2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <asm/unaligned.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "async-thread.h"
43 #include "free-space-cache.h"
45 static struct extent_io_ops btree_extent_io_ops
;
46 static void end_workqueue_fn(struct btrfs_work
*work
);
47 static void free_fs_root(struct btrfs_root
*root
);
48 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
50 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
51 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
52 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
53 struct btrfs_root
*root
);
54 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
55 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
56 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
57 struct extent_io_tree
*dirty_pages
,
59 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
60 struct extent_io_tree
*pinned_extents
);
61 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
64 * end_io_wq structs are used to do processing in task context when an IO is
65 * complete. This is used during reads to verify checksums, and it is used
66 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_fs_info
*info
;
75 struct list_head list
;
76 struct btrfs_work work
;
80 * async submit bios are used to offload expensive checksumming
81 * onto the worker threads. They checksum file and metadata bios
82 * just before they are sent down the IO stack.
84 struct async_submit_bio
{
87 struct list_head list
;
88 extent_submit_bio_hook_t
*submit_bio_start
;
89 extent_submit_bio_hook_t
*submit_bio_done
;
92 unsigned long bio_flags
;
94 * bio_offset is optional, can be used if the pages in the bio
95 * can't tell us where in the file the bio should go
98 struct btrfs_work work
;
101 /* These are used to set the lockdep class on the extent buffer locks.
102 * The class is set by the readpage_end_io_hook after the buffer has
103 * passed csum validation but before the pages are unlocked.
105 * The lockdep class is also set by btrfs_init_new_buffer on freshly
108 * The class is based on the level in the tree block, which allows lockdep
109 * to know that lower nodes nest inside the locks of higher nodes.
111 * We also add a check to make sure the highest level of the tree is
112 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
113 * code needs update as well.
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
116 # if BTRFS_MAX_LEVEL != 8
119 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
120 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
130 /* highest possible level */
136 * extents on the btree inode are pretty simple, there's one extent
137 * that covers the entire device
139 static struct extent_map
*btree_get_extent(struct inode
*inode
,
140 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
143 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
144 struct extent_map
*em
;
147 read_lock(&em_tree
->lock
);
148 em
= lookup_extent_mapping(em_tree
, start
, len
);
151 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
152 read_unlock(&em_tree
->lock
);
155 read_unlock(&em_tree
->lock
);
157 em
= alloc_extent_map(GFP_NOFS
);
159 em
= ERR_PTR(-ENOMEM
);
164 em
->block_len
= (u64
)-1;
166 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
168 write_lock(&em_tree
->lock
);
169 ret
= add_extent_mapping(em_tree
, em
);
170 if (ret
== -EEXIST
) {
171 u64 failed_start
= em
->start
;
172 u64 failed_len
= em
->len
;
175 em
= lookup_extent_mapping(em_tree
, start
, len
);
179 em
= lookup_extent_mapping(em_tree
, failed_start
,
187 write_unlock(&em_tree
->lock
);
195 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
197 return crc32c(seed
, data
, len
);
200 void btrfs_csum_final(u32 crc
, char *result
)
202 put_unaligned_le32(~crc
, result
);
206 * compute the csum for a btree block, and either verify it or write it
207 * into the csum field of the block.
209 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
213 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
216 unsigned long cur_len
;
217 unsigned long offset
= BTRFS_CSUM_SIZE
;
218 char *map_token
= NULL
;
220 unsigned long map_start
;
221 unsigned long map_len
;
224 unsigned long inline_result
;
226 len
= buf
->len
- offset
;
228 err
= map_private_extent_buffer(buf
, offset
, 32,
230 &map_start
, &map_len
, KM_USER0
);
233 cur_len
= min(len
, map_len
- (offset
- map_start
));
234 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
238 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
240 if (csum_size
> sizeof(inline_result
)) {
241 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
245 result
= (char *)&inline_result
;
248 btrfs_csum_final(crc
, result
);
251 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
254 memcpy(&found
, result
, csum_size
);
256 read_extent_buffer(buf
, &val
, 0, csum_size
);
257 if (printk_ratelimit()) {
258 printk(KERN_INFO
"btrfs: %s checksum verify "
259 "failed on %llu wanted %X found %X "
261 root
->fs_info
->sb
->s_id
,
262 (unsigned long long)buf
->start
, val
, found
,
263 btrfs_header_level(buf
));
265 if (result
!= (char *)&inline_result
)
270 write_extent_buffer(buf
, result
, 0, csum_size
);
272 if (result
!= (char *)&inline_result
)
278 * we can't consider a given block up to date unless the transid of the
279 * block matches the transid in the parent node's pointer. This is how we
280 * detect blocks that either didn't get written at all or got written
281 * in the wrong place.
283 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
284 struct extent_buffer
*eb
, u64 parent_transid
)
286 struct extent_state
*cached_state
= NULL
;
289 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
292 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
293 0, &cached_state
, GFP_NOFS
);
294 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
295 btrfs_header_generation(eb
) == parent_transid
) {
299 if (printk_ratelimit()) {
300 printk("parent transid verify failed on %llu wanted %llu "
302 (unsigned long long)eb
->start
,
303 (unsigned long long)parent_transid
,
304 (unsigned long long)btrfs_header_generation(eb
));
307 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
309 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
310 &cached_state
, GFP_NOFS
);
315 * helper to read a given tree block, doing retries as required when
316 * the checksums don't match and we have alternate mirrors to try.
318 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
319 struct extent_buffer
*eb
,
320 u64 start
, u64 parent_transid
)
322 struct extent_io_tree
*io_tree
;
327 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
328 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
330 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
331 btree_get_extent
, mirror_num
);
333 !verify_parent_transid(io_tree
, eb
, parent_transid
))
337 * This buffer's crc is fine, but its contents are corrupted, so
338 * there is no reason to read the other copies, they won't be
341 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
344 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
350 if (mirror_num
> num_copies
)
357 * checksum a dirty tree block before IO. This has extra checks to make sure
358 * we only fill in the checksum field in the first page of a multi-page block
361 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
363 struct extent_io_tree
*tree
;
364 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
367 struct extent_buffer
*eb
;
370 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
372 if (page
->private == EXTENT_PAGE_PRIVATE
) {
376 if (!page
->private) {
380 len
= page
->private >> 2;
383 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
388 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
389 btrfs_header_generation(eb
));
391 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
393 found_start
= btrfs_header_bytenr(eb
);
394 if (found_start
!= start
) {
398 if (eb
->first_page
!= page
) {
402 if (!PageUptodate(page
)) {
406 csum_tree_block(root
, eb
, 0);
408 free_extent_buffer(eb
);
413 static int check_tree_block_fsid(struct btrfs_root
*root
,
414 struct extent_buffer
*eb
)
416 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
417 u8 fsid
[BTRFS_UUID_SIZE
];
420 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
423 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
427 fs_devices
= fs_devices
->seed
;
432 #define CORRUPT(reason, eb, root, slot) \
433 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
434 "root=%llu, slot=%d\n", reason, \
435 (unsigned long long)btrfs_header_bytenr(eb), \
436 (unsigned long long)root->objectid, slot)
438 static noinline
int check_leaf(struct btrfs_root
*root
,
439 struct extent_buffer
*leaf
)
441 struct btrfs_key key
;
442 struct btrfs_key leaf_key
;
443 u32 nritems
= btrfs_header_nritems(leaf
);
449 /* Check the 0 item */
450 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
451 BTRFS_LEAF_DATA_SIZE(root
)) {
452 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
457 * Check to make sure each items keys are in the correct order and their
458 * offsets make sense. We only have to loop through nritems-1 because
459 * we check the current slot against the next slot, which verifies the
460 * next slot's offset+size makes sense and that the current's slot
463 for (slot
= 0; slot
< nritems
- 1; slot
++) {
464 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
465 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
467 /* Make sure the keys are in the right order */
468 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
469 CORRUPT("bad key order", leaf
, root
, slot
);
474 * Make sure the offset and ends are right, remember that the
475 * item data starts at the end of the leaf and grows towards the
478 if (btrfs_item_offset_nr(leaf
, slot
) !=
479 btrfs_item_end_nr(leaf
, slot
+ 1)) {
480 CORRUPT("slot offset bad", leaf
, root
, slot
);
485 * Check to make sure that we don't point outside of the leaf,
486 * just incase all the items are consistent to eachother, but
487 * all point outside of the leaf.
