4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
177 static int vmap_page_range(unsigned long start
, unsigned long end
,
178 pgprot_t prot
, struct page
**pages
)
182 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
183 flush_cache_vmap(start
, end
);
187 int is_vmalloc_or_module_addr(const void *x
)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr
= (unsigned long)x
;
196 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
199 return is_vmalloc_addr(x
);
203 * Walk a vmap address to the struct page it maps.
205 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
207 unsigned long addr
= (unsigned long) vmalloc_addr
;
208 struct page
*page
= NULL
;
209 pgd_t
*pgd
= pgd_offset_k(addr
);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
217 if (!pgd_none(*pgd
)) {
218 pud_t
*pud
= pud_offset(pgd
, addr
);
219 if (!pud_none(*pud
)) {
220 pmd_t
*pmd
= pmd_offset(pud
, addr
);
221 if (!pmd_none(*pmd
)) {
224 ptep
= pte_offset_map(pmd
, addr
);
226 if (pte_present(pte
))
227 page
= pte_page(pte
);
234 EXPORT_SYMBOL(vmalloc_to_page
);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
243 EXPORT_SYMBOL(vmalloc_to_pfn
);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
253 unsigned long va_start
;
254 unsigned long va_end
;
256 struct rb_node rb_node
; /* address sorted rbtree */
257 struct list_head list
; /* address sorted list */
258 struct list_head purge_list
; /* "lazy purge" list */
260 struct rcu_head rcu_head
;
263 static DEFINE_SPINLOCK(vmap_area_lock
);
264 static LIST_HEAD(vmap_area_list
);
265 static struct rb_root vmap_area_root
= RB_ROOT
;
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node
*free_vmap_cache
;
269 static unsigned long cached_hole_size
;
270 static unsigned long cached_vstart
;
271 static unsigned long cached_align
;
273 static unsigned long vmap_area_pcpu_hole
;
275 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
277 struct rb_node
*n
= vmap_area_root
.rb_node
;
280 struct vmap_area
*va
;
282 va
= rb_entry(n
, struct vmap_area
, rb_node
);
283 if (addr
< va
->va_start
)
285 else if (addr
> va
->va_start
)
294 static void __insert_vmap_area(struct vmap_area
*va
)
296 struct rb_node
**p
= &vmap_area_root
.rb_node
;
297 struct rb_node
*parent
= NULL
;
301 struct vmap_area
*tmp_va
;
304 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
305 if (va
->va_start
< tmp_va
->va_end
)
307 else if (va
->va_end
> tmp_va
->va_start
)
313 rb_link_node(&va
->rb_node
, parent
, p
);
314 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
316 /* address-sort this list so it is usable like the vmlist */
317 tmp
= rb_prev(&va
->rb_node
);
319 struct vmap_area
*prev
;
320 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
321 list_add_rcu(&va
->list
, &prev
->list
);
323 list_add_rcu(&va
->list
, &vmap_area_list
);
326 static void purge_vmap_area_lazy(void);
329 * Allocate a region of KVA of the specified size and alignment, within the
332 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
334 unsigned long vstart
, unsigned long vend
,
335 int node
, gfp_t gfp_mask
)
337 struct vmap_area
*va
;
341 struct vmap_area
*first
;
344 BUG_ON(size
& ~PAGE_MASK
);
345 BUG_ON(!is_power_of_2(align
));
347 va
= kmalloc_node(sizeof(struct vmap_area
),
348 gfp_mask
& GFP_RECLAIM_MASK
, node
);
350 return ERR_PTR(-ENOMEM
);
353 spin_lock(&vmap_area_lock
);
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
363 if (!free_vmap_cache
||
364 size
< cached_hole_size
||
365 vstart
< cached_vstart
||
366 align
< cached_align
) {
368 cached_hole_size
= 0;
369 free_vmap_cache
= NULL
;
371 /* record if we encounter less permissive parameters */
372 cached_vstart
= vstart
;
373 cached_align
= align
;
375 /* find starting point for our search */
376 if (free_vmap_cache
) {
377 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
378 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
381 if (addr
+ size
- 1 < addr
)
385 addr
= ALIGN(vstart
, align
);
386 if (addr
+ size
- 1 < addr
)
389 n
= vmap_area_root
.rb_node
;
393 struct vmap_area
*tmp
;
394 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
395 if (tmp
->va_end
>= addr
) {
397 if (tmp
->va_start
<= addr
)
408 /* from the starting point, walk areas until a suitable hole is found */
409 while (addr
+ size
>= first
->va_start
&& addr
+ size
<= vend
) {
410 if (addr
+ cached_hole_size
< first
->va_start
)
411 cached_hole_size
= first
->va_start
- addr
;
412 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
413 if (addr
+ size
- 1 < addr
)
416 n
= rb_next(&first
->rb_node
);
418 first
= rb_entry(n
, struct vmap_area
, rb_node
);
424 if (addr
+ size
> vend
)
428 va
->va_end
= addr
+ size
;
430 __insert_vmap_area(va
);
431 free_vmap_cache
= &va
->rb_node
;
432 spin_unlock(&vmap_area_lock
);
434 BUG_ON(va
->va_start
& (align
-1));
435 BUG_ON(va
->va_start
< vstart
);
436 BUG_ON(va
->va_end
> vend
);
441 spin_unlock(&vmap_area_lock
);
443 purge_vmap_area_lazy();
447 if (printk_ratelimit())
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size
);
452 return ERR_PTR(-EBUSY
);
455 static void rcu_free_va(struct rcu_head
*head
)
457 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
462 static void __free_vmap_area(struct vmap_area
*va
)
464 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
466 if (free_vmap_cache
) {
467 if (va
->va_end
< cached_vstart
) {
468 free_vmap_cache
= NULL
;
470 struct vmap_area
*cache
;
471 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
472 if (va
->va_start
<= cache
->va_start
) {
473 free_vmap_cache
= rb_prev(&va
->rb_node
);
475 * We don't try to update cached_hole_size or
476 * cached_align, but it won't go very wrong.
481 rb_erase(&va
->rb_node
, &vmap_area_root
);
482 RB_CLEAR_NODE(&va
->rb_node
);
483 list_del_rcu(&va
->list
);
486 * Track the highest possible candidate for pcpu area
487 * allocation. Areas outside of vmalloc area can be returned
488 * here too, consider only end addresses which fall inside
489 * vmalloc area proper.
