buffer
*leaf
= path
->nodes
[0];
861 /* are we trying to overwrite a back ref for the root directory
862 * if so, just jump out, we're done
864 if (key
->objectid
== key
->offset
)
867 /* check all the names in this back reference to see
868 * if they are in the log. if so, we allow them to stay
869 * otherwise they must be unlinked as a conflict
871 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
872 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
873 while (ptr
< ptr_end
) {
874 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
875 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
877 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
878 BUG_ON(!victim_name
);
880 read_extent_buffer(leaf
, victim_name
,
881 (unsigned long)(victim_ref
+ 1),
884 if (!backref_in_log(log
, key
, victim_name
,
886 btrfs_inc_nlink(inode
);
887 btrfs_release_path(root
, path
);
889 ret
= btrfs_unlink_inode(trans
, root
, dir
,
894 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
899 * NOTE: we have searched root tree and checked the
900 * coresponding ref, it does not need to check again.
904 btrfs_release_path(root
, path
);
907 /* insert our name */
908 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
909 btrfs_inode_ref_index(eb
, ref
));
912 btrfs_update_inode(trans
, root
, inode
);
915 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
917 if (ref_ptr
< ref_end
)
920 /* finally write the back reference in the inode */
921 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
925 btrfs_release_path(root
, path
);
931 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
932 struct btrfs_root
*root
, u64 offset
)
935 ret
= btrfs_find_orphan_item(root
, offset
);
937 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
943 * There are a few corners where the link count of the file can't
944 * be properly maintained during replay. So, instead of adding
945 * lots of complexity to the log code, we just scan the backrefs
946 * for any file that has been through replay.
948 * The scan will update the link count on the inode to reflect the
949 * number of back refs found. If it goes down to zero, the iput
950 * will free the inode.
952 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
953 struct btrfs_root
*root
,
956 struct btrfs_path
*path
;
958 struct btrfs_key key
;
961 unsigned long ptr_end
;
964 key
.objectid
= inode
->i_ino
;
965 key
.type
= BTRFS_INODE_REF_KEY
;
966 key
.offset
= (u64
)-1;
968 path
= btrfs_alloc_path();
973 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
977 if (path
->slots
[0] == 0)
981 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
983 if (key
.objectid
!= inode
->i_ino
||
984 key
.type
!= BTRFS_INODE_REF_KEY
)
986 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
987 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
989 while (ptr
< ptr_end
) {
990 struct btrfs_inode_ref
*ref
;
992 ref
= (struct btrfs_inode_ref
*)ptr
;
993 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
995 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1002 btrfs_release_path(root
, path
);
1004 btrfs_release_path(root
, path
);
1005 if (nlink
!= inode
->i_nlink
) {
1006 inode
->i_nlink
= nlink
;
1007 btrfs_update_inode(trans
, root
, inode
);
1009 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1011 if (inode
->i_nlink
== 0) {
1012 if (S_ISDIR(inode
->i_mode
)) {
1013 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1017 ret
= insert_orphan_item(trans
, root
, inode
->i_ino
);
1020 btrfs_free_path(path
);
1025 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1026 struct btrfs_root
*root
,
1027 struct btrfs_path
*path
)
1030 struct btrfs_key key
;
1031 struct inode
*inode
;
1033 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1034 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1035 key
.offset
= (u64
)-1;
1037 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1042 if (path
->slots
[0] == 0)
1047 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1048 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1049 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1052 ret
= btrfs_del_item(trans
, root
, path
);
1055 btrfs_release_path(root
, path
);
1056 inode
= read_one_inode(root
, key
.offset
);
1059 ret
= fixup_inode_link_count(trans
, root
, inode
);
1065 * fixup on a directory may create new entries,
1066 * make sure we always look for the highset possible
1069 key
.offset
= (u64
)-1;
1071 btrfs_release_path(root
, path
);
1077 * record a given inode in the fixup dir so we can check its link
1078 * count when replay is done. The link count is incremented here
1079 * so the inode won't go away until we check it
1081 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1082 struct btrfs_root
*root
,
1083 struct btrfs_path
*path
,
1086 struct btrfs_key key
;
1088 struct inode
*inode
;
1090 inode
= read_one_inode(root
, objectid
);
1093 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1094 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1095 key
.offset
= objectid
;
1097 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1099 btrfs_release_path(root
, path
);
1101 btrfs_inc_nlink(inode
);
1102 btrfs_update_inode(trans
, root
, inode
);
1103 } else if (ret
== -EEXIST
) {
1114 * when replaying the log for a directory, we only insert names
1115 * for inodes that actually exist. This means an fsync on a directory
1116 * does not implicitly fsync all the new files in it
1118 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1119 struct btrfs_root
*root
,
1120 struct btrfs_path
*path
,
1121 u64 dirid
, u64 index
,
1122 char *name
, int name_len
, u8 type
,
1123 struct btrfs_key
*location
)
1125 struct inode
*inode
;
1129 inode
= read_one_inode(root
, location
->objectid
);
1133 dir
= read_one_inode(root
, dirid
);
1138 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1140 /* FIXME, put inode into FIXUP list */
1148 * take a single entry in a log directory item and replay it into
1151 * if a conflicting item exists in the subdirectory already,
1152 * the inode it points to is unlinked and put into the link count
1155 * If a name from the log points to a file or directory that does
1156 * not exist in the FS, it is skipped. fsyncs on directories
1157 * do not force down inodes inside that directory, just changes to the
1158 * names or unlinks in a directory.
