[CIFS] remove bkl usage from umount begin
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob875db944b22f19889727ed0fcc2b4c60dd4043e4
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
45 #define MPAGE_DA_EXTENT_TAIL 0x01
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
59 * Test whether an inode is a fast symlink.
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
78 * If the handle isn't valid we're not journaling so there's nothing to do.
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
83 int err;
85 if (!ext4_handle_valid(handle))
86 return 0;
88 might_sleep();
90 BUFFER_TRACE(bh, "enter");
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
104 if (bh) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
108 return 0;
112 * data!=journal && (is_metadata || should_journal_data(inode))
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
116 if (err)
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
127 static unsigned long blocks_for_truncate(struct inode *inode)
129 ext4_lblk_t needed;
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
160 static handle_t *start_transaction(struct inode *inode)
162 handle_t *result;
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 if (!IS_ERR(result))
166 return result;
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
169 return result;
173 * Try to extend this transaction for the purposes of truncation.
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 return 0;
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 return 0;
186 return 1;
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
202 * Called at the last iput() if i_nlink is zero.
204 void ext4_delete_inode(struct inode *inode)
206 handle_t *handle;
207 int err;
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
213 if (is_bad_inode(inode))
214 goto no_delete;
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
224 ext4_orphan_del(NULL, inode);
225 goto no_delete;
228 if (IS_SYNC(inode))
229 ext4_handle_sync(handle);
230 inode->i_size = 0;
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
237 if (inode->i_blocks)
238 ext4_truncate(inode);
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
283 return;
284 no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
288 typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292 } Indirect;
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 p->key = *(p->p = v);
297 p->bh = bh;
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
331 static int ext4_block_to_path(struct inode *inode,
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
343 if (i_block < 0) {
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max)
377 __le32 *bref = p;
378 unsigned int blk;
380 while (bref < p+max) {
381 blk = le32_to_cpu(*bref++);
382 if (blk &&
383 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
384 blk, 1))) {
385 ext4_error(inode->i_sb, function,
386 "invalid block reference %u "
387 "in inode #%lu", blk, inode->i_ino);
388 return -EIO;
391 return 0;
395 #define ext4_check_indirect_blockref(inode, bh) \
396 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
397 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
399 #define ext4_check_inode_blockref(inode) \
400 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
401 EXT4_NDIR_BLOCKS)
404 * ext4_get_branch - read the chain of indirect blocks leading to data
405 * @inode: inode in question
406 * @depth: depth of the chain (1 - direct pointer, etc.)
407 * @offsets: offsets of pointers in inode/indirect blocks
408 * @chain: place to store the result
409 * @err: here we store the error value
411 * Function fills the array of triples <key, p, bh> and returns %NULL
412 * if everything went OK or the pointer to the last filled triple
413 * (incomplete one) otherwise. Upon the return chain[i].key contains
414 * the number of (i+1)-th block in the chain (as it is stored in memory,
415 * i.e. little-endian 32-bit), chain[i].p contains the address of that
416 * number (it points into struct inode for i==0 and into the bh->b_data
417 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418 * block for i>0 and NULL for i==0. In other words, it holds the block
419 * numbers of the chain, addresses they were taken from (and where we can
420 * verify that chain did not change) and buffer_heads hosting these
421 * numbers.
423 * Function stops when it stumbles upon zero pointer (absent block)
424 * (pointer to last triple returned, *@err == 0)
425 * or when it gets an IO error reading an indirect block
426 * (ditto, *@err == -EIO)
427 * or when it reads all @depth-1 indirect blocks successfully and finds
428 * the whole chain, all way to the data (returns %NULL, *err == 0).
430 * Need to be called with
431 * down_read(&EXT4_I(inode)->i_data_sem)
433 static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 ext4_lblk_t *offsets,
435 Indirect chain[4], int *err)
437 struct super_block *sb = inode->i_sb;
438 Indirect *p = chain;
439 struct buffer_head *bh;
441 *err = 0;
442 /* i_data is not going away, no lock needed */
443 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
444 if (!p->key)
445 goto no_block;
446 while (--depth) {
447 bh = sb_getblk(sb, le32_to_cpu(p->key));
448 if (unlikely(!bh))
449 goto failure;
451 if (!bh_uptodate_or_lock(bh)) {
452 if (bh_submit_read(bh) < 0) {
453 put_bh(bh);
454 goto failure;
456 /* validate block references */
457 if (ext4_check_indirect_blockref(inode, bh)) {
458 put_bh(bh);
459 goto failure;
463 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
464 /* Reader: end */
465 if (!p->key)
466 goto no_block;
468 return NULL;
470 failure:
471 *err = -EIO;
472 no_block:
473 return p;
477 * ext4_find_near - find a place for allocation with sufficient locality
478 * @inode: owner
479 * @ind: descriptor of indirect block.
481 * This function returns the preferred place for block allocation.
482 * It is used when heuristic for sequential allocation fails.
483 * Rules are:
484 * + if there is a block to the left of our position - allocate near it.
485 * + if pointer will live in indirect block - allocate near that block.
486 * + if pointer will live in inode - allocate in the same
487 * cylinder group.
489 * In the latter case we colour the starting block by the callers PID to
490 * prevent it from clashing with concurrent allocations for a different inode
491 * in the same block group. The PID is used here so that functionally related
492 * files will be close-by on-disk.
494 * Caller must make sure that @ind is valid and will stay that way.
496 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
498 struct ext4_inode_info *ei = EXT4_I(inode);
499 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
500 __le32 *p;
501 ext4_fsblk_t bg_start;
502 ext4_fsblk_t last_block;
503 ext4_grpblk_t colour;
504 ext4_group_t block_group;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
507 /* Try to find previous block */
508 for (p = ind->p - 1; p >= start; p--) {
509 if (*p)
510 return le32_to_cpu(*p);
513 /* No such thing, so let's try location of indirect block */
514 if (ind->bh)
515 return ind->bh->b_blocknr;
518 * It is going to be referred to from the inode itself? OK, just put it
519 * into the same cylinder group then.
521 block_group = ei->i_block_group;
522 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 block_group &= ~(flex_size-1);
524 if (S_ISREG(inode->i_mode))
525 block_group++;
527 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
528 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
531 * If we are doing delayed allocation, we don't need take
532 * colour into account.
534 if (test_opt(inode->i_sb, DELALLOC))
535 return bg_start;
537 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 colour = (current->pid % 16) *
539 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
540 else
541 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
542 return bg_start + colour;
546 * ext4_find_goal - find a preferred place for allocation.
547 * @inode: owner
548 * @block: block we want
549 * @partial: pointer to the last triple within a chain
551 * Normally this function find the preferred place for block allocation,
552 * returns it.
554 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
555 Indirect *partial)
558 * XXX need to get goal block from mballoc's data structures
561 return ext4_find_near(inode, partial);
565 * ext4_blks_to_allocate: Look up the block map and count the number
566 * of direct blocks need to be allocated for the given branch.
568 * @branch: chain of indirect blocks
569 * @k: number of blocks need for indirect blocks
570 * @blks: number of data blocks to be mapped.
571 * @blocks_to_boundary: the offset in the indirect block
573 * return the total number of blocks to be allocate, including the
574 * direct and indirect blocks.
576 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
577 int blocks_to_boundary)
579 unsigned int count = 0;
582 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 * then it's clear blocks on that path have not allocated
585 if (k > 0) {
586 /* right now we don't handle cross boundary allocation */
587 if (blks < blocks_to_boundary + 1)
588 count += blks;
589 else
590 count += blocks_to_boundary + 1;
591 return count;
594 count++;
595 while (count < blks && count <= blocks_to_boundary &&
596 le32_to_cpu(*(branch[0].p + count)) == 0) {
597 count++;
599 return count;
603 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
604 * @indirect_blks: the number of blocks need to allocate for indirect
605 * blocks
607 * @new_blocks: on return it will store the new block numbers for
608 * the indirect blocks(if needed) and the first direct block,
609 * @blks: on return it will store the total number of allocated
610 * direct blocks
612 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
613 ext4_lblk_t iblock, ext4_fsblk_t goal,
614 int indirect_blks, int blks,
615 ext4_fsblk_t new_blocks[4], int *err)
617 struct ext4_allocation_request ar;
618 int target, i;
619 unsigned long count = 0, blk_allocated = 0;
620 int index = 0;
621 ext4_fsblk_t current_block = 0;
622 int ret = 0;
625 * Here we try to allocate the requested multiple blocks at once,
626 * on a best-effort basis.
627 * To build a branch, we should allocate blocks for
628 * the indirect blocks(if not allocated yet), and at least
629 * the first direct block of this branch. That's the
630 * minimum number of blocks need to allocate(required)
632 /* first we try to allocate the indirect blocks */
633 target = indirect_blks;
634 while (target > 0) {
635 count = target;
636 /* allocating blocks for indirect blocks and direct blocks */
637 current_block = ext4_new_meta_blocks(handle, inode,
638 goal, &count, err);
639 if (*err)
640 goto failed_out;
642 target -= count;
643 /* allocate blocks for indirect blocks */
644 while (index < indirect_blks && count) {
645 new_blocks[index++] = current_block++;
646 count--;
648 if (count > 0) {
650 * save the new block number
651 * for the first direct block
653 new_blocks[index] = current_block;
654 printk(KERN_INFO "%s returned more blocks than "
655 "requested\n", __func__);
656 WARN_ON(1);
657 break;
661 target = blks - count ;
662 blk_allocated = count;
663 if (!target)
664 goto allocated;
665 /* Now allocate data blocks */
666 memset(&ar, 0, sizeof(ar));
667 ar.inode = inode;
668 ar.goal = goal;
669 ar.len = target;
670 ar.logical = iblock;
671 if (S_ISREG(inode->i_mode))
672 /* enable in-core preallocation only for regular files */
673 ar.flags = EXT4_MB_HINT_DATA;
675 current_block = ext4_mb_new_blocks(handle, &ar, err);
677 if (*err && (target == blks)) {
679 * if the allocation failed and we didn't allocate
680 * any blocks before
682 goto failed_out;
684 if (!*err) {
685 if (target == blks) {
687 * save the new block number
688 * for the first direct block
690 new_blocks[index] = current_block;
692 blk_allocated += ar.len;
694 allocated:
695 /* total number of blocks allocated for direct blocks */
696 ret = blk_allocated;
697 *err = 0;
698 return ret;
699 failed_out:
700 for (i = 0; i < index; i++)
701 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
702 return ret;
706 * ext4_alloc_branch - allocate and set up a chain of blocks.
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
717 * the same format as ext4_get_branch() would do. We are calling it after
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
720 * picture as after the successful ext4_get_block(), except that in one
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728 * as described above and return 0.
730 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
748 branch[0].key = cpu_to_le32(new_blocks[0]);
750 * metadata blocks and data blocks are allocated.
752 for (n = 1; n <= indirect_blks; n++) {
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
762 err = ext4_journal_get_create_access(handle, bh);
763 if (err) {
764 unlock_buffer(bh);
765 brelse(bh);
766 goto failed;
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
773 if (n == indirect_blks) {
774 current_block = new_blocks[n];
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
780 for (i=1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
789 if (err)
790 goto failed;
792 *blks = num;
793 return err;
794 failed:
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798 ext4_journal_forget(handle, branch[i].bh);
800 for (i = 0; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
805 return err;
809 * ext4_splice_branch - splice the allocated branch onto inode.
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
813 * ext4_alloc_branch)
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 ext4_lblk_t block, Indirect *where, int num, int blks)
825 int i;
826 int err = 0;
827 ext4_fsblk_t current_block;
830 * If we're splicing into a [td]indirect block (as opposed to the
831 * inode) then we need to get write access to the [td]indirect block
832 * before the splice.
834 if (where->bh) {
835 BUFFER_TRACE(where->bh, "get_write_access");
836 err = ext4_journal_get_write_access(handle, where->bh);
837 if (err)
838 goto err_out;
840 /* That's it */
842 *where->p = where->key;
845 * Update the host buffer_head or inode to point to more just allocated
846 * direct blocks blocks
848 if (num == 0 && blks > 1) {
849 current_block = le32_to_cpu(where->key) + 1;
850 for (i = 1; i < blks; i++)
851 *(where->p + i) = cpu_to_le32(current_block++);
854 /* We are done with atomic stuff, now do the rest of housekeeping */
856 inode->i_ctime = ext4_current_time(inode);
857 ext4_mark_inode_dirty(handle, inode);
859 /* had we spliced it onto indirect block? */
860 if (where->bh) {
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
869 jbd_debug(5, "splicing indirect only\n");
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
872 if (err)
873 goto err_out;
874 } else {
876 * OK, we spliced it into the inode itself on a direct block.
877 * Inode was dirtied above.
879 jbd_debug(5, "splicing direct\n");
881 return err;
883 err_out:
884 for (i = 1; i <= num; i++) {
885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886 ext4_journal_forget(handle, where[i].bh);
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
892 return err;
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
911 * `handle' can be NULL if create == 0.
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 * blocks.
923 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
926 int flags)
928 int err = -EIO;
929 ext4_lblk_t offsets[4];
930 Indirect chain[4];
931 Indirect *partial;
932 ext4_fsblk_t goal;
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
936 int count = 0;
937 ext4_fsblk_t first_block = 0;
939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941 depth = ext4_block_to_path(inode, iblock, offsets,
942 &blocks_to_boundary);
944 if (depth == 0)
945 goto out;
947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
953 count++;
954 /*map more blocks*/
955 while (count < maxblocks && count <= blocks_to_boundary) {
956 ext4_fsblk_t blk;
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
965 goto got_it;
968 /* Next simple case - plain lookup or failed read of indirect block */
969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970 goto cleanup;
973 * Okay, we need to do block allocation.
975 goal = ext4_find_goal(inode, iblock, partial);
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
984 count = ext4_blks_to_allocate(partial, indirect_blks,
985 maxblocks, blocks_to_boundary);
987 * Block out ext4_truncate while we alter the tree
989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990 &count, goal,
991 offsets + (partial - chain), partial);
994 * The ext4_splice_branch call will free and forget any buffers
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
1000 if (!err)
1001 err = ext4_splice_branch(handle, inode, iblock,
1002 partial, indirect_blks, count);
1003 else
1004 goto cleanup;
1006 set_buffer_new(bh_result);
1007 got_it:
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1011 err = count;
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1014 cleanup:
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1018 partial--;
1020 BUFFER_TRACE(bh_result, "returned");
1021 out:
1022 return err;
1025 qsize_t ext4_get_reserved_space(struct inode *inode)
1027 unsigned long long total;
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1034 return total;
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1040 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1048 dind_blks = (ind_blks + icap - 1) / icap;
1050 tind_blks = 1;
1052 return ind_blks + dind_blks + tind_blks;
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1059 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1061 if (!blocks)
1062 return 0;
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1070 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1084 if (mdb_free) {
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1100 * free those over-booking quota for metadata blocks
1102 if (mdb_free)
1103 vfs_dq_release_reservation_block(inode, mdb_free);
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
1114 static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1123 WARN_ON(1);
1124 return -EIO;
1126 return 0;
1130 * The ext4_get_blocks() function tries to look up the requested blocks,
1131 * and returns if the blocks are already mapped.
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1135 * mapped.
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139 * based files
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1149 * It returns the error in case of allocation failure.
1151 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
1153 int flags)
1155 int retval;
1157 clear_buffer_mapped(bh);
1158 clear_buffer_unwritten(bh);
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1167 bh, 0);
1168 } else {
1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1170 bh, 0);
1172 up_read((&EXT4_I(inode)->i_data_sem));
1174 if (retval > 0 && buffer_mapped(bh)) {
1175 int ret = check_block_validity(inode, block,
1176 bh->b_blocknr, retval);
1177 if (ret != 0)
1178 return ret;
1181 /* If it is only a block(s) look up */
1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1183 return retval;
1186 * Returns if the blocks have already allocated
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1192 if (retval > 0 && buffer_mapped(bh))
1193 return retval;
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1205 clear_buffer_unwritten(bh);
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
1213 down_write((&EXT4_I(inode)->i_data_sem));
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1229 bh, flags);
1230 } else {
1231 retval = ext4_ind_get_blocks(handle, inode, block,
1232 max_blocks, bh, flags);
1234 if (retval > 0 && buffer_new(bh)) {
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241 ~EXT4_EXT_MIGRATE;
1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
1255 up_write((&EXT4_I(inode)->i_data_sem));
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, block,
1258 bh->b_blocknr, retval);
1259 if (ret != 0)
1260 return ret;
1262 return retval;
1265 /* Maximum number of blocks we map for direct IO at once. */
1266 #define DIO_MAX_BLOCKS 4096
1268 int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
1271 handle_t *handle = ext4_journal_current_handle();
1272 int ret = 0, started = 0;
1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1274 int dio_credits;
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
1282 if (IS_ERR(handle)) {
1283 ret = PTR_ERR(handle);
1284 goto out;
1286 started = 1;
1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
1291 if (ret > 0) {
1292 bh_result->b_size = (ret << inode->i_blkbits);
1293 ret = 0;
1295 if (started)
1296 ext4_journal_stop(handle);
1297 out:
1298 return ret;
1302 * `handle' can be NULL if create is zero
1304 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1305 ext4_lblk_t block, int create, int *errp)
1307 struct buffer_head dummy;
1308 int fatal = 0, err;
1309 int flags = 0;
1311 J_ASSERT(handle != NULL || create == 0);
1313 dummy.b_state = 0;
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
1316 if (create)
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1321 * case of a HOLE.