491 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
492 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
494 call_rcu(&va
->rcu_head
, rcu_free_va
);
498 * Free a region of KVA allocated by alloc_vmap_area
500 static void free_vmap_area(struct vmap_area
*va
)
502 spin_lock(&vmap_area_lock
);
503 __free_vmap_area(va
);
504 spin_unlock(&vmap_area_lock
);
508 * Clear the pagetable entries of a given vmap_area
510 static void unmap_vmap_area(struct vmap_area
*va
)
512 vunmap_page_range(va
->va_start
, va
->va_end
);
515 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
518 * Unmap page tables and force a TLB flush immediately if
519 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
520 * bugs similarly to those in linear kernel virtual address
521 * space after a page has been freed.
523 * All the lazy freeing logic is still retained, in order to
524 * minimise intrusiveness of this debugging feature.
526 * This is going to be *slow* (linear kernel virtual address
527 * debugging doesn't do a broadcast TLB flush so it is a lot
530 #ifdef CONFIG_DEBUG_PAGEALLOC
531 vunmap_page_range(start
, end
);
532 flush_tlb_kernel_range(start
, end
);
537 * lazy_max_pages is the maximum amount of virtual address space we gather up
538 * before attempting to purge with a TLB flush.
540 * There is a tradeoff here: a larger number will cover more kernel page tables
541 * and take slightly longer to purge, but it will linearly reduce the number of
542 * global TLB flushes that must be performed. It would seem natural to scale
543 * this number up linearly with the number of CPUs (because vmapping activity
544 * could also scale linearly with the number of CPUs), however it is likely
545 * that in practice, workloads might be constrained in other ways that mean
546 * vmap activity will not scale linearly with CPUs. Also, I want to be
547 * conservative and not introduce a big latency on huge systems, so go with
548 * a less aggressive log scale. It will still be an improvement over the old
549 * code, and it will be simple to change the scale factor if we find that it
550 * becomes a problem on bigger systems.
552 static unsigned long lazy_max_pages(void)
556 log
= fls(num_online_cpus());
558 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
561 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
563 /* for per-CPU blocks */
564 static void purge_fragmented_blocks_allcpus(void);
567 * called before a call to iounmap() if the caller wants vm_area_struct's
570 void set_iounmap_nonlazy(void)
572 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
576 * Purges all lazily-freed vmap areas.
578 * If sync is 0 then don't purge if there is already a purge in progress.
579 * If force_flush is 1, then flush kernel TLBs between *start and *end even
580 * if we found no lazy vmap areas to unmap (callers can use this to optimise
581 * their own TLB flushing).
582 * Returns with *start = min(*start, lowest purged address)
583 * *end = max(*end, highest purged address)
585 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
586 int sync
, int force_flush
)
588 static DEFINE_SPINLOCK(purge_lock
);
590 struct vmap_area
*va
;
591 struct vmap_area
*n_va
;
595 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
596 * should not expect such behaviour. This just simplifies locking for
597 * the case that isn't actually used at the moment anyway.
599 if (!sync
&& !force_flush
) {
600 if (!spin_trylock(&purge_lock
))
603 spin_lock(&purge_lock
);
606 purge_fragmented_blocks_allcpus();
609 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
610 if (va
->flags
& VM_LAZY_FREE
) {
611 if (va
->va_start
< *start
)
612 *start
= va
->va_start
;
613 if (va
->va_end
> *end
)
615 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
616 list_add_tail(&va
->purge_list
, &valist
);
617 va
->flags
|= VM_LAZY_FREEING
;
618 va
->flags
&= ~VM_LAZY_FREE
;
624 atomic_sub(nr
, &vmap_lazy_nr
);
626 if (nr
|| force_flush
)
627 flush_tlb_kernel_range(*start
, *end
);
630 spin_lock(&vmap_area_lock
);
631 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
632 __free_vmap_area(va
);
633 spin_unlock(&vmap_area_lock
);
635 spin_unlock(&purge_lock
);
639 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
640 * is already purging.
642 static void try_purge_vmap_area_lazy(void)
644 unsigned long start
= ULONG_MAX
, end
= 0;
646 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
650 * Kick off a purge of the outstanding lazy areas.
652 static void purge_vmap_area_lazy(void)
654 unsigned long start
= ULONG_MAX
, end
= 0;
656 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
660 * Free a vmap area, caller ensuring that the area has been unmapped
661 * and flush_cache_vunmap had been called for the correct range
664 static void free_vmap_area_noflush(struct vmap_area
*va
)
666 va
->flags
|= VM_LAZY_FREE
;
667 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
668 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
669 try_purge_vmap_area_lazy();
673 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
674 * called for the correct range previously.
676 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
679 free_vmap_area_noflush(va
);
683 * Free and unmap a vmap area
685 static void free_unmap_vmap_area(struct vmap_area
*va
)
687 flush_cache_vunmap(va
->va_start
, va
->va_end
);
688 free_unmap_vmap_area_noflush(va
);
691 static struct vmap_area
*find_vmap_area(unsigned long addr
)
693 struct vmap_area
*va
;
695 spin_lock(&vmap_area_lock
);
696 va
= __find_vmap_area(addr
);
697 spin_unlock(&vmap_area_lock
);
702 static void free_unmap_vmap_area_addr(unsigned long addr
)
704 struct vmap_area
*va
;
706 va
= find_vmap_area(addr
);
708 free_unmap_vmap_area(va
);
712 /*** Per cpu kva allocator ***/
715 * vmap space is limited especially on 32 bit architectures. Ensure there is
716 * room for at least 16 percpu vmap blocks per CPU.
719 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
720 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
721 * instead (we just need a rough idea)
723 #if BITS_PER_LONG == 32
724 #define VMALLOC_SPACE (128UL*1024*1024)
726 #define VMALLOC_SPACE (128UL*1024*1024*1024)
729 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
730 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
731 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
732 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
733 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
734 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
735 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
736 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
737 VMALLOC_PAGES / NR_CPUS / 16))
739 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
741 static bool vmap_initialized __read_mostly
= false;
743 struct vmap_block_queue
{
745 struct list_head free
;
750 struct vmap_area
*va
;
751 struct vmap_block_queue
*vbq
;
752 unsigned long free
, dirty
;
753 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
754 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
755 struct list_head free_list
;
756 struct rcu_head rcu_head
;
757 struct list_head purge
;
760 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
761 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
764 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
765 * in the free path. Could get rid of this if we change the API to return a
766 * "cookie" from alloc, to be passed to free. But no big deal yet.