489 if (btrfs_item_end_nr(leaf
, slot
) >
490 BTRFS_LEAF_DATA_SIZE(root
)) {
491 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
499 #ifdef CONFIG_DEBUG_LOCK_ALLOC
500 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
502 lockdep_set_class_and_name(&eb
->lock
,
503 &btrfs_eb_class
[level
],
504 btrfs_eb_name
[level
]);
508 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
509 struct extent_state
*state
)
511 struct extent_io_tree
*tree
;
515 struct extent_buffer
*eb
;
516 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
519 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
520 if (page
->private == EXTENT_PAGE_PRIVATE
)
525 len
= page
->private >> 2;
528 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
534 found_start
= btrfs_header_bytenr(eb
);
535 if (found_start
!= start
) {
536 if (printk_ratelimit()) {
537 printk(KERN_INFO
"btrfs bad tree block start "
539 (unsigned long long)found_start
,
540 (unsigned long long)eb
->start
);
545 if (eb
->first_page
!= page
) {
546 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
547 eb
->first_page
->index
, page
->index
);
552 if (check_tree_block_fsid(root
, eb
)) {
553 if (printk_ratelimit()) {
554 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
555 (unsigned long long)eb
->start
);
560 found_level
= btrfs_header_level(eb
);
562 btrfs_set_buffer_lockdep_class(eb
, found_level
);
564 ret
= csum_tree_block(root
, eb
, 1);
571 * If this is a leaf block and it is corrupt, set the corrupt bit so
572 * that we don't try and read the other copies of this block, just
575 if (found_level
== 0 && check_leaf(root
, eb
)) {
576 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
580 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
581 end
= eb
->start
+ end
- 1;
583 free_extent_buffer(eb
);
588 static void end_workqueue_bio(struct bio
*bio
, int err
)
590 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
591 struct btrfs_fs_info
*fs_info
;
593 fs_info
= end_io_wq
->info
;
594 end_io_wq
->error
= err
;
595 end_io_wq
->work
.func
= end_workqueue_fn
;
596 end_io_wq
->work
.flags
= 0;
598 if (bio
->bi_rw
& REQ_WRITE
) {
599 if (end_io_wq
->metadata
== 1)
600 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
602 else if (end_io_wq
->metadata
== 2)
603 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
606 btrfs_queue_worker(&fs_info
->endio_write_workers
,
609 if (end_io_wq
->metadata
)
610 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
613 btrfs_queue_worker(&fs_info
->endio_workers
,
619 * For the metadata arg you want
622 * 1 - if normal metadta
623 * 2 - if writing to the free space cache area
625 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
628 struct end_io_wq
*end_io_wq
;
629 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
633 end_io_wq
->private = bio
->bi_private
;
634 end_io_wq
->end_io
= bio
->bi_end_io
;
635 end_io_wq
->info
= info
;
636 end_io_wq
->error
= 0;
637 end_io_wq
->bio
= bio
;
638 end_io_wq
->metadata
= metadata
;
640 bio
->bi_private
= end_io_wq
;
641 bio
->bi_end_io
= end_workqueue_bio
;
645 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
647 unsigned long limit
= min_t(unsigned long,
648 info
->workers
.max_workers
,
649 info
->fs_devices
->open_devices
);
653 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
655 return atomic_read(&info
->nr_async_bios
) >
656 btrfs_async_submit_limit(info
);
659 static void run_one_async_start(struct btrfs_work
*work
)
661 struct async_submit_bio
*async
;
663 async
= container_of(work
, struct async_submit_bio
, work
);
664 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
665 async
->mirror_num
, async
->bio_flags
,
669 static void run_one_async_done(struct btrfs_work
*work
)
671 struct btrfs_fs_info
*fs_info
;
672 struct async_submit_bio
*async
;
675 async
= container_of(work
, struct async_submit_bio
, work
);
676 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
678 limit
= btrfs_async_submit_limit(fs_info
);
679 limit
= limit
* 2 / 3;
681 atomic_dec(&fs_info
->nr_async_submits
);
683 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
684 waitqueue_active(&fs_info
->async_submit_wait
))
685 wake_up(&fs_info
->async_submit_wait
);
687 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
688 async
->mirror_num
, async
->bio_flags
,
692 static void run_one_async_free(struct btrfs_work
*work
)
694 struct async_submit_bio
*async
;
696 async
= container_of(work
, struct async_submit_bio
, work
);
700 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
701 int rw
, struct bio
*bio
, int mirror_num
,
702 unsigned long bio_flags
,
704 extent_submit_bio_hook_t
*submit_bio_start
,
705 extent_submit_bio_hook_t
*submit_bio_done
)
707 struct async_submit_bio
*async
;
709 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
713 async
->inode
= inode
;
716 async
->mirror_num
= mirror_num
;
717 async
->submit_bio_start
= submit_bio_start
;
718 async
->submit_bio_done
= submit_bio_done
;
720 async
->work
.func
= run_one_async_start
;
721 async
->work
.ordered_func
= run_one_async_done
;
722 async
->work
.ordered_free
= run_one_async_free
;
724 async
->work
.flags
= 0;
725 async
->bio_flags
= bio_flags
;
726 async
->bio_offset
= bio_offset
;
728 atomic_inc(&fs_info
->nr_async_submits
);
731 btrfs_set_work_high_prio(&async
->work
);
733 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
735 while (atomic_read(&fs_info
->async_submit_draining
) &&
736 atomic_read(&fs_info
->nr_async_submits
)) {
737 wait_event(fs_info
->async_submit_wait
,
738 (atomic_read(&fs_info
->nr_async_submits
) == 0));
744 static int btree_csum_one_bio(struct bio
*bio
)
746 struct bio_vec
*bvec
= bio
->bi_io_vec
;
748 struct btrfs_root
*root
;
750 WARN_ON(bio
->bi_vcnt
<= 0);
751 while (bio_index
< bio
->bi_vcnt
) {
752 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
753 csum_dirty_buffer(root
, bvec
->bv_page
);
760 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
761 struct bio
*bio
, int mirror_num
,
762 unsigned long bio_flags
,
766 * when we're called for a write, we're already in the async
767 * submission context. Just jump into btrfs_map_bio
769 btree_csum_one_bio(bio
);
773 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
774 int mirror_num
, unsigned long bio_flags
,
778 * when we're called for a write, we're already in the async
779 * submission context. Just jump into btrfs_map_bio
781 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
784 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
785 int mirror_num
, unsigned long bio_flags
,
790 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
794 if (!(rw
& REQ_WRITE
)) {
796 * called for a read, do the setup so that checksum validation
797 * can happen in the async kernel threads
799 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
804 * kthread helpers are used to submit writes so that checksumming
805 * can happen in parallel across all CPUs
807 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
808 inode
, rw
, bio
, mirror_num
, 0,
810 __btree_submit_bio_start
,
811 __btree_submit_bio_done
);
814 #ifdef CONFIG_MIGRATION
815 static int btree_migratepage(struct address_space
*mapping
,
816 struct page
*newpage
, struct page
*page
)
819 * we can't safely write a btree page from here,
820 * we haven't done the locking hook
825 * Buffers may be managed in a filesystem specific way.
826 * We must have no buffers or drop them.