1160 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1161 struct btrfs_root
*root
,
1162 struct btrfs_path
*path
,
1163 struct extent_buffer
*eb
,
1164 struct btrfs_dir_item
*di
,
1165 struct btrfs_key
*key
)
1169 struct btrfs_dir_item
*dst_di
;
1170 struct btrfs_key found_key
;
1171 struct btrfs_key log_key
;
1177 dir
= read_one_inode(root
, key
->objectid
);
1180 name_len
= btrfs_dir_name_len(eb
, di
);
1181 name
= kmalloc(name_len
, GFP_NOFS
);
1185 log_type
= btrfs_dir_type(eb
, di
);
1186 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1189 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1190 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1195 btrfs_release_path(root
, path
);
1197 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1198 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1200 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1201 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1208 if (!dst_di
|| IS_ERR(dst_di
)) {
1209 /* we need a sequence number to insert, so we only
1210 * do inserts for the BTRFS_DIR_INDEX_KEY types
1212 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1217 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1218 /* the existing item matches the logged item */
1219 if (found_key
.objectid
== log_key
.objectid
&&
1220 found_key
.type
== log_key
.type
&&
1221 found_key
.offset
== log_key
.offset
&&
1222 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1227 * don't drop the conflicting directory entry if the inode
1228 * for the new entry doesn't exist
1233 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1236 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1239 btrfs_release_path(root
, path
);
1245 btrfs_release_path(root
, path
);
1246 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1247 name
, name_len
, log_type
, &log_key
);
1249 BUG_ON(ret
&& ret
!= -ENOENT
);
1254 * find all the names in a directory item and reconcile them into
1255 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1256 * one name in a directory item, but the same code gets used for
1257 * both directory index types
1259 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1260 struct btrfs_root
*root
,
1261 struct btrfs_path
*path
,
1262 struct extent_buffer
*eb
, int slot
,
1263 struct btrfs_key
*key
)
1266 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1267 struct btrfs_dir_item
*di
;
1270 unsigned long ptr_end
;
1272 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1273 ptr_end
= ptr
+ item_size
;
1274 while (ptr
< ptr_end
) {
1275 di
= (struct btrfs_dir_item
*)ptr
;
1276 if (verify_dir_item(root
, eb
, di
))
1278 name_len
= btrfs_dir_name_len(eb
, di
);
1279 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1281 ptr
= (unsigned long)(di
+ 1);
1288 * directory replay has two parts. There are the standard directory
1289 * items in the log copied from the subvolume, and range items
1290 * created in the log while the subvolume was logged.
1292 * The range items tell us which parts of the key space the log
1293 * is authoritative for. During replay, if a key in the subvolume
1294 * directory is in a logged range item, but not actually in the log
1295 * that means it was deleted from the directory before the fsync
1296 * and should be removed.
1298 static noinline
int find_dir_range(struct btrfs_root
*root
,
1299 struct btrfs_path
*path
,
1300 u64 dirid
, int key_type
,
1301 u64
*start_ret
, u64
*end_ret
)
1303 struct btrfs_key key
;
1305 struct btrfs_dir_log_item
*item
;
1309 if (*start_ret
== (u64
)-1)
1312 key
.objectid
= dirid
;
1313 key
.type
= key_type
;
1314 key
.offset
= *start_ret
;
1316 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1320 if (path
->slots
[0] == 0)
1325 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1327 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1331 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1332 struct btrfs_dir_log_item
);
1333 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1335 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1337 *start_ret
= key
.offset
;
1338 *end_ret
= found_end
;
1343 /* check the next slot in the tree to see if it is a valid item */
1344 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1345 if (path
->slots
[0] >= nritems
) {
1346 ret
= btrfs_next_leaf(root
, path
);
1353 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1355 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1359 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1360 struct btrfs_dir_log_item
);
1361 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1362 *start_ret
= key
.offset
;
1363 *end_ret
= found_end
;
1366 btrfs_release_path(root
, path
);
1371 * this looks for a given directory item in the log. If the directory
1372 * item is not in the log, the item is removed and the inode it points
1375 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1376 struct btrfs_root
*root
,
1377 struct btrfs_root
*log
,
1378 struct btrfs_path
*path
,
1379 struct btrfs_path
*log_path
,
1381 struct btrfs_key
*dir_key
)
1384 struct extent_buffer
*eb
;
1387 struct btrfs_dir_item
*di
;
1388 struct btrfs_dir_item
*log_di
;
1391 unsigned long ptr_end
;
1393 struct inode
*inode
;
1394 struct btrfs_key location
;
1397 eb
= path
->nodes
[0];
1398 slot
= path
->slots
[0];
1399 item_size
= btrfs_item_size_nr(eb
, slot
);
1400 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1401 ptr_end
= ptr
+ item_size
;
1402 while (ptr
< ptr_end
) {
1403 di
= (struct btrfs_dir_item
*)ptr
;
1404 if (verify_dir_item(root
, eb
, di
)) {
1409 name_len
= btrfs_dir_name_len(eb
, di
);
1410 name
= kmalloc(name_len
, GFP_NOFS
);
1415 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1418 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1419 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1422 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1423 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1429 if (!log_di
|| IS_ERR(log_di
)) {
1430 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1431 btrfs_release_path(root
, path
);
1432 btrfs_release_path(log
, log_path
);
1433 inode
= read_one_inode(root
, location
.objectid
);
1436 ret
= link_to_fixup_dir(trans
, root
,
1437 path
, location
.objectid
);
1439 btrfs_inc_nlink(inode
);
1440 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1446 /* there might still be more names under this key
1447 * check and repeat if required
1449 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1456 btrfs_release_path(log
, log_path
);
1459 ptr
= (unsigned long)(di
+ 1);
1464 btrfs_release_path(root
, path
);
1465 btrfs_release_path(log
, log_path
);
1470 * deletion replay happens before we copy any new directory items
1471 * out of the log or out of backreferences from inodes. It
1472 * scans the log to find ranges of keys that log is authoritative for,
1473 * and then scans the directory to find items in those ranges that are
1474 * not present in the log.