768 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
769 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
772 * We should probably have a fallback mechanism to allocate virtual memory
773 * out of partially filled vmap blocks. However vmap block sizing should be
774 * fairly reasonable according to the vmalloc size, so it shouldn't be a
778 static unsigned long addr_to_vb_idx(unsigned long addr
)
780 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
781 addr
/= VMAP_BLOCK_SIZE
;
785 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
787 struct vmap_block_queue
*vbq
;
788 struct vmap_block
*vb
;
789 struct vmap_area
*va
;
790 unsigned long vb_idx
;
793 node
= numa_node_id();
795 vb
= kmalloc_node(sizeof(struct vmap_block
),
796 gfp_mask
& GFP_RECLAIM_MASK
, node
);
798 return ERR_PTR(-ENOMEM
);
800 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
801 VMALLOC_START
, VMALLOC_END
,
808 err
= radix_tree_preload(gfp_mask
);
815 spin_lock_init(&vb
->lock
);
817 vb
->free
= VMAP_BBMAP_BITS
;
819 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
820 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
821 INIT_LIST_HEAD(&vb
->free_list
);
823 vb_idx
= addr_to_vb_idx(va
->va_start
);
824 spin_lock(&vmap_block_tree_lock
);
825 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
826 spin_unlock(&vmap_block_tree_lock
);
828 radix_tree_preload_end();
830 vbq
= &get_cpu_var(vmap_block_queue
);
832 spin_lock(&vbq
->lock
);
833 list_add_rcu(&vb
->free_list
, &vbq
->free
);
834 spin_unlock(&vbq
->lock
);
835 put_cpu_var(vmap_block_queue
);
840 static void rcu_free_vb(struct rcu_head
*head
)
842 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
847 static void free_vmap_block(struct vmap_block
*vb
)
849 struct vmap_block
*tmp
;
850 unsigned long vb_idx
;
852 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
853 spin_lock(&vmap_block_tree_lock
);
854 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
855 spin_unlock(&vmap_block_tree_lock
);
858 free_vmap_area_noflush(vb
->va
);
859 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
862 static void purge_fragmented_blocks(int cpu
)
865 struct vmap_block
*vb
;
866 struct vmap_block
*n_vb
;
867 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
870 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
872 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
875 spin_lock(&vb
->lock
);
876 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
877 vb
->free
= 0; /* prevent further allocs after releasing lock */
878 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
879 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
880 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
881 spin_lock(&vbq
->lock
);
882 list_del_rcu(&vb
->free_list
);
883 spin_unlock(&vbq
->lock
);
884 spin_unlock(&vb
->lock
);
885 list_add_tail(&vb
->purge
, &purge
);
887 spin_unlock(&vb
->lock
);
891 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
892 list_del(&vb
->purge
);
897 static void purge_fragmented_blocks_thiscpu(void)
899 purge_fragmented_blocks(smp_processor_id());
902 static void purge_fragmented_blocks_allcpus(void)
906 for_each_possible_cpu(cpu
)
907 purge_fragmented_blocks(cpu
);
910 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
912 struct vmap_block_queue
*vbq
;
913 struct vmap_block
*vb
;
914 unsigned long addr
= 0;
918 BUG_ON(size
& ~PAGE_MASK
);
919 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
920 order
= get_order(size
);
924 vbq
= &get_cpu_var(vmap_block_queue
);
925 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
928 spin_lock(&vb
->lock
);
929 if (vb
->free
< 1UL << order
)
932 i
= bitmap_find_free_region(vb
->alloc_map
,
933 VMAP_BBMAP_BITS
, order
);
936 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
937 /* fragmented and no outstanding allocations */
938 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
943 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
944 BUG_ON(addr_to_vb_idx(addr
) !=
945 addr_to_vb_idx(vb
->va
->va_start
));
946 vb
->free
-= 1UL << order
;
948 spin_lock(&vbq
->lock
);
949 list_del_rcu(&vb
->free_list
);
950 spin_unlock(&vbq
->lock
);
952 spin_unlock(&vb
->lock
);
955 spin_unlock(&vb
->lock
);
959 purge_fragmented_blocks_thiscpu();
961 put_cpu_var(vmap_block_queue
);
965 vb
= new_vmap_block(gfp_mask
);
974 static void vb_free(const void *addr
, unsigned long size
)
976 unsigned long offset
;
977 unsigned long vb_idx
;
979 struct vmap_block
*vb
;
981 BUG_ON(size
& ~PAGE_MASK
);
982 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
984 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
986 order
= get_order(size
);
988 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
990 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
992 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
996 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
998 spin_lock(&vb
->lock
);
999 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
1001 vb
->dirty
+= 1UL << order
;
1002 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1004 spin_unlock(&vb
->lock
);
1005 free_vmap_block(vb
);
1007 spin_unlock(&vb
->lock
);
1011 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1013 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1014 * to amortize TLB flushing overheads. What this means is that any page you
1015 * have now, may, in a former life, have been mapped into kernel virtual
1016 * address by the vmap layer and so there might be some CPUs with TLB entries
1017 * still referencing that page (additional to the regular 1:1 kernel mapping).
1019 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1020 * be sure that none of the pages we have control over will have any aliases
1021 * from the vmap layer.