1323 if (err > 0) {
1324 if (err > 1)
1325 WARN_ON(1);
1326 err = 0;
1328 *errp = err;
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332 if (!bh) {
1333 *errp = -EIO;
1334 goto err;
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
1338 J_ASSERT(handle != NULL);
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
1344 * writes use ext4_get_block instead, so it's not a
1345 * problem.
1347 lock_buffer(bh);
1348 BUFFER_TRACE(bh, "call get_create_access");
1349 fatal = ext4_journal_get_create_access(handle, bh);
1350 if (!fatal && !buffer_uptodate(bh)) {
1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 set_buffer_uptodate(bh);
1354 unlock_buffer(bh);
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
1357 if (!fatal)
1358 fatal = err;
1359 } else {
1360 BUFFER_TRACE(bh, "not a new buffer");
1362 if (fatal) {
1363 *errp = fatal;
1364 brelse(bh);
1365 bh = NULL;
1367 return bh;
1369 err:
1370 return NULL;
1373 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1374 ext4_lblk_t block, int create, int *err)
1376 struct buffer_head *bh;
1378 bh = ext4_getblk(handle, inode, block, create, err);
1379 if (!bh)
1380 return bh;
1381 if (buffer_uptodate(bh))
1382 return bh;
1383 ll_rw_block(READ_META, 1, &bh);
1384 wait_on_buffer(bh);
1385 if (buffer_uptodate(bh))
1386 return bh;
1387 put_bh(bh);
1388 *err = -EIO;
1389 return NULL;
1392 static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1394 unsigned from,
1395 unsigned to,
1396 int *partial,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1403 int err, ret = 0;
1404 struct buffer_head *next;
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
1408 block_start = block_end, bh = next)
1410 next = bh->b_this_page;
1411 block_end = block_start + blocksize;
1412 if (block_end <= from || block_start >= to) {
1413 if (partial && !buffer_uptodate(bh))
1414 *partial = 1;
1415 continue;
1417 err = (*fn)(handle, bh);
1418 if (!ret)
1419 ret = err;
1421 return ret;
1425 * To preserve ordering, it is essential that the hole instantiation and
1426 * the data write be encapsulated in a single transaction. We cannot
1427 * close off a transaction and start a new one between the ext4_get_block()
1428 * and the commit_write(). So doing the jbd2_journal_start at the start of
1429 * prepare_write() is the right place.
1431 * Also, this function can nest inside ext4_writepage() ->
1432 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1433 * has generated enough buffer credits to do the whole page. So we won't
1434 * block on the journal in that case, which is good, because the caller may
1435 * be PF_MEMALLOC.
1437 * By accident, ext4 can be reentered when a transaction is open via
1438 * quota file writes. If we were to commit the transaction while thus
1439 * reentered, there can be a deadlock - we would be holding a quota
1440 * lock, and the commit would never complete if another thread had a
1441 * transaction open and was blocking on the quota lock - a ranking
1442 * violation.
1444 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1445 * will _not_ run commit under these circumstances because handle->h_ref
1446 * is elevated. We'll still have enough credits for the tiny quotafile
1447 * write.
1449 static int do_journal_get_write_access(handle_t *handle,
1450 struct buffer_head *bh)
1452 if (!buffer_mapped(bh) || buffer_freed(bh))
1453 return 0;
1454 return ext4_journal_get_write_access(handle, bh);
1457 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458 loff_t pos, unsigned len, unsigned flags,
1459 struct page **pagep, void **fsdata)
1461 struct inode *inode = mapping->host;
1462 int ret, needed_blocks;
1463 handle_t *handle;
1464 int retries = 0;
1465 struct page *page;
1466 pgoff_t index;
1467 unsigned from, to;
1469 trace_mark(ext4_write_begin,
1470 "dev %s ino %lu pos %llu len %u flags %u",
1471 inode->i_sb->s_id, inode->i_ino,
1472 (unsigned long long) pos, len, flags);
1474 * Reserve one block more for addition to orphan list in case
1475 * we allocate blocks but write fails for some reason
1477 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478 index = pos >> PAGE_CACHE_SHIFT;
1479 from = pos & (PAGE_CACHE_SIZE - 1);
1480 to = from + len;
1482 retry:
1483 handle = ext4_journal_start(inode, needed_blocks);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 goto out;
1489 /* We cannot recurse into the filesystem as the transaction is already
1490 * started */
1491 flags |= AOP_FLAG_NOFS;
1493 page = grab_cache_page_write_begin(mapping, index, flags);
1494 if (!page) {
1495 ext4_journal_stop(handle);
1496 ret = -ENOMEM;
1497 goto out;
1499 *pagep = page;
1501 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1502 ext4_get_block);
1504 if (!ret && ext4_should_journal_data(inode)) {
1505 ret = walk_page_buffers(handle, page_buffers(page),
1506 from, to, NULL, do_journal_get_write_access);
1509 if (ret) {
1510 unlock_page(page);
1511 page_cache_release(page);
1513 * block_write_begin may have instantiated a few blocks
1514 * outside i_size. Trim these off again. Don't need
1515 * i_size_read because we hold i_mutex.
1517 * Add inode to orphan list in case we crash before
1518 * truncate finishes
1520 if (pos + len > inode->i_size)
1521 ext4_orphan_add(handle, inode);
1523 ext4_journal_stop(handle);
1524 if (pos + len > inode->i_size) {
1525 vmtruncate(inode, inode->i_size);
1527 * If vmtruncate failed early the inode might
1528 * still be on the orphan list; we need to
1529 * make sure the inode is removed from the
1530 * orphan list in that case.
1532 if (inode->i_nlink)
1533 ext4_orphan_del(NULL, inode);
1537 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1538 goto retry;
1539 out:
1540 return ret;
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1547 return 0;
1548 set_buffer_uptodate(bh);
1549 return ext4_handle_dirty_metadata(handle, NULL, bh);
1552 static int ext4_generic_write_end(struct file *file,
1553 struct address_space *mapping,
1554 loff_t pos, unsigned len, unsigned copied,
1555 struct page *page, void *fsdata)
1557 int i_size_changed = 0;
1558 struct inode *inode = mapping->host;
1559 handle_t *handle = ext4_journal_current_handle();
1561 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1564 * No need to use i_size_read() here, the i_size
1565 * cannot change under us because we hold i_mutex.
1567 * But it's important to update i_size while still holding page lock:
1568 * page writeout could otherwise come in and zero beyond i_size.
1570 if (pos + copied > inode->i_size) {
1571 i_size_write(inode, pos + copied);
1572 i_size_changed = 1;
1575 if (pos + copied > EXT4_I(inode)->i_disksize) {
1576 /* We need to mark inode dirty even if
1577 * new_i_size is less that inode->i_size
1578 * bu greater than i_disksize.(hint delalloc)
1580 ext4_update_i_disksize(inode, (pos + copied));
1581 i_size_changed = 1;
1583 unlock_page(page);
1584 page_cache_release(page);
1587 * Don't mark the inode dirty under page lock. First, it unnecessarily
1588 * makes the holding time of page lock longer. Second, it forces lock
1589 * ordering of page lock and transaction start for journaling
1590 * filesystems.
1592 if (i_size_changed)
1593 ext4_mark_inode_dirty(handle, inode);
1595 return copied;
1599 * We need to pick up the new inode size which generic_commit_write gave us
1600 * `file' can be NULL - eg, when called from page_symlink().
1602 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1603 * buffers are managed internally.
1605 static int ext4_ordered_write_end(struct file *file,
1606 struct address_space *mapping,
1607 loff_t pos, unsigned len, unsigned copied,
1608 struct page *page, void *fsdata)
1610 handle_t *handle = ext4_journal_current_handle();
1611 struct inode *inode = mapping->host;
1612 int ret = 0, ret2;
1614 trace_mark(ext4_ordered_write_end,
1615 "dev %s ino %lu pos %llu len %u copied %u",
1616 inode->i_sb->s_id, inode->i_ino,
1617 (unsigned long long) pos, len, copied);
1618 ret = ext4_jbd2_file_inode(handle, inode);
1620 if (ret == 0) {
1621 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1622 page, fsdata);
1623 copied = ret2;
1624 if (pos + len > inode->i_size)
1625 /* if we have allocated more blocks and copied
1626 * less. We will have blocks allocated outside
1627 * inode->i_size. So truncate them
1629 ext4_orphan_add(handle, inode);
1630 if (ret2 < 0)
1631 ret = ret2;
1633 ret2 = ext4_journal_stop(handle);
1634 if (!ret)
1635 ret = ret2;
1637 if (pos + len > inode->i_size) {
1638 vmtruncate(inode, inode->i_size);
1640 * If vmtruncate failed early the inode might still be
1641 * on the orphan list; we need to make sure the inode
1642 * is removed from the orphan list in that case.
1644 if (inode->i_nlink)
1645 ext4_orphan_del(NULL, inode);
1649 return ret ? ret : copied;
1652 static int ext4_writeback_write_end(struct file *file,
1653 struct address_space *mapping,
1654 loff_t pos, unsigned len, unsigned copied,
1655 struct page *page, void *fsdata)
1657 handle_t *handle = ext4_journal_current_handle();
1658 struct inode *inode = mapping->host;
1659 int ret = 0, ret2;
1661 trace_mark(ext4_writeback_write_end,
1662 "dev %s ino %lu pos %llu len %u copied %u",
1663 inode->i_sb->s_id, inode->i_ino,
1664 (unsigned long long) pos, len, copied);
1665 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1666 page, fsdata);
1667 copied = ret2;
1668 if (pos + len > inode->i_size)
1669 /* if we have allocated more blocks and copied
1670 * less. We will have blocks allocated outside
1671 * inode->i_size. So truncate them
1673 ext4_orphan_add(handle, inode);
1675 if (ret2 < 0)
1676 ret = ret2;
1678 ret2 = ext4_journal_stop(handle);
1679 if (!ret)
1680 ret = ret2;
1682 if (pos + len > inode->i_size) {
1683 vmtruncate(inode, inode->i_size);
1685 * If vmtruncate failed early the inode might still be
1686 * on the orphan list; we need to make sure the inode
1687 * is removed from the orphan list in that case.
1689 if (inode->i_nlink)
1690 ext4_orphan_del(NULL, inode);
1693 return ret ? ret : copied;
1696 static int ext4_journalled_write_end(struct file *file,
1697 struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
1701 handle_t *handle = ext4_journal_current_handle();
1702 struct inode *inode = mapping->host;
1703 int ret = 0, ret2;
1704 int partial = 0;
1705 unsigned from, to;
1706 loff_t new_i_size;
1708 trace_mark(ext4_journalled_write_end,
1709 "dev %s ino %lu pos %llu len %u copied %u",
1710 inode->i_sb->s_id, inode->i_ino,
1711 (unsigned long long) pos, len, copied);
1712 from = pos & (PAGE_CACHE_SIZE - 1);
1713 to = from + len;
1715 if (copied < len) {
1716 if (!PageUptodate(page))
1717 copied = 0;
1718 page_zero_new_buffers(page, from+copied, to);
1721 ret = walk_page_buffers(handle, page_buffers(page), from,
1722 to, &partial, write_end_fn);
1723 if (!partial)
1724 SetPageUptodate(page);
1725 new_i_size = pos + copied;
1726 if (new_i_size > inode->i_size)
1727 i_size_write(inode, pos+copied);
1728 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1729 if (new_i_size > EXT4_I(inode)->i_disksize) {
1730 ext4_update_i_disksize(inode, new_i_size);
1731 ret2 = ext4_mark_inode_dirty(handle, inode);
1732 if (!ret)
1733 ret = ret2;
1736 unlock_page(page);
1737 page_cache_release(page);
1738 if (pos + len > inode->i_size)
1739 /* if we have allocated more blocks and copied
1740 * less. We will have blocks allocated outside
1741 * inode->i_size. So truncate them
1743 ext4_orphan_add(handle, inode);
1745 ret2 = ext4_journal_stop(handle);
1746 if (!ret)
1747 ret = ret2;
1748 if (pos + len > inode->i_size) {
1749 vmtruncate(inode, inode->i_size);
1751 * If vmtruncate failed early the inode might still be
1752 * on the orphan list; we need to make sure the inode
1753 * is removed from the orphan list in that case.
1755 if (inode->i_nlink)
1756 ext4_orphan_del(NULL, inode);
1759 return ret ? ret : copied;
1762 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1764 int retries = 0;
1765 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1766 unsigned long md_needed, mdblocks, total = 0;
1769 * recalculate the amount of metadata blocks to reserve
1770 * in order to allocate nrblocks
1771 * worse case is one extent per block
1773 repeat:
1774 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1775 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1776 mdblocks = ext4_calc_metadata_amount(inode, total);
1777 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1779 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1780 total = md_needed + nrblocks;
1783 * Make quota reservation here to prevent quota overflow
1784 * later. Real quota accounting is done at pages writeout
1785 * time.
1787 if (vfs_dq_reserve_block(inode, total)) {
1788 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1789 return -EDQUOT;
1792 if (ext4_claim_free_blocks(sbi, total)) {
1793 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1794 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1795 yield();
1796 goto repeat;
1798 vfs_dq_release_reservation_block(inode, total);
1799 return -ENOSPC;
1801 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1802 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1804 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1805 return 0; /* success */
1808 static void ext4_da_release_space(struct inode *inode, int to_free)
1810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1811 int total, mdb, mdb_free, release;
1813 if (!to_free)
1814 return; /* Nothing to release, exit */
1816 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1818 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1820 * if there is no reserved blocks, but we try to free some
1821 * then the counter is messed up somewhere.
1822 * but since this function is called from invalidate
1823 * page, it's harmless to return without any action
1825 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1826 "blocks for inode %lu, but there is no reserved "
1827 "data blocks\n", to_free, inode->i_ino);
1828 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1829 return;
1832 /* recalculate the number of metablocks still need to be reserved */
1833 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1834 mdb = ext4_calc_metadata_amount(inode, total);
1836 /* figure out how many metablocks to release */
1837 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1838 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1840 release = to_free + mdb_free;
1842 /* update fs dirty blocks counter for truncate case */
1843 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1845 /* update per-inode reservations */
1846 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1847 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1849 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1850 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1851 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1853 vfs_dq_release_reservation_block(inode, release);
1856 static void ext4_da_page_release_reservation(struct page *page,
1857 unsigned long offset)
1859 int to_release = 0;
1860 struct buffer_head *head, *bh;
1861 unsigned int curr_off = 0;
1863 head = page_buffers(page);
1864 bh = head;
1865 do {
1866 unsigned int next_off = curr_off + bh->b_size;
1868 if ((offset <= curr_off) && (buffer_delay(bh))) {
1869 to_release++;
1870 clear_buffer_delay(bh);
1872 curr_off = next_off;
1873 } while ((bh = bh->b_this_page) != head);
1874 ext4_da_release_space(page->mapping->host, to_release);
1878 * Delayed allocation stuff
1881 struct mpage_da_data {
1882 struct inode *inode;
1883 sector_t b_blocknr; /* start block number of extent */
1884 size_t b_size; /* size of extent */
1885 unsigned long b_state; /* state of the extent */
1886 unsigned long first_page, next_page; /* extent of pages */
1887 struct writeback_control *wbc;
1888 int io_done;
1889 int pages_written;
1890 int retval;
1894 * mpage_da_submit_io - walks through extent of pages and try to write
1895 * them with writepage() call back
1897 * @mpd->inode: inode
1898 * @mpd->first_page: first page of the extent
1899 * @mpd->next_page: page after the last page of the extent
1901 * By the time mpage_da_submit_io() is called we expect all blocks
1902 * to be allocated. this may be wrong if allocation failed.
1904 * As pages are already locked by write_cache_pages(), we can't use it
1906 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1908 long pages_skipped;
1909 struct pagevec pvec;
1910 unsigned long index, end;
1911 int ret = 0, err, nr_pages, i;
1912 struct inode *inode = mpd->inode;
1913 struct address_space *mapping = inode->i_mapping;
1915 BUG_ON(mpd->next_page <= mpd->first_page);
1917 * We need to start from the first_page to the next_page - 1
1918 * to make sure we also write the mapped dirty buffer_heads.
1919 * If we look at mpd->b_blocknr we would only be looking
1920 * at the currently mapped buffer_heads.
1922 index = mpd->first_page;
1923 end = mpd->next_page - 1;
1925 pagevec_init(&pvec, 0);
1926 while (index <= end) {
1927 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1928 if (nr_pages == 0)
1929 break;
1930 for (i = 0; i < nr_pages; i++) {
1931 struct page *page = pvec.pages[i];
1933 index = page->index;
1934 if (index > end)
1935 break;
1936 index++;
1938 BUG_ON(!PageLocked(page));
1939 BUG_ON(PageWriteback(page));
1941 pages_skipped = mpd->wbc->pages_skipped;
1942 err = mapping->a_ops->writepage(page, mpd->wbc);
1943 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1945 * have successfully written the page
1946 * without skipping the same
1948 mpd->pages_written++;
1950 * In error case, we have to continue because
1951 * remaining pages are still locked
1952 * XXX: unlock and re-dirty them?
