block: jiffies fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob1bcbd8c798965508e222ad1e4cb4278f1f284d46
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
18 * tunables
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
35 * offset from end of service tree
37 #define CFQ_IDLE_DELAY (HZ / 5)
40 * below this threshold, we consider thinktime immediate
42 #define CFQ_MIN_TT (2)
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
48 #define CFQQ_COOP_TOUT (HZ)
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
76 struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
79 unsigned count;
81 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
84 * Per process-grouping structure
86 struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
129 unsigned long seeky_start;
131 pid_t pid;
133 struct cfq_rb_root *service_tree;
134 struct cfq_queue *new_cfqq;
138 * First index in the service_trees.
139 * IDLE is handled separately, so it has negative index
141 enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
148 * Second index in the service_trees.
150 enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
158 * Per block device queue structure
160 struct cfq_data {
161 struct request_queue *queue;
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
167 struct cfq_rb_root service_trees[2][3];
168 struct cfq_rb_root service_tree_idle;
170 * The priority currently being served
172 enum wl_prio_t serving_prio;
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
177 * Each priority tree is sorted by next_request position. These
178 * trees are used when determining if two or more queues are
179 * interleaving requests (see cfq_close_cooperator).
181 struct rb_root prio_trees[CFQ_PRIO_LISTS];
183 unsigned int busy_queues;
184 unsigned int busy_queues_avg[2];
186 int rq_in_driver[2];
187 int sync_flight;
190 * queue-depth detection
192 int rq_queued;
193 int hw_tag;
194 int hw_tag_samples;
195 int rq_in_driver_peak;
198 * idle window management
200 struct timer_list idle_slice_timer;
201 struct work_struct unplug_work;
203 struct cfq_queue *active_queue;
204 struct cfq_io_context *active_cic;
207 * async queue for each priority case
209 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
210 struct cfq_queue *async_idle_cfqq;
212 sector_t last_position;
215 * tunables, see top of file
217 unsigned int cfq_quantum;
218 unsigned int cfq_fifo_expire[2];
219 unsigned int cfq_back_penalty;
220 unsigned int cfq_back_max;
221 unsigned int cfq_slice[2];
222 unsigned int cfq_slice_async_rq;
223 unsigned int cfq_slice_idle;
224 unsigned int cfq_latency;
226 struct list_head cic_list;
229 * Fallback dummy cfqq for extreme OOM conditions
231 struct cfq_queue oom_cfqq;
233 unsigned long last_end_sync_rq;
236 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
237 enum wl_type_t type,
238 struct cfq_data *cfqd)
240 if (prio == IDLE_WORKLOAD)
241 return &cfqd->service_tree_idle;
243 return &cfqd->service_trees[prio][type];
246 enum cfqq_state_flags {
247 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
248 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
249 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
250 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
251 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
252 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
253 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
254 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
255 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
256 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
259 #define CFQ_CFQQ_FNS(name) \
260 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
262 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
264 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
266 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
268 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
270 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
273 CFQ_CFQQ_FNS(on_rr);
274 CFQ_CFQQ_FNS(wait_request);
275 CFQ_CFQQ_FNS(must_dispatch);
276 CFQ_CFQQ_FNS(must_alloc_slice);
277 CFQ_CFQQ_FNS(fifo_expire);
278 CFQ_CFQQ_FNS(idle_window);
279 CFQ_CFQQ_FNS(prio_changed);
280 CFQ_CFQQ_FNS(slice_new);
281 CFQ_CFQQ_FNS(sync);
282 CFQ_CFQQ_FNS(coop);
283 #undef CFQ_CFQQ_FNS
285 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
286 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
287 #define cfq_log(cfqd, fmt, args...) \
288 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
290 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
292 if (cfq_class_idle(cfqq))
293 return IDLE_WORKLOAD;
294 if (cfq_class_rt(cfqq))
295 return RT_WORKLOAD;
296 return BE_WORKLOAD;
300 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
302 if (!cfq_cfqq_sync(cfqq))
303 return ASYNC_WORKLOAD;
304 if (!cfq_cfqq_idle_window(cfqq))
305 return SYNC_NOIDLE_WORKLOAD;
306 return SYNC_WORKLOAD;
309 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
311 if (wl == IDLE_WORKLOAD)
312 return cfqd->service_tree_idle.count;
314 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
315 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
316 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
319 static void cfq_dispatch_insert(struct request_queue *, struct request *);
320 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
321 struct io_context *, gfp_t);
322 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
323 struct io_context *);
325 static inline int rq_in_driver(struct cfq_data *cfqd)
327 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
330 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
331 bool is_sync)
333 return cic->cfqq[is_sync];
336 static inline void cic_set_cfqq(struct cfq_io_context *cic,
337 struct cfq_queue *cfqq, bool is_sync)
339 cic->cfqq[is_sync] = cfqq;
343 * We regard a request as SYNC, if it's either a read or has the SYNC bit
344 * set (in which case it could also be direct WRITE).