1023 void vm_unmap_aliases(void)
1025 unsigned long start
= ULONG_MAX
, end
= 0;
1029 if (unlikely(!vmap_initialized
))
1032 for_each_possible_cpu(cpu
) {
1033 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1034 struct vmap_block
*vb
;
1037 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1040 spin_lock(&vb
->lock
);
1041 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1042 while (i
< VMAP_BBMAP_BITS
) {
1045 j
= find_next_zero_bit(vb
->dirty_map
,
1046 VMAP_BBMAP_BITS
, i
);
1048 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1049 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1058 i
= find_next_bit(vb
->dirty_map
,
1059 VMAP_BBMAP_BITS
, i
);
1061 spin_unlock(&vb
->lock
);
1066 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1068 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1071 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1072 * @mem: the pointer returned by vm_map_ram
1073 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1075 void vm_unmap_ram(const void *mem
, unsigned int count
)
1077 unsigned long size
= count
<< PAGE_SHIFT
;
1078 unsigned long addr
= (unsigned long)mem
;
1081 BUG_ON(addr
< VMALLOC_START
);
1082 BUG_ON(addr
> VMALLOC_END
);
1083 BUG_ON(addr
& (PAGE_SIZE
-1));
1085 debug_check_no_locks_freed(mem
, size
);
1086 vmap_debug_free_range(addr
, addr
+size
);
1088 if (likely(count
<= VMAP_MAX_ALLOC
))
1091 free_unmap_vmap_area_addr(addr
);
1093 EXPORT_SYMBOL(vm_unmap_ram
);
1096 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1097 * @pages: an array of pointers to the pages to be mapped
1098 * @count: number of pages
1099 * @node: prefer to allocate data structures on this node
1100 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1102 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1104 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1106 unsigned long size
= count
<< PAGE_SHIFT
;
1110 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1111 mem
= vb_alloc(size
, GFP_KERNEL
);
1114 addr
= (unsigned long)mem
;
1116 struct vmap_area
*va
;
1117 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1118 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1122 addr
= va
->va_start
;
1125 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1126 vm_unmap_ram(mem
, count
);
1131 EXPORT_SYMBOL(vm_map_ram
);
1134 * vm_area_register_early - register vmap area early during boot
1135 * @vm: vm_struct to register
1136 * @align: requested alignment
1138 * This function is used to register kernel vm area before
1139 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1140 * proper values on entry and other fields should be zero. On return,
1141 * vm->addr contains the allocated address.
1143 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1145 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1147 static size_t vm_init_off __initdata
;
1150 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1151 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1153 vm
->addr
= (void *)addr
;
1159 void __init
vmalloc_init(void)
1161 struct vmap_area
*va
;
1162 struct vm_struct
*tmp
;
1165 for_each_possible_cpu(i
) {
1166 struct vmap_block_queue
*vbq
;
1168 vbq
= &per_cpu(vmap_block_queue
, i
);
1169 spin_lock_init(&vbq
->lock
);
1170 INIT_LIST_HEAD(&vbq
->free
);
1173 /* Import existing vmlist entries. */
1174 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1175 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1176 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1177 va
->va_start
= (unsigned long)tmp
->addr
;
1178 va
->va_end
= va
->va_start
+ tmp
->size
;
1179 __insert_vmap_area(va
);
1182 vmap_area_pcpu_hole
= VMALLOC_END
;
1184 vmap_initialized
= true;
1188 * map_kernel_range_noflush - map kernel VM area with the specified pages
1189 * @addr: start of the VM area to map
1190 * @size: size of the VM area to map
1191 * @prot: page protection flags to use
1192 * @pages: pages to map
1194 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1195 * specify should have been allocated using get_vm_area() and its
1199 * This function does NOT do any cache flushing. The caller is
1200 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1201 * before calling this function.
1204 * The number of pages mapped on success, -errno on failure.
1206 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1207 pgprot_t prot
, struct page
**pages
)
1209 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1213 * unmap_kernel_range_noflush - unmap kernel VM area
1214 * @addr: start of the VM area to unmap
1215 * @size: size of the VM area to unmap
1217 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1222 * This function does NOT do any cache flushing. The caller is
1223 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1224 * before calling this function and flush_tlb_kernel_range() after.
1226 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1228 vunmap_page_range(addr
, addr
+ size
);
1230 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1233 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1234 * @addr: start of the VM area to unmap
1235 * @size: size of the VM area to unmap
1237 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1238 * the unmapping and tlb after.
1240 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1242 unsigned long end
= addr
+ size
;
1244 flush_cache_vunmap(addr
, end
);
1245 vunmap_page_range(addr
, end
);
1246 flush_tlb_kernel_range(addr
, end
);
1249 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1251 unsigned long addr
= (unsigned long)area
->addr
;
1252 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1255 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1263 EXPORT_SYMBOL_GPL(map_vm_area
);
1265 /*** Old vmalloc interfaces ***/
1266 DEFINE_RWLOCK(vmlist_lock
);
1267 struct vm_struct
*vmlist
;
1269 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1270 unsigned long flags
, void *caller
)
1272 struct vm_struct
*tmp
, **p
;
1275 vm
->addr
= (void *)va
->va_start
;
1276 vm
->size
= va
->va_end
- va
->va_start
;
1277 vm
->caller
= caller
;
1279 va
->flags
|= VM_VM_AREA
;
1281 write_lock(&vmlist_lock
);
1282 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1283 if (tmp
->addr
>= vm
->addr
)
1288 write_unlock(&vmlist_lock
);
1291 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1292 unsigned long align
, unsigned long flags
, unsigned long start
,
1293 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1295 static struct vmap_area
*va
;
1296 struct vm_struct
*area
;
1298 BUG_ON(in_interrupt());
1299 if (flags
& VM_IOREMAP
) {
1300 int bit
= fls(size
);
1302 if (bit
> IOREMAP_MAX_ORDER
)
1303 bit
= IOREMAP_MAX_ORDER
;
1304 else if (bit
< PAGE_SHIFT
)
1310 size
= PAGE_ALIGN(size
);
1311 if (unlikely(!size
))
1314 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1315 if (unlikely(!area
))
1319 * We always allocate a guard page.
1323 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1329 insert_vmalloc_vm(area
, va
, flags
, caller
);
1333 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1334 unsigned long start
, unsigned long end
)
1336 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1337 __builtin_return_address(0));
1339 EXPORT_SYMBOL_GPL(__get_vm_area
);
1341 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1342 unsigned long start
, unsigned long end
,
1345 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1350 * get_vm_area - reserve a contiguous kernel virtual area
1351 * @size: size of the area
1352 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1354 * Search an area of @size in the kernel virtual mapping area,
1355 * and reserved it for out purposes. Returns the area descriptor
1356 * on success or %NULL on failure.
1358 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1360 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1361 -1, GFP_KERNEL
, __builtin_return_address(0));
1364 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1367 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1368 -1, GFP_KERNEL
, caller
);
1371 static struct vm_struct
*find_vm_area(const void *addr
)
1373 struct vmap_area
*va
;
1375 va
= find_vmap_area((unsigned long)addr
);
1376 if (va
&& va
->flags
& VM_VM_AREA
)
1383 * remove_vm_area - find and remove a continuous kernel virtual area
1384 * @addr: base address
1386 * Search for the kernel VM area starting at @addr, and remove it.
1387 * This function returns the found VM area, but using it is NOT safe
1388 * on SMP machines, except for its size or flags.