1954 if (ret == 0)
1955 ret = err;
1957 pagevec_release(&pvec);
1959 return ret;
1963 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1965 * @mpd->inode - inode to walk through
1966 * @exbh->b_blocknr - first block on a disk
1967 * @exbh->b_size - amount of space in bytes
1968 * @logical - first logical block to start assignment with
1970 * the function goes through all passed space and put actual disk
1971 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1973 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1974 struct buffer_head *exbh)
1976 struct inode *inode = mpd->inode;
1977 struct address_space *mapping = inode->i_mapping;
1978 int blocks = exbh->b_size >> inode->i_blkbits;
1979 sector_t pblock = exbh->b_blocknr, cur_logical;
1980 struct buffer_head *head, *bh;
1981 pgoff_t index, end;
1982 struct pagevec pvec;
1983 int nr_pages, i;
1985 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1986 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1987 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1989 pagevec_init(&pvec, 0);
1991 while (index <= end) {
1992 /* XXX: optimize tail */
1993 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1994 if (nr_pages == 0)
1995 break;
1996 for (i = 0; i < nr_pages; i++) {
1997 struct page *page = pvec.pages[i];
1999 index = page->index;
2000 if (index > end)
2001 break;
2002 index++;
2004 BUG_ON(!PageLocked(page));
2005 BUG_ON(PageWriteback(page));
2006 BUG_ON(!page_has_buffers(page));
2008 bh = page_buffers(page);
2009 head = bh;
2011 /* skip blocks out of the range */
2012 do {
2013 if (cur_logical >= logical)
2014 break;
2015 cur_logical++;
2016 } while ((bh = bh->b_this_page) != head);
2018 do {
2019 if (cur_logical >= logical + blocks)
2020 break;
2022 if (buffer_delay(bh) ||
2023 buffer_unwritten(bh)) {
2025 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2027 if (buffer_delay(bh)) {
2028 clear_buffer_delay(bh);
2029 bh->b_blocknr = pblock;
2030 } else {
2032 * unwritten already should have
2033 * blocknr assigned. Verify that
2035 clear_buffer_unwritten(bh);
2036 BUG_ON(bh->b_blocknr != pblock);
2039 } else if (buffer_mapped(bh))
2040 BUG_ON(bh->b_blocknr != pblock);
2042 cur_logical++;
2043 pblock++;
2044 } while ((bh = bh->b_this_page) != head);
2046 pagevec_release(&pvec);
2052 * __unmap_underlying_blocks - just a helper function to unmap
2053 * set of blocks described by @bh
2055 static inline void __unmap_underlying_blocks(struct inode *inode,
2056 struct buffer_head *bh)
2058 struct block_device *bdev = inode->i_sb->s_bdev;
2059 int blocks, i;
2061 blocks = bh->b_size >> inode->i_blkbits;
2062 for (i = 0; i < blocks; i++)
2063 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2066 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2067 sector_t logical, long blk_cnt)
2069 int nr_pages, i;
2070 pgoff_t index, end;
2071 struct pagevec pvec;
2072 struct inode *inode = mpd->inode;
2073 struct address_space *mapping = inode->i_mapping;
2075 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 end = (logical + blk_cnt - 1) >>
2077 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2078 while (index <= end) {
2079 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2080 if (nr_pages == 0)
2081 break;
2082 for (i = 0; i < nr_pages; i++) {
2083 struct page *page = pvec.pages[i];
2084 index = page->index;
2085 if (index > end)
2086 break;
2087 index++;
2089 BUG_ON(!PageLocked(page));
2090 BUG_ON(PageWriteback(page));
2091 block_invalidatepage(page, 0);
2092 ClearPageUptodate(page);
2093 unlock_page(page);
2096 return;
2099 static void ext4_print_free_blocks(struct inode *inode)
2101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2102 printk(KERN_EMERG "Total free blocks count %lld\n",
2103 ext4_count_free_blocks(inode->i_sb));
2104 printk(KERN_EMERG "Free/Dirty block details\n");
2105 printk(KERN_EMERG "free_blocks=%lld\n",
2106 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2107 printk(KERN_EMERG "dirty_blocks=%lld\n",
2108 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2109 printk(KERN_EMERG "Block reservation details\n");
2110 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2111 EXT4_I(inode)->i_reserved_data_blocks);
2112 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2113 EXT4_I(inode)->i_reserved_meta_blocks);
2114 return;
2118 * mpage_da_map_blocks - go through given space
2120 * @mpd - bh describing space
2122 * The function skips space we know is already mapped to disk blocks.
2125 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2127 int err, blks, get_blocks_flags;
2128 struct buffer_head new;
2129 sector_t next = mpd->b_blocknr;
2130 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2131 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2132 handle_t *handle = NULL;
2135 * We consider only non-mapped and non-allocated blocks
2137 if ((mpd->b_state & (1 << BH_Mapped)) &&
2138 !(mpd->b_state & (1 << BH_Delay)) &&
2139 !(mpd->b_state & (1 << BH_Unwritten)))
2140 return 0;
2143 * If we didn't accumulate anything to write simply return
2145 if (!mpd->b_size)
2146 return 0;
2148 handle = ext4_journal_current_handle();
2149 BUG_ON(!handle);
2152 * Call ext4_get_blocks() to allocate any delayed allocation
2153 * blocks, or to convert an uninitialized extent to be
2154 * initialized (in the case where we have written into
2155 * one or more preallocated blocks).
2157 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2158 * indicate that we are on the delayed allocation path. This
2159 * affects functions in many different parts of the allocation
2160 * call path. This flag exists primarily because we don't
2161 * want to change *many* call functions, so ext4_get_blocks()
2162 * will set the magic i_delalloc_reserved_flag once the
2163 * inode's allocation semaphore is taken.
2165 * If the blocks in questions were delalloc blocks, set
2166 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2167 * variables are updated after the blocks have been allocated.
2169 new.b_state = 0;
2170 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2171 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2172 if (mpd->b_state & (1 << BH_Delay))
2173 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2174 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2175 &new, get_blocks_flags);
2176 if (blks < 0) {
2177 err = blks;
2179 * If get block returns with error we simply
2180 * return. Later writepage will redirty the page and
2181 * writepages will find the dirty page again
2183 if (err == -EAGAIN)
2184 return 0;
2186 if (err == -ENOSPC &&
2187 ext4_count_free_blocks(mpd->inode->i_sb)) {
2188 mpd->retval = err;
2189 return 0;
2193 * get block failure will cause us to loop in
2194 * writepages, because a_ops->writepage won't be able
2195 * to make progress. The page will be redirtied by
2196 * writepage and writepages will again try to write
2197 * the same.
2199 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2200 "at logical offset %llu with max blocks "
2201 "%zd with error %d\n",
2202 __func__, mpd->inode->i_ino,
2203 (unsigned long long)next,
2204 mpd->b_size >> mpd->inode->i_blkbits, err);
2205 printk(KERN_EMERG "This should not happen.!! "
2206 "Data will be lost\n");
2207 if (err == -ENOSPC) {
2208 ext4_print_free_blocks(mpd->inode);
2210 /* invalidate all the pages */
2211 ext4_da_block_invalidatepages(mpd, next,
2212 mpd->b_size >> mpd->inode->i_blkbits);
2213 return err;
2215 BUG_ON(blks == 0);
2217 new.b_size = (blks << mpd->inode->i_blkbits);
2219 if (buffer_new(&new))
2220 __unmap_underlying_blocks(mpd->inode, &new);
2223 * If blocks are delayed marked, we need to
2224 * put actual blocknr and drop delayed bit
2226 if ((mpd->b_state & (1 << BH_Delay)) ||
2227 (mpd->b_state & (1 << BH_Unwritten)))
2228 mpage_put_bnr_to_bhs(mpd, next, &new);
2230 if (ext4_should_order_data(mpd->inode)) {
2231 err = ext4_jbd2_file_inode(handle, mpd->inode);
2232 if (err)
2233 return err;
2237 * Update on-disk size along with block allocation.
2239 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2240 if (disksize > i_size_read(mpd->inode))
2241 disksize = i_size_read(mpd->inode);
2242 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2243 ext4_update_i_disksize(mpd->inode, disksize);
2244 return ext4_mark_inode_dirty(handle, mpd->inode);
2247 return 0;
2250 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2251 (1 << BH_Delay) | (1 << BH_Unwritten))
2254 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2256 * @mpd->lbh - extent of blocks
2257 * @logical - logical number of the block in the file
2258 * @bh - bh of the block (used to access block's state)
2260 * the function is used to collect contig. blocks in same state
2262 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2263 sector_t logical, size_t b_size,
2264 unsigned long b_state)
2266 sector_t next;
2267 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2269 /* check if thereserved journal credits might overflow */
2270 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2271 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2273 * With non-extent format we are limited by the journal
2274 * credit available. Total credit needed to insert
2275 * nrblocks contiguous blocks is dependent on the
2276 * nrblocks. So limit nrblocks.
2278 goto flush_it;
2279 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2280 EXT4_MAX_TRANS_DATA) {
2282 * Adding the new buffer_head would make it cross the
2283 * allowed limit for which we have journal credit
2284 * reserved. So limit the new bh->b_size
2286 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2287 mpd->inode->i_blkbits;
2288 /* we will do mpage_da_submit_io in the next loop */
2292 * First block in the extent
2294 if (mpd->b_size == 0) {
2295 mpd->b_blocknr = logical;
2296 mpd->b_size = b_size;
2297 mpd->b_state = b_state & BH_FLAGS;
2298 return;
2301 next = mpd->b_blocknr + nrblocks;
2303 * Can we merge the block to our big extent?
2305 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2306 mpd->b_size += b_size;
2307 return;
2310 flush_it:
2312 * We couldn't merge the block to our extent, so we
2313 * need to flush current extent and start new one
2315 if (mpage_da_map_blocks(mpd) == 0)
2316 mpage_da_submit_io(mpd);
2317 mpd->io_done = 1;
2318 return;
2321 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2324 * unmapped buffer is possible for holes.
2325 * delay buffer is possible with delayed allocation.
2326 * We also need to consider unwritten buffer as unmapped.
2328 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2329 buffer_unwritten(bh)) && buffer_dirty(bh);
2333 * __mpage_da_writepage - finds extent of pages and blocks
2335 * @page: page to consider
2336 * @wbc: not used, we just follow rules
2337 * @data: context
2339 * The function finds extents of pages and scan them for all blocks.
2341 static int __mpage_da_writepage(struct page *page,
2342 struct writeback_control *wbc, void *data)
2344 struct mpage_da_data *mpd = data;
2345 struct inode *inode = mpd->inode;
2346 struct buffer_head *bh, *head;
2347 sector_t logical;
2349 if (mpd->io_done) {
2351 * Rest of the page in the page_vec
2352 * redirty then and skip then. We will
2353 * try to to write them again after
2354 * starting a new transaction
2356 redirty_page_for_writepage(wbc, page);
2357 unlock_page(page);
2358 return MPAGE_DA_EXTENT_TAIL;
2361 * Can we merge this page to current extent?
2363 if (mpd->next_page != page->index) {
2365 * Nope, we can't. So, we map non-allocated blocks
2366 * and start IO on them using writepage()
2368 if (mpd->next_page != mpd->first_page) {
2369 if (mpage_da_map_blocks(mpd) == 0)
2370 mpage_da_submit_io(mpd);
2372 * skip rest of the page in the page_vec
2374 mpd->io_done = 1;
2375 redirty_page_for_writepage(wbc, page);
2376 unlock_page(page);
2377 return MPAGE_DA_EXTENT_TAIL;
2381 * Start next extent of pages ...
2383 mpd->first_page = page->index;
2386 * ... and blocks
2388 mpd->b_size = 0;
2389 mpd->b_state = 0;
2390 mpd->b_blocknr = 0;
2393 mpd->next_page = page->index + 1;
2394 logical = (sector_t) page->index <<
2395 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2397 if (!page_has_buffers(page)) {
2398 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2399 (1 << BH_Dirty) | (1 << BH_Uptodate));
2400 if (mpd->io_done)
2401 return MPAGE_DA_EXTENT_TAIL;
2402 } else {
2404 * Page with regular buffer heads, just add all dirty ones
2406 head = page_buffers(page);
2407 bh = head;
2408 do {
2409 BUG_ON(buffer_locked(bh));
2411 * We need to try to allocate
2412 * unmapped blocks in the same page.
2413 * Otherwise we won't make progress
2414 * with the page in ext4_da_writepage
2416 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2417 mpage_add_bh_to_extent(mpd, logical,
2418 bh->b_size,
2419 bh->b_state);
2420 if (mpd->io_done)
2421 return MPAGE_DA_EXTENT_TAIL;
2422 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2424 * mapped dirty buffer. We need to update
2425 * the b_state because we look at
2426 * b_state in mpage_da_map_blocks. We don't
2427 * update b_size because if we find an
2428 * unmapped buffer_head later we need to
2429 * use the b_state flag of that buffer_head.
2431 if (mpd->b_size == 0)
2432 mpd->b_state = bh->b_state & BH_FLAGS;
2434 logical++;
2435 } while ((bh = bh->b_this_page) != head);
2438 return 0;
2442 * This is a special get_blocks_t callback which is used by
2443 * ext4_da_write_begin(). It will either return mapped block or
2444 * reserve space for a single block.
2446 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447 * We also have b_blocknr = -1 and b_bdev initialized properly
2449 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451 * initialized properly.
2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 struct buffer_head *bh_result, int create)
2456 int ret = 0;
2457 sector_t invalid_block = ~((sector_t) 0xffff);
2459 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2460 invalid_block = ~0;
2462 BUG_ON(create == 0);
2463 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2466 * first, we need to know whether the block is allocated already
2467 * preallocated blocks are unmapped but should treated
2468 * the same as allocated blocks.
2470 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2471 if ((ret == 0) && !buffer_delay(bh_result)) {
2472 /* the block isn't (pre)allocated yet, let's reserve space */
2474 * XXX: __block_prepare_write() unmaps passed block,
2475 * is it OK?
2477 ret = ext4_da_reserve_space(inode, 1);
2478 if (ret)
2479 /* not enough space to reserve */
2480 return ret;
2482 map_bh(bh_result, inode->i_sb, invalid_block);
2483 set_buffer_new(bh_result);
2484 set_buffer_delay(bh_result);
2485 } else if (ret > 0) {
2486 bh_result->b_size = (ret << inode->i_blkbits);
2487 if (buffer_unwritten(bh_result)) {
2488 /* A delayed write to unwritten bh should
2489 * be marked new and mapped. Mapped ensures
2490 * that we don't do get_block multiple times
2491 * when we write to the same offset and new
2492 * ensures that we do proper zero out for
2493 * partial write.
2495 set_buffer_new(bh_result);
2496 set_buffer_mapped(bh_result);
2498 ret = 0;
2501 return ret;
2505 * This function is used as a standard get_block_t calback function
2506 * when there is no desire to allocate any blocks. It is used as a
2507 * callback function for block_prepare_write(), nobh_writepage(), and
2508 * block_write_full_page(). These functions should only try to map a
2509 * single block at a time.
2511 * Since this function doesn't do block allocations even if the caller
2512 * requests it by passing in create=1, it is critically important that
2513 * any caller checks to make sure that any buffer heads are returned
2514 * by this function are either all already mapped or marked for
2515 * delayed allocation before calling nobh_writepage() or
2516 * block_write_full_page(). Otherwise, b_blocknr could be left
2517 * unitialized, and the page write functions will be taken by
2518 * surprise.
2520 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2521 struct buffer_head *bh_result, int create)
2523 int ret = 0;
2524 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2526 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2529 * we don't want to do block allocation in writepage
2530 * so call get_block_wrap with create = 0
2532 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2533 BUG_ON(create && ret == 0);
2534 if (ret > 0) {
2535 bh_result->b_size = (ret << inode->i_blkbits);
2536 ret = 0;
2538 return ret;
2542 * This function can get called via...
2543 * - ext4_da_writepages after taking page lock (have journal handle)
2544 * - journal_submit_inode_data_buffers (no journal handle)
2545 * - shrink_page_list via pdflush (no journal handle)
2546 * - grab_page_cache when doing write_begin (have journal handle)
2548 static int ext4_da_writepage(struct page *page,
2549 struct writeback_control *wbc)
2551 int ret = 0;
2552 loff_t size;
2553 unsigned int len;
2554 struct buffer_head *page_bufs;
2555 struct inode *inode = page->mapping->host;
2557 trace_mark(ext4_da_writepage,
2558 "dev %s ino %lu page_index %lu",
2559 inode->i_sb->s_id, inode->i_ino, page->index);
2560 size = i_size_read(inode);
2561 if (page->index == size >> PAGE_CACHE_SHIFT)
2562 len = size & ~PAGE_CACHE_MASK;
2563 else
2564 len = PAGE_CACHE_SIZE;
2566 if (page_has_buffers(page)) {
2567 page_bufs = page_buffers(page);
2568 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2569 ext4_bh_unmapped_or_delay)) {
2571 * We don't want to do block allocation
2572 * So redirty the page and return
2573 * We may reach here when we do a journal commit
2574 * via journal_submit_inode_data_buffers.
2575 * If we don't have mapping block we just ignore
2576 * them. We can also reach here via shrink_page_list
2578 redirty_page_for_writepage(wbc, page);
2579 unlock_page(page);
2580 return 0;
2582 } else {
2584 * The test for page_has_buffers() is subtle:
2585 * We know the page is dirty but it lost buffers. That means
2586 * that at some moment in time after write_begin()/write_end()
2587 * has been called all buffers have been clean and thus they
2588 * must have been written at least once. So they are all
2589 * mapped and we can happily proceed with mapping them
2590 * and writing the page.