828 if (page_has_private(page
) &&
829 !try_to_release_page(page
, GFP_KERNEL
))
831 return migrate_page(mapping
, newpage
, page
);
835 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
837 struct extent_io_tree
*tree
;
838 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
839 struct extent_buffer
*eb
;
842 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
843 if (!(current
->flags
& PF_MEMALLOC
)) {
844 return extent_write_full_page(tree
, page
,
845 btree_get_extent
, wbc
);
848 redirty_page_for_writepage(wbc
, page
);
849 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
852 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
854 spin_lock(&root
->fs_info
->delalloc_lock
);
855 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
856 spin_unlock(&root
->fs_info
->delalloc_lock
);
858 free_extent_buffer(eb
);
864 static int btree_writepages(struct address_space
*mapping
,
865 struct writeback_control
*wbc
)
867 struct extent_io_tree
*tree
;
868 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
869 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
870 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
872 unsigned long thresh
= 32 * 1024 * 1024;
874 if (wbc
->for_kupdate
)
877 /* this is a bit racy, but that's ok */
878 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
879 if (num_dirty
< thresh
)
882 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
885 static int btree_readpage(struct file
*file
, struct page
*page
)
887 struct extent_io_tree
*tree
;
888 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
889 return extent_read_full_page(tree
, page
, btree_get_extent
);
892 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
894 struct extent_io_tree
*tree
;
895 struct extent_map_tree
*map
;
898 if (PageWriteback(page
) || PageDirty(page
))
901 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
902 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
904 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
908 ret
= try_release_extent_buffer(tree
, page
);
910 ClearPagePrivate(page
);
911 set_page_private(page
, 0);
912 page_cache_release(page
);
918 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
920 struct extent_io_tree
*tree
;
921 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
922 extent_invalidatepage(tree
, page
, offset
);
923 btree_releasepage(page
, GFP_NOFS
);
924 if (PagePrivate(page
)) {
925 printk(KERN_WARNING
"btrfs warning page private not zero "
926 "on page %llu\n", (unsigned long long)page_offset(page
));
927 ClearPagePrivate(page
);
928 set_page_private(page
, 0);
929 page_cache_release(page
);
933 static const struct address_space_operations btree_aops
= {
934 .readpage
= btree_readpage
,
935 .writepage
= btree_writepage
,
936 .writepages
= btree_writepages
,
937 .releasepage
= btree_releasepage
,
938 .invalidatepage
= btree_invalidatepage
,
939 .sync_page
= block_sync_page
,
940 #ifdef CONFIG_MIGRATION
941 .migratepage
= btree_migratepage
,
945 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
948 struct extent_buffer
*buf
= NULL
;
949 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
952 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
955 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
956 buf
, 0, 0, btree_get_extent
, 0);
957 free_extent_buffer(buf
);
961 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
962 u64 bytenr
, u32 blocksize
)
964 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
965 struct extent_buffer
*eb
;
966 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
967 bytenr
, blocksize
, GFP_NOFS
);
971 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
972 u64 bytenr
, u32 blocksize
)
974 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
975 struct extent_buffer
*eb
;
977 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
978 bytenr
, blocksize
, NULL
, GFP_NOFS
);
983 int btrfs_write_tree_block(struct extent_buffer
*buf
)
985 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
986 buf
->start
+ buf
->len
- 1);
989 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
991 return filemap_fdatawait_range(buf
->first_page
->mapping
,
992 buf
->start
, buf
->start
+ buf
->len
- 1);
995 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
996 u32 blocksize
, u64 parent_transid
)
998 struct extent_buffer
*buf
= NULL
;
1001 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1005 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1008 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1013 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1014 struct extent_buffer
*buf
)
1016 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1017 if (btrfs_header_generation(buf
) ==
1018 root
->fs_info
->running_transaction
->transid
) {
1019 btrfs_assert_tree_locked(buf
);
1021 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1022 spin_lock(&root
->fs_info
->delalloc_lock
);
1023 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1024 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1027 spin_unlock(&root
->fs_info
->delalloc_lock
);
1030 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1031 btrfs_set_lock_blocking(buf
);
1032 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1038 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1039 u32 stripesize
, struct btrfs_root
*root
,
1040 struct btrfs_fs_info
*fs_info
,
1044 root
->commit_root
= NULL
;
1045 root
->sectorsize
= sectorsize
;
1046 root
->nodesize
= nodesize
;
1047 root
->leafsize
= leafsize
;
1048 root
->stripesize
= stripesize
;
1050 root
->track_dirty
= 0;
1052 root
->orphan_item_inserted
= 0;
1053 root
->orphan_cleanup_state
= 0;
1055 root
->fs_info
= fs_info
;
1056 root
->objectid
= objectid
;
1057 root
->last_trans
= 0;
1058 root
->highest_objectid
= 0;
1061 root
->inode_tree
= RB_ROOT
;
1062 root
->block_rsv
= NULL
;
1063 root
->orphan_block_rsv
= NULL
;
1065 INIT_LIST_HEAD(&root
->dirty_list
);
1066 INIT_LIST_HEAD(&root
->orphan_list
);
1067 INIT_LIST_HEAD(&root
->root_list
);
1068 spin_lock_init(&root
->node_lock
);
1069 spin_lock_init(&root
->orphan_lock
);
1070 spin_lock_init(&root
->inode_lock
);
1071 spin_lock_init(&root
->accounting_lock
);
1072 mutex_init(&root
->objectid_mutex
);
1073 mutex_init(&root
->log_mutex
);
1074 init_waitqueue_head(&root
->log_writer_wait
);
1075 init_waitqueue_head(&root
->log_commit_wait
[0]);
1076 init_waitqueue_head(&root
->log_commit_wait
[1]);
1077 atomic_set(&root
->log_commit
[0], 0);
1078 atomic_set(&root
->log_commit
[1], 0);
1079 atomic_set(&root
->log_writers
, 0);
1080 root
->log_batch
= 0;
1081 root
->log_transid
= 0;
1082 root
->last_log_commit
= 0;
1083 extent_io_tree_init(&root
->dirty_log_pages
,
1084 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1086 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1087 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1088 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1089 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1090 root
->defrag_trans_start
= fs_info
->generation
;
1091 init_completion(&root
->kobj_unregister
);
1092 root
->defrag_running
= 0;
1093 root
->root_key
.objectid
= objectid
;
1094 root
->anon_super
.s_root
= NULL
;
1095 root
->anon_super
.s_dev
= 0;
1096 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
1097 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
1098 init_rwsem(&root
->anon_super
.s_umount
);
1103 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1104 struct btrfs_fs_info
*fs_info
,
1106 struct btrfs_root
*root
)
1112 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1113 tree_root
->sectorsize
, tree_root
->stripesize
,
1114 root
, fs_info
, objectid
);
1115 ret
= btrfs_find_last_root(tree_root
, objectid
,
1116 &root
->root_item
, &root
->root_key
);
1121 generation
= btrfs_root_generation(&root
->root_item
);
1122 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1123 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1124 blocksize
, generation
);
1125 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1126 free_extent_buffer(root
->node
);
1129 root
->commit_root
= btrfs_root_node(root
);
1133 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1134 struct btrfs_fs_info
*fs_info
)
1136 struct btrfs_root
*root
;
1137 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1138 struct extent_buffer
*leaf
;
1140 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1142 return ERR_PTR(-ENOMEM
);
1144 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1145 tree_root
->sectorsize
, tree_root
->stripesize
,
1146 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1148 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1149 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1150 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1152 * log trees do not get reference counted because they go away
1153 * before a real commit is actually done. They do store pointers
1154 * to file data extents, and those reference counts still get
1155 * updated (along with back refs to the log tree).