1390 struct vm_struct
*remove_vm_area(const void *addr
)
1392 struct vmap_area
*va
;
1394 va
= find_vmap_area((unsigned long)addr
);
1395 if (va
&& va
->flags
& VM_VM_AREA
) {
1396 struct vm_struct
*vm
= va
->private;
1397 struct vm_struct
*tmp
, **p
;
1399 * remove from list and disallow access to this vm_struct
1400 * before unmap. (address range confliction is maintained by
1403 write_lock(&vmlist_lock
);
1404 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1407 write_unlock(&vmlist_lock
);
1409 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1410 free_unmap_vmap_area(va
);
1411 vm
->size
-= PAGE_SIZE
;
1418 static void __vunmap(const void *addr
, int deallocate_pages
)
1420 struct vm_struct
*area
;
1425 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1426 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1430 area
= remove_vm_area(addr
);
1431 if (unlikely(!area
)) {
1432 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1437 debug_check_no_locks_freed(addr
, area
->size
);
1438 debug_check_no_obj_freed(addr
, area
->size
);
1440 if (deallocate_pages
) {
1443 for (i
= 0; i
< area
->nr_pages
; i
++) {
1444 struct page
*page
= area
->pages
[i
];
1450 if (area
->flags
& VM_VPAGES
)
1461 * vfree - release memory allocated by vmalloc()
1462 * @addr: memory base address
1464 * Free the virtually continuous memory area starting at @addr, as
1465 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1466 * NULL, no operation is performed.
1468 * Must not be called in interrupt context.
1470 void vfree(const void *addr
)
1472 BUG_ON(in_interrupt());
1474 kmemleak_free(addr
);
1478 EXPORT_SYMBOL(vfree
);
1481 * vunmap - release virtual mapping obtained by vmap()
1482 * @addr: memory base address
1484 * Free the virtually contiguous memory area starting at @addr,
1485 * which was created from the page array passed to vmap().
1487 * Must not be called in interrupt context.
1489 void vunmap(const void *addr
)
1491 BUG_ON(in_interrupt());
1495 EXPORT_SYMBOL(vunmap
);
1498 * vmap - map an array of pages into virtually contiguous space
1499 * @pages: array of page pointers
1500 * @count: number of pages to map
1501 * @flags: vm_area->flags
1502 * @prot: page protection for the mapping
1504 * Maps @count pages from @pages into contiguous kernel virtual
1507 void *vmap(struct page
**pages
, unsigned int count
,
1508 unsigned long flags
, pgprot_t prot
)
1510 struct vm_struct
*area
;
1514 if (count
> totalram_pages
)
1517 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1518 __builtin_return_address(0));
1522 if (map_vm_area(area
, prot
, &pages
)) {
1529 EXPORT_SYMBOL(vmap
);
1531 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1532 gfp_t gfp_mask
, pgprot_t prot
,
1533 int node
, void *caller
);
1534 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1535 pgprot_t prot
, int node
, void *caller
)
1537 struct page
**pages
;
1538 unsigned int nr_pages
, array_size
, i
;
1539 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1541 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1542 array_size
= (nr_pages
* sizeof(struct page
*));
1544 area
->nr_pages
= nr_pages
;
1545 /* Please note that the recursion is strictly bounded. */
1546 if (array_size
> PAGE_SIZE
) {
1547 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1548 PAGE_KERNEL
, node
, caller
);
1549 area
->flags
|= VM_VPAGES
;
1551 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1553 area
->pages
= pages
;
1554 area
->caller
= caller
;
1556 remove_vm_area(area
->addr
);
1561 for (i
= 0; i
< area
->nr_pages
; i
++) {
1565 page
= alloc_page(gfp_mask
);
1567 page
= alloc_pages_node(node
, gfp_mask
, 0);
1569 if (unlikely(!page
)) {
1570 /* Successfully allocated i pages, free them in __vunmap() */
1574 area
->pages
[i
] = page
;
1577 if (map_vm_area(area
, prot
, &pages
))
1587 * __vmalloc_node_range - allocate virtually contiguous memory
1588 * @size: allocation size
1589 * @align: desired alignment
1590 * @start: vm area range start
1591 * @end: vm area range end
1592 * @gfp_mask: flags for the page level allocator
1593 * @prot: protection mask for the allocated pages
1594 * @node: node to use for allocation or -1
1595 * @caller: caller's return address
1597 * Allocate enough pages to cover @size from the page level
1598 * allocator with @gfp_mask flags. Map them into contiguous
1599 * kernel virtual space, using a pagetable protection of @prot.
1601 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1602 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1603 pgprot_t prot
, int node
, void *caller
)
1605 struct vm_struct
*area
;
1607 unsigned long real_size
= size
;
1609 size
= PAGE_ALIGN(size
);
1610 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1613 area
= __get_vm_area_node(size
, align
, VM_ALLOC
, start
, end
, node
,
1619 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1622 * A ref_count = 3 is needed because the vm_struct and vmap_area
1623 * structures allocated in the __get_vm_area_node() function contain
1624 * references to the virtual address of the vmalloc'ed block.
1626 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1632 * __vmalloc_node - allocate virtually contiguous memory
1633 * @size: allocation size
1634 * @align: desired alignment
1635 * @gfp_mask: flags for the page level allocator
1636 * @prot: protection mask for the allocated pages
1637 * @node: node to use for allocation or -1
1638 * @caller: caller's return address
1640 * Allocate enough pages to cover @size from the page level
1641 * allocator with @gfp_mask flags. Map them into contiguous
1642 * kernel virtual space, using a pagetable protection of @prot.
1644 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1645 gfp_t gfp_mask
, pgprot_t prot
,
1646 int node
, void *caller
)
1648 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1649 gfp_mask
, prot
, node
, caller
);
1652 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1654 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1655 __builtin_return_address(0));
1657 EXPORT_SYMBOL(__vmalloc
);
1659 static inline void *__vmalloc_node_flags(unsigned long size
,
1660 int node
, gfp_t flags
)
1662 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1663 node
, __builtin_return_address(0));
1667 * vmalloc - allocate virtually contiguous memory
1668 * @size: allocation size
1669 * Allocate enough pages to cover @size from the page level
1670 * allocator and map them into contiguous kernel virtual space.
1672 * For tight control over page level allocator and protection flags
1673 * use __vmalloc() instead.