2592 * Try to initialize the buffer_heads and check whether
2593 * all are mapped and non delay. We don't want to
2594 * do block allocation here.
2596 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2597 noalloc_get_block_write);
2598 if (!ret) {
2599 page_bufs = page_buffers(page);
2600 /* check whether all are mapped and non delay */
2601 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2602 ext4_bh_unmapped_or_delay)) {
2603 redirty_page_for_writepage(wbc, page);
2604 unlock_page(page);
2605 return 0;
2607 } else {
2609 * We can't do block allocation here
2610 * so just redity the page and unlock
2611 * and return
2613 redirty_page_for_writepage(wbc, page);
2614 unlock_page(page);
2615 return 0;
2617 /* now mark the buffer_heads as dirty and uptodate */
2618 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2621 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2622 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2623 else
2624 ret = block_write_full_page(page, noalloc_get_block_write,
2625 wbc);
2627 return ret;
2631 * This is called via ext4_da_writepages() to
2632 * calulate the total number of credits to reserve to fit
2633 * a single extent allocation into a single transaction,
2634 * ext4_da_writpeages() will loop calling this before
2635 * the block allocation.
2638 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2640 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2643 * With non-extent format the journal credit needed to
2644 * insert nrblocks contiguous block is dependent on
2645 * number of contiguous block. So we will limit
2646 * number of contiguous block to a sane value
2648 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2649 (max_blocks > EXT4_MAX_TRANS_DATA))
2650 max_blocks = EXT4_MAX_TRANS_DATA;
2652 return ext4_chunk_trans_blocks(inode, max_blocks);
2655 static int ext4_da_writepages(struct address_space *mapping,
2656 struct writeback_control *wbc)
2658 pgoff_t index;
2659 int range_whole = 0;
2660 handle_t *handle = NULL;
2661 struct mpage_da_data mpd;
2662 struct inode *inode = mapping->host;
2663 int no_nrwrite_index_update;
2664 int pages_written = 0;
2665 long pages_skipped;
2666 int range_cyclic, cycled = 1, io_done = 0;
2667 int needed_blocks, ret = 0, nr_to_writebump = 0;
2668 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2670 trace_mark(ext4_da_writepages,
2671 "dev %s ino %lu nr_t_write %ld "
2672 "pages_skipped %ld range_start %llu "
2673 "range_end %llu nonblocking %d "
2674 "for_kupdate %d for_reclaim %d "
2675 "for_writepages %d range_cyclic %d",
2676 inode->i_sb->s_id, inode->i_ino,
2677 wbc->nr_to_write, wbc->pages_skipped,
2678 (unsigned long long) wbc->range_start,
2679 (unsigned long long) wbc->range_end,
2680 wbc->nonblocking, wbc->for_kupdate,
2681 wbc->for_reclaim, wbc->for_writepages,
2682 wbc->range_cyclic);
2685 * No pages to write? This is mainly a kludge to avoid starting
2686 * a transaction for special inodes like journal inode on last iput()
2687 * because that could violate lock ordering on umount
2689 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2690 return 0;
2693 * If the filesystem has aborted, it is read-only, so return
2694 * right away instead of dumping stack traces later on that
2695 * will obscure the real source of the problem. We test
2696 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2697 * the latter could be true if the filesystem is mounted
2698 * read-only, and in that case, ext4_da_writepages should
2699 * *never* be called, so if that ever happens, we would want
2700 * the stack trace.
2702 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2703 return -EROFS;
2706 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2707 * This make sure small files blocks are allocated in
2708 * single attempt. This ensure that small files
2709 * get less fragmented.
2711 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2712 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2713 wbc->nr_to_write = sbi->s_mb_stream_request;
2715 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2716 range_whole = 1;
2718 range_cyclic = wbc->range_cyclic;
2719 if (wbc->range_cyclic) {
2720 index = mapping->writeback_index;
2721 if (index)
2722 cycled = 0;
2723 wbc->range_start = index << PAGE_CACHE_SHIFT;
2724 wbc->range_end = LLONG_MAX;
2725 wbc->range_cyclic = 0;
2726 } else
2727 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2729 mpd.wbc = wbc;
2730 mpd.inode = mapping->host;
2733 * we don't want write_cache_pages to update
2734 * nr_to_write and writeback_index
2736 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2737 wbc->no_nrwrite_index_update = 1;
2738 pages_skipped = wbc->pages_skipped;
2740 retry:
2741 while (!ret && wbc->nr_to_write > 0) {
2744 * we insert one extent at a time. So we need
2745 * credit needed for single extent allocation.
2746 * journalled mode is currently not supported
2747 * by delalloc
2749 BUG_ON(ext4_should_journal_data(inode));
2750 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2752 /* start a new transaction*/
2753 handle = ext4_journal_start(inode, needed_blocks);
2754 if (IS_ERR(handle)) {
2755 ret = PTR_ERR(handle);
2756 printk(KERN_CRIT "%s: jbd2_start: "
2757 "%ld pages, ino %lu; err %d\n", __func__,
2758 wbc->nr_to_write, inode->i_ino, ret);
2759 dump_stack();
2760 goto out_writepages;
2764 * Now call __mpage_da_writepage to find the next
2765 * contiguous region of logical blocks that need
2766 * blocks to be allocated by ext4. We don't actually
2767 * submit the blocks for I/O here, even though
2768 * write_cache_pages thinks it will, and will set the
2769 * pages as clean for write before calling
2770 * __mpage_da_writepage().
2772 mpd.b_size = 0;
2773 mpd.b_state = 0;
2774 mpd.b_blocknr = 0;
2775 mpd.first_page = 0;
2776 mpd.next_page = 0;
2777 mpd.io_done = 0;
2778 mpd.pages_written = 0;
2779 mpd.retval = 0;
2780 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2781 &mpd);
2783 * If we have a contigous extent of pages and we
2784 * haven't done the I/O yet, map the blocks and submit
2785 * them for I/O.
2787 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2788 if (mpage_da_map_blocks(&mpd) == 0)
2789 mpage_da_submit_io(&mpd);
2790 mpd.io_done = 1;
2791 ret = MPAGE_DA_EXTENT_TAIL;
2793 wbc->nr_to_write -= mpd.pages_written;
2795 ext4_journal_stop(handle);
2797 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2798 /* commit the transaction which would
2799 * free blocks released in the transaction
2800 * and try again
2802 jbd2_journal_force_commit_nested(sbi->s_journal);
2803 wbc->pages_skipped = pages_skipped;
2804 ret = 0;
2805 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2807 * got one extent now try with
2808 * rest of the pages
2810 pages_written += mpd.pages_written;
2811 wbc->pages_skipped = pages_skipped;
2812 ret = 0;
2813 io_done = 1;
2814 } else if (wbc->nr_to_write)
2816 * There is no more writeout needed
2817 * or we requested for a noblocking writeout
2818 * and we found the device congested
2820 break;
2822 if (!io_done && !cycled) {
2823 cycled = 1;
2824 index = 0;
2825 wbc->range_start = index << PAGE_CACHE_SHIFT;
2826 wbc->range_end = mapping->writeback_index - 1;
2827 goto retry;
2829 if (pages_skipped != wbc->pages_skipped)
2830 printk(KERN_EMERG "This should not happen leaving %s "
2831 "with nr_to_write = %ld ret = %d\n",
2832 __func__, wbc->nr_to_write, ret);
2834 /* Update index */
2835 index += pages_written;
2836 wbc->range_cyclic = range_cyclic;
2837 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2839 * set the writeback_index so that range_cyclic
2840 * mode will write it back later
2842 mapping->writeback_index = index;
2844 out_writepages:
2845 if (!no_nrwrite_index_update)
2846 wbc->no_nrwrite_index_update = 0;
2847 wbc->nr_to_write -= nr_to_writebump;
2848 trace_mark(ext4_da_writepage_result,
2849 "dev %s ino %lu ret %d pages_written %d "
2850 "pages_skipped %ld congestion %d "
2851 "more_io %d no_nrwrite_index_update %d",
2852 inode->i_sb->s_id, inode->i_ino, ret,
2853 pages_written, wbc->pages_skipped,
2854 wbc->encountered_congestion, wbc->more_io,
2855 wbc->no_nrwrite_index_update);
2856 return ret;
2859 #define FALL_BACK_TO_NONDELALLOC 1
2860 static int ext4_nonda_switch(struct super_block *sb)
2862 s64 free_blocks, dirty_blocks;
2863 struct ext4_sb_info *sbi = EXT4_SB(sb);
2866 * switch to non delalloc mode if we are running low
2867 * on free block. The free block accounting via percpu
2868 * counters can get slightly wrong with percpu_counter_batch getting
2869 * accumulated on each CPU without updating global counters
2870 * Delalloc need an accurate free block accounting. So switch
2871 * to non delalloc when we are near to error range.
2873 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2874 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2875 if (2 * free_blocks < 3 * dirty_blocks ||
2876 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2878 * free block count is less that 150% of dirty blocks
2879 * or free blocks is less that watermark
2881 return 1;
2883 return 0;
2886 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2887 loff_t pos, unsigned len, unsigned flags,
2888 struct page **pagep, void **fsdata)
2890 int ret, retries = 0;
2891 struct page *page;
2892 pgoff_t index;
2893 unsigned from, to;
2894 struct inode *inode = mapping->host;
2895 handle_t *handle;
2897 index = pos >> PAGE_CACHE_SHIFT;
2898 from = pos & (PAGE_CACHE_SIZE - 1);
2899 to = from + len;
2901 if (ext4_nonda_switch(inode->i_sb)) {
2902 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2903 return ext4_write_begin(file, mapping, pos,
2904 len, flags, pagep, fsdata);
2906 *fsdata = (void *)0;
2908 trace_mark(ext4_da_write_begin,
2909 "dev %s ino %lu pos %llu len %u flags %u",
2910 inode->i_sb->s_id, inode->i_ino,
2911 (unsigned long long) pos, len, flags);
2912 retry:
2914 * With delayed allocation, we don't log the i_disksize update
2915 * if there is delayed block allocation. But we still need
2916 * to journalling the i_disksize update if writes to the end
2917 * of file which has an already mapped buffer.
2919 handle = ext4_journal_start(inode, 1);
2920 if (IS_ERR(handle)) {
2921 ret = PTR_ERR(handle);
2922 goto out;
2924 /* We cannot recurse into the filesystem as the transaction is already
2925 * started */
2926 flags |= AOP_FLAG_NOFS;
2928 page = grab_cache_page_write_begin(mapping, index, flags);
2929 if (!page) {
2930 ext4_journal_stop(handle);
2931 ret = -ENOMEM;
2932 goto out;
2934 *pagep = page;
2936 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2937 ext4_da_get_block_prep);
2938 if (ret < 0) {
2939 unlock_page(page);
2940 ext4_journal_stop(handle);
2941 page_cache_release(page);
2943 * block_write_begin may have instantiated a few blocks
2944 * outside i_size. Trim these off again. Don't need
2945 * i_size_read because we hold i_mutex.
2947 if (pos + len > inode->i_size)
2948 vmtruncate(inode, inode->i_size);
2951 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2952 goto retry;
2953 out:
2954 return ret;
2958 * Check if we should update i_disksize
2959 * when write to the end of file but not require block allocation
2961 static int ext4_da_should_update_i_disksize(struct page *page,
2962 unsigned long offset)
2964 struct buffer_head *bh;
2965 struct inode *inode = page->mapping->host;
2966 unsigned int idx;
2967 int i;
2969 bh = page_buffers(page);
2970 idx = offset >> inode->i_blkbits;
2972 for (i = 0; i < idx; i++)
2973 bh = bh->b_this_page;
2975 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2976 return 0;
2977 return 1;
2980 static int ext4_da_write_end(struct file *file,
2981 struct address_space *mapping,
2982 loff_t pos, unsigned len, unsigned copied,
2983 struct page *page, void *fsdata)
2985 struct inode *inode = mapping->host;
2986 int ret = 0, ret2;
2987 handle_t *handle = ext4_journal_current_handle();
2988 loff_t new_i_size;
2989 unsigned long start, end;
2990 int write_mode = (int)(unsigned long)fsdata;
2992 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2993 if (ext4_should_order_data(inode)) {
2994 return ext4_ordered_write_end(file, mapping, pos,
2995 len, copied, page, fsdata);
2996 } else if (ext4_should_writeback_data(inode)) {
2997 return ext4_writeback_write_end(file, mapping, pos,
2998 len, copied, page, fsdata);
2999 } else {
3000 BUG();
3004 trace_mark(ext4_da_write_end,
3005 "dev %s ino %lu pos %llu len %u copied %u",
3006 inode->i_sb->s_id, inode->i_ino,
3007 (unsigned long long) pos, len, copied);
3008 start = pos & (PAGE_CACHE_SIZE - 1);
3009 end = start + copied - 1;
3012 * generic_write_end() will run mark_inode_dirty() if i_size
3013 * changes. So let's piggyback the i_disksize mark_inode_dirty
3014 * into that.
3017 new_i_size = pos + copied;
3018 if (new_i_size > EXT4_I(inode)->i_disksize) {
3019 if (ext4_da_should_update_i_disksize(page, end)) {
3020 down_write(&EXT4_I(inode)->i_data_sem);
3021 if (new_i_size > EXT4_I(inode)->i_disksize) {
3023 * Updating i_disksize when extending file
3024 * without needing block allocation
3026 if (ext4_should_order_data(inode))
3027 ret = ext4_jbd2_file_inode(handle,
3028 inode);
3030 EXT4_I(inode)->i_disksize = new_i_size;
3032 up_write(&EXT4_I(inode)->i_data_sem);
3033 /* We need to mark inode dirty even if
3034 * new_i_size is less that inode->i_size
3035 * bu greater than i_disksize.(hint delalloc)
3037 ext4_mark_inode_dirty(handle, inode);
3040 ret2 = generic_write_end(file, mapping, pos, len, copied,
3041 page, fsdata);
3042 copied = ret2;
3043 if (ret2 < 0)
3044 ret = ret2;
3045 ret2 = ext4_journal_stop(handle);
3046 if (!ret)
3047 ret = ret2;
3049 return ret ? ret : copied;
3052 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3055 * Drop reserved blocks
3057 BUG_ON(!PageLocked(page));
3058 if (!page_has_buffers(page))
3059 goto out;
3061 ext4_da_page_release_reservation(page, offset);
3063 out:
3064 ext4_invalidatepage(page, offset);
3066 return;
3070 * Force all delayed allocation blocks to be allocated for a given inode.
3072 int ext4_alloc_da_blocks(struct inode *inode)
3074 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3075 !EXT4_I(inode)->i_reserved_meta_blocks)
3076 return 0;
3079 * We do something simple for now. The filemap_flush() will
3080 * also start triggering a write of the data blocks, which is
3081 * not strictly speaking necessary (and for users of
3082 * laptop_mode, not even desirable). However, to do otherwise
3083 * would require replicating code paths in:
3085 * ext4_da_writepages() ->
3086 * write_cache_pages() ---> (via passed in callback function)
3087 * __mpage_da_writepage() -->
3088 * mpage_add_bh_to_extent()
3089 * mpage_da_map_blocks()
3091 * The problem is that write_cache_pages(), located in
3092 * mm/page-writeback.c, marks pages clean in preparation for
3093 * doing I/O, which is not desirable if we're not planning on
3094 * doing I/O at all.
3096 * We could call write_cache_pages(), and then redirty all of
3097 * the pages by calling redirty_page_for_writeback() but that
3098 * would be ugly in the extreme. So instead we would need to
3099 * replicate parts of the code in the above functions,
3100 * simplifying them becuase we wouldn't actually intend to
3101 * write out the pages, but rather only collect contiguous
3102 * logical block extents, call the multi-block allocator, and
3103 * then update the buffer heads with the block allocations.
3105 * For now, though, we'll cheat by calling filemap_flush(),
3106 * which will map the blocks, and start the I/O, but not
3107 * actually wait for the I/O to complete.
3109 return filemap_flush(inode->i_mapping);
3113 * bmap() is special. It gets used by applications such as lilo and by
3114 * the swapper to find the on-disk block of a specific piece of data.
3116 * Naturally, this is dangerous if the block concerned is still in the
3117 * journal. If somebody makes a swapfile on an ext4 data-journaling
3118 * filesystem and enables swap, then they may get a nasty shock when the
3119 * data getting swapped to that swapfile suddenly gets overwritten by
3120 * the original zero's written out previously to the journal and
3121 * awaiting writeback in the kernel's buffer cache.
3123 * So, if we see any bmap calls here on a modified, data-journaled file,
3124 * take extra steps to flush any blocks which might be in the cache.
3126 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3128 struct inode *inode = mapping->host;
3129 journal_t *journal;
3130 int err;
3132 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3133 test_opt(inode->i_sb, DELALLOC)) {
3135 * With delalloc we want to sync the file
3136 * so that we can make sure we allocate
3137 * blocks for file
3139 filemap_write_and_wait(mapping);
3142 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3144 * This is a REALLY heavyweight approach, but the use of
3145 * bmap on dirty files is expected to be extremely rare:
3146 * only if we run lilo or swapon on a freshly made file
3147 * do we expect this to happen.