346 static inline bool cfq_bio_sync(struct bio *bio)
348 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
352 * scheduler run of queue, if there are requests pending and no one in the
353 * driver that will restart queueing
355 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
357 if (cfqd->busy_queues) {
358 cfq_log(cfqd, "schedule dispatch");
359 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
363 static int cfq_queue_empty(struct request_queue *q)
365 struct cfq_data *cfqd = q->elevator->elevator_data;
367 return !cfqd->busy_queues;
371 * Scale schedule slice based on io priority. Use the sync time slice only
372 * if a queue is marked sync and has sync io queued. A sync queue with async
373 * io only, should not get full sync slice length.
375 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
376 unsigned short prio)
378 const int base_slice = cfqd->cfq_slice[sync];
380 WARN_ON(prio >= IOPRIO_BE_NR);
382 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
385 static inline int
386 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
388 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
392 * get averaged number of queues of RT/BE priority.
393 * average is updated, with a formula that gives more weight to higher numbers,
394 * to quickly follows sudden increases and decrease slowly
397 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
399 unsigned min_q, max_q;
400 unsigned mult = cfq_hist_divisor - 1;
401 unsigned round = cfq_hist_divisor / 2;
402 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
404 min_q = min(cfqd->busy_queues_avg[rt], busy);
405 max_q = max(cfqd->busy_queues_avg[rt], busy);
406 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
407 cfq_hist_divisor;
408 return cfqd->busy_queues_avg[rt];
411 static inline void
412 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
414 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
415 if (cfqd->cfq_latency) {
416 /* interested queues (we consider only the ones with the same
417 * priority class) */
418 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
419 unsigned sync_slice = cfqd->cfq_slice[1];
420 unsigned expect_latency = sync_slice * iq;
421 if (expect_latency > cfq_target_latency) {
422 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
423 /* scale low_slice according to IO priority
424 * and sync vs async */
425 unsigned low_slice =
426 min(slice, base_low_slice * slice / sync_slice);
427 /* the adapted slice value is scaled to fit all iqs
428 * into the target latency */
429 slice = max(slice * cfq_target_latency / expect_latency,
430 low_slice);
433 cfqq->slice_end = jiffies + slice;
434 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
438 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
439 * isn't valid until the first request from the dispatch is activated
440 * and the slice time set.
442 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
444 if (cfq_cfqq_slice_new(cfqq))
445 return 0;
446 if (time_before(jiffies, cfqq->slice_end))
447 return 0;
449 return 1;
453 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
454 * We choose the request that is closest to the head right now. Distance
455 * behind the head is penalized and only allowed to a certain extent.