1675 void *vmalloc(unsigned long size
)
1677 return __vmalloc_node_flags(size
, -1, GFP_KERNEL
| __GFP_HIGHMEM
);
1679 EXPORT_SYMBOL(vmalloc
);
1682 * vzalloc - allocate virtually contiguous memory with zero fill
1683 * @size: allocation size
1684 * Allocate enough pages to cover @size from the page level
1685 * allocator and map them into contiguous kernel virtual space.
1686 * The memory allocated is set to zero.
1688 * For tight control over page level allocator and protection flags
1689 * use __vmalloc() instead.
1691 void *vzalloc(unsigned long size
)
1693 return __vmalloc_node_flags(size
, -1,
1694 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1696 EXPORT_SYMBOL(vzalloc
);
1699 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1700 * @size: allocation size
1702 * The resulting memory area is zeroed so it can be mapped to userspace
1703 * without leaking data.
1705 void *vmalloc_user(unsigned long size
)
1707 struct vm_struct
*area
;
1710 ret
= __vmalloc_node(size
, SHMLBA
,
1711 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1712 PAGE_KERNEL
, -1, __builtin_return_address(0));
1714 area
= find_vm_area(ret
);
1715 area
->flags
|= VM_USERMAP
;
1719 EXPORT_SYMBOL(vmalloc_user
);
1722 * vmalloc_node - allocate memory on a specific node
1723 * @size: allocation size
1726 * Allocate enough pages to cover @size from the page level
1727 * allocator and map them into contiguous kernel virtual space.
1729 * For tight control over page level allocator and protection flags
1730 * use __vmalloc() instead.
1732 void *vmalloc_node(unsigned long size
, int node
)
1734 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1735 node
, __builtin_return_address(0));
1737 EXPORT_SYMBOL(vmalloc_node
);
1740 * vzalloc_node - allocate memory on a specific node with zero fill
1741 * @size: allocation size
1744 * Allocate enough pages to cover @size from the page level
1745 * allocator and map them into contiguous kernel virtual space.
1746 * The memory allocated is set to zero.
1748 * For tight control over page level allocator and protection flags
1749 * use __vmalloc_node() instead.
1751 void *vzalloc_node(unsigned long size
, int node
)
1753 return __vmalloc_node_flags(size
, node
,
1754 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1756 EXPORT_SYMBOL(vzalloc_node
);
1758 #ifndef PAGE_KERNEL_EXEC
1759 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1763 * vmalloc_exec - allocate virtually contiguous, executable memory
1764 * @size: allocation size
1766 * Kernel-internal function to allocate enough pages to cover @size
1767 * the page level allocator and map them into contiguous and
1768 * executable kernel virtual space.
1770 * For tight control over page level allocator and protection flags
1771 * use __vmalloc() instead.
1774 void *vmalloc_exec(unsigned long size
)
1776 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1777 -1, __builtin_return_address(0));
1780 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1781 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1782 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1783 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1785 #define GFP_VMALLOC32 GFP_KERNEL
1789 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1790 * @size: allocation size
1792 * Allocate enough 32bit PA addressable pages to cover @size from the
1793 * page level allocator and map them into contiguous kernel virtual space.
1795 void *vmalloc_32(unsigned long size
)
1797 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1798 -1, __builtin_return_address(0));
1800 EXPORT_SYMBOL(vmalloc_32
);
1803 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1804 * @size: allocation size
1806 * The resulting memory area is 32bit addressable and zeroed so it can be
1807 * mapped to userspace without leaking data.
1809 void *vmalloc_32_user(unsigned long size
)
1811 struct vm_struct
*area
;
1814 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1815 -1, __builtin_return_address(0));
1817 area
= find_vm_area(ret
);
1818 area
->flags
|= VM_USERMAP
;
1822 EXPORT_SYMBOL(vmalloc_32_user
);
1825 * small helper routine , copy contents to buf from addr.
1826 * If the page is not present, fill zero.
1829 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1835 unsigned long offset
, length
;
1837 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1838 length
= PAGE_SIZE
- offset
;
1841 p
= vmalloc_to_page(addr
);
1843 * To do safe access to this _mapped_ area, we need
1844 * lock. But adding lock here means that we need to add
1845 * overhead of vmalloc()/vfree() calles for this _debug_
1846 * interface, rarely used. Instead of that, we'll use
1847 * kmap() and get small overhead in this access function.
1851 * we can expect USER0 is not used (see vread/vwrite's
1852 * function description)
1854 void *map
= kmap_atomic(p
, KM_USER0
);
1855 memcpy(buf
, map
+ offset
, length
);
1856 kunmap_atomic(map
, KM_USER0
);
1858 memset(buf
, 0, length
);
1868 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1874 unsigned long offset
, length
;
1876 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1877 length
= PAGE_SIZE
- offset
;
1880 p
= vmalloc_to_page(addr
);
1882 * To do safe access to this _mapped_ area, we need
1883 * lock. But adding lock here means that we need to add
1884 * overhead of vmalloc()/vfree() calles for this _debug_
1885 * interface, rarely used. Instead of that, we'll use
1886 * kmap() and get small overhead in this access function.
1890 * we can expect USER0 is not used (see vread/vwrite's
1891 * function description)
1893 void *map
= kmap_atomic(p
, KM_USER0
);
1894 memcpy(map
+ offset
, buf
, length
);
1895 kunmap_atomic(map
, KM_USER0
);
1906 * vread() - read vmalloc area in a safe way.
1907 * @buf: buffer for reading data
1908 * @addr: vm address.
1909 * @count: number of bytes to be read.
1911 * Returns # of bytes which addr and buf should be increased.
1912 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1913 * includes any intersect with alive vmalloc area.
1915 * This function checks that addr is a valid vmalloc'ed area, and
1916 * copy data from that area to a given buffer. If the given memory range
1917 * of [addr...addr+count) includes some valid address, data is copied to
1918 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1919 * IOREMAP area is treated as memory hole and no copy is done.
1921 * If [addr...addr+count) doesn't includes any intersects with alive
1922 * vm_struct area, returns 0.
1923 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1924 * the caller should guarantee KM_USER0 is not used.
1926 * Note: In usual ops, vread() is never necessary because the caller
1927 * should know vmalloc() area is valid and can use memcpy().
1928 * This is for routines which have to access vmalloc area without
1929 * any informaion, as /dev/kmem.
