USB host: Move AMD PLL quirk to pci-quirks.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blobc631f27a3dcc754aa8ebe97ab7ef0a351b55a776
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
102 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
103 * different CPUs. It protects dbs_enable in governor start/stop.
105 static DEFINE_MUTEX(dbs_mutex);
107 static struct workqueue_struct *kondemand_wq;
109 static struct dbs_tuners {
110 unsigned int sampling_rate;
111 unsigned int up_threshold;
112 unsigned int down_differential;
113 unsigned int ignore_nice;
114 unsigned int sampling_down_factor;
115 unsigned int powersave_bias;
116 unsigned int io_is_busy;
117 } dbs_tuners_ins = {
118 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
119 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
120 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
121 .ignore_nice = 0,
122 .powersave_bias = 0,
125 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
126 cputime64_t *wall)
128 cputime64_t idle_time;
129 cputime64_t cur_wall_time;
130 cputime64_t busy_time;
132 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
133 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
134 kstat_cpu(cpu).cpustat.system);
136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
137 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
138 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
139 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
141 idle_time = cputime64_sub(cur_wall_time, busy_time);
142 if (wall)
143 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
145 return (cputime64_t)jiffies_to_usecs(idle_time);
148 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
150 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
152 if (idle_time == -1ULL)
153 return get_cpu_idle_time_jiffy(cpu, wall);
155 return idle_time;
158 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
160 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
162 if (iowait_time == -1ULL)
163 return 0;
165 return iowait_time;
169 * Find right freq to be set now with powersave_bias on.
170 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
171 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
173 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
174 unsigned int freq_next,
175 unsigned int relation)
177 unsigned int freq_req, freq_reduc, freq_avg;
178 unsigned int freq_hi, freq_lo;
179 unsigned int index = 0;
180 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
181 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
182 policy->cpu);
184 if (!dbs_info->freq_table) {
185 dbs_info->freq_lo = 0;
186 dbs_info->freq_lo_jiffies = 0;
187 return freq_next;
190 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
191 relation, &index);
192 freq_req = dbs_info->freq_table[index].frequency;
193 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
194 freq_avg = freq_req - freq_reduc;
196 /* Find freq bounds for freq_avg in freq_table */
197 index = 0;
198 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
199 CPUFREQ_RELATION_H, &index);
200 freq_lo = dbs_info->freq_table[index].frequency;
201 index = 0;
202 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
203 CPUFREQ_RELATION_L, &index);
204 freq_hi = dbs_info->freq_table[index].frequency;
206 /* Find out how long we have to be in hi and lo freqs */
207 if (freq_hi == freq_lo) {
208 dbs_info->freq_lo = 0;
209 dbs_info->freq_lo_jiffies = 0;
210 return freq_lo;
212 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
213 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
214 jiffies_hi += ((freq_hi - freq_lo) / 2);
215 jiffies_hi /= (freq_hi - freq_lo);
216 jiffies_lo = jiffies_total - jiffies_hi;
217 dbs_info->freq_lo = freq_lo;
218 dbs_info->freq_lo_jiffies = jiffies_lo;
219 dbs_info->freq_hi_jiffies = jiffies_hi;
220 return freq_hi;
223 static void ondemand_powersave_bias_init_cpu(int cpu)
225 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
226 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
227 dbs_info->freq_lo = 0;
230 static void ondemand_powersave_bias_init(void)
232 int i;
233 for_each_online_cpu(i) {
234 ondemand_powersave_bias_init_cpu(i);
238 /************************** sysfs interface ************************/
240 static ssize_t show_sampling_rate_max(struct kobject *kobj,
241 struct attribute *attr, char *buf)
243 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
244 "sysfs file is deprecated - used by: %s\n", current->comm);