457 static struct request *
458 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
460 sector_t s1, s2, d1 = 0, d2 = 0;
461 unsigned long back_max;
462 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
463 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
464 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
466 if (rq1 == NULL || rq1 == rq2)
467 return rq2;
468 if (rq2 == NULL)
469 return rq1;
471 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
472 return rq1;
473 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
474 return rq2;
475 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
476 return rq1;
477 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
478 return rq2;
480 s1 = blk_rq_pos(rq1);
481 s2 = blk_rq_pos(rq2);
484 * by definition, 1KiB is 2 sectors
486 back_max = cfqd->cfq_back_max * 2;
489 * Strict one way elevator _except_ in the case where we allow
490 * short backward seeks which are biased as twice the cost of a
491 * similar forward seek.
493 if (s1 >= last)
494 d1 = s1 - last;
495 else if (s1 + back_max >= last)
496 d1 = (last - s1) * cfqd->cfq_back_penalty;
497 else
498 wrap |= CFQ_RQ1_WRAP;
500 if (s2 >= last)
501 d2 = s2 - last;
502 else if (s2 + back_max >= last)
503 d2 = (last - s2) * cfqd->cfq_back_penalty;
504 else
505 wrap |= CFQ_RQ2_WRAP;
507 /* Found required data */
510 * By doing switch() on the bit mask "wrap" we avoid having to
511 * check two variables for all permutations: --> faster!
513 switch (wrap) {
514 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
515 if (d1 < d2)
516 return rq1;
517 else if (d2 < d1)
518 return rq2;
519 else {
520 if (s1 >= s2)
521 return rq1;
522 else
523 return rq2;
526 case CFQ_RQ2_WRAP:
527 return rq1;
528 case CFQ_RQ1_WRAP:
529 return rq2;
530 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
531 default:
533 * Since both rqs are wrapped,
534 * start with the one that's further behind head
535 * (--> only *one* back seek required),
536 * since back seek takes more time than forward.
538 if (s1 <= s2)
539 return rq1;
540 else
541 return rq2;
546 * The below is leftmost cache rbtree addon
548 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
550 if (!root->left)
551 root->left = rb_first(&root->rb);
553 if (root->left)
554 return rb_entry(root->left, struct cfq_queue, rb_node);
556 return NULL;
559 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
561 rb_erase(n, root);
562 RB_CLEAR_NODE(n);
565 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
567 if (root->left == n)
568 root->left = NULL;
569 rb_erase_init(n, &root->rb);
570 --root->count;
574 * would be nice to take fifo expire time into account as well
576 static struct request *
577 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
578 struct request *last)
580 struct rb_node *rbnext = rb_next(&last->rb_node);
581 struct rb_node *rbprev = rb_prev(&last->rb_node);
582 struct request *next = NULL, *prev = NULL;
584 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
586 if (rbprev)
587 prev = rb_entry_rq(rbprev);
589 if (rbnext)
590 next = rb_entry_rq(rbnext);
591 else {
592 rbnext = rb_first(&cfqq->sort_list);
593 if (rbnext && rbnext != &last->rb_node)
594 next = rb_entry_rq(rbnext);
597 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
600 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
601 struct cfq_queue *cfqq)
604 * just an approximation, should be ok.
606 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
607 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
611 * The cfqd->service_trees holds all pending cfq_queue's that have
612 * requests waiting to be processed. It is sorted in the order that
613 * we will service the queues.
615 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
616 bool add_front)
618 struct rb_node **p, *parent;
619 struct cfq_queue *__cfqq;
620 unsigned long rb_key;
621 struct cfq_rb_root *service_tree;
622 int left;
624 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
625 if (cfq_class_idle(cfqq)) {
626 rb_key = CFQ_IDLE_DELAY;
627 parent = rb_last(&service_tree->rb);
628 if (parent && parent != &cfqq->rb_node) {
629 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
630 rb_key += __cfqq->rb_key;
631 } else
632 rb_key += jiffies;
633 } else if (!add_front) {
635 * Get our rb key offset. Subtract any residual slice
636 * value carried from last service. A negative resid
637 * count indicates slice overrun, and this should position
638 * the next service time further away in the tree.