1159 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1160 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1163 return ERR_CAST(leaf
);
1166 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1167 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1168 btrfs_set_header_generation(leaf
, trans
->transid
);
1169 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1170 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1173 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1174 (unsigned long)btrfs_header_fsid(root
->node
),
1176 btrfs_mark_buffer_dirty(root
->node
);
1177 btrfs_tree_unlock(root
->node
);
1181 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1182 struct btrfs_fs_info
*fs_info
)
1184 struct btrfs_root
*log_root
;
1186 log_root
= alloc_log_tree(trans
, fs_info
);
1187 if (IS_ERR(log_root
))
1188 return PTR_ERR(log_root
);
1189 WARN_ON(fs_info
->log_root_tree
);
1190 fs_info
->log_root_tree
= log_root
;
1194 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1195 struct btrfs_root
*root
)
1197 struct btrfs_root
*log_root
;
1198 struct btrfs_inode_item
*inode_item
;
1200 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1201 if (IS_ERR(log_root
))
1202 return PTR_ERR(log_root
);
1204 log_root
->last_trans
= trans
->transid
;
1205 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1207 inode_item
= &log_root
->root_item
.inode
;
1208 inode_item
->generation
= cpu_to_le64(1);
1209 inode_item
->size
= cpu_to_le64(3);
1210 inode_item
->nlink
= cpu_to_le32(1);
1211 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1212 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1214 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1216 WARN_ON(root
->log_root
);
1217 root
->log_root
= log_root
;
1218 root
->log_transid
= 0;
1219 root
->last_log_commit
= 0;
1223 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1224 struct btrfs_key
*location
)
1226 struct btrfs_root
*root
;
1227 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1228 struct btrfs_path
*path
;
1229 struct extent_buffer
*l
;
1234 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1236 return ERR_PTR(-ENOMEM
);
1237 if (location
->offset
== (u64
)-1) {
1238 ret
= find_and_setup_root(tree_root
, fs_info
,
1239 location
->objectid
, root
);
1242 return ERR_PTR(ret
);
1247 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1248 tree_root
->sectorsize
, tree_root
->stripesize
,
1249 root
, fs_info
, location
->objectid
);
1251 path
= btrfs_alloc_path();
1254 return ERR_PTR(-ENOMEM
);
1256 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1259 read_extent_buffer(l
, &root
->root_item
,
1260 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1261 sizeof(root
->root_item
));
1262 memcpy(&root
->root_key
, location
, sizeof(*location
));
1264 btrfs_free_path(path
);
1269 return ERR_PTR(ret
);
1272 generation
= btrfs_root_generation(&root
->root_item
);
1273 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1274 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1275 blocksize
, generation
);
1276 root
->commit_root
= btrfs_root_node(root
);
1277 BUG_ON(!root
->node
);
1279 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1285 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1288 struct btrfs_root
*root
;
1290 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1291 return fs_info
->tree_root
;
1292 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1293 return fs_info
->extent_root
;
1295 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1296 (unsigned long)root_objectid
);
1300 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1301 struct btrfs_key
*location
)
1303 struct btrfs_root
*root
;
1306 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1307 return fs_info
->tree_root
;
1308 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1309 return fs_info
->extent_root
;
1310 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1311 return fs_info
->chunk_root
;
1312 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1313 return fs_info
->dev_root
;
1314 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1315 return fs_info
->csum_root
;
1317 spin_lock(&fs_info
->fs_roots_radix_lock
);
1318 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1319 (unsigned long)location
->objectid
);
1320 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1324 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1328 set_anon_super(&root
->anon_super
, NULL
);
1330 if (btrfs_root_refs(&root
->root_item
) == 0) {
1335 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1339 root
->orphan_item_inserted
= 1;
1341 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1345 spin_lock(&fs_info
->fs_roots_radix_lock
);
1346 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1347 (unsigned long)root
->root_key
.objectid
,
1352 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1353 radix_tree_preload_end();
1355 if (ret
== -EEXIST
) {
1362 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1363 root
->root_key
.objectid
);
1368 return ERR_PTR(ret
);
1371 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1372 struct btrfs_key
*location
,
1373 const char *name
, int namelen
)
1375 return btrfs_read_fs_root_no_name(fs_info
, location
);
1377 struct btrfs_root
*root
;
1380 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1387 ret
= btrfs_set_root_name(root
, name
, namelen
);
1389 free_extent_buffer(root
->node
);
1391 return ERR_PTR(ret
);
1394 ret
= btrfs_sysfs_add_root(root
);
1396 free_extent_buffer(root
->node
);
1399 return ERR_PTR(ret
);
1406 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1408 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1410 struct btrfs_device
*device
;
1411 struct backing_dev_info
*bdi
;
1413 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1416 bdi
= blk_get_backing_dev_info(device
->bdev
);
1417 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1426 * this unplugs every device on the box, and it is only used when page
1429 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1431 struct btrfs_device
*device
;
1432 struct btrfs_fs_info
*info
;
1434 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1435 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1439 bdi
= blk_get_backing_dev_info(device
->bdev
);
1440 if (bdi
->unplug_io_fn
)
1441 bdi
->unplug_io_fn(bdi
, page
);
1445 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1447 struct inode
*inode
;
1448 struct extent_map_tree
*em_tree
;
1449 struct extent_map
*em
;
1450 struct address_space
*mapping
;
1453 /* the generic O_DIRECT read code does this */
1455 __unplug_io_fn(bdi
, page
);
1460 * page->mapping may change at any time. Get a consistent copy
1461 * and use that for everything below
1464 mapping
= page
->mapping
;
1468 inode
= mapping
->host
;
1471 * don't do the expensive searching for a small number of
1474 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1475 __unplug_io_fn(bdi
, page
);
1479 offset
= page_offset(page
);
1481 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1482 read_lock(&em_tree
->lock
);
1483 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1484 read_unlock(&em_tree
->lock
);
1486 __unplug_io_fn(bdi
, page
);
1490 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1491 free_extent_map(em
);
1492 __unplug_io_fn(bdi
, page
);
1495 offset
= offset
- em
->start
;
1496 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1497 em
->block_start
+ offset
, page
);
1498 free_extent_map(em
);
1502 * If this fails, caller must call bdi_destroy() to get rid of the
1505 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1509 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1510 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1514 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1515 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1516 bdi
->unplug_io_data
= info
;
1517 bdi
->congested_fn
= btrfs_congested_fn
;
1518 bdi
->congested_data
= info
;
1522 static int bio_ready_for_csum(struct bio
*bio
)
1528 struct extent_io_tree
*io_tree
= NULL
;
1529 struct bio_vec
*bvec
;
1533 bio_for_each_segment(bvec
, bio
, i
) {
1534 page
= bvec
->bv_page
;
1535 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1536 length
+= bvec
->bv_len
;
1539 if (!page
->private) {
1540 length
+= bvec
->bv_len
;
1543 length
= bvec
->bv_len
;
1544 buf_len
= page
->private >> 2;
1545 start
= page_offset(page
) + bvec
->bv_offset
;
1546 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1548 /* are we fully contained in this bio? */
1549 if (buf_len
<= length
)
1552 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1553 start
+ buf_len
- 1);
1558 * called by the kthread helper functions to finally call the bio end_io
1559 * functions. This is where read checksum verification actually happens
1561 static void end_workqueue_fn(struct btrfs_work
*work
)
1564 struct end_io_wq
*end_io_wq
;
1565 struct btrfs_fs_info
*fs_info
;
1568 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1569 bio
= end_io_wq
->bio
;
1570 fs_info
= end_io_wq
->info
;
1572 /* metadata bio reads are special because the whole tree block must
1573 * be checksummed at once. This makes sure the entire block is in
1574 * ram and up to date before trying to verify things. For
1575 * blocksize <= pagesize, it is basically a noop
1577 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1578 !bio_ready_for_csum(bio
)) {
1579 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1583 error
= end_io_wq
->error
;
1584 bio
->bi_private
= end_io_wq
->private;
1585 bio
->bi_end_io
= end_io_wq
->end_io
;
1587 bio_endio(bio
, error
);
1590 static int cleaner_kthread(void *arg
)
1592 struct btrfs_root
*root
= arg
;
1595 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1597 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1598 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1599 btrfs_run_delayed_iputs(root
);
1600 btrfs_clean_old_snapshots(root
);
1601 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1604 if (freezing(current
)) {
1607 set_current_state(TASK_INTERRUPTIBLE
);
1608 if (!kthread_should_stop())