245 return sprintf(buf, "%u\n", -1U);
248 static ssize_t show_sampling_rate_min(struct kobject *kobj,
249 struct attribute *attr, char *buf)
251 return sprintf(buf, "%u\n", min_sampling_rate);
254 define_one_global_ro(sampling_rate_max);
255 define_one_global_ro(sampling_rate_min);
257 /* cpufreq_ondemand Governor Tunables */
258 #define show_one(file_name, object) \
259 static ssize_t show_##file_name \
260 (struct kobject *kobj, struct attribute *attr, char *buf) \
262 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
264 show_one(sampling_rate, sampling_rate);
265 show_one(io_is_busy, io_is_busy);
266 show_one(up_threshold, up_threshold);
267 show_one(sampling_down_factor, sampling_down_factor);
268 show_one(ignore_nice_load, ignore_nice);
269 show_one(powersave_bias, powersave_bias);
271 /*** delete after deprecation time ***/
273 #define DEPRECATION_MSG(file_name) \
274 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
275 "interface is deprecated - " #file_name "\n");
277 #define show_one_old(file_name) \
278 static ssize_t show_##file_name##_old \
279 (struct cpufreq_policy *unused, char *buf) \
281 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
282 "interface is deprecated - " #file_name "\n"); \
283 return show_##file_name(NULL, NULL, buf); \
285 show_one_old(sampling_rate);
286 show_one_old(up_threshold);
287 show_one_old(ignore_nice_load);
288 show_one_old(powersave_bias);
289 show_one_old(sampling_rate_min);
290 show_one_old(sampling_rate_max);
292 cpufreq_freq_attr_ro_old(sampling_rate_min);
293 cpufreq_freq_attr_ro_old(sampling_rate_max);
295 /*** delete after deprecation time ***/
297 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
298 const char *buf, size_t count)
300 unsigned int input;
301 int ret;
302 ret = sscanf(buf, "%u", &input);
303 if (ret != 1)
304 return -EINVAL;
306 mutex_lock(&dbs_mutex);
307 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
308 mutex_unlock(&dbs_mutex);
310 return count;
313 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
314 const char *buf, size_t count)
316 unsigned int input;
317 int ret;
319 ret = sscanf(buf, "%u", &input);
320 if (ret != 1)
321 return -EINVAL;
323 mutex_lock(&dbs_mutex);
324 dbs_tuners_ins.io_is_busy = !!input;
325 mutex_unlock(&dbs_mutex);
327 return count;
330 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
331 const char *buf, size_t count)
333 unsigned int input;
334 int ret;
335 ret = sscanf(buf, "%u", &input);
337 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
338 input < MIN_FREQUENCY_UP_THRESHOLD) {
339 return -EINVAL;
342 mutex_lock(&dbs_mutex);
343 dbs_tuners_ins.up_threshold = input;
344 mutex_unlock(&dbs_mutex);
346 return count;
349 static ssize_t store_sampling_down_factor(struct kobject *a,
350 struct attribute *b, const char *buf, size_t count)
352 unsigned int input, j;
353 int ret;
354 ret = sscanf(buf, "%u", &input);
356 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
357 return -EINVAL;
358 mutex_lock(&dbs_mutex);
359 dbs_tuners_ins.sampling_down_factor = input;
361 /* Reset down sampling multiplier in case it was active */
362 for_each_online_cpu(j) {
363 struct cpu_dbs_info_s *dbs_info;
364 dbs_info = &per_cpu(od_cpu_dbs_info, j);
365 dbs_info->rate_mult = 1;
367 mutex_unlock(&dbs_mutex);
369 return count;
372 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
373 const char *buf, size_t count)
375 unsigned int input;
376 int ret;
378 unsigned int j;
380 ret = sscanf(buf, "%u", &input);
381 if (ret != 1)
382 return -EINVAL;
384 if (input > 1)
385 input = 1;
387 mutex_lock(&dbs_mutex);
388 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
389 mutex_unlock(&dbs_mutex);
390 return count;
392 dbs_tuners_ins.ignore_nice = input;
394 /* we need to re-evaluate prev_cpu_idle */
395 for_each_online_cpu(j) {
396 struct cpu_dbs_info_s *dbs_info;
397 dbs_info = &per_cpu(od_cpu_dbs_info, j);
398 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
399 &dbs_info->prev_cpu_wall);
400 if (dbs_tuners_ins.ignore_nice)
401 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
404 mutex_unlock(&dbs_mutex);
406 return count;
409 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410 const char *buf, size_t count)
412 unsigned int input;
413 int ret;
414 ret = sscanf(buf, "%u", &input);
416 if (ret != 1)
417 return -EINVAL;
419 if (input > 1000)
420 input = 1000;
422 mutex_lock(&dbs_mutex);
423 dbs_tuners_ins.powersave_bias = input;
424 ondemand_powersave_bias_init();