640 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
641 rb_key -= cfqq->slice_resid;
642 cfqq->slice_resid = 0;
643 } else {
644 rb_key = -HZ;
645 __cfqq = cfq_rb_first(service_tree);
646 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
649 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
651 * same position, nothing more to do
653 if (rb_key == cfqq->rb_key &&
654 cfqq->service_tree == service_tree)
655 return;
657 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
658 cfqq->service_tree = NULL;
661 left = 1;
662 parent = NULL;
663 cfqq->service_tree = service_tree;
664 p = &service_tree->rb.rb_node;
665 while (*p) {
666 struct rb_node **n;
668 parent = *p;
669 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
672 * sort by key, that represents service time.
674 if (time_before(rb_key, __cfqq->rb_key))
675 n = &(*p)->rb_left;
676 else {
677 n = &(*p)->rb_right;
678 left = 0;
681 p = n;
684 if (left)
685 service_tree->left = &cfqq->rb_node;
687 cfqq->rb_key = rb_key;
688 rb_link_node(&cfqq->rb_node, parent, p);
689 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
690 service_tree->count++;
693 static struct cfq_queue *
694 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
695 sector_t sector, struct rb_node **ret_parent,
696 struct rb_node ***rb_link)
698 struct rb_node **p, *parent;
699 struct cfq_queue *cfqq = NULL;
701 parent = NULL;
702 p = &root->rb_node;
703 while (*p) {
704 struct rb_node **n;
706 parent = *p;
707 cfqq = rb_entry(parent, struct cfq_queue, p_node);
710 * Sort strictly based on sector. Smallest to the left,
711 * largest to the right.
713 if (sector > blk_rq_pos(cfqq->next_rq))
714 n = &(*p)->rb_right;
715 else if (sector < blk_rq_pos(cfqq->next_rq))
716 n = &(*p)->rb_left;
717 else
718 break;
719 p = n;
720 cfqq = NULL;
723 *ret_parent = parent;
724 if (rb_link)
725 *rb_link = p;
726 return cfqq;
729 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
731 struct rb_node **p, *parent;
732 struct cfq_queue *__cfqq;
734 if (cfqq->p_root) {
735 rb_erase(&cfqq->p_node, cfqq->p_root);
736 cfqq->p_root = NULL;
739 if (cfq_class_idle(cfqq))
740 return;
741 if (!cfqq->next_rq)
742 return;
744 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
745 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
746 blk_rq_pos(cfqq->next_rq), &parent, &p);
747 if (!__cfqq) {
748 rb_link_node(&cfqq->p_node, parent, p);
749 rb_insert_color(&cfqq->p_node, cfqq->p_root);
750 } else
751 cfqq->p_root = NULL;
755 * Update cfqq's position in the service tree.
757 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
760 * Resorting requires the cfqq to be on the RR list already.
762 if (cfq_cfqq_on_rr(cfqq)) {
763 cfq_service_tree_add(cfqd, cfqq, 0);
764 cfq_prio_tree_add(cfqd, cfqq);
769 * add to busy list of queues for service, trying to be fair in ordering
770 * the pending list according to last request service
772 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
774 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
775 BUG_ON(cfq_cfqq_on_rr(cfqq));
776 cfq_mark_cfqq_on_rr(cfqq);
777 cfqd->busy_queues++;
779 cfq_resort_rr_list(cfqd, cfqq);
783 * Called when the cfqq no longer has requests pending, remove it from
784 * the service tree.