1476 * Anything we don't find in the log is unlinked and removed from the
1479 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1480 struct btrfs_root
*root
,
1481 struct btrfs_root
*log
,
1482 struct btrfs_path
*path
,
1483 u64 dirid
, int del_all
)
1487 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1489 struct btrfs_key dir_key
;
1490 struct btrfs_key found_key
;
1491 struct btrfs_path
*log_path
;
1494 dir_key
.objectid
= dirid
;
1495 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1496 log_path
= btrfs_alloc_path();
1500 dir
= read_one_inode(root
, dirid
);
1501 /* it isn't an error if the inode isn't there, that can happen
1502 * because we replay the deletes before we copy in the inode item
1506 btrfs_free_path(log_path
);
1514 range_end
= (u64
)-1;
1516 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1517 &range_start
, &range_end
);
1522 dir_key
.offset
= range_start
;
1525 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1530 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1531 if (path
->slots
[0] >= nritems
) {
1532 ret
= btrfs_next_leaf(root
, path
);
1536 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1538 if (found_key
.objectid
!= dirid
||
1539 found_key
.type
!= dir_key
.type
)
1542 if (found_key
.offset
> range_end
)
1545 ret
= check_item_in_log(trans
, root
, log
, path
,
1549 if (found_key
.offset
== (u64
)-1)
1551 dir_key
.offset
= found_key
.offset
+ 1;
1553 btrfs_release_path(root
, path
);
1554 if (range_end
== (u64
)-1)
1556 range_start
= range_end
+ 1;
1561 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1562 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1563 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1564 btrfs_release_path(root
, path
);
1568 btrfs_release_path(root
, path
);
1569 btrfs_free_path(log_path
);
1575 * the process_func used to replay items from the log tree. This
1576 * gets called in two different stages. The first stage just looks
1577 * for inodes and makes sure they are all copied into the subvolume.
1579 * The second stage copies all the other item types from the log into
1580 * the subvolume. The two stage approach is slower, but gets rid of
1581 * lots of complexity around inodes referencing other inodes that exist
1582 * only in the log (references come from either directory items or inode
1585 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1586 struct walk_control
*wc
, u64 gen
)
1589 struct btrfs_path
*path
;
1590 struct btrfs_root
*root
= wc
->replay_dest
;
1591 struct btrfs_key key
;
1596 btrfs_read_buffer(eb
, gen
);
1598 level
= btrfs_header_level(eb
);
1603 path
= btrfs_alloc_path();
1606 nritems
= btrfs_header_nritems(eb
);
1607 for (i
= 0; i
< nritems
; i
++) {
1608 btrfs_item_key_to_cpu(eb
, &key
, i
);
1610 /* inode keys are done during the first stage */
1611 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1612 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1613 struct btrfs_inode_item
*inode_item
;
1616 inode_item
= btrfs_item_ptr(eb
, i
,
1617 struct btrfs_inode_item
);
1618 mode
= btrfs_inode_mode(eb
, inode_item
);
1619 if (S_ISDIR(mode
)) {
1620 ret
= replay_dir_deletes(wc
->trans
,
1621 root
, log
, path
, key
.objectid
, 0);
1624 ret
= overwrite_item(wc
->trans
, root
, path
,
1628 /* for regular files, make sure corresponding
1629 * orhpan item exist. extents past the new EOF
1630 * will be truncated later by orphan cleanup.
1632 if (S_ISREG(mode
)) {
1633 ret
= insert_orphan_item(wc
->trans
, root
,
1638 ret
= link_to_fixup_dir(wc
->trans
, root
,
1639 path
, key
.objectid
);
1642 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1645 /* these keys are simply copied */
1646 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1647 ret
= overwrite_item(wc
->trans
, root
, path
,
1650 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1651 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1653 BUG_ON(ret
&& ret
!= -ENOENT
);
1654 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1655 ret
= replay_one_extent(wc
->trans
, root
, path
,
1658 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1659 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1660 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1665 btrfs_free_path(path
);
1669 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1670 struct btrfs_root
*root
,
1671 struct btrfs_path
*path
, int *level
,
1672 struct walk_control
*wc
)
1677 struct extent_buffer
*next
;
1678 struct extent_buffer
*cur
;
1679 struct extent_buffer
*parent
;
1683 WARN_ON(*level
< 0);
1684 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1686 while (*level
> 0) {
1687 WARN_ON(*level
< 0);
1688 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1689 cur
= path
->nodes
[*level
];
1691 if (btrfs_header_level(cur
) != *level
)
1694 if (path
->slots
[*level
] >=
1695 btrfs_header_nritems(cur
))
1698 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1699 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1700 blocksize
= btrfs_level_size(root
, *level
- 1);
1702 parent
= path
->nodes
[*level
];
1703 root_owner
= btrfs_header_owner(parent
);
1705 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1710 wc
->process_func(root
, next
, wc
, ptr_gen
);
1712 path
->slots
[*level
]++;
1714 btrfs_read_buffer(next
, ptr_gen
);
1716 btrfs_tree_lock(next
);
1717 clean_tree_block(trans
, root
, next
);
1718 btrfs_set_lock_blocking(next
);
1719 btrfs_wait_tree_block_writeback(next
);
1720 btrfs_tree_unlock(next
);
1722 WARN_ON(root_owner
!=
1723 BTRFS_TREE_LOG_OBJECTID
);
1724 ret
= btrfs_free_reserved_extent(root
,
1728 free_extent_buffer(next
);
1731 btrfs_read_buffer(next
, ptr_gen
);
1733 WARN_ON(*level
<= 0);
1734 if (path
->nodes
[*level
-1])
1735 free_extent_buffer(path
->nodes
[*level
-1]);
1736 path
->nodes
[*level
-1] = next
;
1737 *level
= btrfs_header_level(next
);
1738 path
->slots
[*level
] = 0;
1741 WARN_ON(*level
< 0);
1742 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1744 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1750 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1751 struct btrfs_root
*root
,
1752 struct btrfs_path
*path
, int *level
,
1753 struct walk_control
*wc
)
1760 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1761 slot
= path
->slots
[i
];