3149 * (bmap requires CAP_SYS_RAWIO so this does not
3150 * represent an unprivileged user DOS attack --- we'd be
3151 * in trouble if mortal users could trigger this path at
3152 * will.)
3154 * NB. EXT4_STATE_JDATA is not set on files other than
3155 * regular files. If somebody wants to bmap a directory
3156 * or symlink and gets confused because the buffer
3157 * hasn't yet been flushed to disk, they deserve
3158 * everything they get.
3161 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3162 journal = EXT4_JOURNAL(inode);
3163 jbd2_journal_lock_updates(journal);
3164 err = jbd2_journal_flush(journal);
3165 jbd2_journal_unlock_updates(journal);
3167 if (err)
3168 return 0;
3171 return generic_block_bmap(mapping, block, ext4_get_block);
3174 static int bget_one(handle_t *handle, struct buffer_head *bh)
3176 get_bh(bh);
3177 return 0;
3180 static int bput_one(handle_t *handle, struct buffer_head *bh)
3182 put_bh(bh);
3183 return 0;
3187 * Note that we don't need to start a transaction unless we're journaling data
3188 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3189 * need to file the inode to the transaction's list in ordered mode because if
3190 * we are writing back data added by write(), the inode is already there and if
3191 * we are writing back data modified via mmap(), noone guarantees in which
3192 * transaction the data will hit the disk. In case we are journaling data, we
3193 * cannot start transaction directly because transaction start ranks above page
3194 * lock so we have to do some magic.
3196 * In all journaling modes block_write_full_page() will start the I/O.
3198 * Problem:
3200 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3201 * ext4_writepage()
3203 * Similar for:
3205 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3207 * Same applies to ext4_get_block(). We will deadlock on various things like
3208 * lock_journal and i_data_sem
3210 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3211 * allocations fail.
3213 * 16May01: If we're reentered then journal_current_handle() will be
3214 * non-zero. We simply *return*.
3216 * 1 July 2001: @@@ FIXME:
3217 * In journalled data mode, a data buffer may be metadata against the
3218 * current transaction. But the same file is part of a shared mapping
3219 * and someone does a writepage() on it.
3221 * We will move the buffer onto the async_data list, but *after* it has
3222 * been dirtied. So there's a small window where we have dirty data on
3223 * BJ_Metadata.
3225 * Note that this only applies to the last partial page in the file. The
3226 * bit which block_write_full_page() uses prepare/commit for. (That's
3227 * broken code anyway: it's wrong for msync()).
3229 * It's a rare case: affects the final partial page, for journalled data
3230 * where the file is subject to bith write() and writepage() in the same
3231 * transction. To fix it we'll need a custom block_write_full_page().
3232 * We'll probably need that anyway for journalling writepage() output.
3234 * We don't honour synchronous mounts for writepage(). That would be
3235 * disastrous. Any write() or metadata operation will sync the fs for
3236 * us.
3239 static int __ext4_normal_writepage(struct page *page,
3240 struct writeback_control *wbc)
3242 struct inode *inode = page->mapping->host;
3244 if (test_opt(inode->i_sb, NOBH))
3245 return nobh_writepage(page, noalloc_get_block_write, wbc);
3246 else
3247 return block_write_full_page(page, noalloc_get_block_write,
3248 wbc);
3251 static int ext4_normal_writepage(struct page *page,
3252 struct writeback_control *wbc)
3254 struct inode *inode = page->mapping->host;
3255 loff_t size = i_size_read(inode);
3256 loff_t len;
3258 trace_mark(ext4_normal_writepage,
3259 "dev %s ino %lu page_index %lu",
3260 inode->i_sb->s_id, inode->i_ino, page->index);
3261 J_ASSERT(PageLocked(page));
3262 if (page->index == size >> PAGE_CACHE_SHIFT)
3263 len = size & ~PAGE_CACHE_MASK;
3264 else
3265 len = PAGE_CACHE_SIZE;
3267 if (page_has_buffers(page)) {
3268 /* if page has buffers it should all be mapped
3269 * and allocated. If there are not buffers attached
3270 * to the page we know the page is dirty but it lost
3271 * buffers. That means that at some moment in time
3272 * after write_begin() / write_end() has been called
3273 * all buffers have been clean and thus they must have been
3274 * written at least once. So they are all mapped and we can
3275 * happily proceed with mapping them and writing the page.
3277 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3278 ext4_bh_unmapped_or_delay));
3281 if (!ext4_journal_current_handle())
3282 return __ext4_normal_writepage(page, wbc);
3284 redirty_page_for_writepage(wbc, page);
3285 unlock_page(page);
3286 return 0;
3289 static int __ext4_journalled_writepage(struct page *page,
3290 struct writeback_control *wbc)
3292 struct address_space *mapping = page->mapping;
3293 struct inode *inode = mapping->host;
3294 struct buffer_head *page_bufs;
3295 handle_t *handle = NULL;
3296 int ret = 0;
3297 int err;
3299 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3300 noalloc_get_block_write);
3301 if (ret != 0)
3302 goto out_unlock;
3304 page_bufs = page_buffers(page);
3305 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3306 bget_one);
3307 /* As soon as we unlock the page, it can go away, but we have
3308 * references to buffers so we are safe */
3309 unlock_page(page);
3311 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3312 if (IS_ERR(handle)) {
3313 ret = PTR_ERR(handle);
3314 goto out;
3317 ret = walk_page_buffers(handle, page_bufs, 0,
3318 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3320 err = walk_page_buffers(handle, page_bufs, 0,
3321 PAGE_CACHE_SIZE, NULL, write_end_fn);
3322 if (ret == 0)
3323 ret = err;
3324 err = ext4_journal_stop(handle);
3325 if (!ret)
3326 ret = err;
3328 walk_page_buffers(handle, page_bufs, 0,
3329 PAGE_CACHE_SIZE, NULL, bput_one);
3330 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3331 goto out;
3333 out_unlock:
3334 unlock_page(page);
3335 out:
3336 return ret;
3339 static int ext4_journalled_writepage(struct page *page,
3340 struct writeback_control *wbc)
3342 struct inode *inode = page->mapping->host;
3343 loff_t size = i_size_read(inode);
3344 loff_t len;
3346 trace_mark(ext4_journalled_writepage,
3347 "dev %s ino %lu page_index %lu",
3348 inode->i_sb->s_id, inode->i_ino, page->index);
3349 J_ASSERT(PageLocked(page));
3350 if (page->index == size >> PAGE_CACHE_SHIFT)
3351 len = size & ~PAGE_CACHE_MASK;
3352 else
3353 len = PAGE_CACHE_SIZE;
3355 if (page_has_buffers(page)) {
3356 /* if page has buffers it should all be mapped
3357 * and allocated. If there are not buffers attached
3358 * to the page we know the page is dirty but it lost
3359 * buffers. That means that at some moment in time
3360 * after write_begin() / write_end() has been called
3361 * all buffers have been clean and thus they must have been
3362 * written at least once. So they are all mapped and we can
3363 * happily proceed with mapping them and writing the page.
3365 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3366 ext4_bh_unmapped_or_delay));
3369 if (ext4_journal_current_handle())
3370 goto no_write;
3372 if (PageChecked(page)) {
3374 * It's mmapped pagecache. Add buffers and journal it. There
3375 * doesn't seem much point in redirtying the page here.
3377 ClearPageChecked(page);
3378 return __ext4_journalled_writepage(page, wbc);
3379 } else {
3381 * It may be a page full of checkpoint-mode buffers. We don't
3382 * really know unless we go poke around in the buffer_heads.
3383 * But block_write_full_page will do the right thing.
3385 return block_write_full_page(page, noalloc_get_block_write,
3386 wbc);
3388 no_write:
3389 redirty_page_for_writepage(wbc, page);
3390 unlock_page(page);
3391 return 0;
3394 static int ext4_readpage(struct file *file, struct page *page)
3396 return mpage_readpage(page, ext4_get_block);
3399 static int
3400 ext4_readpages(struct file *file, struct address_space *mapping,
3401 struct list_head *pages, unsigned nr_pages)
3403 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3406 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3408 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3411 * If it's a full truncate we just forget about the pending dirtying
3413 if (offset == 0)
3414 ClearPageChecked(page);
3416 if (journal)
3417 jbd2_journal_invalidatepage(journal, page, offset);
3418 else
3419 block_invalidatepage(page, offset);
3422 static int ext4_releasepage(struct page *page, gfp_t wait)
3424 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3426 WARN_ON(PageChecked(page));
3427 if (!page_has_buffers(page))
3428 return 0;
3429 if (journal)
3430 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3431 else
3432 return try_to_free_buffers(page);
3436 * If the O_DIRECT write will extend the file then add this inode to the
3437 * orphan list. So recovery will truncate it back to the original size
3438 * if the machine crashes during the write.
3440 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3441 * crashes then stale disk data _may_ be exposed inside the file. But current
3442 * VFS code falls back into buffered path in that case so we are safe.
3444 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3445 const struct iovec *iov, loff_t offset,
3446 unsigned long nr_segs)
3448 struct file *file = iocb->ki_filp;
3449 struct inode *inode = file->f_mapping->host;
3450 struct ext4_inode_info *ei = EXT4_I(inode);
3451 handle_t *handle;
3452 ssize_t ret;
3453 int orphan = 0;
3454 size_t count = iov_length(iov, nr_segs);
3456 if (rw == WRITE) {
3457 loff_t final_size = offset + count;
3459 if (final_size > inode->i_size) {
3460 /* Credits for sb + inode write */
3461 handle = ext4_journal_start(inode, 2);
3462 if (IS_ERR(handle)) {
3463 ret = PTR_ERR(handle);
3464 goto out;
3466 ret = ext4_orphan_add(handle, inode);
3467 if (ret) {
3468 ext4_journal_stop(handle);
3469 goto out;
3471 orphan = 1;
3472 ei->i_disksize = inode->i_size;
3473 ext4_journal_stop(handle);
3477 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3478 offset, nr_segs,
3479 ext4_get_block, NULL);
3481 if (orphan) {
3482 int err;
3484 /* Credits for sb + inode write */
3485 handle = ext4_journal_start(inode, 2);
3486 if (IS_ERR(handle)) {
3487 /* This is really bad luck. We've written the data
3488 * but cannot extend i_size. Bail out and pretend
3489 * the write failed... */
3490 ret = PTR_ERR(handle);
3491 goto out;
3493 if (inode->i_nlink)
3494 ext4_orphan_del(handle, inode);
3495 if (ret > 0) {
3496 loff_t end = offset + ret;
3497 if (end > inode->i_size) {
3498 ei->i_disksize = end;
3499 i_size_write(inode, end);
3501 * We're going to return a positive `ret'
3502 * here due to non-zero-length I/O, so there's
3503 * no way of reporting error returns from
3504 * ext4_mark_inode_dirty() to userspace. So
3505 * ignore it.
3507 ext4_mark_inode_dirty(handle, inode);
3510 err = ext4_journal_stop(handle);
3511 if (ret == 0)
3512 ret = err;
3514 out:
3515 return ret;
3519 * Pages can be marked dirty completely asynchronously from ext4's journalling
3520 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3521 * much here because ->set_page_dirty is called under VFS locks. The page is
3522 * not necessarily locked.
3524 * We cannot just dirty the page and leave attached buffers clean, because the
3525 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3526 * or jbddirty because all the journalling code will explode.
3528 * So what we do is to mark the page "pending dirty" and next time writepage
3529 * is called, propagate that into the buffers appropriately.
3531 static int ext4_journalled_set_page_dirty(struct page *page)
3533 SetPageChecked(page);
3534 return __set_page_dirty_nobuffers(page);
3537 static const struct address_space_operations ext4_ordered_aops = {
3538 .readpage = ext4_readpage,
3539 .readpages = ext4_readpages,
3540 .writepage = ext4_normal_writepage,
3541 .sync_page = block_sync_page,
3542 .write_begin = ext4_write_begin,
3543 .write_end = ext4_ordered_write_end,
3544 .bmap = ext4_bmap,
3545 .invalidatepage = ext4_invalidatepage,
3546 .releasepage = ext4_releasepage,
3547 .direct_IO = ext4_direct_IO,
3548 .migratepage = buffer_migrate_page,
3549 .is_partially_uptodate = block_is_partially_uptodate,
3552 static const struct address_space_operations ext4_writeback_aops = {
3553 .readpage = ext4_readpage,
3554 .readpages = ext4_readpages,
3555 .writepage = ext4_normal_writepage,
3556 .sync_page = block_sync_page,
3557 .write_begin = ext4_write_begin,
3558 .write_end = ext4_writeback_write_end,
3559 .bmap = ext4_bmap,
3560 .invalidatepage = ext4_invalidatepage,
3561 .releasepage = ext4_releasepage,
3562 .direct_IO = ext4_direct_IO,
3563 .migratepage = buffer_migrate_page,
3564 .is_partially_uptodate = block_is_partially_uptodate,
3567 static const struct address_space_operations ext4_journalled_aops = {
3568 .readpage = ext4_readpage,
3569 .readpages = ext4_readpages,
3570 .writepage = ext4_journalled_writepage,
3571 .sync_page = block_sync_page,
3572 .write_begin = ext4_write_begin,
3573 .write_end = ext4_journalled_write_end,
3574 .set_page_dirty = ext4_journalled_set_page_dirty,
3575 .bmap = ext4_bmap,
3576 .invalidatepage = ext4_invalidatepage,
3577 .releasepage = ext4_releasepage,
3578 .is_partially_uptodate = block_is_partially_uptodate,
3581 static const struct address_space_operations ext4_da_aops = {
3582 .readpage = ext4_readpage,
3583 .readpages = ext4_readpages,
3584 .writepage = ext4_da_writepage,
3585 .writepages = ext4_da_writepages,
3586 .sync_page = block_sync_page,
3587 .write_begin = ext4_da_write_begin,
3588 .write_end = ext4_da_write_end,
3589 .bmap = ext4_bmap,
3590 .invalidatepage = ext4_da_invalidatepage,
3591 .releasepage = ext4_releasepage,
3592 .direct_IO = ext4_direct_IO,
3593 .migratepage = buffer_migrate_page,
3594 .is_partially_uptodate = block_is_partially_uptodate,
3597 void ext4_set_aops(struct inode *inode)
3599 if (ext4_should_order_data(inode) &&
3600 test_opt(inode->i_sb, DELALLOC))
3601 inode->i_mapping->a_ops = &ext4_da_aops;
3602 else if (ext4_should_order_data(inode))
3603 inode->i_mapping->a_ops = &ext4_ordered_aops;
3604 else if (ext4_should_writeback_data(inode) &&
3605 test_opt(inode->i_sb, DELALLOC))
3606 inode->i_mapping->a_ops = &ext4_da_aops;
3607 else if (ext4_should_writeback_data(inode))
3608 inode->i_mapping->a_ops = &ext4_writeback_aops;
3609 else
3610 inode->i_mapping->a_ops = &ext4_journalled_aops;
3614 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3615 * up to the end of the block which corresponds to `from'.
3616 * This required during truncate. We need to physically zero the tail end
3617 * of that block so it doesn't yield old data if the file is later grown.
3619 int ext4_block_truncate_page(handle_t *handle,
3620 struct address_space *mapping, loff_t from)
3622 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3623 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3624 unsigned blocksize, length, pos;
3625 ext4_lblk_t iblock;
3626 struct inode *inode = mapping->host;
3627 struct buffer_head *bh;
3628 struct page *page;
3629 int err = 0;
3631 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3632 if (!page)
3633 return -EINVAL;
3635 blocksize = inode->i_sb->s_blocksize;
3636 length = blocksize - (offset & (blocksize - 1));
3637 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3640 * For "nobh" option, we can only work if we don't need to
3641 * read-in the page - otherwise we create buffers to do the IO.
3643 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3644 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3645 zero_user(page, offset, length);
3646 set_page_dirty(page);
3647 goto unlock;
3650 if (!page_has_buffers(page))
3651 create_empty_buffers(page, blocksize, 0);
3653 /* Find the buffer that contains "offset" */
3654 bh = page_buffers(page);
3655 pos = blocksize;
3656 while (offset >= pos) {
3657 bh = bh->b_this_page;
3658 iblock++;
3659 pos += blocksize;
3662 err = 0;
3663 if (buffer_freed(bh)) {
3664 BUFFER_TRACE(bh, "freed: skip");
3665 goto unlock;
3668 if (!buffer_mapped(bh)) {
3669 BUFFER_TRACE(bh, "unmapped");
3670 ext4_get_block(inode, iblock, bh, 0);
3671 /* unmapped? It's a hole - nothing to do */
3672 if (!buffer_mapped(bh)) {
3673 BUFFER_TRACE(bh, "still unmapped");
3674 goto unlock;
3678 /* Ok, it's mapped. Make sure it's up-to-date */
3679 if (PageUptodate(page))
3680 set_buffer_uptodate(bh);
3682 if (!buffer_uptodate(bh)) {
3683 err = -EIO;
3684 ll_rw_block(READ, 1, &bh);
3685 wait_on_buffer(bh);
3686 /* Uhhuh. Read error. Complain and punt. */
3687 if (!buffer_uptodate(bh))
3688 goto unlock;
3691 if (ext4_should_journal_data(inode)) {
3692 BUFFER_TRACE(bh, "get write access");
3693 err = ext4_journal_get_write_access(handle, bh);
3694 if (err)
3695 goto unlock;
3698 zero_user(page, offset, length);
3700 BUFFER_TRACE(bh, "zeroed end of block");
3702 err = 0;
3703 if (ext4_should_journal_data(inode)) {
3704 err = ext4_handle_dirty_metadata(handle, inode, bh);
3705 } else {
3706 if (ext4_should_order_data(inode))
3707 err = ext4_jbd2_file_inode(handle, inode);
3708 mark_buffer_dirty(bh);
3711 unlock:
3712 unlock_page(page);
3713 page_cache_release(page);
3714 return err;
3718 * Probably it should be a library function... search for first non-zero word
3719 * or memcmp with zero_page, whatever is better for particular architecture.