1933 long vread(char *buf
, char *addr
, unsigned long count
)
1935 struct vm_struct
*tmp
;
1936 char *vaddr
, *buf_start
= buf
;
1937 unsigned long buflen
= count
;
1940 /* Don't allow overflow */
1941 if ((unsigned long) addr
+ count
< count
)
1942 count
= -(unsigned long) addr
;
1944 read_lock(&vmlist_lock
);
1945 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1946 vaddr
= (char *) tmp
->addr
;
1947 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1949 while (addr
< vaddr
) {
1957 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1960 if (!(tmp
->flags
& VM_IOREMAP
))
1961 aligned_vread(buf
, addr
, n
);
1962 else /* IOREMAP area is treated as memory hole */
1969 read_unlock(&vmlist_lock
);
1971 if (buf
== buf_start
)
1973 /* zero-fill memory holes */
1974 if (buf
!= buf_start
+ buflen
)
1975 memset(buf
, 0, buflen
- (buf
- buf_start
));
1981 * vwrite() - write vmalloc area in a safe way.
1982 * @buf: buffer for source data
1983 * @addr: vm address.
1984 * @count: number of bytes to be read.
1986 * Returns # of bytes which addr and buf should be incresed.
1987 * (same number to @count).
1988 * If [addr...addr+count) doesn't includes any intersect with valid
1989 * vmalloc area, returns 0.
1991 * This function checks that addr is a valid vmalloc'ed area, and
1992 * copy data from a buffer to the given addr. If specified range of
1993 * [addr...addr+count) includes some valid address, data is copied from
1994 * proper area of @buf. If there are memory holes, no copy to hole.
1995 * IOREMAP area is treated as memory hole and no copy is done.
1997 * If [addr...addr+count) doesn't includes any intersects with alive
1998 * vm_struct area, returns 0.
1999 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2000 * the caller should guarantee KM_USER0 is not used.
2002 * Note: In usual ops, vwrite() is never necessary because the caller
2003 * should know vmalloc() area is valid and can use memcpy().
2004 * This is for routines which have to access vmalloc area without
2005 * any informaion, as /dev/kmem.
2008 long vwrite(char *buf
, char *addr
, unsigned long count
)
2010 struct vm_struct
*tmp
;
2012 unsigned long n
, buflen
;
2015 /* Don't allow overflow */
2016 if ((unsigned long) addr
+ count
< count
)
2017 count
= -(unsigned long) addr
;
2020 read_lock(&vmlist_lock
);
2021 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
2022 vaddr
= (char *) tmp
->addr
;
2023 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
2025 while (addr
< vaddr
) {
2032 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
2035 if (!(tmp
->flags
& VM_IOREMAP
)) {
2036 aligned_vwrite(buf
, addr
, n
);
2044 read_unlock(&vmlist_lock
);
2051 * remap_vmalloc_range - map vmalloc pages to userspace
2052 * @vma: vma to cover (map full range of vma)
2053 * @addr: vmalloc memory
2054 * @pgoff: number of pages into addr before first page to map
2056 * Returns: 0 for success, -Exxx on failure
2058 * This function checks that addr is a valid vmalloc'ed area, and
2059 * that it is big enough to cover the vma. Will return failure if
2060 * that criteria isn't met.
2062 * Similar to remap_pfn_range() (see mm/memory.c)
2064 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2065 unsigned long pgoff
)
2067 struct vm_struct
*area
;
2068 unsigned long uaddr
= vma
->vm_start
;
2069 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
2071 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
2074 area
= find_vm_area(addr
);
2078 if (!(area
->flags
& VM_USERMAP
))
2081 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
2084 addr
+= pgoff
<< PAGE_SHIFT
;
2086 struct page
*page
= vmalloc_to_page(addr
);
2089 ret
= vm_insert_page(vma
, uaddr
, page
);
2096 } while (usize
> 0);
2098 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2099 vma
->vm_flags
|= VM_RESERVED
;
2103 EXPORT_SYMBOL(remap_vmalloc_range
);
2106 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2109 void __attribute__((weak
)) vmalloc_sync_all(void)
2114 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2116 /* apply_to_page_range() does all the hard work. */
2121 * alloc_vm_area - allocate a range of kernel address space
2122 * @size: size of the area
2124 * Returns: NULL on failure, vm_struct on success
2126 * This function reserves a range of kernel address space, and
2127 * allocates pagetables to map that range. No actual mappings
2128 * are created. If the kernel address space is not shared
2129 * between processes, it syncs the pagetable across all
2132 struct vm_struct
*alloc_vm_area(size_t size
)
2134 struct vm_struct
*area
;
2136 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2137 __builtin_return_address(0));
2142 * This ensures that page tables are constructed for this region
2143 * of kernel virtual address space and mapped into init_mm.
2145 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2146 area
->size
, f
, NULL
)) {
2151 /* Make sure the pagetables are constructed in process kernel
2157 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2159 void free_vm_area(struct vm_struct
*area
)
2161 struct vm_struct
*ret
;
2162 ret
= remove_vm_area(area
->addr
);
2163 BUG_ON(ret
!= area
);
2166 EXPORT_SYMBOL_GPL(free_vm_area
);
2169 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2171 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2175 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2176 * @end: target address
2177 * @pnext: out arg for the next vmap_area
2178 * @pprev: out arg for the previous vmap_area
2180 * Returns: %true if either or both of next and prev are found,
2181 * %false if no vmap_area exists
2183 * Find vmap_areas end addresses of which enclose @end. ie. if not
2184 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2186 static bool pvm_find_next_prev(unsigned long end
,
2187 struct vmap_area
**pnext
,
2188 struct vmap_area
**pprev
)
2190 struct rb_node
*n
= vmap_area_root
.rb_node
;
2191 struct vmap_area
*va
= NULL
;
2194 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2195 if (end
< va
->va_end
)
2197 else if (end
> va
->va_end
)
2206 if (va
->va_end
> end
) {
2208 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2211 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2217 * pvm_determine_end - find the highest aligned address between two vmap_areas
2218 * @pnext: in/out arg for the next vmap_area
2219 * @pprev: in/out arg for the previous vmap_area
2222 * Returns: determined end address
2224 * Find the highest aligned address between *@pnext and *@pprev below
2225 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2226 * down address is between the end addresses of the two vmap_areas.