1762 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1765 WARN_ON(*level
== 0);
1768 struct extent_buffer
*parent
;
1769 if (path
->nodes
[*level
] == root
->node
)
1770 parent
= path
->nodes
[*level
];
1772 parent
= path
->nodes
[*level
+ 1];
1774 root_owner
= btrfs_header_owner(parent
);
1775 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1776 btrfs_header_generation(path
->nodes
[*level
]));
1778 struct extent_buffer
*next
;
1780 next
= path
->nodes
[*level
];
1782 btrfs_tree_lock(next
);
1783 clean_tree_block(trans
, root
, next
);
1784 btrfs_set_lock_blocking(next
);
1785 btrfs_wait_tree_block_writeback(next
);
1786 btrfs_tree_unlock(next
);
1788 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1789 ret
= btrfs_free_reserved_extent(root
,
1790 path
->nodes
[*level
]->start
,
1791 path
->nodes
[*level
]->len
);
1794 free_extent_buffer(path
->nodes
[*level
]);
1795 path
->nodes
[*level
] = NULL
;
1803 * drop the reference count on the tree rooted at 'snap'. This traverses
1804 * the tree freeing any blocks that have a ref count of zero after being
1807 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1808 struct btrfs_root
*log
, struct walk_control
*wc
)
1813 struct btrfs_path
*path
;
1817 path
= btrfs_alloc_path();
1821 level
= btrfs_header_level(log
->node
);
1823 path
->nodes
[level
] = log
->node
;
1824 extent_buffer_get(log
->node
);
1825 path
->slots
[level
] = 0;
1828 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1834 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1841 /* was the root node processed? if not, catch it here */
1842 if (path
->nodes
[orig_level
]) {
1843 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1844 btrfs_header_generation(path
->nodes
[orig_level
]));
1846 struct extent_buffer
*next
;
1848 next
= path
->nodes
[orig_level
];
1850 btrfs_tree_lock(next
);
1851 clean_tree_block(trans
, log
, next
);
1852 btrfs_set_lock_blocking(next
);
1853 btrfs_wait_tree_block_writeback(next
);
1854 btrfs_tree_unlock(next
);
1856 WARN_ON(log
->root_key
.objectid
!=
1857 BTRFS_TREE_LOG_OBJECTID
);
1858 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1864 for (i
= 0; i
<= orig_level
; i
++) {
1865 if (path
->nodes
[i
]) {
1866 free_extent_buffer(path
->nodes
[i
]);
1867 path
->nodes
[i
] = NULL
;
1870 btrfs_free_path(path
);
1875 * helper function to update the item for a given subvolumes log root
1876 * in the tree of log roots
1878 static int update_log_root(struct btrfs_trans_handle
*trans
,
1879 struct btrfs_root
*log
)
1883 if (log
->log_transid
== 1) {
1884 /* insert root item on the first sync */
1885 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1886 &log
->root_key
, &log
->root_item
);
1888 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1889 &log
->root_key
, &log
->root_item
);
1894 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1895 struct btrfs_root
*root
, unsigned long transid
)
1898 int index
= transid
% 2;
1901 * we only allow two pending log transactions at a time,
1902 * so we know that if ours is more than 2 older than the
1903 * current transaction, we're done
1906 prepare_to_wait(&root
->log_commit_wait
[index
],
1907 &wait
, TASK_UNINTERRUPTIBLE
);
1908 mutex_unlock(&root
->log_mutex
);
1910 if (root
->fs_info
->last_trans_log_full_commit
!=
1911 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1912 atomic_read(&root
->log_commit
[index
]))
1915 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1916 mutex_lock(&root
->log_mutex
);
1917 } while (root
->log_transid
< transid
+ 2 &&
1918 atomic_read(&root
->log_commit
[index
]));
1922 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1923 struct btrfs_root
*root
)
1926 while (atomic_read(&root
->log_writers
)) {
1927 prepare_to_wait(&root
->log_writer_wait
,
1928 &wait
, TASK_UNINTERRUPTIBLE
);
1929 mutex_unlock(&root
->log_mutex
);
1930 if (root
->fs_info
->last_trans_log_full_commit
!=
1931 trans
->transid
&& atomic_read(&root
->log_writers
))
1933 mutex_lock(&root
->log_mutex
);
1934 finish_wait(&root
->log_writer_wait
, &wait
);
1940 * btrfs_sync_log does sends a given tree log down to the disk and
1941 * updates the super blocks to record it. When this call is done,
1942 * you know that any inodes previously logged are safely on disk only
1945 * Any other return value means you need to call btrfs_commit_transaction.
1946 * Some of the edge cases for fsyncing directories that have had unlinks
1947 * or renames done in the past mean that sometimes the only safe
1948 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1949 * that has happened.
1951 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1952 struct btrfs_root
*root
)
1958 struct btrfs_root
*log
= root
->log_root
;
1959 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1960 unsigned long log_transid
= 0;
1962 mutex_lock(&root
->log_mutex
);
1963 index1
= root
->log_transid
% 2;
1964 if (atomic_read(&root
->log_commit
[index1
])) {
1965 wait_log_commit(trans
, root
, root
->log_transid
);
1966 mutex_unlock(&root
->log_mutex
);
1969 atomic_set(&root
->log_commit
[index1
], 1);
1971 /* wait for previous tree log sync to complete */
1972 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1973 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1976 unsigned long batch
= root
->log_batch
;
1977 if (root
->log_multiple_pids
) {
1978 mutex_unlock(&root
->log_mutex
);
1979 schedule_timeout_uninterruptible(1);
1980 mutex_lock(&root
->log_mutex
);
1982 wait_for_writer(trans
, root
);
1983 if (batch
== root
->log_batch
)
1987 /* bail out if we need to do a full commit */
1988 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
1990 mutex_unlock(&root
->log_mutex
);
1994 log_transid
= root
->log_transid
;
1995 if (log_transid
% 2 == 0)
1996 mark
= EXTENT_DIRTY
;
2000 /* we start IO on all the marked extents here, but we don't actually
2001 * wait for them until later.
2003 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2006 btrfs_set_root_node(&log
->root_item
, log
->node
);
2008 root
->log_batch
= 0;
2009 root
->log_transid
++;
2010 log
->log_transid
= root
->log_transid
;
2011 root
->log_start_pid
= 0;
2014 * IO has been started, blocks of the log tree have WRITTEN flag set
2015 * in their headers. new modifications of the log will be written to
2016 * new positions. so it's safe to allow log writers to go in.