786 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
788 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
789 BUG_ON(!cfq_cfqq_on_rr(cfqq));
790 cfq_clear_cfqq_on_rr(cfqq);
792 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
793 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
794 cfqq->service_tree = NULL;
796 if (cfqq->p_root) {
797 rb_erase(&cfqq->p_node, cfqq->p_root);
798 cfqq->p_root = NULL;
801 BUG_ON(!cfqd->busy_queues);
802 cfqd->busy_queues--;
806 * rb tree support functions
808 static void cfq_del_rq_rb(struct request *rq)
810 struct cfq_queue *cfqq = RQ_CFQQ(rq);
811 struct cfq_data *cfqd = cfqq->cfqd;
812 const int sync = rq_is_sync(rq);
814 BUG_ON(!cfqq->queued[sync]);
815 cfqq->queued[sync]--;
817 elv_rb_del(&cfqq->sort_list, rq);
819 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
820 cfq_del_cfqq_rr(cfqd, cfqq);
823 static void cfq_add_rq_rb(struct request *rq)
825 struct cfq_queue *cfqq = RQ_CFQQ(rq);
826 struct cfq_data *cfqd = cfqq->cfqd;
827 struct request *__alias, *prev;
829 cfqq->queued[rq_is_sync(rq)]++;
832 * looks a little odd, but the first insert might return an alias.
833 * if that happens, put the alias on the dispatch list
835 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
836 cfq_dispatch_insert(cfqd->queue, __alias);
838 if (!cfq_cfqq_on_rr(cfqq))
839 cfq_add_cfqq_rr(cfqd, cfqq);
842 * check if this request is a better next-serve candidate
844 prev = cfqq->next_rq;
845 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
848 * adjust priority tree position, if ->next_rq changes
850 if (prev != cfqq->next_rq)
851 cfq_prio_tree_add(cfqd, cfqq);
853 BUG_ON(!cfqq->next_rq);
856 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
858 elv_rb_del(&cfqq->sort_list, rq);
859 cfqq->queued[rq_is_sync(rq)]--;
860 cfq_add_rq_rb(rq);
863 static struct request *
864 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
866 struct task_struct *tsk = current;
867 struct cfq_io_context *cic;
868 struct cfq_queue *cfqq;
870 cic = cfq_cic_lookup(cfqd, tsk->io_context);
871 if (!cic)
872 return NULL;
874 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
875 if (cfqq) {
876 sector_t sector = bio->bi_sector + bio_sectors(bio);
878 return elv_rb_find(&cfqq->sort_list, sector);
881 return NULL;
884 static void cfq_activate_request(struct request_queue *q, struct request *rq)
886 struct cfq_data *cfqd = q->elevator->elevator_data;
888 cfqd->rq_in_driver[rq_is_sync(rq)]++;
889 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
890 rq_in_driver(cfqd));
892 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
895 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
897 struct cfq_data *cfqd = q->elevator->elevator_data;
898 const int sync = rq_is_sync(rq);
900 WARN_ON(!cfqd->rq_in_driver[sync]);
901 cfqd->rq_in_driver[sync]--;
902 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
903 rq_in_driver(cfqd));
906 static void cfq_remove_request(struct request *rq)
908 struct cfq_queue *cfqq = RQ_CFQQ(rq);
910 if (cfqq->next_rq == rq)
911 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
913 list_del_init(&rq->queuelist);
914 cfq_del_rq_rb(rq);
916 cfqq->cfqd->rq_queued--;
917 if (rq_is_meta(rq)) {
918 WARN_ON(!cfqq->meta_pending);
919 cfqq->meta_pending--;
923 static int cfq_merge(struct request_queue *q, struct request **req,
924 struct bio *bio)
926 struct cfq_data *cfqd = q->elevator->elevator_data;
927 struct request *__rq;
929 __rq = cfq_find_rq_fmerge(cfqd, bio);
930 if (__rq && elv_rq_merge_ok(__rq, bio)) {
931 *req = __rq;
932 return ELEVATOR_FRONT_MERGE;
935 return ELEVATOR_NO_MERGE;
938 static void cfq_merged_request(struct request_queue *q, struct request *req,
939 int type)
941 if (type == ELEVATOR_FRONT_MERGE) {
942 struct cfq_queue *cfqq = RQ_CFQQ(req);
944 cfq_reposition_rq_rb(cfqq, req);
948 static void
949 cfq_merged_requests(struct request_queue *q, struct request *rq,
950 struct request *next)
952 struct cfq_queue *cfqq = RQ_CFQQ(rq);
954 * reposition in fifo if next is older than rq
956 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
957 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
958 list_move(&rq->queuelist, &next->queuelist);
959 rq_set_fifo_time(rq, rq_fifo_time(next));
962 if (cfqq->next_rq == next)
963 cfqq->next_rq = rq;
964 cfq_remove_request(next);
967 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
968 struct bio *bio)
970 struct cfq_data *cfqd = q->elevator->elevator_data;
971 struct cfq_io_context *cic;
972 struct cfq_queue *cfqq;
975 * Disallow merge of a sync bio into an async request.