1610 __set_current_state(TASK_RUNNING
);
1612 } while (!kthread_should_stop());
1616 static int transaction_kthread(void *arg
)
1618 struct btrfs_root
*root
= arg
;
1619 struct btrfs_trans_handle
*trans
;
1620 struct btrfs_transaction
*cur
;
1623 unsigned long delay
;
1628 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1629 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1631 spin_lock(&root
->fs_info
->new_trans_lock
);
1632 cur
= root
->fs_info
->running_transaction
;
1634 spin_unlock(&root
->fs_info
->new_trans_lock
);
1638 now
= get_seconds();
1639 if (!cur
->blocked
&&
1640 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1641 spin_unlock(&root
->fs_info
->new_trans_lock
);
1645 transid
= cur
->transid
;
1646 spin_unlock(&root
->fs_info
->new_trans_lock
);
1648 trans
= btrfs_join_transaction(root
, 1);
1649 BUG_ON(IS_ERR(trans
));
1650 if (transid
== trans
->transid
) {
1651 ret
= btrfs_commit_transaction(trans
, root
);
1654 btrfs_end_transaction(trans
, root
);
1657 wake_up_process(root
->fs_info
->cleaner_kthread
);
1658 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1660 if (freezing(current
)) {
1663 set_current_state(TASK_INTERRUPTIBLE
);
1664 if (!kthread_should_stop() &&
1665 !btrfs_transaction_blocked(root
->fs_info
))
1666 schedule_timeout(delay
);
1667 __set_current_state(TASK_RUNNING
);
1669 } while (!kthread_should_stop());
1673 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1674 struct btrfs_fs_devices
*fs_devices
,
1684 struct btrfs_key location
;
1685 struct buffer_head
*bh
;
1686 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1688 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1690 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1691 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1692 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1694 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1696 struct btrfs_root
*log_tree_root
;
1701 struct btrfs_super_block
*disk_super
;
1703 if (!extent_root
|| !tree_root
|| !fs_info
||
1704 !chunk_root
|| !dev_root
|| !csum_root
) {
1709 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1715 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1721 fs_info
->btree_inode
= new_inode(sb
);
1722 if (!fs_info
->btree_inode
) {
1727 fs_info
->btree_inode
->i_mapping
->flags
&= ~__GFP_FS
;
1729 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1730 INIT_LIST_HEAD(&fs_info
->trans_list
);
1731 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1732 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1733 INIT_LIST_HEAD(&fs_info
->hashers
);
1734 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1735 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1736 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1737 spin_lock_init(&fs_info
->delalloc_lock
);
1738 spin_lock_init(&fs_info
->new_trans_lock
);
1739 spin_lock_init(&fs_info
->ref_cache_lock
);
1740 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1741 spin_lock_init(&fs_info
->delayed_iput_lock
);
1743 init_completion(&fs_info
->kobj_unregister
);
1744 fs_info
->tree_root
= tree_root
;
1745 fs_info
->extent_root
= extent_root
;
1746 fs_info
->csum_root
= csum_root
;
1747 fs_info
->chunk_root
= chunk_root
;
1748 fs_info
->dev_root
= dev_root
;
1749 fs_info
->fs_devices
= fs_devices
;
1750 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1751 INIT_LIST_HEAD(&fs_info
->space_info
);
1752 btrfs_mapping_init(&fs_info
->mapping_tree
);
1753 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1754 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1755 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1756 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1757 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1758 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1759 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1760 atomic_set(&fs_info
->nr_async_submits
, 0);
1761 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1762 atomic_set(&fs_info
->async_submit_draining
, 0);
1763 atomic_set(&fs_info
->nr_async_bios
, 0);
1765 fs_info
->max_inline
= 8192 * 1024;
1766 fs_info
->metadata_ratio
= 0;
1768 fs_info
->thread_pool_size
= min_t(unsigned long,
1769 num_online_cpus() + 2, 8);
1771 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1772 spin_lock_init(&fs_info
->ordered_extent_lock
);
1774 sb
->s_blocksize
= 4096;
1775 sb
->s_blocksize_bits
= blksize_bits(4096);
1776 sb
->s_bdi
= &fs_info
->bdi
;
1778 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1779 fs_info
->btree_inode
->i_nlink
= 1;
1781 * we set the i_size on the btree inode to the max possible int.
1782 * the real end of the address space is determined by all of
1783 * the devices in the system
1785 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1786 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1787 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1789 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1790 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1791 fs_info
->btree_inode
->i_mapping
,
1793 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1796 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1798 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1799 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1800 sizeof(struct btrfs_key
));
1801 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1802 insert_inode_hash(fs_info
->btree_inode
);
1804 spin_lock_init(&fs_info
->block_group_cache_lock
);
1805 fs_info
->block_group_cache_tree
= RB_ROOT
;
1807 extent_io_tree_init(&fs_info
->freed_extents
[0],
1808 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1809 extent_io_tree_init(&fs_info
->freed_extents
[1],
1810 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1811 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1812 fs_info
->do_barriers
= 1;
1815 mutex_init(&fs_info
->trans_mutex
);
1816 mutex_init(&fs_info
->ordered_operations_mutex
);
1817 mutex_init(&fs_info
->tree_log_mutex
);
1818 mutex_init(&fs_info
->chunk_mutex
);
1819 mutex_init(&fs_info
->transaction_kthread_mutex
);
1820 mutex_init(&fs_info
->cleaner_mutex
);
1821 mutex_init(&fs_info
->volume_mutex
);
1822 init_rwsem(&fs_info
->extent_commit_sem
);
1823 init_rwsem(&fs_info
->cleanup_work_sem
);
1824 init_rwsem(&fs_info
->subvol_sem
);
1826 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1827 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1829 init_waitqueue_head(&fs_info
->transaction_throttle
);
1830 init_waitqueue_head(&fs_info
->transaction_wait
);
1831 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1832 init_waitqueue_head(&fs_info
->async_submit_wait
);
1834 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1835 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1837 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1843 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1844 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1845 sizeof(fs_info
->super_for_commit
));
1848 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1850 disk_super
= &fs_info
->super_copy
;
1851 if (!btrfs_super_root(disk_super
))
1854 /* check FS state, whether FS is broken. */
1855 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1857 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1860 * In the long term, we'll store the compression type in the super
1861 * block, and it'll be used for per file compression control.
1863 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
1865 ret
= btrfs_parse_options(tree_root
, options
);
1871 features
= btrfs_super_incompat_flags(disk_super
) &
1872 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1874 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1875 "unsupported optional features (%Lx).\n",
1876 (unsigned long long)features
);
1881 features
= btrfs_super_incompat_flags(disk_super
);
1882 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1883 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1884 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1885 btrfs_set_super_incompat_flags(disk_super
, features
);
1887 features
= btrfs_super_compat_ro_flags(disk_super
) &
1888 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1889 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1890 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1891 "unsupported option features (%Lx).\n",
1892 (unsigned long long)features
);
1897 btrfs_init_workers(&fs_info
->generic_worker
,
1898 "genwork", 1, NULL
);
1900 btrfs_init_workers(&fs_info
->workers
, "worker",
1901 fs_info
->thread_pool_size
,
1902 &fs_info
->generic_worker
);
1904 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1905 fs_info
->thread_pool_size
,
1906 &fs_info
->generic_worker
);
1908 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1909 min_t(u64
, fs_devices
->num_devices
,
1910 fs_info
->thread_pool_size
),
1911 &fs_info
->generic_worker
);
1913 /* a higher idle thresh on the submit workers makes it much more
1914 * likely that bios will be send down in a sane order to the
1917 fs_info
->submit_workers
.idle_thresh
= 64;
1919 fs_info
->workers
.idle_thresh
= 16;
1920 fs_info
->workers
.ordered
= 1;
1922 fs_info
->delalloc_workers
.idle_thresh
= 2;
1923 fs_info
->delalloc_workers
.ordered
= 1;
1925 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1926 &fs_info
->generic_worker
);
1927 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1928 fs_info
->thread_pool_size
,
1929 &fs_info
->generic_worker
);
1930 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1931 fs_info
->thread_pool_size
,
1932 &fs_info
->generic_worker
);
1933 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1934 "endio-meta-write", fs_info
->thread_pool_size
,
1935 &fs_info
->generic_worker
);
1936 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1937 fs_info
->thread_pool_size
,
1938 &fs_info
->generic_worker
);
1939 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1940 1, &fs_info
->generic_worker
);
1943 * endios are largely parallel and should have a very
1946 fs_info
->endio_workers
.idle_thresh
= 4;