2018 mutex_unlock(&root
->log_mutex
);
2020 mutex_lock(&log_root_tree
->log_mutex
);
2021 log_root_tree
->log_batch
++;
2022 atomic_inc(&log_root_tree
->log_writers
);
2023 mutex_unlock(&log_root_tree
->log_mutex
);
2025 ret
= update_log_root(trans
, log
);
2027 mutex_lock(&log_root_tree
->log_mutex
);
2028 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2030 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2031 wake_up(&log_root_tree
->log_writer_wait
);
2035 BUG_ON(ret
!= -ENOSPC
);
2036 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2037 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2038 mutex_unlock(&log_root_tree
->log_mutex
);
2043 index2
= log_root_tree
->log_transid
% 2;
2044 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2045 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2046 wait_log_commit(trans
, log_root_tree
,
2047 log_root_tree
->log_transid
);
2048 mutex_unlock(&log_root_tree
->log_mutex
);
2052 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2054 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2055 wait_log_commit(trans
, log_root_tree
,
2056 log_root_tree
->log_transid
- 1);
2059 wait_for_writer(trans
, log_root_tree
);
2062 * now that we've moved on to the tree of log tree roots,
2063 * check the full commit flag again
2065 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2066 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2067 mutex_unlock(&log_root_tree
->log_mutex
);
2069 goto out_wake_log_root
;
2072 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2073 &log_root_tree
->dirty_log_pages
,
2074 EXTENT_DIRTY
| EXTENT_NEW
);
2076 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2078 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2079 log_root_tree
->node
->start
);
2080 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2081 btrfs_header_level(log_root_tree
->node
));
2083 log_root_tree
->log_batch
= 0;
2084 log_root_tree
->log_transid
++;
2087 mutex_unlock(&log_root_tree
->log_mutex
);
2090 * nobody else is going to jump in and write the the ctree
2091 * super here because the log_commit atomic below is protecting
2092 * us. We must be called with a transaction handle pinning
2093 * the running transaction open, so a full commit can't hop
2094 * in and cause problems either.
2096 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2099 mutex_lock(&root
->log_mutex
);
2100 if (root
->last_log_commit
< log_transid
)
2101 root
->last_log_commit
= log_transid
;
2102 mutex_unlock(&root
->log_mutex
);
2105 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2107 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2108 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2110 atomic_set(&root
->log_commit
[index1
], 0);
2112 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2113 wake_up(&root
->log_commit_wait
[index1
]);
2117 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2118 struct btrfs_root
*log
)
2123 struct walk_control wc
= {
2125 .process_func
= process_one_buffer
2128 ret
= walk_log_tree(trans
, log
, &wc
);
2132 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2133 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2137 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2138 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2141 free_extent_buffer(log
->node
);
2146 * free all the extents used by the tree log. This should be called
2147 * at commit time of the full transaction
2149 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2151 if (root
->log_root
) {
2152 free_log_tree(trans
, root
->log_root
);
2153 root
->log_root
= NULL
;
2158 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2159 struct btrfs_fs_info
*fs_info
)
2161 if (fs_info
->log_root_tree
) {
2162 free_log_tree(trans
, fs_info
->log_root_tree
);
2163 fs_info
->log_root_tree
= NULL
;
2169 * If both a file and directory are logged, and unlinks or renames are
2170 * mixed in, we have a few interesting corners:
2172 * create file X in dir Y
2173 * link file X to X.link in dir Y
2175 * unlink file X but leave X.link
2178 * After a crash we would expect only X.link to exist. But file X
2179 * didn't get fsync'd again so the log has back refs for X and X.link.
2181 * We solve this by removing directory entries and inode backrefs from the
2182 * log when a file that was logged in the current transaction is
2183 * unlinked. Any later fsync will include the updated log entries, and
2184 * we'll be able to reconstruct the proper directory items from backrefs.
2186 * This optimizations allows us to avoid relogging the entire inode
2187 * or the entire directory.
2189 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2190 struct btrfs_root
*root
,
2191 const char *name
, int name_len
,
2192 struct inode
*dir
, u64 index
)
2194 struct btrfs_root
*log
;
2195 struct btrfs_dir_item
*di
;
2196 struct btrfs_path
*path
;
2201 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2204 ret
= join_running_log_trans(root
);
2208 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2210 log
= root
->log_root
;
2211 path
= btrfs_alloc_path();
2215 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2216 name
, name_len
, -1);
2222 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2223 bytes_del
+= name_len
;
2226 btrfs_release_path(log
, path
);
2227 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2228 index
, name
, name_len
, -1);
2234 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2235 bytes_del
+= name_len
;
2239 /* update the directory size in the log to reflect the names
2243 struct btrfs_key key
;
2245 key
.objectid
= dir
->i_ino
;
2247 key
.type
= BTRFS_INODE_ITEM_KEY
;
2248 btrfs_release_path(log
, path
);
2250 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2256 struct btrfs_inode_item
*item
;
2259 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2260 struct btrfs_inode_item
);
2261 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2262 if (i_size
> bytes_del
)
2263 i_size
-= bytes_del
;
2266 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2267 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2270 btrfs_release_path(log
, path
);
2273 btrfs_free_path(path
);
2274 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2275 if (ret
== -ENOSPC
) {
2276 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2279 btrfs_end_log_trans(root
);
2284 /* see comments for btrfs_del_dir_entries_in_log */
2285 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2286 struct btrfs_root
*root
,
2287 const char *name
, int name_len
,
2288 struct inode
*inode
, u64 dirid
)
2290 struct btrfs_root
*log
;
2294 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2297 ret
= join_running_log_trans(root
);
2300 log
= root
->log_root
;
2301 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2303 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2305 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2306 if (ret
== -ENOSPC
) {
2307 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2310 btrfs_end_log_trans(root
);
2316 * creates a range item in the log for 'dirid'. first_offset and
2317 * last_offset tell us which parts of the key space the log should
2318 * be considered authoritative for.