3720 * Linus?
3722 static inline int all_zeroes(__le32 *p, __le32 *q)
3724 while (p < q)
3725 if (*p++)
3726 return 0;
3727 return 1;
3731 * ext4_find_shared - find the indirect blocks for partial truncation.
3732 * @inode: inode in question
3733 * @depth: depth of the affected branch
3734 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3735 * @chain: place to store the pointers to partial indirect blocks
3736 * @top: place to the (detached) top of branch
3738 * This is a helper function used by ext4_truncate().
3740 * When we do truncate() we may have to clean the ends of several
3741 * indirect blocks but leave the blocks themselves alive. Block is
3742 * partially truncated if some data below the new i_size is refered
3743 * from it (and it is on the path to the first completely truncated
3744 * data block, indeed). We have to free the top of that path along
3745 * with everything to the right of the path. Since no allocation
3746 * past the truncation point is possible until ext4_truncate()
3747 * finishes, we may safely do the latter, but top of branch may
3748 * require special attention - pageout below the truncation point
3749 * might try to populate it.
3751 * We atomically detach the top of branch from the tree, store the
3752 * block number of its root in *@top, pointers to buffer_heads of
3753 * partially truncated blocks - in @chain[].bh and pointers to
3754 * their last elements that should not be removed - in
3755 * @chain[].p. Return value is the pointer to last filled element
3756 * of @chain.
3758 * The work left to caller to do the actual freeing of subtrees:
3759 * a) free the subtree starting from *@top
3760 * b) free the subtrees whose roots are stored in
3761 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3762 * c) free the subtrees growing from the inode past the @chain[0].
3763 * (no partially truncated stuff there). */
3765 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3766 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3768 Indirect *partial, *p;
3769 int k, err;
3771 *top = 0;
3772 /* Make k index the deepest non-null offest + 1 */
3773 for (k = depth; k > 1 && !offsets[k-1]; k--)
3775 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3776 /* Writer: pointers */
3777 if (!partial)
3778 partial = chain + k-1;
3780 * If the branch acquired continuation since we've looked at it -
3781 * fine, it should all survive and (new) top doesn't belong to us.
3783 if (!partial->key && *partial->p)
3784 /* Writer: end */
3785 goto no_top;
3786 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3789 * OK, we've found the last block that must survive. The rest of our
3790 * branch should be detached before unlocking. However, if that rest
3791 * of branch is all ours and does not grow immediately from the inode
3792 * it's easier to cheat and just decrement partial->p.
3794 if (p == chain + k - 1 && p > chain) {
3795 p->p--;
3796 } else {
3797 *top = *p->p;
3798 /* Nope, don't do this in ext4. Must leave the tree intact */
3799 #if 0
3800 *p->p = 0;
3801 #endif
3803 /* Writer: end */
3805 while (partial > p) {
3806 brelse(partial->bh);
3807 partial--;
3809 no_top:
3810 return partial;
3814 * Zero a number of block pointers in either an inode or an indirect block.
3815 * If we restart the transaction we must again get write access to the
3816 * indirect block for further modification.
3818 * We release `count' blocks on disk, but (last - first) may be greater
3819 * than `count' because there can be holes in there.
3821 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3822 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3823 unsigned long count, __le32 *first, __le32 *last)
3825 __le32 *p;
3826 if (try_to_extend_transaction(handle, inode)) {
3827 if (bh) {
3828 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3829 ext4_handle_dirty_metadata(handle, inode, bh);
3831 ext4_mark_inode_dirty(handle, inode);
3832 ext4_journal_test_restart(handle, inode);
3833 if (bh) {
3834 BUFFER_TRACE(bh, "retaking write access");
3835 ext4_journal_get_write_access(handle, bh);
3840 * Any buffers which are on the journal will be in memory. We find
3841 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3842 * on them. We've already detached each block from the file, so
3843 * bforget() in jbd2_journal_forget() should be safe.
3845 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3847 for (p = first; p < last; p++) {
3848 u32 nr = le32_to_cpu(*p);
3849 if (nr) {
3850 struct buffer_head *tbh;
3852 *p = 0;
3853 tbh = sb_find_get_block(inode->i_sb, nr);
3854 ext4_forget(handle, 0, inode, tbh, nr);
3858 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3862 * ext4_free_data - free a list of data blocks
3863 * @handle: handle for this transaction
3864 * @inode: inode we are dealing with
3865 * @this_bh: indirect buffer_head which contains *@first and *@last
3866 * @first: array of block numbers
3867 * @last: points immediately past the end of array
3869 * We are freeing all blocks refered from that array (numbers are stored as
3870 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3872 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3873 * blocks are contiguous then releasing them at one time will only affect one
3874 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3875 * actually use a lot of journal space.
3877 * @this_bh will be %NULL if @first and @last point into the inode's direct
3878 * block pointers.
3880 static void ext4_free_data(handle_t *handle, struct inode *inode,
3881 struct buffer_head *this_bh,
3882 __le32 *first, __le32 *last)
3884 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3885 unsigned long count = 0; /* Number of blocks in the run */
3886 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3887 corresponding to
3888 block_to_free */
3889 ext4_fsblk_t nr; /* Current block # */
3890 __le32 *p; /* Pointer into inode/ind
3891 for current block */
3892 int err;
3894 if (this_bh) { /* For indirect block */
3895 BUFFER_TRACE(this_bh, "get_write_access");
3896 err = ext4_journal_get_write_access(handle, this_bh);
3897 /* Important: if we can't update the indirect pointers
3898 * to the blocks, we can't free them. */
3899 if (err)
3900 return;
3903 for (p = first; p < last; p++) {
3904 nr = le32_to_cpu(*p);
3905 if (nr) {
3906 /* accumulate blocks to free if they're contiguous */
3907 if (count == 0) {
3908 block_to_free = nr;
3909 block_to_free_p = p;
3910 count = 1;
3911 } else if (nr == block_to_free + count) {
3912 count++;
3913 } else {
3914 ext4_clear_blocks(handle, inode, this_bh,
3915 block_to_free,
3916 count, block_to_free_p, p);
3917 block_to_free = nr;
3918 block_to_free_p = p;
3919 count = 1;
3924 if (count > 0)
3925 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3926 count, block_to_free_p, p);
3928 if (this_bh) {
3929 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3932 * The buffer head should have an attached journal head at this
3933 * point. However, if the data is corrupted and an indirect
3934 * block pointed to itself, it would have been detached when
3935 * the block was cleared. Check for this instead of OOPSing.
3937 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3938 ext4_handle_dirty_metadata(handle, inode, this_bh);
3939 else
3940 ext4_error(inode->i_sb, __func__,
3941 "circular indirect block detected, "
3942 "inode=%lu, block=%llu",
3943 inode->i_ino,
3944 (unsigned long long) this_bh->b_blocknr);
3949 * ext4_free_branches - free an array of branches
3950 * @handle: JBD handle for this transaction
3951 * @inode: inode we are dealing with
3952 * @parent_bh: the buffer_head which contains *@first and *@last
3953 * @first: array of block numbers
3954 * @last: pointer immediately past the end of array
3955 * @depth: depth of the branches to free
3957 * We are freeing all blocks refered from these branches (numbers are
3958 * stored as little-endian 32-bit) and updating @inode->i_blocks
3959 * appropriately.
3961 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3962 struct buffer_head *parent_bh,
3963 __le32 *first, __le32 *last, int depth)
3965 ext4_fsblk_t nr;
3966 __le32 *p;
3968 if (ext4_handle_is_aborted(handle))
3969 return;
3971 if (depth--) {
3972 struct buffer_head *bh;
3973 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3974 p = last;
3975 while (--p >= first) {
3976 nr = le32_to_cpu(*p);
3977 if (!nr)
3978 continue; /* A hole */
3980 /* Go read the buffer for the next level down */
3981 bh = sb_bread(inode->i_sb, nr);
3984 * A read failure? Report error and clear slot
3985 * (should be rare).
3987 if (!bh) {
3988 ext4_error(inode->i_sb, "ext4_free_branches",
3989 "Read failure, inode=%lu, block=%llu",
3990 inode->i_ino, nr);
3991 continue;
3994 /* This zaps the entire block. Bottom up. */
3995 BUFFER_TRACE(bh, "free child branches");
3996 ext4_free_branches(handle, inode, bh,
3997 (__le32 *) bh->b_data,
3998 (__le32 *) bh->b_data + addr_per_block,
3999 depth);
4002 * We've probably journalled the indirect block several
4003 * times during the truncate. But it's no longer
4004 * needed and we now drop it from the transaction via
4005 * jbd2_journal_revoke().
4007 * That's easy if it's exclusively part of this
4008 * transaction. But if it's part of the committing
4009 * transaction then jbd2_journal_forget() will simply
4010 * brelse() it. That means that if the underlying
4011 * block is reallocated in ext4_get_block(),
4012 * unmap_underlying_metadata() will find this block
4013 * and will try to get rid of it. damn, damn.
4015 * If this block has already been committed to the
4016 * journal, a revoke record will be written. And
4017 * revoke records must be emitted *before* clearing
4018 * this block's bit in the bitmaps.
4020 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4023 * Everything below this this pointer has been
4024 * released. Now let this top-of-subtree go.
4026 * We want the freeing of this indirect block to be
4027 * atomic in the journal with the updating of the
4028 * bitmap block which owns it. So make some room in
4029 * the journal.
4031 * We zero the parent pointer *after* freeing its
4032 * pointee in the bitmaps, so if extend_transaction()
4033 * for some reason fails to put the bitmap changes and
4034 * the release into the same transaction, recovery
4035 * will merely complain about releasing a free block,
4036 * rather than leaking blocks.
4038 if (ext4_handle_is_aborted(handle))
4039 return;
4040 if (try_to_extend_transaction(handle, inode)) {
4041 ext4_mark_inode_dirty(handle, inode);
4042 ext4_journal_test_restart(handle, inode);
4045 ext4_free_blocks(handle, inode, nr, 1, 1);
4047 if (parent_bh) {
4049 * The block which we have just freed is
4050 * pointed to by an indirect block: journal it
4052 BUFFER_TRACE(parent_bh, "get_write_access");
4053 if (!ext4_journal_get_write_access(handle,
4054 parent_bh)){
4055 *p = 0;
4056 BUFFER_TRACE(parent_bh,
4057 "call ext4_handle_dirty_metadata");
4058 ext4_handle_dirty_metadata(handle,
4059 inode,
4060 parent_bh);
4064 } else {
4065 /* We have reached the bottom of the tree. */
4066 BUFFER_TRACE(parent_bh, "free data blocks");
4067 ext4_free_data(handle, inode, parent_bh, first, last);
4071 int ext4_can_truncate(struct inode *inode)
4073 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4074 return 0;
4075 if (S_ISREG(inode->i_mode))
4076 return 1;
4077 if (S_ISDIR(inode->i_mode))
4078 return 1;
4079 if (S_ISLNK(inode->i_mode))
4080 return !ext4_inode_is_fast_symlink(inode);
4081 return 0;
4085 * ext4_truncate()
4087 * We block out ext4_get_block() block instantiations across the entire
4088 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4089 * simultaneously on behalf of the same inode.
4091 * As we work through the truncate and commmit bits of it to the journal there
4092 * is one core, guiding principle: the file's tree must always be consistent on
4093 * disk. We must be able to restart the truncate after a crash.
4095 * The file's tree may be transiently inconsistent in memory (although it
4096 * probably isn't), but whenever we close off and commit a journal transaction,
4097 * the contents of (the filesystem + the journal) must be consistent and
4098 * restartable. It's pretty simple, really: bottom up, right to left (although
4099 * left-to-right works OK too).
4101 * Note that at recovery time, journal replay occurs *before* the restart of
4102 * truncate against the orphan inode list.
4104 * The committed inode has the new, desired i_size (which is the same as
4105 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4106 * that this inode's truncate did not complete and it will again call
4107 * ext4_truncate() to have another go. So there will be instantiated blocks
4108 * to the right of the truncation point in a crashed ext4 filesystem. But
4109 * that's fine - as long as they are linked from the inode, the post-crash
4110 * ext4_truncate() run will find them and release them.
4112 void ext4_truncate(struct inode *inode)
4114 handle_t *handle;
4115 struct ext4_inode_info *ei = EXT4_I(inode);
4116 __le32 *i_data = ei->i_data;
4117 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4118 struct address_space *mapping = inode->i_mapping;
4119 ext4_lblk_t offsets[4];
4120 Indirect chain[4];
4121 Indirect *partial;
4122 __le32 nr = 0;
4123 int n;
4124 ext4_lblk_t last_block;
4125 unsigned blocksize = inode->i_sb->s_blocksize;
4127 if (!ext4_can_truncate(inode))
4128 return;
4130 if (ei->i_disksize && inode->i_size == 0 &&
4131 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4132 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4134 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4135 ext4_ext_truncate(inode);
4136 return;
4139 handle = start_transaction(inode);
4140 if (IS_ERR(handle))
4141 return; /* AKPM: return what? */
4143 last_block = (inode->i_size + blocksize-1)
4144 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4146 if (inode->i_size & (blocksize - 1))
4147 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4148 goto out_stop;
4150 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4151 if (n == 0)
4152 goto out_stop; /* error */
4155 * OK. This truncate is going to happen. We add the inode to the
4156 * orphan list, so that if this truncate spans multiple transactions,
4157 * and we crash, we will resume the truncate when the filesystem
4158 * recovers. It also marks the inode dirty, to catch the new size.
4160 * Implication: the file must always be in a sane, consistent
4161 * truncatable state while each transaction commits.
4163 if (ext4_orphan_add(handle, inode))
4164 goto out_stop;
4167 * From here we block out all ext4_get_block() callers who want to
4168 * modify the block allocation tree.
4170 down_write(&ei->i_data_sem);
4172 ext4_discard_preallocations(inode);
4175 * The orphan list entry will now protect us from any crash which
4176 * occurs before the truncate completes, so it is now safe to propagate
4177 * the new, shorter inode size (held for now in i_size) into the
4178 * on-disk inode. We do this via i_disksize, which is the value which
4179 * ext4 *really* writes onto the disk inode.
4181 ei->i_disksize = inode->i_size;
4183 if (n == 1) { /* direct blocks */
4184 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4185 i_data + EXT4_NDIR_BLOCKS);
4186 goto do_indirects;
4189 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4190 /* Kill the top of shared branch (not detached) */
4191 if (nr) {
4192 if (partial == chain) {
4193 /* Shared branch grows from the inode */
4194 ext4_free_branches(handle, inode, NULL,
4195 &nr, &nr+1, (chain+n-1) - partial);
4196 *partial->p = 0;
4198 * We mark the inode dirty prior to restart,
4199 * and prior to stop. No need for it here.
4201 } else {
4202 /* Shared branch grows from an indirect block */
4203 BUFFER_TRACE(partial->bh, "get_write_access");
4204 ext4_free_branches(handle, inode, partial->bh,
4205 partial->p,
4206 partial->p+1, (chain+n-1) - partial);
4209 /* Clear the ends of indirect blocks on the shared branch */
4210 while (partial > chain) {
4211 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4212 (__le32*)partial->bh->b_data+addr_per_block,
4213 (chain+n-1) - partial);
4214 BUFFER_TRACE(partial->bh, "call brelse");
4215 brelse (partial->bh);
4216 partial--;
4218 do_indirects:
4219 /* Kill the remaining (whole) subtrees */
4220 switch (offsets[0]) {
4221 default:
4222 nr = i_data[EXT4_IND_BLOCK];
4223 if (nr) {
4224 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4225 i_data[EXT4_IND_BLOCK] = 0;
4227 case EXT4_IND_BLOCK:
4228 nr = i_data[EXT4_DIND_BLOCK];
4229 if (nr) {
4230 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4231 i_data[EXT4_DIND_BLOCK] = 0;
4233 case EXT4_DIND_BLOCK:
4234 nr = i_data[EXT4_TIND_BLOCK];
4235 if (nr) {
4236 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4237 i_data[EXT4_TIND_BLOCK] = 0;
4239 case EXT4_TIND_BLOCK:
4243 up_write(&ei->i_data_sem);
4244 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4245 ext4_mark_inode_dirty(handle, inode);
4248 * In a multi-transaction truncate, we only make the final transaction
4249 * synchronous
4251 if (IS_SYNC(inode))
4252 ext4_handle_sync(handle);
4253 out_stop:
4255 * If this was a simple ftruncate(), and the file will remain alive
4256 * then we need to clear up the orphan record which we created above.
4257 * However, if this was a real unlink then we were called by
4258 * ext4_delete_inode(), and we allow that function to clean up the
4259 * orphan info for us.