425 mutex_unlock(&dbs_mutex);
427 return count;
430 define_one_global_rw(sampling_rate);
431 define_one_global_rw(io_is_busy);
432 define_one_global_rw(up_threshold);
433 define_one_global_rw(sampling_down_factor);
434 define_one_global_rw(ignore_nice_load);
435 define_one_global_rw(powersave_bias);
437 static struct attribute *dbs_attributes[] = {
438 &sampling_rate_max.attr,
439 &sampling_rate_min.attr,
440 &sampling_rate.attr,
441 &up_threshold.attr,
442 &sampling_down_factor.attr,
443 &ignore_nice_load.attr,
444 &powersave_bias.attr,
445 &io_is_busy.attr,
446 NULL
449 static struct attribute_group dbs_attr_group = {
450 .attrs = dbs_attributes,
451 .name = "ondemand",
454 /*** delete after deprecation time ***/
456 #define write_one_old(file_name) \
457 static ssize_t store_##file_name##_old \
458 (struct cpufreq_policy *unused, const char *buf, size_t count) \
460 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
461 "interface is deprecated - " #file_name "\n"); \
462 return store_##file_name(NULL, NULL, buf, count); \
464 write_one_old(sampling_rate);
465 write_one_old(up_threshold);
466 write_one_old(ignore_nice_load);
467 write_one_old(powersave_bias);
469 cpufreq_freq_attr_rw_old(sampling_rate);
470 cpufreq_freq_attr_rw_old(up_threshold);
471 cpufreq_freq_attr_rw_old(ignore_nice_load);
472 cpufreq_freq_attr_rw_old(powersave_bias);
474 static struct attribute *dbs_attributes_old[] = {
475 &sampling_rate_max_old.attr,
476 &sampling_rate_min_old.attr,
477 &sampling_rate_old.attr,
478 &up_threshold_old.attr,
479 &ignore_nice_load_old.attr,
480 &powersave_bias_old.attr,
481 NULL
484 static struct attribute_group dbs_attr_group_old = {
485 .attrs = dbs_attributes_old,
486 .name = "ondemand",
489 /*** delete after deprecation time ***/
491 /************************** sysfs end ************************/
493 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
495 if (dbs_tuners_ins.powersave_bias)
496 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
497 else if (p->cur == p->max)
498 return;
500 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
501 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
504 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
506 unsigned int max_load_freq;
508 struct cpufreq_policy *policy;
509 unsigned int j;
511 this_dbs_info->freq_lo = 0;
512 policy = this_dbs_info->cur_policy;
515 * Every sampling_rate, we check, if current idle time is less
516 * than 20% (default), then we try to increase frequency
517 * Every sampling_rate, we look for a the lowest
518 * frequency which can sustain the load while keeping idle time over
519 * 30%. If such a frequency exist, we try to decrease to this frequency.
521 * Any frequency increase takes it to the maximum frequency.
522 * Frequency reduction happens at minimum steps of
523 * 5% (default) of current frequency
526 /* Get Absolute Load - in terms of freq */
527 max_load_freq = 0;
529 for_each_cpu(j, policy->cpus) {
530 struct cpu_dbs_info_s *j_dbs_info;
531 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
532 unsigned int idle_time, wall_time, iowait_time;
533 unsigned int load, load_freq;
534 int freq_avg;
536 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
538 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
539 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
541 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
542 j_dbs_info->prev_cpu_wall);
543 j_dbs_info->prev_cpu_wall = cur_wall_time;
545 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
546 j_dbs_info->prev_cpu_idle);
547 j_dbs_info->prev_cpu_idle = cur_idle_time;
549 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
550 j_dbs_info->prev_cpu_iowait);
551 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
553 if (dbs_tuners_ins.ignore_nice) {
554 cputime64_t cur_nice;
555 unsigned long cur_nice_jiffies;
557 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
558 j_dbs_info->prev_cpu_nice);
560 * Assumption: nice time between sampling periods will
561 * be less than 2^32 jiffies for 32 bit sys
563 cur_nice_jiffies = (unsigned long)
564 cputime64_to_jiffies64(cur_nice);
566 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
567 idle_time += jiffies_to_usecs(cur_nice_jiffies);
571 * For the purpose of ondemand, waiting for disk IO is an
572 * indication that you're performance critical, and not that
573 * the system is actually idle. So subtract the iowait time
574 * from the cpu idle time.