2320 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2321 struct btrfs_root
*log
,
2322 struct btrfs_path
*path
,
2323 int key_type
, u64 dirid
,
2324 u64 first_offset
, u64 last_offset
)
2327 struct btrfs_key key
;
2328 struct btrfs_dir_log_item
*item
;
2330 key
.objectid
= dirid
;
2331 key
.offset
= first_offset
;
2332 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2333 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2335 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2336 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2340 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2341 struct btrfs_dir_log_item
);
2342 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2343 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2344 btrfs_release_path(log
, path
);
2349 * log all the items included in the current transaction for a given
2350 * directory. This also creates the range items in the log tree required
2351 * to replay anything deleted before the fsync
2353 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2354 struct btrfs_root
*root
, struct inode
*inode
,
2355 struct btrfs_path
*path
,
2356 struct btrfs_path
*dst_path
, int key_type
,
2357 u64 min_offset
, u64
*last_offset_ret
)
2359 struct btrfs_key min_key
;
2360 struct btrfs_key max_key
;
2361 struct btrfs_root
*log
= root
->log_root
;
2362 struct extent_buffer
*src
;
2367 u64 first_offset
= min_offset
;
2368 u64 last_offset
= (u64
)-1;
2370 log
= root
->log_root
;
2371 max_key
.objectid
= inode
->i_ino
;
2372 max_key
.offset
= (u64
)-1;
2373 max_key
.type
= key_type
;
2375 min_key
.objectid
= inode
->i_ino
;
2376 min_key
.type
= key_type
;
2377 min_key
.offset
= min_offset
;
2379 path
->keep_locks
= 1;
2381 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2382 path
, 0, trans
->transid
);
2385 * we didn't find anything from this transaction, see if there
2386 * is anything at all
2388 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2389 min_key
.type
!= key_type
) {
2390 min_key
.objectid
= inode
->i_ino
;
2391 min_key
.type
= key_type
;
2392 min_key
.offset
= (u64
)-1;
2393 btrfs_release_path(root
, path
);
2394 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2396 btrfs_release_path(root
, path
);
2399 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2401 /* if ret == 0 there are items for this type,
2402 * create a range to tell us the last key of this type.
2403 * otherwise, there are no items in this directory after
2404 * *min_offset, and we create a range to indicate that.
2407 struct btrfs_key tmp
;
2408 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2410 if (key_type
== tmp
.type
)
2411 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2416 /* go backward to find any previous key */
2417 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2419 struct btrfs_key tmp
;
2420 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2421 if (key_type
== tmp
.type
) {
2422 first_offset
= tmp
.offset
;
2423 ret
= overwrite_item(trans
, log
, dst_path
,
2424 path
->nodes
[0], path
->slots
[0],
2432 btrfs_release_path(root
, path
);
2434 /* find the first key from this transaction again */
2435 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2442 * we have a block from this transaction, log every item in it
2443 * from our directory
2446 struct btrfs_key tmp
;
2447 src
= path
->nodes
[0];
2448 nritems
= btrfs_header_nritems(src
);
2449 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2450 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2452 if (min_key
.objectid
!= inode
->i_ino
||
2453 min_key
.type
!= key_type
)
2455 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2462 path
->slots
[0] = nritems
;
2465 * look ahead to the next item and see if it is also
2466 * from this directory and from this transaction
2468 ret
= btrfs_next_leaf(root
, path
);
2470 last_offset
= (u64
)-1;
2473 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2474 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2475 last_offset
= (u64
)-1;
2478 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2479 ret
= overwrite_item(trans
, log
, dst_path
,
2480 path
->nodes
[0], path
->slots
[0],
2485 last_offset
= tmp
.offset
;
2490 btrfs_release_path(root
, path
);
2491 btrfs_release_path(log
, dst_path
);
2494 *last_offset_ret
= last_offset
;
2496 * insert the log range keys to indicate where the log
2499 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2500 inode
->i_ino
, first_offset
,
2509 * logging directories is very similar to logging inodes, We find all the items
2510 * from the current transaction and write them to the log.
2512 * The recovery code scans the directory in the subvolume, and if it finds a
2513 * key in the range logged that is not present in the log tree, then it means
2514 * that dir entry was unlinked during the transaction.
2516 * In order for that scan to work, we must include one key smaller than
2517 * the smallest logged by this transaction and one key larger than the largest
2518 * key logged by this transaction.
2520 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2521 struct btrfs_root
*root
, struct inode
*inode
,
2522 struct btrfs_path
*path
,
2523 struct btrfs_path
*dst_path
)
2528 int key_type
= BTRFS_DIR_ITEM_KEY
;
2534 ret
= log_dir_items(trans
, root
, inode
, path
,
2535 dst_path
, key_type
, min_key
,
2539 if (max_key
== (u64
)-1)
2541 min_key
= max_key
+ 1;
2544 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2545 key_type
= BTRFS_DIR_INDEX_KEY
;
2552 * a helper function to drop items from the log before we relog an
2553 * inode. max_key_type indicates the highest item type to remove.
2554 * This cannot be run for file data extents because it does not
2555 * free the extents they point to.
2557 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2558 struct btrfs_root
*log
,
2559 struct btrfs_path
*path
,
2560 u64 objectid
, int max_key_type
)
2563 struct btrfs_key key
;
2564 struct btrfs_key found_key
;
2566 key
.objectid
= objectid
;
2567 key
.type
= max_key_type
;
2568 key
.offset
= (u64
)-1;
2571 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2576 if (path
->slots
[0] == 0)
2580 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2583 if (found_key
.objectid
!= objectid
)
2586 ret
= btrfs_del_item(trans
, log
, path
);
2588 btrfs_release_path(log
, path
);
2590 btrfs_release_path(log
, path
);
2594 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2595 struct btrfs_root
*log
,
2596 struct btrfs_path
*dst_path
,
2597 struct extent_buffer
*src
,
2598 int start_slot
, int nr
, int inode_only
)
2600 unsigned long src_offset
;
2601 unsigned long dst_offset
;
2602 struct btrfs_file_extent_item
*extent
;
2603 struct btrfs_inode_item
*inode_item
;
2605 struct btrfs_key
*ins_keys
;
2609 struct list_head ordered_sums
;
2611 INIT_LIST_HEAD(&ordered_sums
);
2613 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2614 nr
* sizeof(u32
), GFP_NOFS
);
2618 ins_sizes
= (u32
*)ins_data
;
2619 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2621 for (i
= 0; i
< nr
; i
++) {
2622 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2623 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2625 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2626 ins_keys
, ins_sizes
, nr
);
2632 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2633 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2634 dst_path
->slots
[0]);
2636 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2638 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2639 src_offset
, ins_sizes
[i
]);
2641 if (inode_only
== LOG_INODE_EXISTS
&&
2642 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2643 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2645 struct btrfs_inode_item
);
2646 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2648 /* set the generation to zero so the recover code
2649 * can tell the difference between an logging
2650 * just to say 'this inode exists' and a logging
2651 * to say 'update this inode with these values'
2653 btrfs_set_inode_generation(dst_path
->nodes
[0],
2656 /* take a reference on file data extents so that truncates
2657 * or deletes of this inode don't have to relog the inode
2660 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2662 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2663 struct btrfs_file_extent_item
);
2665 found_type
= btrfs_file_extent_type(src
, extent
);
2666 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2667 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2669 ds
= btrfs_file_extent_disk_bytenr(src
,
2671 /* ds == 0 is a hole */
2675 dl
= btrfs_file_extent_disk_num_bytes(src
,
2677 cs
= btrfs_file_extent_offset(src
, extent
);
2678 cl
= btrfs_file_extent_num_bytes(src
,
2680 if (btrfs_file_extent_compression(src
,
2686 ret
= btrfs_lookup_csums_range(
2687 log
->fs_info
->csum_root
,
2688 ds
+ cs
, ds
+ cs
+ cl
- 1,
2695 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2696 btrfs_release_path(log
, dst_path
);
2700 * we have to do this after the loop above to avoid changing the
2701 * log tree while trying to change the log tree.