1947 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1949 fs_info
->endio_write_workers
.idle_thresh
= 2;
1950 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1952 btrfs_start_workers(&fs_info
->workers
, 1);
1953 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1954 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1955 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1956 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1957 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1958 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1959 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1960 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1961 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1963 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1964 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1965 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1967 nodesize
= btrfs_super_nodesize(disk_super
);
1968 leafsize
= btrfs_super_leafsize(disk_super
);
1969 sectorsize
= btrfs_super_sectorsize(disk_super
);
1970 stripesize
= btrfs_super_stripesize(disk_super
);
1971 tree_root
->nodesize
= nodesize
;
1972 tree_root
->leafsize
= leafsize
;
1973 tree_root
->sectorsize
= sectorsize
;
1974 tree_root
->stripesize
= stripesize
;
1976 sb
->s_blocksize
= sectorsize
;
1977 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1979 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1980 sizeof(disk_super
->magic
))) {
1981 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1982 goto fail_sb_buffer
;
1985 mutex_lock(&fs_info
->chunk_mutex
);
1986 ret
= btrfs_read_sys_array(tree_root
);
1987 mutex_unlock(&fs_info
->chunk_mutex
);
1989 printk(KERN_WARNING
"btrfs: failed to read the system "
1990 "array on %s\n", sb
->s_id
);
1991 goto fail_sb_buffer
;
1994 blocksize
= btrfs_level_size(tree_root
,
1995 btrfs_super_chunk_root_level(disk_super
));
1996 generation
= btrfs_super_chunk_root_generation(disk_super
);
1998 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1999 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2001 chunk_root
->node
= read_tree_block(chunk_root
,
2002 btrfs_super_chunk_root(disk_super
),
2003 blocksize
, generation
);
2004 BUG_ON(!chunk_root
->node
);
2005 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2006 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2008 goto fail_chunk_root
;
2010 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2011 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2013 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2014 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2017 mutex_lock(&fs_info
->chunk_mutex
);
2018 ret
= btrfs_read_chunk_tree(chunk_root
);
2019 mutex_unlock(&fs_info
->chunk_mutex
);
2021 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2023 goto fail_chunk_root
;
2026 btrfs_close_extra_devices(fs_devices
);
2028 blocksize
= btrfs_level_size(tree_root
,
2029 btrfs_super_root_level(disk_super
));
2030 generation
= btrfs_super_generation(disk_super
);
2032 tree_root
->node
= read_tree_block(tree_root
,
2033 btrfs_super_root(disk_super
),
2034 blocksize
, generation
);
2035 if (!tree_root
->node
)
2036 goto fail_chunk_root
;
2037 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2038 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2040 goto fail_tree_root
;
2042 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2043 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2045 ret
= find_and_setup_root(tree_root
, fs_info
,
2046 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2048 goto fail_tree_root
;
2049 extent_root
->track_dirty
= 1;
2051 ret
= find_and_setup_root(tree_root
, fs_info
,
2052 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2054 goto fail_extent_root
;
2055 dev_root
->track_dirty
= 1;
2057 ret
= find_and_setup_root(tree_root
, fs_info
,
2058 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2062 csum_root
->track_dirty
= 1;
2064 fs_info
->generation
= generation
;
2065 fs_info
->last_trans_committed
= generation
;
2066 fs_info
->data_alloc_profile
= (u64
)-1;
2067 fs_info
->metadata_alloc_profile
= (u64
)-1;
2068 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
2070 ret
= btrfs_init_space_info(fs_info
);
2072 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2073 goto fail_block_groups
;
2076 ret
= btrfs_read_block_groups(extent_root
);
2078 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2079 goto fail_block_groups
;
2082 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2084 if (IS_ERR(fs_info
->cleaner_kthread
))
2085 goto fail_block_groups
;
2087 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2089 "btrfs-transaction");
2090 if (IS_ERR(fs_info
->transaction_kthread
))
2093 if (!btrfs_test_opt(tree_root
, SSD
) &&
2094 !btrfs_test_opt(tree_root
, NOSSD
) &&
2095 !fs_info
->fs_devices
->rotating
) {
2096 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2098 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2101 /* do not make disk changes in broken FS */
2102 if (btrfs_super_log_root(disk_super
) != 0 &&
2103 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2104 u64 bytenr
= btrfs_super_log_root(disk_super
);
2106 if (fs_devices
->rw_devices
== 0) {
2107 printk(KERN_WARNING
"Btrfs log replay required "
2110 goto fail_trans_kthread
;
2113 btrfs_level_size(tree_root
,
2114 btrfs_super_log_root_level(disk_super
));
2116 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2117 if (!log_tree_root
) {
2119 goto fail_trans_kthread
;
2122 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2123 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2125 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2128 ret
= btrfs_recover_log_trees(log_tree_root
);
2131 if (sb
->s_flags
& MS_RDONLY
) {
2132 ret
= btrfs_commit_super(tree_root
);
2137 ret
= btrfs_find_orphan_roots(tree_root
);
2140 if (!(sb
->s_flags
& MS_RDONLY
)) {
2141 ret
= btrfs_cleanup_fs_roots(fs_info
);
2144 ret
= btrfs_recover_relocation(tree_root
);
2147 "btrfs: failed to recover relocation\n");
2149 goto fail_trans_kthread
;
2153 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2154 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2155 location
.offset
= (u64
)-1;
2157 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2158 if (!fs_info
->fs_root
)
2159 goto fail_trans_kthread
;
2160 if (IS_ERR(fs_info
->fs_root
)) {
2161 err
= PTR_ERR(fs_info
->fs_root
);
2162 goto fail_trans_kthread
;
2165 if (!(sb
->s_flags
& MS_RDONLY
)) {
2166 down_read(&fs_info
->cleanup_work_sem
);
2167 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2169 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2170 up_read(&fs_info
->cleanup_work_sem
);
2172 close_ctree(tree_root
);
2173 return ERR_PTR(err
);
2180 kthread_stop(fs_info
->transaction_kthread
);
2182 kthread_stop(fs_info
->cleaner_kthread
);
2185 * make sure we're done with the btree inode before we stop our
2188 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2189 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2192 btrfs_free_block_groups(fs_info
);
2193 free_extent_buffer(csum_root
->node
);
2194 free_extent_buffer(csum_root
->commit_root
);
2196 free_extent_buffer(dev_root
->node
);
2197 free_extent_buffer(dev_root
->commit_root
);
2199 free_extent_buffer(extent_root
->node
);
2200 free_extent_buffer(extent_root
->commit_root
);
2202 free_extent_buffer(tree_root
->node
);
2203 free_extent_buffer(tree_root
->commit_root
);
2205 free_extent_buffer(chunk_root
->node
);
2206 free_extent_buffer(chunk_root
->commit_root
);
2208 btrfs_stop_workers(&fs_info
->generic_worker
);
2209 btrfs_stop_workers(&fs_info
->fixup_workers
);
2210 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2211 btrfs_stop_workers(&fs_info
->workers
);
2212 btrfs_stop_workers(&fs_info
->endio_workers
);
2213 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2214 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2215 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2216 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2217 btrfs_stop_workers(&fs_info
->submit_workers
);
2219 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2220 iput(fs_info
->btree_inode
);
2222 btrfs_close_devices(fs_info
->fs_devices
);
2223 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2225 bdi_destroy(&fs_info
->bdi
);
2227 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2235 return ERR_PTR(err
);
2238 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2240 char b
[BDEVNAME_SIZE
];
2243 set_buffer_uptodate(bh
);
2245 if (printk_ratelimit()) {
2246 printk(KERN_WARNING
"lost page write due to "
2247 "I/O error on %s\n",
2248 bdevname(bh
->b_bdev
, b
));
2250 /* note, we dont' set_buffer_write_io_error because we have
2251 * our own ways of dealing with the IO errors
2253 clear_buffer_uptodate(bh
);
2259 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2261 struct buffer_head
*bh
;
2262 struct buffer_head
*latest
= NULL
;
2263 struct btrfs_super_block
*super
;
2268 /* we would like to check all the supers, but that would make
2269 * a btrfs mount succeed after a mkfs from a different FS.
2270 * So, we need to add a special mount option to scan for
2271 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2273 for (i
= 0; i
< 1; i
++) {
2274 bytenr
= btrfs_sb_offset(i
);
2275 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2277 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2281 super
= (struct btrfs_super_block
*)bh
->b_data
;
2282 if (btrfs_super_bytenr(super
) != bytenr
||
2283 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2284 sizeof(super
->magic
))) {
2289 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2292 transid
= btrfs_super_generation(super
);
2301 * this should be called twice, once with wait == 0 and
2302 * once with wait == 1. When wait == 0 is done, all the buffer heads
2303 * we write are pinned.
2305 * They are released when wait == 1 is done.
2306 * max_mirrors must be the same for both runs, and it indicates how
2307 * many supers on this one device should be written.
2309 * max_mirrors == 0 means to write them all.