577 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
578 idle_time -= iowait_time;
580 if (unlikely(!wall_time || wall_time < idle_time))
581 continue;
583 load = 100 * (wall_time - idle_time) / wall_time;
585 freq_avg = __cpufreq_driver_getavg(policy, j);
586 if (freq_avg <= 0)
587 freq_avg = policy->cur;
589 load_freq = load * freq_avg;
590 if (load_freq > max_load_freq)
591 max_load_freq = load_freq;
594 /* Check for frequency increase */
595 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
596 /* If switching to max speed, apply sampling_down_factor */
597 if (policy->cur < policy->max)
598 this_dbs_info->rate_mult =
599 dbs_tuners_ins.sampling_down_factor;
600 dbs_freq_increase(policy, policy->max);
601 return;
604 /* Check for frequency decrease */
605 /* if we cannot reduce the frequency anymore, break out early */
606 if (policy->cur == policy->min)
607 return;
610 * The optimal frequency is the frequency that is the lowest that
611 * can support the current CPU usage without triggering the up
612 * policy. To be safe, we focus 10 points under the threshold.
614 if (max_load_freq <
615 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
616 policy->cur) {
617 unsigned int freq_next;
618 freq_next = max_load_freq /
619 (dbs_tuners_ins.up_threshold -
620 dbs_tuners_ins.down_differential);
622 /* No longer fully busy, reset rate_mult */
623 this_dbs_info->rate_mult = 1;
625 if (freq_next < policy->min)
626 freq_next = policy->min;
628 if (!dbs_tuners_ins.powersave_bias) {
629 __cpufreq_driver_target(policy, freq_next,
630 CPUFREQ_RELATION_L);
631 } else {
632 int freq = powersave_bias_target(policy, freq_next,
633 CPUFREQ_RELATION_L);
634 __cpufreq_driver_target(policy, freq,
635 CPUFREQ_RELATION_L);
640 static void do_dbs_timer(struct work_struct *work)
642 struct cpu_dbs_info_s *dbs_info =
643 container_of(work, struct cpu_dbs_info_s, work.work);
644 unsigned int cpu = dbs_info->cpu;
645 int sample_type = dbs_info->sample_type;
647 /* We want all CPUs to do sampling nearly on same jiffy */
648 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
649 * dbs_info->rate_mult);
651 if (num_online_cpus() > 1)
652 delay -= jiffies % delay;
654 mutex_lock(&dbs_info->timer_mutex);
656 /* Common NORMAL_SAMPLE setup */
657 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
658 if (!dbs_tuners_ins.powersave_bias ||
659 sample_type == DBS_NORMAL_SAMPLE) {
660 dbs_check_cpu(dbs_info);
661 if (dbs_info->freq_lo) {
662 /* Setup timer for SUB_SAMPLE */
663 dbs_info->sample_type = DBS_SUB_SAMPLE;
664 delay = dbs_info->freq_hi_jiffies;
666 } else {
667 __cpufreq_driver_target(dbs_info->cur_policy,
668 dbs_info->freq_lo, CPUFREQ_RELATION_H);
670 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
671 mutex_unlock(&dbs_info->timer_mutex);
674 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
676 /* We want all CPUs to do sampling nearly on same jiffy */
677 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
679 if (num_online_cpus() > 1)
680 delay -= jiffies % delay;
682 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
683 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
684 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
685 delay);
688 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
690 cancel_delayed_work_sync(&dbs_info->work);
694 * Not all CPUs want IO time to be accounted as busy; this dependson how
695 * efficient idling at a higher frequency/voltage is.
696 * Pavel Machek says this is not so for various generations of AMD and old
697 * Intel systems.
698 * Mike Chan (androidlcom) calis this is also not true for ARM.
699 * Because of this, whitelist specific known (series) of CPUs by default, and
700 * leave all others up to the user.
702 static int should_io_be_busy(void)
704 #if defined(CONFIG_X86)
706 * For Intel, Core 2 (model 15) andl later have an efficient idle.