4261 if (inode->i_nlink)
4262 ext4_orphan_del(handle, inode);
4264 ext4_journal_stop(handle);
4268 * ext4_get_inode_loc returns with an extra refcount against the inode's
4269 * underlying buffer_head on success. If 'in_mem' is true, we have all
4270 * data in memory that is needed to recreate the on-disk version of this
4271 * inode.
4273 static int __ext4_get_inode_loc(struct inode *inode,
4274 struct ext4_iloc *iloc, int in_mem)
4276 struct ext4_group_desc *gdp;
4277 struct buffer_head *bh;
4278 struct super_block *sb = inode->i_sb;
4279 ext4_fsblk_t block;
4280 int inodes_per_block, inode_offset;
4282 iloc->bh = NULL;
4283 if (!ext4_valid_inum(sb, inode->i_ino))
4284 return -EIO;
4286 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4287 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4288 if (!gdp)
4289 return -EIO;
4292 * Figure out the offset within the block group inode table
4294 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4295 inode_offset = ((inode->i_ino - 1) %
4296 EXT4_INODES_PER_GROUP(sb));
4297 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4298 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4300 bh = sb_getblk(sb, block);
4301 if (!bh) {
4302 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4303 "inode block - inode=%lu, block=%llu",
4304 inode->i_ino, block);
4305 return -EIO;
4307 if (!buffer_uptodate(bh)) {
4308 lock_buffer(bh);
4311 * If the buffer has the write error flag, we have failed
4312 * to write out another inode in the same block. In this
4313 * case, we don't have to read the block because we may
4314 * read the old inode data successfully.
4316 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4317 set_buffer_uptodate(bh);
4319 if (buffer_uptodate(bh)) {
4320 /* someone brought it uptodate while we waited */
4321 unlock_buffer(bh);
4322 goto has_buffer;
4326 * If we have all information of the inode in memory and this
4327 * is the only valid inode in the block, we need not read the
4328 * block.
4330 if (in_mem) {
4331 struct buffer_head *bitmap_bh;
4332 int i, start;
4334 start = inode_offset & ~(inodes_per_block - 1);
4336 /* Is the inode bitmap in cache? */
4337 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4338 if (!bitmap_bh)
4339 goto make_io;
4342 * If the inode bitmap isn't in cache then the
4343 * optimisation may end up performing two reads instead
4344 * of one, so skip it.
4346 if (!buffer_uptodate(bitmap_bh)) {
4347 brelse(bitmap_bh);
4348 goto make_io;
4350 for (i = start; i < start + inodes_per_block; i++) {
4351 if (i == inode_offset)
4352 continue;
4353 if (ext4_test_bit(i, bitmap_bh->b_data))
4354 break;
4356 brelse(bitmap_bh);
4357 if (i == start + inodes_per_block) {
4358 /* all other inodes are free, so skip I/O */
4359 memset(bh->b_data, 0, bh->b_size);
4360 set_buffer_uptodate(bh);
4361 unlock_buffer(bh);
4362 goto has_buffer;
4366 make_io:
4368 * If we need to do any I/O, try to pre-readahead extra
4369 * blocks from the inode table.
4371 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4372 ext4_fsblk_t b, end, table;
4373 unsigned num;
4375 table = ext4_inode_table(sb, gdp);
4376 /* s_inode_readahead_blks is always a power of 2 */
4377 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4378 if (table > b)
4379 b = table;
4380 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4381 num = EXT4_INODES_PER_GROUP(sb);
4382 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4383 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4384 num -= ext4_itable_unused_count(sb, gdp);
4385 table += num / inodes_per_block;
4386 if (end > table)
4387 end = table;
4388 while (b <= end)
4389 sb_breadahead(sb, b++);
4393 * There are other valid inodes in the buffer, this inode
4394 * has in-inode xattrs, or we don't have this inode in memory.
4395 * Read the block from disk.
4397 get_bh(bh);
4398 bh->b_end_io = end_buffer_read_sync;
4399 submit_bh(READ_META, bh);
4400 wait_on_buffer(bh);
4401 if (!buffer_uptodate(bh)) {
4402 ext4_error(sb, __func__,
4403 "unable to read inode block - inode=%lu, "
4404 "block=%llu", inode->i_ino, block);
4405 brelse(bh);
4406 return -EIO;
4409 has_buffer:
4410 iloc->bh = bh;
4411 return 0;
4414 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4416 /* We have all inode data except xattrs in memory here. */
4417 return __ext4_get_inode_loc(inode, iloc,
4418 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4421 void ext4_set_inode_flags(struct inode *inode)
4423 unsigned int flags = EXT4_I(inode)->i_flags;
4425 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4426 if (flags & EXT4_SYNC_FL)
4427 inode->i_flags |= S_SYNC;
4428 if (flags & EXT4_APPEND_FL)
4429 inode->i_flags |= S_APPEND;
4430 if (flags & EXT4_IMMUTABLE_FL)
4431 inode->i_flags |= S_IMMUTABLE;
4432 if (flags & EXT4_NOATIME_FL)
4433 inode->i_flags |= S_NOATIME;
4434 if (flags & EXT4_DIRSYNC_FL)
4435 inode->i_flags |= S_DIRSYNC;
4438 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4439 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4441 unsigned int flags = ei->vfs_inode.i_flags;
4443 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4444 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4445 if (flags & S_SYNC)
4446 ei->i_flags |= EXT4_SYNC_FL;
4447 if (flags & S_APPEND)
4448 ei->i_flags |= EXT4_APPEND_FL;
4449 if (flags & S_IMMUTABLE)
4450 ei->i_flags |= EXT4_IMMUTABLE_FL;
4451 if (flags & S_NOATIME)
4452 ei->i_flags |= EXT4_NOATIME_FL;
4453 if (flags & S_DIRSYNC)
4454 ei->i_flags |= EXT4_DIRSYNC_FL;
4456 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4457 struct ext4_inode_info *ei)
4459 blkcnt_t i_blocks ;
4460 struct inode *inode = &(ei->vfs_inode);
4461 struct super_block *sb = inode->i_sb;
4463 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4464 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4465 /* we are using combined 48 bit field */
4466 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4467 le32_to_cpu(raw_inode->i_blocks_lo);
4468 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4469 /* i_blocks represent file system block size */
4470 return i_blocks << (inode->i_blkbits - 9);
4471 } else {
4472 return i_blocks;
4474 } else {
4475 return le32_to_cpu(raw_inode->i_blocks_lo);
4479 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4481 struct ext4_iloc iloc;
4482 struct ext4_inode *raw_inode;
4483 struct ext4_inode_info *ei;
4484 struct buffer_head *bh;
4485 struct inode *inode;
4486 long ret;
4487 int block;
4489 inode = iget_locked(sb, ino);
4490 if (!inode)
4491 return ERR_PTR(-ENOMEM);
4492 if (!(inode->i_state & I_NEW))
4493 return inode;
4495 ei = EXT4_I(inode);
4496 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4497 ei->i_acl = EXT4_ACL_NOT_CACHED;
4498 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4499 #endif
4501 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4502 if (ret < 0)
4503 goto bad_inode;
4504 bh = iloc.bh;
4505 raw_inode = ext4_raw_inode(&iloc);
4506 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4507 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4508 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4509 if (!(test_opt(inode->i_sb, NO_UID32))) {
4510 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4511 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4513 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4515 ei->i_state = 0;
4516 ei->i_dir_start_lookup = 0;
4517 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4518 /* We now have enough fields to check if the inode was active or not.
4519 * This is needed because nfsd might try to access dead inodes
4520 * the test is that same one that e2fsck uses
4521 * NeilBrown 1999oct15
4523 if (inode->i_nlink == 0) {
4524 if (inode->i_mode == 0 ||
4525 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4526 /* this inode is deleted */
4527 brelse(bh);
4528 ret = -ESTALE;
4529 goto bad_inode;
4531 /* The only unlinked inodes we let through here have
4532 * valid i_mode and are being read by the orphan
4533 * recovery code: that's fine, we're about to complete
4534 * the process of deleting those. */
4536 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4537 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4538 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4539 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4540 ei->i_file_acl |=
4541 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4542 inode->i_size = ext4_isize(raw_inode);
4543 ei->i_disksize = inode->i_size;
4544 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4545 ei->i_block_group = iloc.block_group;
4546 ei->i_last_alloc_group = ~0;
4548 * NOTE! The in-memory inode i_data array is in little-endian order
4549 * even on big-endian machines: we do NOT byteswap the block numbers!
4551 for (block = 0; block < EXT4_N_BLOCKS; block++)
4552 ei->i_data[block] = raw_inode->i_block[block];
4553 INIT_LIST_HEAD(&ei->i_orphan);
4555 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4556 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4557 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4558 EXT4_INODE_SIZE(inode->i_sb)) {
4559 brelse(bh);
4560 ret = -EIO;
4561 goto bad_inode;
4563 if (ei->i_extra_isize == 0) {
4564 /* The extra space is currently unused. Use it. */
4565 ei->i_extra_isize = sizeof(struct ext4_inode) -
4566 EXT4_GOOD_OLD_INODE_SIZE;
4567 } else {
4568 __le32 *magic = (void *)raw_inode +
4569 EXT4_GOOD_OLD_INODE_SIZE +
4570 ei->i_extra_isize;
4571 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4572 ei->i_state |= EXT4_STATE_XATTR;
4574 } else
4575 ei->i_extra_isize = 0;
4577 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4578 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4579 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4580 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4582 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4583 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4584 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4585 inode->i_version |=
4586 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4589 ret = 0;
4590 if (ei->i_file_acl &&
4591 ((ei->i_file_acl <
4592 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4593 EXT4_SB(sb)->s_gdb_count)) ||
4594 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4595 ext4_error(sb, __func__,
4596 "bad extended attribute block %llu in inode #%lu",
4597 ei->i_file_acl, inode->i_ino);
4598 ret = -EIO;
4599 goto bad_inode;
4600 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4601 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4602 (S_ISLNK(inode->i_mode) &&
4603 !ext4_inode_is_fast_symlink(inode)))
4604 /* Validate extent which is part of inode */
4605 ret = ext4_ext_check_inode(inode);
4606 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4607 (S_ISLNK(inode->i_mode) &&
4608 !ext4_inode_is_fast_symlink(inode))) {
4609 /* Validate block references which are part of inode */
4610 ret = ext4_check_inode_blockref(inode);
4612 if (ret) {
4613 brelse(bh);
4614 goto bad_inode;
4617 if (S_ISREG(inode->i_mode)) {
4618 inode->i_op = &ext4_file_inode_operations;
4619 inode->i_fop = &ext4_file_operations;
4620 ext4_set_aops(inode);
4621 } else if (S_ISDIR(inode->i_mode)) {
4622 inode->i_op = &ext4_dir_inode_operations;
4623 inode->i_fop = &ext4_dir_operations;
4624 } else if (S_ISLNK(inode->i_mode)) {
4625 if (ext4_inode_is_fast_symlink(inode)) {
4626 inode->i_op = &ext4_fast_symlink_inode_operations;
4627 nd_terminate_link(ei->i_data, inode->i_size,
4628 sizeof(ei->i_data) - 1);
4629 } else {
4630 inode->i_op = &ext4_symlink_inode_operations;
4631 ext4_set_aops(inode);
4633 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4634 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4635 inode->i_op = &ext4_special_inode_operations;
4636 if (raw_inode->i_block[0])
4637 init_special_inode(inode, inode->i_mode,
4638 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4639 else
4640 init_special_inode(inode, inode->i_mode,
4641 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4642 } else {
4643 brelse(bh);
4644 ret = -EIO;
4645 ext4_error(inode->i_sb, __func__,
4646 "bogus i_mode (%o) for inode=%lu",
4647 inode->i_mode, inode->i_ino);
4648 goto bad_inode;
4650 brelse(iloc.bh);
4651 ext4_set_inode_flags(inode);
4652 unlock_new_inode(inode);
4653 return inode;
4655 bad_inode:
4656 iget_failed(inode);
4657 return ERR_PTR(ret);
4660 static int ext4_inode_blocks_set(handle_t *handle,
4661 struct ext4_inode *raw_inode,
4662 struct ext4_inode_info *ei)
4664 struct inode *inode = &(ei->vfs_inode);
4665 u64 i_blocks = inode->i_blocks;
4666 struct super_block *sb = inode->i_sb;
4668 if (i_blocks <= ~0U) {
4670 * i_blocks can be represnted in a 32 bit variable
4671 * as multiple of 512 bytes
4673 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4674 raw_inode->i_blocks_high = 0;
4675 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4676 return 0;
4678 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4679 return -EFBIG;
4681 if (i_blocks <= 0xffffffffffffULL) {
4683 * i_blocks can be represented in a 48 bit variable
4684 * as multiple of 512 bytes
4686 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4687 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4688 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4689 } else {
4690 ei->i_flags |= EXT4_HUGE_FILE_FL;
4691 /* i_block is stored in file system block size */
4692 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4693 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4694 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4696 return 0;
4700 * Post the struct inode info into an on-disk inode location in the
4701 * buffer-cache. This gobbles the caller's reference to the
4702 * buffer_head in the inode location struct.
4704 * The caller must have write access to iloc->bh.
4706 static int ext4_do_update_inode(handle_t *handle,
4707 struct inode *inode,
4708 struct ext4_iloc *iloc)
4710 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4711 struct ext4_inode_info *ei = EXT4_I(inode);
4712 struct buffer_head *bh = iloc->bh;
4713 int err = 0, rc, block;
4715 /* For fields not not tracking in the in-memory inode,
4716 * initialise them to zero for new inodes. */
4717 if (ei->i_state & EXT4_STATE_NEW)
4718 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4720 ext4_get_inode_flags(ei);
4721 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4722 if (!(test_opt(inode->i_sb, NO_UID32))) {
4723 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4724 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4726 * Fix up interoperability with old kernels. Otherwise, old inodes get
4727 * re-used with the upper 16 bits of the uid/gid intact
4729 if (!ei->i_dtime) {
4730 raw_inode->i_uid_high =
4731 cpu_to_le16(high_16_bits(inode->i_uid));
4732 raw_inode->i_gid_high =
4733 cpu_to_le16(high_16_bits(inode->i_gid));
4734 } else {
4735 raw_inode->i_uid_high = 0;
4736 raw_inode->i_gid_high = 0;
4738 } else {
4739 raw_inode->i_uid_low =
4740 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4741 raw_inode->i_gid_low =
4742 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4743 raw_inode->i_uid_high = 0;
4744 raw_inode->i_gid_high = 0;
4746 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4748 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4749 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4750 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4751 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4753 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4754 goto out_brelse;
4755 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4756 /* clear the migrate flag in the raw_inode */
4757 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4758 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4759 cpu_to_le32(EXT4_OS_HURD))
4760 raw_inode->i_file_acl_high =
4761 cpu_to_le16(ei->i_file_acl >> 32);
4762 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4763 ext4_isize_set(raw_inode, ei->i_disksize);
4764 if (ei->i_disksize > 0x7fffffffULL) {
4765 struct super_block *sb = inode->i_sb;
4766 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4767 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4768 EXT4_SB(sb)->s_es->s_rev_level ==
4769 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4770 /* If this is the first large file
4771 * created, add a flag to the superblock.
4773 err = ext4_journal_get_write_access(handle,
4774 EXT4_SB(sb)->s_sbh);
4775 if (err)
4776 goto out_brelse;
4777 ext4_update_dynamic_rev(sb);
4778 EXT4_SET_RO_COMPAT_FEATURE(sb,
4779 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4780 sb->s_dirt = 1;
4781 ext4_handle_sync(handle);
4782 err = ext4_handle_dirty_metadata(handle, inode,
4783 EXT4_SB(sb)->s_sbh);
4786 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4787 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4788 if (old_valid_dev(inode->i_rdev)) {
4789 raw_inode->i_block[0] =
4790 cpu_to_le32(old_encode_dev(inode->i_rdev));
4791 raw_inode->i_block[1] = 0;
4792 } else {
4793 raw_inode->i_block[0] = 0;
4794 raw_inode->i_block[1] =
4795 cpu_to_le32(new_encode_dev(inode->i_rdev));
4796 raw_inode->i_block[2] = 0;
4798 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4799 raw_inode->i_block[block] = ei->i_data[block];
4801 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4802 if (ei->i_extra_isize) {
4803 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4804 raw_inode->i_version_hi =
4805 cpu_to_le32(inode->i_version >> 32);
4806 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4809 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4810 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4811 if (!err)
4812 err = rc;
4813 ei->i_state &= ~EXT4_STATE_NEW;
4815 out_brelse:
4816 brelse(bh);
4817 ext4_std_error(inode->i_sb, err);
4818 return err;
4822 * ext4_write_inode()
4824 * We are called from a few places:
4826 * - Within generic_file_write() for O_SYNC files.
4827 * Here, there will be no transaction running. We wait for any running
4828 * trasnaction to commit.
4830 * - Within sys_sync(), kupdate and such.
4831 * We wait on commit, if tol to.
4833 * - Within prune_icache() (PF_MEMALLOC == true)
4834 * Here we simply return. We can't afford to block kswapd on the
4835 * journal commit.
4837 * In all cases it is actually safe for us to return without doing anything,
4838 * because the inode has been copied into a raw inode buffer in
4839 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4840 * knfsd.
4842 * Note that we are absolutely dependent upon all inode dirtiers doing the
4843 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4844 * which we are interested.