2311 static int write_dev_supers(struct btrfs_device
*device
,
2312 struct btrfs_super_block
*sb
,
2313 int do_barriers
, int wait
, int max_mirrors
)
2315 struct buffer_head
*bh
;
2321 int last_barrier
= 0;
2323 if (max_mirrors
== 0)
2324 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2326 /* make sure only the last submit_bh does a barrier */
2328 for (i
= 0; i
< max_mirrors
; i
++) {
2329 bytenr
= btrfs_sb_offset(i
);
2330 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2331 device
->total_bytes
)
2337 for (i
= 0; i
< max_mirrors
; i
++) {
2338 bytenr
= btrfs_sb_offset(i
);
2339 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2343 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2344 BTRFS_SUPER_INFO_SIZE
);
2347 if (!buffer_uptodate(bh
))
2350 /* drop our reference */
2353 /* drop the reference from the wait == 0 run */
2357 btrfs_set_super_bytenr(sb
, bytenr
);
2360 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2361 BTRFS_CSUM_SIZE
, crc
,
2362 BTRFS_SUPER_INFO_SIZE
-
2364 btrfs_csum_final(crc
, sb
->csum
);
2367 * one reference for us, and we leave it for the
2370 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2371 BTRFS_SUPER_INFO_SIZE
);
2372 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2374 /* one reference for submit_bh */
2377 set_buffer_uptodate(bh
);
2379 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2382 if (i
== last_barrier
&& do_barriers
)
2383 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2385 ret
= submit_bh(WRITE_SYNC
, bh
);
2390 return errors
< i
? 0 : -1;
2393 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2395 struct list_head
*head
;
2396 struct btrfs_device
*dev
;
2397 struct btrfs_super_block
*sb
;
2398 struct btrfs_dev_item
*dev_item
;
2402 int total_errors
= 0;
2405 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2406 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2408 sb
= &root
->fs_info
->super_for_commit
;
2409 dev_item
= &sb
->dev_item
;
2411 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2412 head
= &root
->fs_info
->fs_devices
->devices
;
2413 list_for_each_entry(dev
, head
, dev_list
) {
2418 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2421 btrfs_set_stack_device_generation(dev_item
, 0);
2422 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2423 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2424 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2425 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2426 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2427 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2428 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2429 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2430 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2432 flags
= btrfs_super_flags(sb
);
2433 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2435 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2439 if (total_errors
> max_errors
) {
2440 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2446 list_for_each_entry(dev
, head
, dev_list
) {
2449 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2452 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2456 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2457 if (total_errors
> max_errors
) {
2458 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2465 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2466 struct btrfs_root
*root
, int max_mirrors
)
2470 ret
= write_all_supers(root
, max_mirrors
);
2474 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2476 spin_lock(&fs_info
->fs_roots_radix_lock
);
2477 radix_tree_delete(&fs_info
->fs_roots_radix
,
2478 (unsigned long)root
->root_key
.objectid
);
2479 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2481 if (btrfs_root_refs(&root
->root_item
) == 0)
2482 synchronize_srcu(&fs_info
->subvol_srcu
);
2488 static void free_fs_root(struct btrfs_root
*root
)
2490 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2491 if (root
->anon_super
.s_dev
) {
2492 down_write(&root
->anon_super
.s_umount
);
2493 kill_anon_super(&root
->anon_super
);
2495 free_extent_buffer(root
->node
);
2496 free_extent_buffer(root
->commit_root
);
2501 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2504 struct btrfs_root
*gang
[8];
2507 while (!list_empty(&fs_info
->dead_roots
)) {
2508 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2509 struct btrfs_root
, root_list
);
2510 list_del(&gang
[0]->root_list
);
2512 if (gang
[0]->in_radix
) {
2513 btrfs_free_fs_root(fs_info
, gang
[0]);
2515 free_extent_buffer(gang
[0]->node
);
2516 free_extent_buffer(gang
[0]->commit_root
);
2522 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2527 for (i
= 0; i
< ret
; i
++)
2528 btrfs_free_fs_root(fs_info
, gang
[i
]);
2533 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2535 u64 root_objectid
= 0;
2536 struct btrfs_root
*gang
[8];
2541 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2542 (void **)gang
, root_objectid
,
2547 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2548 for (i
= 0; i
< ret
; i
++) {
2551 root_objectid
= gang
[i
]->root_key
.objectid
;
2552 err
= btrfs_orphan_cleanup(gang
[i
]);
2561 int btrfs_commit_super(struct btrfs_root
*root
)
2563 struct btrfs_trans_handle
*trans
;
2566 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2567 btrfs_run_delayed_iputs(root
);
2568 btrfs_clean_old_snapshots(root
);
2569 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2571 /* wait until ongoing cleanup work done */
2572 down_write(&root
->fs_info
->cleanup_work_sem
);
2573 up_write(&root
->fs_info
->cleanup_work_sem
);
2575 trans
= btrfs_join_transaction(root
, 1);
2577 return PTR_ERR(trans
);
2578 ret
= btrfs_commit_transaction(trans
, root
);
2580 /* run commit again to drop the original snapshot */
2581 trans
= btrfs_join_transaction(root
, 1);
2583 return PTR_ERR(trans
);
2584 btrfs_commit_transaction(trans
, root
);
2585 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2588 ret
= write_ctree_super(NULL
, root
, 0);
2592 int close_ctree(struct btrfs_root
*root
)
2594 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2597 fs_info
->closing
= 1;
2600 btrfs_put_block_group_cache(fs_info
);
2603 * Here come 2 situations when btrfs is broken to flip readonly:
2605 * 1. when btrfs flips readonly somewhere else before
2606 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2607 * and btrfs will skip to write sb directly to keep
2608 * ERROR state on disk.
2610 * 2. when btrfs flips readonly just in btrfs_commit_super,
2611 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2612 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2613 * btrfs will cleanup all FS resources first and write sb then.
2615 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2616 ret
= btrfs_commit_super(root
);
2618 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2621 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2622 ret
= btrfs_error_commit_super(root
);
2624 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2627 kthread_stop(root
->fs_info
->transaction_kthread
);
2628 kthread_stop(root
->fs_info
->cleaner_kthread
);
2630 fs_info
->closing
= 2;
2633 if (fs_info
->delalloc_bytes
) {
2634 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2635 (unsigned long long)fs_info
->delalloc_bytes
);
2637 if (fs_info
->total_ref_cache_size
) {
2638 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2639 (unsigned long long)fs_info
->total_ref_cache_size
);
2642 free_extent_buffer(fs_info
->extent_root
->node
);
2643 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2644 free_extent_buffer(fs_info
->tree_root
->node
);
2645 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2646 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2647 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2648 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2649 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2650 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2651 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2653 btrfs_free_block_groups(root
->fs_info
);
2655 del_fs_roots(fs_info
);
2657 iput(fs_info
->btree_inode
);
2659 btrfs_stop_workers(&fs_info
->generic_worker
);
2660 btrfs_stop_workers(&fs_info
->fixup_workers
);
2661 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2662 btrfs_stop_workers(&fs_info
->workers
);
2663 btrfs_stop_workers(&fs_info
->endio_workers
);
2664 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2665 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2666 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2667 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2668 btrfs_stop_workers(&fs_info
->submit_workers
);
2670 btrfs_close_devices(fs_info
->fs_devices
);
2671 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2673 bdi_destroy(&fs_info
->bdi
);
2674 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2676 kfree(fs_info
->extent_root
);
2677 kfree(fs_info
->tree_root
);
2678 kfree(fs_info
->chunk_root
);
2679 kfree(fs_info
->dev_root
);
2680 kfree(fs_info
->csum_root
);
2686 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2689 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2691 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2696 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2701 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2703 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2704 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2708 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2710 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2711 u64 transid
= btrfs_header_generation(buf
);
2712 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2715 btrfs_assert_tree_locked(buf
);
2716 if (transid
!= root
->fs_info
->generation
) {
2717 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2718 "found %llu running %llu\n",