708 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
709 boot_cpu_data.x86 == 6 &&
710 boot_cpu_data.x86_model >= 15)
711 return 1;
712 #endif
713 return 0;
716 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
717 unsigned int event)
719 unsigned int cpu = policy->cpu;
720 struct cpu_dbs_info_s *this_dbs_info;
721 unsigned int j;
722 int rc;
724 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
726 switch (event) {
727 case CPUFREQ_GOV_START:
728 if ((!cpu_online(cpu)) || (!policy->cur))
729 return -EINVAL;
731 mutex_lock(&dbs_mutex);
733 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
734 if (rc) {
735 mutex_unlock(&dbs_mutex);
736 return rc;
739 dbs_enable++;
740 for_each_cpu(j, policy->cpus) {
741 struct cpu_dbs_info_s *j_dbs_info;
742 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
743 j_dbs_info->cur_policy = policy;
745 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
746 &j_dbs_info->prev_cpu_wall);
747 if (dbs_tuners_ins.ignore_nice) {
748 j_dbs_info->prev_cpu_nice =
749 kstat_cpu(j).cpustat.nice;
752 this_dbs_info->cpu = cpu;
753 this_dbs_info->rate_mult = 1;
754 ondemand_powersave_bias_init_cpu(cpu);
756 * Start the timerschedule work, when this governor
757 * is used for first time
759 if (dbs_enable == 1) {
760 unsigned int latency;
762 rc = sysfs_create_group(cpufreq_global_kobject,
763 &dbs_attr_group);
764 if (rc) {
765 mutex_unlock(&dbs_mutex);
766 return rc;
769 /* policy latency is in nS. Convert it to uS first */
770 latency = policy->cpuinfo.transition_latency / 1000;
771 if (latency == 0)
772 latency = 1;
773 /* Bring kernel and HW constraints together */
774 min_sampling_rate = max(min_sampling_rate,
775 MIN_LATENCY_MULTIPLIER * latency);
776 dbs_tuners_ins.sampling_rate =
777 max(min_sampling_rate,
778 latency * LATENCY_MULTIPLIER);
779 dbs_tuners_ins.io_is_busy = should_io_be_busy();
781 mutex_unlock(&dbs_mutex);
783 mutex_init(&this_dbs_info->timer_mutex);
784 dbs_timer_init(this_dbs_info);
785 break;
787 case CPUFREQ_GOV_STOP:
788 dbs_timer_exit(this_dbs_info);
790 mutex_lock(&dbs_mutex);
791 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
792 mutex_destroy(&this_dbs_info->timer_mutex);
793 dbs_enable--;
794 mutex_unlock(&dbs_mutex);
795 if (!dbs_enable)
796 sysfs_remove_group(cpufreq_global_kobject,
797 &dbs_attr_group);
799 break;
801 case CPUFREQ_GOV_LIMITS:
802 mutex_lock(&this_dbs_info->timer_mutex);
803 if (policy->max < this_dbs_info->cur_policy->cur)
804 __cpufreq_driver_target(this_dbs_info->cur_policy,
805 policy->max, CPUFREQ_RELATION_H);
806 else if (policy->min > this_dbs_info->cur_policy->cur)
807 __cpufreq_driver_target(this_dbs_info->cur_policy,
808 policy->min, CPUFREQ_RELATION_L);
809 mutex_unlock(&this_dbs_info->timer_mutex);
810 break;
812 return 0;
815 static int __init cpufreq_gov_dbs_init(void)
817 int err;
818 cputime64_t wall;
819 u64 idle_time;
820 int cpu = get_cpu();
822 idle_time = get_cpu_idle_time_us(cpu, &wall);
823 put_cpu();
824 if (idle_time != -1ULL) {
825 /* Idle micro accounting is supported. Use finer thresholds */
826 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
827 dbs_tuners_ins.down_differential =
828 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
830 * In no_hz/micro accounting case we set the minimum frequency
831 * not depending on HZ, but fixed (very low). The deferred
832 * timer might skip some samples if idle/sleeping as needed.
834 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
835 } else {
836 /* For correct statistics, we need 10 ticks for each measure */
837 min_sampling_rate =
838 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
841 kondemand_wq = create_workqueue("kondemand");
842 if (!kondemand_wq) {
843 printk(KERN_ERR "Creation of kondemand failed\n");
844 return -EFAULT;
846 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
847 if (err)
848 destroy_workqueue(kondemand_wq);
850 return err;
853 static void __exit cpufreq_gov_dbs_exit(void)
855 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
856 destroy_workqueue(kondemand_wq);
860 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
861 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
862 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
863 "Low Latency Frequency Transition capable processors");
864 MODULE_LICENSE("GPL");
866 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
867 fs_initcall(cpufreq_gov_dbs_init);
868 #else
869 module_init(cpufreq_gov_dbs_init);
870 #endif
871 module_exit(cpufreq_gov_dbs_exit);