2704 while (!list_empty(&ordered_sums
)) {
2705 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2706 struct btrfs_ordered_sum
,
2709 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2710 list_del(&sums
->list
);
2716 /* log a single inode in the tree log.
2717 * At least one parent directory for this inode must exist in the tree
2718 * or be logged already.
2720 * Any items from this inode changed by the current transaction are copied
2721 * to the log tree. An extra reference is taken on any extents in this
2722 * file, allowing us to avoid a whole pile of corner cases around logging
2723 * blocks that have been removed from the tree.
2725 * See LOG_INODE_ALL and related defines for a description of what inode_only
2728 * This handles both files and directories.
2730 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2731 struct btrfs_root
*root
, struct inode
*inode
,
2734 struct btrfs_path
*path
;
2735 struct btrfs_path
*dst_path
;
2736 struct btrfs_key min_key
;
2737 struct btrfs_key max_key
;
2738 struct btrfs_root
*log
= root
->log_root
;
2739 struct extent_buffer
*src
= NULL
;
2743 int ins_start_slot
= 0;
2746 log
= root
->log_root
;
2748 path
= btrfs_alloc_path();
2751 dst_path
= btrfs_alloc_path();
2753 btrfs_free_path(path
);
2757 min_key
.objectid
= inode
->i_ino
;
2758 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2761 max_key
.objectid
= inode
->i_ino
;
2763 /* today the code can only do partial logging of directories */
2764 if (!S_ISDIR(inode
->i_mode
))
2765 inode_only
= LOG_INODE_ALL
;
2767 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2768 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2770 max_key
.type
= (u8
)-1;
2771 max_key
.offset
= (u64
)-1;
2773 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2776 * a brute force approach to making sure we get the most uptodate
2777 * copies of everything.
2779 if (S_ISDIR(inode
->i_mode
)) {
2780 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2782 if (inode_only
== LOG_INODE_EXISTS
)
2783 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2784 ret
= drop_objectid_items(trans
, log
, path
,
2785 inode
->i_ino
, max_key_type
);
2787 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2793 path
->keep_locks
= 1;
2797 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2798 path
, 0, trans
->transid
);
2802 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2803 if (min_key
.objectid
!= inode
->i_ino
)
2805 if (min_key
.type
> max_key
.type
)
2808 src
= path
->nodes
[0];
2809 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2812 } else if (!ins_nr
) {
2813 ins_start_slot
= path
->slots
[0];
2818 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2819 ins_nr
, inode_only
);
2825 ins_start_slot
= path
->slots
[0];
2828 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2830 if (path
->slots
[0] < nritems
) {
2831 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2836 ret
= copy_items(trans
, log
, dst_path
, src
,
2838 ins_nr
, inode_only
);
2845 btrfs_release_path(root
, path
);
2847 if (min_key
.offset
< (u64
)-1)
2849 else if (min_key
.type
< (u8
)-1)
2851 else if (min_key
.objectid
< (u64
)-1)
2857 ret
= copy_items(trans
, log
, dst_path
, src
,
2859 ins_nr
, inode_only
);
2867 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2868 btrfs_release_path(root
, path
);
2869 btrfs_release_path(log
, dst_path
);
2870 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2876 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2878 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2880 btrfs_free_path(path
);
2881 btrfs_free_path(dst_path
);
2886 * follow the dentry parent pointers up the chain and see if any
2887 * of the directories in it require a full commit before they can
2888 * be logged. Returns zero if nothing special needs to be done or 1 if
2889 * a full commit is required.
2891 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2892 struct inode
*inode
,
2893 struct dentry
*parent
,
2894 struct super_block
*sb
,
2898 struct btrfs_root
*root
;
2899 struct dentry
*old_parent
= NULL
;
2902 * for regular files, if its inode is already on disk, we don't
2903 * have to worry about the parents at all. This is because
2904 * we can use the last_unlink_trans field to record renames
2905 * and other fun in this file.