2719 (unsigned long long)buf
->start
,
2720 (unsigned long long)transid
,
2721 (unsigned long long)root
->fs_info
->generation
);
2724 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2727 spin_lock(&root
->fs_info
->delalloc_lock
);
2728 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2729 spin_unlock(&root
->fs_info
->delalloc_lock
);
2733 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2736 * looks as though older kernels can get into trouble with
2737 * this code, they end up stuck in balance_dirty_pages forever
2740 unsigned long thresh
= 32 * 1024 * 1024;
2742 if (current
->flags
& PF_MEMALLOC
)
2745 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2747 if (num_dirty
> thresh
) {
2748 balance_dirty_pages_ratelimited_nr(
2749 root
->fs_info
->btree_inode
->i_mapping
, 1);
2754 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2756 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2758 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2760 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2764 int btree_lock_page_hook(struct page
*page
)
2766 struct inode
*inode
= page
->mapping
->host
;
2767 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2768 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2769 struct extent_buffer
*eb
;
2771 u64 bytenr
= page_offset(page
);
2773 if (page
->private == EXTENT_PAGE_PRIVATE
)
2776 len
= page
->private >> 2;
2777 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2781 btrfs_tree_lock(eb
);
2782 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2784 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2785 spin_lock(&root
->fs_info
->delalloc_lock
);
2786 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2787 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2790 spin_unlock(&root
->fs_info
->delalloc_lock
);
2793 btrfs_tree_unlock(eb
);
2794 free_extent_buffer(eb
);
2800 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2806 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2807 printk(KERN_WARNING
"warning: mount fs with errors, "
2808 "running btrfsck is recommended\n");
2811 int btrfs_error_commit_super(struct btrfs_root
*root
)
2815 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2816 btrfs_run_delayed_iputs(root
);
2817 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2819 down_write(&root
->fs_info
->cleanup_work_sem
);
2820 up_write(&root
->fs_info
->cleanup_work_sem
);
2822 /* cleanup FS via transaction */
2823 btrfs_cleanup_transaction(root
);
2825 ret
= write_ctree_super(NULL
, root
, 0);
2830 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2832 struct btrfs_inode
*btrfs_inode
;
2833 struct list_head splice
;
2835 INIT_LIST_HEAD(&splice
);
2837 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2838 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2840 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2841 while (!list_empty(&splice
)) {
2842 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2843 ordered_operations
);
2845 list_del_init(&btrfs_inode
->ordered_operations
);
2847 btrfs_invalidate_inodes(btrfs_inode
->root
);
2850 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2851 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2856 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2858 struct list_head splice
;
2859 struct btrfs_ordered_extent
*ordered
;
2860 struct inode
*inode
;
2862 INIT_LIST_HEAD(&splice
);
2864 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2866 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2867 while (!list_empty(&splice
)) {
2868 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2871 list_del_init(&ordered
->root_extent_list
);
2872 atomic_inc(&ordered
->refs
);
2874 /* the inode may be getting freed (in sys_unlink path). */
2875 inode
= igrab(ordered
->inode
);
2877 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2881 atomic_set(&ordered
->refs
, 1);
2882 btrfs_put_ordered_extent(ordered
);
2884 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2887 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2892 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2893 struct btrfs_root
*root
)
2895 struct rb_node
*node
;
2896 struct btrfs_delayed_ref_root
*delayed_refs
;
2897 struct btrfs_delayed_ref_node
*ref
;
2900 delayed_refs
= &trans
->delayed_refs
;
2902 spin_lock(&delayed_refs
->lock
);
2903 if (delayed_refs
->num_entries
== 0) {
2904 printk(KERN_INFO
"delayed_refs has NO entry\n");
2908 node
= rb_first(&delayed_refs
->root
);
2910 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2911 node
= rb_next(node
);
2914 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2915 delayed_refs
->num_entries
--;
2917 atomic_set(&ref
->refs
, 1);
2918 if (btrfs_delayed_ref_is_head(ref
)) {
2919 struct btrfs_delayed_ref_head
*head
;
2921 head
= btrfs_delayed_node_to_head(ref
);
2922 mutex_lock(&head
->mutex
);
2923 kfree(head
->extent_op
);
2924 delayed_refs
->num_heads
--;
2925 if (list_empty(&head
->cluster
))
2926 delayed_refs
->num_heads_ready
--;
2927 list_del_init(&head
->cluster
);
2928 mutex_unlock(&head
->mutex
);
2931 spin_unlock(&delayed_refs
->lock
);
2932 btrfs_put_delayed_ref(ref
);
2935 spin_lock(&delayed_refs
->lock
);
2938 spin_unlock(&delayed_refs
->lock
);
2943 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2945 struct btrfs_pending_snapshot
*snapshot
;
2946 struct list_head splice
;
2948 INIT_LIST_HEAD(&splice
);
2950 list_splice_init(&t
->pending_snapshots
, &splice
);
2952 while (!list_empty(&splice
)) {
2953 snapshot
= list_entry(splice
.next
,
2954 struct btrfs_pending_snapshot
,
2957 list_del_init(&snapshot
->list
);
2965 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2967 struct btrfs_inode
*btrfs_inode
;
2968 struct list_head splice
;
2970 INIT_LIST_HEAD(&splice
);
2972 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2974 spin_lock(&root
->fs_info
->delalloc_lock
);
2976 while (!list_empty(&splice
)) {
2977 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2980 list_del_init(&btrfs_inode
->delalloc_inodes
);
2982 btrfs_invalidate_inodes(btrfs_inode
->root
);
2985 spin_unlock(&root
->fs_info
->delalloc_lock
);
2990 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2991 struct extent_io_tree
*dirty_pages
,
2996 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2997 struct extent_buffer
*eb
;
3001 unsigned long index
;
3004 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3009 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3010 while (start
<= end
) {
3011 index
= start
>> PAGE_CACHE_SHIFT
;
3012 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
3013 page
= find_get_page(btree_inode
->i_mapping
, index
);
3016 offset
= page_offset(page
);
3018 spin_lock(&dirty_pages
->buffer_lock
);
3019 eb
= radix_tree_lookup(
3020 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
3021 offset
>> PAGE_CACHE_SHIFT
);
3022 spin_unlock(&dirty_pages
->buffer_lock
);
3024 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3026 atomic_set(&eb
->refs
, 1);
3028 if (PageWriteback(page
))
3029 end_page_writeback(page
);
3032 if (PageDirty(page
)) {
3033 clear_page_dirty_for_io(page
);
3034 spin_lock_irq(&page
->mapping
->tree_lock
);
3035 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3037 PAGECACHE_TAG_DIRTY
);
3038 spin_unlock_irq(&page
->mapping
->tree_lock
);
3041 page
->mapping
->a_ops
->invalidatepage(page
, 0);
3049 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3050 struct extent_io_tree
*pinned_extents
)
3052 struct extent_io_tree
*unpin
;
3057 unpin
= pinned_extents
;
3059 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3065 if (btrfs_test_opt(root
, DISCARD
))
3066 ret
= btrfs_error_discard_extent(root
, start
,
3070 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3071 btrfs_error_unpin_extent_range(root
, start
, end
);
3078 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3080 struct btrfs_transaction
*t
;
3085 mutex_lock(&root
->fs_info
->trans_mutex
);
3086 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3088 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3089 while (!list_empty(&list
)) {
3090 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3094 btrfs_destroy_ordered_operations(root
);
3096 btrfs_destroy_ordered_extents(root
);
3098 btrfs_destroy_delayed_refs(t
, root
);
3100 btrfs_block_rsv_release(root
,
3101 &root
->fs_info
->trans_block_rsv
,
3102 t
->dirty_pages
.dirty_bytes
);
3104 /* FIXME: cleanup wait for commit */
3107 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3108 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3111 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3112 wake_up(&root
->fs_info
->transaction_wait
);
3113 mutex_unlock(&root
->fs_info
->trans_mutex
);
3115 mutex_lock(&root
->fs_info
->trans_mutex
);
3117 if (waitqueue_active(&t
->commit_wait
))
3118 wake_up(&t
->commit_wait
);
3119 mutex_unlock(&root
->fs_info
->trans_mutex
);
3121 mutex_lock(&root
->fs_info
->trans_mutex
);
3123 btrfs_destroy_pending_snapshots(t
);
3125 btrfs_destroy_delalloc_inodes(root
);
3127 spin_lock(&root
->fs_info
->new_trans_lock
);
3128 root
->fs_info
->running_transaction
= NULL
;
3129 spin_unlock(&root
->fs_info
->new_trans_lock
);
3131 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3134 btrfs_destroy_pinned_extent(root
,
3135 root
->fs_info
->pinned_extents
);
3138 list_del_init(&t
->list
);
3139 memset(t
, 0, sizeof(*t
));
3140 kmem_cache_free(btrfs_transaction_cachep
, t
);
3143 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3144 mutex_unlock(&root
->fs_info
->trans_mutex
);
3149 static struct extent_io_ops btree_extent_io_ops
= {
3150 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3151 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3152 .submit_bio_hook
= btree_submit_bio_hook
,
3153 /* note we're sharing with inode.c for the merge bio hook */
3154 .merge_bio_hook
= btrfs_merge_bio_hook
,