4846 * It would be a bug for them to not do this. The code:
4848 * mark_inode_dirty(inode)
4849 * stuff();
4850 * inode->i_size = expr;
4852 * is in error because a kswapd-driven write_inode() could occur while
4853 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4854 * will no longer be on the superblock's dirty inode list.
4856 int ext4_write_inode(struct inode *inode, int wait)
4858 if (current->flags & PF_MEMALLOC)
4859 return 0;
4861 if (ext4_journal_current_handle()) {
4862 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4863 dump_stack();
4864 return -EIO;
4867 if (!wait)
4868 return 0;
4870 return ext4_force_commit(inode->i_sb);
4874 * ext4_setattr()
4876 * Called from notify_change.
4878 * We want to trap VFS attempts to truncate the file as soon as
4879 * possible. In particular, we want to make sure that when the VFS
4880 * shrinks i_size, we put the inode on the orphan list and modify
4881 * i_disksize immediately, so that during the subsequent flushing of
4882 * dirty pages and freeing of disk blocks, we can guarantee that any
4883 * commit will leave the blocks being flushed in an unused state on
4884 * disk. (On recovery, the inode will get truncated and the blocks will
4885 * be freed, so we have a strong guarantee that no future commit will
4886 * leave these blocks visible to the user.)
4888 * Another thing we have to assure is that if we are in ordered mode
4889 * and inode is still attached to the committing transaction, we must
4890 * we start writeout of all the dirty pages which are being truncated.
4891 * This way we are sure that all the data written in the previous
4892 * transaction are already on disk (truncate waits for pages under
4893 * writeback).
4895 * Called with inode->i_mutex down.
4897 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4899 struct inode *inode = dentry->d_inode;
4900 int error, rc = 0;
4901 const unsigned int ia_valid = attr->ia_valid;
4903 error = inode_change_ok(inode, attr);
4904 if (error)
4905 return error;
4907 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4908 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4909 handle_t *handle;
4911 /* (user+group)*(old+new) structure, inode write (sb,
4912 * inode block, ? - but truncate inode update has it) */
4913 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4914 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4915 if (IS_ERR(handle)) {
4916 error = PTR_ERR(handle);
4917 goto err_out;
4919 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4920 if (error) {
4921 ext4_journal_stop(handle);
4922 return error;
4924 /* Update corresponding info in inode so that everything is in
4925 * one transaction */
4926 if (attr->ia_valid & ATTR_UID)
4927 inode->i_uid = attr->ia_uid;
4928 if (attr->ia_valid & ATTR_GID)
4929 inode->i_gid = attr->ia_gid;
4930 error = ext4_mark_inode_dirty(handle, inode);
4931 ext4_journal_stop(handle);
4934 if (attr->ia_valid & ATTR_SIZE) {
4935 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4936 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4938 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4939 error = -EFBIG;
4940 goto err_out;
4945 if (S_ISREG(inode->i_mode) &&
4946 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4947 handle_t *handle;
4949 handle = ext4_journal_start(inode, 3);
4950 if (IS_ERR(handle)) {
4951 error = PTR_ERR(handle);
4952 goto err_out;
4955 error = ext4_orphan_add(handle, inode);
4956 EXT4_I(inode)->i_disksize = attr->ia_size;
4957 rc = ext4_mark_inode_dirty(handle, inode);
4958 if (!error)
4959 error = rc;
4960 ext4_journal_stop(handle);
4962 if (ext4_should_order_data(inode)) {
4963 error = ext4_begin_ordered_truncate(inode,
4964 attr->ia_size);
4965 if (error) {
4966 /* Do as much error cleanup as possible */
4967 handle = ext4_journal_start(inode, 3);
4968 if (IS_ERR(handle)) {
4969 ext4_orphan_del(NULL, inode);
4970 goto err_out;
4972 ext4_orphan_del(handle, inode);
4973 ext4_journal_stop(handle);
4974 goto err_out;
4979 rc = inode_setattr(inode, attr);
4981 /* If inode_setattr's call to ext4_truncate failed to get a
4982 * transaction handle at all, we need to clean up the in-core
4983 * orphan list manually. */
4984 if (inode->i_nlink)
4985 ext4_orphan_del(NULL, inode);
4987 if (!rc && (ia_valid & ATTR_MODE))
4988 rc = ext4_acl_chmod(inode);
4990 err_out:
4991 ext4_std_error(inode->i_sb, error);
4992 if (!error)
4993 error = rc;
4994 return error;
4997 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4998 struct kstat *stat)
5000 struct inode *inode;
5001 unsigned long delalloc_blocks;
5003 inode = dentry->d_inode;
5004 generic_fillattr(inode, stat);
5007 * We can't update i_blocks if the block allocation is delayed
5008 * otherwise in the case of system crash before the real block
5009 * allocation is done, we will have i_blocks inconsistent with
5010 * on-disk file blocks.
5011 * We always keep i_blocks updated together with real
5012 * allocation. But to not confuse with user, stat
5013 * will return the blocks that include the delayed allocation
5014 * blocks for this file.
5016 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5017 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5018 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5020 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5021 return 0;
5024 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5025 int chunk)
5027 int indirects;
5029 /* if nrblocks are contiguous */
5030 if (chunk) {
5032 * With N contiguous data blocks, it need at most
5033 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5034 * 2 dindirect blocks
5035 * 1 tindirect block
5037 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5038 return indirects + 3;
5041 * if nrblocks are not contiguous, worse case, each block touch
5042 * a indirect block, and each indirect block touch a double indirect
5043 * block, plus a triple indirect block
5045 indirects = nrblocks * 2 + 1;
5046 return indirects;
5049 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5051 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5052 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5053 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5057 * Account for index blocks, block groups bitmaps and block group
5058 * descriptor blocks if modify datablocks and index blocks
5059 * worse case, the indexs blocks spread over different block groups
5061 * If datablocks are discontiguous, they are possible to spread over
5062 * different block groups too. If they are contiugous, with flexbg,
5063 * they could still across block group boundary.
5065 * Also account for superblock, inode, quota and xattr blocks
5067 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5069 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5070 int gdpblocks;
5071 int idxblocks;
5072 int ret = 0;
5075 * How many index blocks need to touch to modify nrblocks?
5076 * The "Chunk" flag indicating whether the nrblocks is
5077 * physically contiguous on disk
5079 * For Direct IO and fallocate, they calls get_block to allocate
5080 * one single extent at a time, so they could set the "Chunk" flag
5082 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5084 ret = idxblocks;
5087 * Now let's see how many group bitmaps and group descriptors need
5088 * to account
5090 groups = idxblocks;
5091 if (chunk)
5092 groups += 1;
5093 else
5094 groups += nrblocks;
5096 gdpblocks = groups;
5097 if (groups > ngroups)
5098 groups = ngroups;
5099 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5100 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5102 /* bitmaps and block group descriptor blocks */
5103 ret += groups + gdpblocks;
5105 /* Blocks for super block, inode, quota and xattr blocks */
5106 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5108 return ret;
5112 * Calulate the total number of credits to reserve to fit
5113 * the modification of a single pages into a single transaction,
5114 * which may include multiple chunks of block allocations.
5116 * This could be called via ext4_write_begin()
5118 * We need to consider the worse case, when
5119 * one new block per extent.
5121 int ext4_writepage_trans_blocks(struct inode *inode)
5123 int bpp = ext4_journal_blocks_per_page(inode);
5124 int ret;
5126 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5128 /* Account for data blocks for journalled mode */
5129 if (ext4_should_journal_data(inode))
5130 ret += bpp;
5131 return ret;
5135 * Calculate the journal credits for a chunk of data modification.
5137 * This is called from DIO, fallocate or whoever calling
5138 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5140 * journal buffers for data blocks are not included here, as DIO
5141 * and fallocate do no need to journal data buffers.
5143 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5145 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5149 * The caller must have previously called ext4_reserve_inode_write().
5150 * Give this, we know that the caller already has write access to iloc->bh.
5152 int ext4_mark_iloc_dirty(handle_t *handle,
5153 struct inode *inode, struct ext4_iloc *iloc)
5155 int err = 0;
5157 if (test_opt(inode->i_sb, I_VERSION))
5158 inode_inc_iversion(inode);
5160 /* the do_update_inode consumes one bh->b_count */
5161 get_bh(iloc->bh);
5163 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5164 err = ext4_do_update_inode(handle, inode, iloc);
5165 put_bh(iloc->bh);
5166 return err;
5170 * On success, We end up with an outstanding reference count against
5171 * iloc->bh. This _must_ be cleaned up later.
5175 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5176 struct ext4_iloc *iloc)
5178 int err;
5180 err = ext4_get_inode_loc(inode, iloc);
5181 if (!err) {
5182 BUFFER_TRACE(iloc->bh, "get_write_access");
5183 err = ext4_journal_get_write_access(handle, iloc->bh);
5184 if (err) {
5185 brelse(iloc->bh);
5186 iloc->bh = NULL;
5189 ext4_std_error(inode->i_sb, err);
5190 return err;
5194 * Expand an inode by new_extra_isize bytes.
5195 * Returns 0 on success or negative error number on failure.
5197 static int ext4_expand_extra_isize(struct inode *inode,
5198 unsigned int new_extra_isize,
5199 struct ext4_iloc iloc,
5200 handle_t *handle)
5202 struct ext4_inode *raw_inode;
5203 struct ext4_xattr_ibody_header *header;
5204 struct ext4_xattr_entry *entry;
5206 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5207 return 0;
5209 raw_inode = ext4_raw_inode(&iloc);
5211 header = IHDR(inode, raw_inode);
5212 entry = IFIRST(header);
5214 /* No extended attributes present */
5215 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5216 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5217 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5218 new_extra_isize);
5219 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5220 return 0;
5223 /* try to expand with EAs present */
5224 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5225 raw_inode, handle);
5229 * What we do here is to mark the in-core inode as clean with respect to inode
5230 * dirtiness (it may still be data-dirty).
5231 * This means that the in-core inode may be reaped by prune_icache
5232 * without having to perform any I/O. This is a very good thing,
5233 * because *any* task may call prune_icache - even ones which
5234 * have a transaction open against a different journal.
5236 * Is this cheating? Not really. Sure, we haven't written the
5237 * inode out, but prune_icache isn't a user-visible syncing function.
5238 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5239 * we start and wait on commits.
5241 * Is this efficient/effective? Well, we're being nice to the system
5242 * by cleaning up our inodes proactively so they can be reaped
5243 * without I/O. But we are potentially leaving up to five seconds'
5244 * worth of inodes floating about which prune_icache wants us to
5245 * write out. One way to fix that would be to get prune_icache()
5246 * to do a write_super() to free up some memory. It has the desired
5247 * effect.
5249 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5251 struct ext4_iloc iloc;
5252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5253 static unsigned int mnt_count;
5254 int err, ret;
5256 might_sleep();
5257 err = ext4_reserve_inode_write(handle, inode, &iloc);
5258 if (ext4_handle_valid(handle) &&
5259 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5260 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5262 * We need extra buffer credits since we may write into EA block
5263 * with this same handle. If journal_extend fails, then it will
5264 * only result in a minor loss of functionality for that inode.
5265 * If this is felt to be critical, then e2fsck should be run to
5266 * force a large enough s_min_extra_isize.
5268 if ((jbd2_journal_extend(handle,
5269 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5270 ret = ext4_expand_extra_isize(inode,
5271 sbi->s_want_extra_isize,
5272 iloc, handle);
5273 if (ret) {
5274 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5275 if (mnt_count !=
5276 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5277 ext4_warning(inode->i_sb, __func__,
5278 "Unable to expand inode %lu. Delete"
5279 " some EAs or run e2fsck.",
5280 inode->i_ino);
5281 mnt_count =
5282 le16_to_cpu(sbi->s_es->s_mnt_count);
5287 if (!err)
5288 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5289 return err;
5293 * ext4_dirty_inode() is called from __mark_inode_dirty()
5295 * We're really interested in the case where a file is being extended.
5296 * i_size has been changed by generic_commit_write() and we thus need
5297 * to include the updated inode in the current transaction.
5299 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5300 * are allocated to the file.
5302 * If the inode is marked synchronous, we don't honour that here - doing
5303 * so would cause a commit on atime updates, which we don't bother doing.
5304 * We handle synchronous inodes at the highest possible level.
5306 void ext4_dirty_inode(struct inode *inode)
5308 handle_t *current_handle = ext4_journal_current_handle();
5309 handle_t *handle;
5311 if (!ext4_handle_valid(current_handle)) {
5312 ext4_mark_inode_dirty(current_handle, inode);
5313 return;
5316 handle = ext4_journal_start(inode, 2);
5317 if (IS_ERR(handle))
5318 goto out;
5319 if (current_handle &&
5320 current_handle->h_transaction != handle->h_transaction) {
5321 /* This task has a transaction open against a different fs */
5322 printk(KERN_EMERG "%s: transactions do not match!\n",
5323 __func__);
5324 } else {
5325 jbd_debug(5, "marking dirty. outer handle=%p\n",
5326 current_handle);
5327 ext4_mark_inode_dirty(handle, inode);
5329 ext4_journal_stop(handle);
5330 out:
5331 return;
5334 #if 0
5336 * Bind an inode's backing buffer_head into this transaction, to prevent
5337 * it from being flushed to disk early. Unlike
5338 * ext4_reserve_inode_write, this leaves behind no bh reference and
5339 * returns no iloc structure, so the caller needs to repeat the iloc
5340 * lookup to mark the inode dirty later.
5342 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5344 struct ext4_iloc iloc;
5346 int err = 0;
5347 if (handle) {
5348 err = ext4_get_inode_loc(inode, &iloc);
5349 if (!err) {
5350 BUFFER_TRACE(iloc.bh, "get_write_access");
5351 err = jbd2_journal_get_write_access(handle, iloc.bh);
5352 if (!err)
5353 err = ext4_handle_dirty_metadata(handle,
5354 inode,
5355 iloc.bh);
5356 brelse(iloc.bh);
5359 ext4_std_error(inode->i_sb, err);
5360 return err;
5362 #endif
5364 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5366 journal_t *journal;
5367 handle_t *handle;
5368 int err;
5371 * We have to be very careful here: changing a data block's
5372 * journaling status dynamically is dangerous. If we write a
5373 * data block to the journal, change the status and then delete
5374 * that block, we risk forgetting to revoke the old log record
5375 * from the journal and so a subsequent replay can corrupt data.
5376 * So, first we make sure that the journal is empty and that
5377 * nobody is changing anything.
5380 journal = EXT4_JOURNAL(inode);
5381 if (!journal)
5382 return 0;
5383 if (is_journal_aborted(journal))
5384 return -EROFS;
5386 jbd2_journal_lock_updates(journal);
5387 jbd2_journal_flush(journal);
5390 * OK, there are no updates running now, and all cached data is
5391 * synced to disk. We are now in a completely consistent state
5392 * which doesn't have anything in the journal, and we know that
5393 * no filesystem updates are running, so it is safe to modify
5394 * the inode's in-core data-journaling state flag now.
5397 if (val)
5398 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5399 else
5400 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5401 ext4_set_aops(inode);
5403 jbd2_journal_unlock_updates(journal);
5405 /* Finally we can mark the inode as dirty. */
5407 handle = ext4_journal_start(inode, 1);
5408 if (IS_ERR(handle))
5409 return PTR_ERR(handle);
5411 err = ext4_mark_inode_dirty(handle, inode);
5412 ext4_handle_sync(handle);
5413 ext4_journal_stop(handle);
5414 ext4_std_error(inode->i_sb, err);
5416 return err;
5419 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5421 return !buffer_mapped(bh);
5424 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5426 struct page *page = vmf->page;
5427 loff_t size;
5428 unsigned long len;
5429 int ret = -EINVAL;
5430 void *fsdata;
5431 struct file *file = vma->vm_file;
5432 struct inode *inode = file->f_path.dentry->d_inode;
5433 struct address_space *mapping = inode->i_mapping;
5436 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5437 * get i_mutex because we are already holding mmap_sem.
5439 down_read(&inode->i_alloc_sem);
5440 size = i_size_read(inode);
5441 if (page->mapping != mapping || size <= page_offset(page)
5442 || !PageUptodate(page)) {
5443 /* page got truncated from under us? */
5444 goto out_unlock;
5446 ret = 0;
5447 if (PageMappedToDisk(page))
5448 goto out_unlock;
5450 if (page->index == size >> PAGE_CACHE_SHIFT)
5451 len = size & ~PAGE_CACHE_MASK;
5452 else
5453 len = PAGE_CACHE_SIZE;
5455 if (page_has_buffers(page)) {
5456 /* return if we have all the buffers mapped */
5457 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5458 ext4_bh_unmapped))
5459 goto out_unlock;
5462 * OK, we need to fill the hole... Do write_begin write_end
5463 * to do block allocation/reservation.We are not holding
5464 * inode.i__mutex here. That allow * parallel write_begin,
5465 * write_end call. lock_page prevent this from happening
5466 * on the same page though
5468 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5469 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5470 if (ret < 0)
5471 goto out_unlock;
5472 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5473 len, len, page, fsdata);
5474 if (ret < 0)
5475 goto out_unlock;
5476 ret = 0;
5477 out_unlock:
5478 if (ret)
5479 ret = VM_FAULT_SIGBUS;
5480 up_read(&inode->i_alloc_sem);
5481 return ret;