2907 if (S_ISREG(inode
->i_mode
) &&
2908 BTRFS_I(inode
)->generation
<= last_committed
&&
2909 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2912 if (!S_ISDIR(inode
->i_mode
)) {
2913 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2915 inode
= parent
->d_inode
;
2919 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2922 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2923 root
= BTRFS_I(inode
)->root
;
2926 * make sure any commits to the log are forced
2927 * to be full commits
2929 root
->fs_info
->last_trans_log_full_commit
=
2935 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2938 if (IS_ROOT(parent
))
2941 parent
= dget_parent(parent
);
2943 old_parent
= parent
;
2944 inode
= parent
->d_inode
;
2952 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2953 struct inode
*inode
)
2955 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2958 mutex_lock(&root
->log_mutex
);
2959 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2960 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2962 mutex_unlock(&root
->log_mutex
);
2968 * helper function around btrfs_log_inode to make sure newly created
2969 * parent directories also end up in the log. A minimal inode and backref
2970 * only logging is done of any parent directories that are older than
2971 * the last committed transaction
2973 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2974 struct btrfs_root
*root
, struct inode
*inode
,
2975 struct dentry
*parent
, int exists_only
)
2977 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2978 struct super_block
*sb
;
2979 struct dentry
*old_parent
= NULL
;
2981 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2985 if (btrfs_test_opt(root
, NOTREELOG
)) {
2990 if (root
->fs_info
->last_trans_log_full_commit
>
2991 root
->fs_info
->last_trans_committed
) {
2996 if (root
!= BTRFS_I(inode
)->root
||
2997 btrfs_root_refs(&root
->root_item
) == 0) {
3002 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
3003 sb
, last_committed
);
3007 if (inode_in_log(trans
, inode
)) {
3008 ret
= BTRFS_NO_LOG_SYNC
;
3012 ret
= start_log_trans(trans
, root
);
3016 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3021 * for regular files, if its inode is already on disk, we don't
3022 * have to worry about the parents at all. This is because
3023 * we can use the last_unlink_trans field to record renames
3024 * and other fun in this file.
3026 if (S_ISREG(inode
->i_mode
) &&
3027 BTRFS_I(inode
)->generation
<= last_committed
&&
3028 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3033 inode_only
= LOG_INODE_EXISTS
;
3035 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3038 inode
= parent
->d_inode
;
3039 if (root
!= BTRFS_I(inode
)->root
)
3042 if (BTRFS_I(inode
)->generation
>
3043 root
->fs_info
->last_trans_committed
) {
3044 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3048 if (IS_ROOT(parent
))
3051 parent
= dget_parent(parent
);
3053 old_parent
= parent
;
3059 BUG_ON(ret
!= -ENOSPC
);
3060 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3063 btrfs_end_log_trans(root
);
3069 * it is not safe to log dentry if the chunk root has added new
3070 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3071 * If this returns 1, you must commit the transaction to safely get your
3074 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3075 struct btrfs_root
*root
, struct dentry
*dentry
)
3077 struct dentry
*parent
= dget_parent(dentry
);
3080 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3087 * should be called during mount to recover any replay any log trees
3090 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3093 struct btrfs_path
*path
;
3094 struct btrfs_trans_handle
*trans
;
3095 struct btrfs_key key
;
3096 struct btrfs_key found_key
;
3097 struct btrfs_key tmp_key
;
3098 struct btrfs_root
*log
;
3099 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3100 struct walk_control wc
= {
3101 .process_func
= process_one_buffer
,
3105 path
= btrfs_alloc_path();
3109 fs_info
->log_root_recovering
= 1;
3111 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3112 BUG_ON(IS_ERR(trans
));
3117 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
3121 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3122 key
.offset
= (u64
)-1;
3123 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3126 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3130 if (path
->slots
[0] == 0)
3134 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3136 btrfs_release_path(log_root_tree
, path
);
3137 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3140 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3142 BUG_ON(IS_ERR(log
));
3144 tmp_key
.objectid
= found_key
.offset
;
3145 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3146 tmp_key
.offset
= (u64
)-1;
3148 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3149 BUG_ON(!wc
.replay_dest
);
3151 wc
.replay_dest
->log_root
= log
;
3152 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3153 ret
= walk_log_tree(trans
, log
, &wc
);
3156 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3157 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3162 key
.offset
= found_key
.offset
- 1;
3163 wc
.replay_dest
->log_root
= NULL
;
3164 free_extent_buffer(log
->node
);
3165 free_extent_buffer(log
->commit_root
);
3168 if (found_key
.offset
== 0)
3171 btrfs_release_path(log_root_tree
, path
);
3173 /* step one is to pin it all, step two is to replay just inodes */
3176 wc
.process_func
= replay_one_buffer
;
3177 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3180 /* step three is to replay everything */
3181 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3186 btrfs_free_path(path
);
3188 free_extent_buffer(log_root_tree
->node
);
3189 log_root_tree
->log_root
= NULL
;
3190 fs_info
->log_root_recovering
= 0;
3192 /* step 4: commit the transaction, which also unpins the blocks */
3193 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3195 kfree(log_root_tree
);
3200 * there are some corner cases where we want to force a full
3201 * commit instead of allowing a directory to be logged.
3203 * They revolve around files there were unlinked from the directory, and
3204 * this function updates the parent directory so that a full commit is
3205 * properly done if it is fsync'd later after the unlinks are done.
3207 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3208 struct inode
*dir
, struct inode
*inode
,
3212 * when we're logging a file, if it hasn't been renamed
3213 * or unlinked, and its inode is fully committed on disk,
3214 * we don't have to worry about walking up the directory chain
3215 * to log its parents.
3217 * So, we use the last_unlink_trans field to put this transid
3218 * into the file. When the file is logged we check it and
3219 * don't log the parents if the file is fully on disk.
3221 if (S_ISREG(inode
->i_mode
))
3222 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3225 * if this directory was already logged any new
3226 * names for this file/dir will get recorded
3229 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3233 * if the inode we're about to unlink was logged,
3234 * the log will be properly updated for any new names
3236 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3240 * when renaming files across directories, if the directory
3241 * there we're unlinking from gets fsync'd later on, there's
3242 * no way to find the destination directory later and fsync it
3243 * properly. So, we have to be conservative and force commits
3244 * so the new name gets discovered.
3249 /* we can safely do the unlink without any special recording */
3253 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3257 * Call this after adding a new name for a file and it will properly
3258 * update the log to reflect the new name.
3260 * It will return zero if all goes well, and it will return 1 if a
3261 * full transaction commit is required.
3263 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3264 struct inode
*inode
, struct inode
*old_dir
,
3265 struct dentry
*parent
)
3267 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3270 * this will force the logging code to walk the dentry chain
3273 if (S_ISREG(inode
->i_mode
))
3274 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3277 * if this inode hasn't been logged and directory we're renaming it
3278 * from hasn't been logged, we don't need to log it
3280 if (BTRFS_I(inode
)->logged_trans
<=
3281 root
->fs_info
->last_trans_committed
&&
3282 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3283 root
->fs_info
->last_trans_committed
))
3286 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);