2228 * Please note that the address returned by this function may fall
2229 * inside *@pnext vmap_area. The caller is responsible for checking
2232 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2233 struct vmap_area
**pprev
,
2234 unsigned long align
)
2236 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2240 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2244 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2246 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2253 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2254 * @offsets: array containing offset of each area
2255 * @sizes: array containing size of each area
2256 * @nr_vms: the number of areas to allocate
2257 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2259 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2260 * vm_structs on success, %NULL on failure
2262 * Percpu allocator wants to use congruent vm areas so that it can
2263 * maintain the offsets among percpu areas. This function allocates
2264 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2265 * be scattered pretty far, distance between two areas easily going up
2266 * to gigabytes. To avoid interacting with regular vmallocs, these
2267 * areas are allocated from top.
2269 * Despite its complicated look, this allocator is rather simple. It
2270 * does everything top-down and scans areas from the end looking for
2271 * matching slot. While scanning, if any of the areas overlaps with
2272 * existing vmap_area, the base address is pulled down to fit the
2273 * area. Scanning is repeated till all the areas fit and then all
2274 * necessary data structres are inserted and the result is returned.
2276 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2277 const size_t *sizes
, int nr_vms
,
2280 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2281 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2282 struct vmap_area
**vas
, *prev
, *next
;
2283 struct vm_struct
**vms
;
2284 int area
, area2
, last_area
, term_area
;
2285 unsigned long base
, start
, end
, last_end
;
2286 bool purged
= false;
2288 /* verify parameters and allocate data structures */
2289 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2290 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2291 start
= offsets
[area
];
2292 end
= start
+ sizes
[area
];
2294 /* is everything aligned properly? */
2295 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2296 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2298 /* detect the area with the highest address */
2299 if (start
> offsets
[last_area
])
2302 for (area2
= 0; area2
< nr_vms
; area2
++) {
2303 unsigned long start2
= offsets
[area2
];
2304 unsigned long end2
= start2
+ sizes
[area2
];
2309 BUG_ON(start2
>= start
&& start2
< end
);
2310 BUG_ON(end2
<= end
&& end2
> start
);
2313 last_end
= offsets
[last_area
] + sizes
[last_area
];
2315 if (vmalloc_end
- vmalloc_start
< last_end
) {
2320 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, GFP_KERNEL
);
2321 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, GFP_KERNEL
);
2325 for (area
= 0; area
< nr_vms
; area
++) {
2326 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2327 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2328 if (!vas
[area
] || !vms
[area
])
2332 spin_lock(&vmap_area_lock
);
2334 /* start scanning - we scan from the top, begin with the last area */
2335 area
= term_area
= last_area
;
2336 start
= offsets
[area
];
2337 end
= start
+ sizes
[area
];
2339 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2340 base
= vmalloc_end
- last_end
;
2343 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2346 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2347 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2350 * base might have underflowed, add last_end before
2353 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2354 spin_unlock(&vmap_area_lock
);
2356 purge_vmap_area_lazy();
2364 * If next overlaps, move base downwards so that it's
2365 * right below next and then recheck.
2367 if (next
&& next
->va_start
< base
+ end
) {
2368 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2374 * If prev overlaps, shift down next and prev and move
2375 * base so that it's right below new next and then
2378 if (prev
&& prev
->va_end
> base
+ start
) {
2380 prev
= node_to_va(rb_prev(&next
->rb_node
));
2381 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2387 * This area fits, move on to the previous one. If
2388 * the previous one is the terminal one, we're done.
2390 area
= (area
+ nr_vms
- 1) % nr_vms
;
2391 if (area
== term_area
)
2393 start
= offsets
[area
];
2394 end
= start
+ sizes
[area
];
2395 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2398 /* we've found a fitting base, insert all va's */
2399 for (area
= 0; area
< nr_vms
; area
++) {
2400 struct vmap_area
*va
= vas
[area
];
2402 va
->va_start
= base
+ offsets
[area
];
2403 va
->va_end
= va
->va_start
+ sizes
[area
];
2404 __insert_vmap_area(va
);
2407 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2409 spin_unlock(&vmap_area_lock
);
2411 /* insert all vm's */
2412 for (area
= 0; area
< nr_vms
; area
++)
2413 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2420 for (area
= 0; area
< nr_vms
; area
++) {
2432 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2433 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2434 * @nr_vms: the number of allocated areas
2436 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2438 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2442 for (i
= 0; i
< nr_vms
; i
++)
2443 free_vm_area(vms
[i
]);
2446 #endif /* CONFIG_SMP */
2448 #ifdef CONFIG_PROC_FS
2449 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2450 __acquires(&vmlist_lock
)
2453 struct vm_struct
*v
;
2455 read_lock(&vmlist_lock
);
2457 while (n
> 0 && v
) {
2468 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2470 struct vm_struct
*v
= p
;
2476 static void s_stop(struct seq_file
*m
, void *p
)
2477 __releases(&vmlist_lock
)
2479 read_unlock(&vmlist_lock
);
2482 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2485 unsigned int nr
, *counters
= m
->private;
2490 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2492 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2493 counters
[page_to_nid(v
->pages
[nr
])]++;
2495 for_each_node_state(nr
, N_HIGH_MEMORY
)
2497 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2501 static int s_show(struct seq_file
*m
, void *p
)
2503 struct vm_struct
*v
= p
;
2505 seq_printf(m
, "0x%p-0x%p %7ld",
2506 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2509 seq_printf(m
, " %pS", v
->caller
);
2512 seq_printf(m
, " pages=%d", v
->nr_pages
);
2515 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2517 if (v
->flags
& VM_IOREMAP
)
2518 seq_printf(m
, " ioremap");
2520 if (v
->flags
& VM_ALLOC
)
2521 seq_printf(m
, " vmalloc");
2523 if (v
->flags
& VM_MAP
)
2524 seq_printf(m
, " vmap");
2526 if (v
->flags
& VM_USERMAP
)
2527 seq_printf(m
, " user");
2529 if (v
->flags
& VM_VPAGES
)
2530 seq_printf(m
, " vpages");
2532 show_numa_info(m
, v
);
2537 static const struct seq_operations vmalloc_op
= {
2544 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2546 unsigned int *ptr
= NULL
;
2550 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2554 ret
= seq_open(file
, &vmalloc_op
);
2556 struct seq_file
*m
= file
->private_data
;
2563 static const struct file_operations proc_vmalloc_operations
= {
2564 .open
= vmalloc_open
,
2566 .llseek
= seq_lseek
,
2567 .release
= seq_release_private
,
2570 static int __init
proc_vmalloc_init(void)
2572 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2575 module_init(proc_vmalloc_init
);