977 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
978 return false;
981 * Lookup the cfqq that this bio will be queued with. Allow
982 * merge only if rq is queued there.
984 cic = cfq_cic_lookup(cfqd, current->io_context);
985 if (!cic)
986 return false;
988 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
989 return cfqq == RQ_CFQQ(rq);
992 static void __cfq_set_active_queue(struct cfq_data *cfqd,
993 struct cfq_queue *cfqq)
995 if (cfqq) {
996 cfq_log_cfqq(cfqd, cfqq, "set_active");
997 cfqq->slice_end = 0;
998 cfqq->slice_dispatch = 0;
1000 cfq_clear_cfqq_wait_request(cfqq);
1001 cfq_clear_cfqq_must_dispatch(cfqq);
1002 cfq_clear_cfqq_must_alloc_slice(cfqq);
1003 cfq_clear_cfqq_fifo_expire(cfqq);
1004 cfq_mark_cfqq_slice_new(cfqq);
1006 del_timer(&cfqd->idle_slice_timer);
1009 cfqd->active_queue = cfqq;
1013 * current cfqq expired its slice (or was too idle), select new one
1015 static void
1016 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1017 bool timed_out)
1019 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1021 if (cfq_cfqq_wait_request(cfqq))
1022 del_timer(&cfqd->idle_slice_timer);
1024 cfq_clear_cfqq_wait_request(cfqq);
1027 * store what was left of this slice, if the queue idled/timed out
1029 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1030 cfqq->slice_resid = cfqq->slice_end - jiffies;
1031 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1034 cfq_resort_rr_list(cfqd, cfqq);
1036 if (cfqq == cfqd->active_queue)
1037 cfqd->active_queue = NULL;
1039 if (cfqd->active_cic) {
1040 put_io_context(cfqd->active_cic->ioc);
1041 cfqd->active_cic = NULL;
1045 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1047 struct cfq_queue *cfqq = cfqd->active_queue;
1049 if (cfqq)
1050 __cfq_slice_expired(cfqd, cfqq, timed_out);
1054 * Get next queue for service. Unless we have a queue preemption,
1055 * we'll simply select the first cfqq in the service tree.
1057 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1059 struct cfq_rb_root *service_tree =
1060 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1062 if (RB_EMPTY_ROOT(&service_tree->rb))
1063 return NULL;
1064 return cfq_rb_first(service_tree);
1068 * Get and set a new active queue for service.
1070 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1071 struct cfq_queue *cfqq)
1073 if (!cfqq)
1074 cfqq = cfq_get_next_queue(cfqd);
1076 __cfq_set_active_queue(cfqd, cfqq);
1077 return cfqq;
1080 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1081 struct request *rq)
1083 if (blk_rq_pos(rq) >= cfqd->last_position)
1084 return blk_rq_pos(rq) - cfqd->last_position;
1085 else
1086 return cfqd->last_position - blk_rq_pos(rq);
1089 #define CFQQ_SEEK_THR 8 * 1024
1090 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1092 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1093 struct request *rq)
1095 sector_t sdist = cfqq->seek_mean;
1097 if (!sample_valid(cfqq->seek_samples))
1098 sdist = CFQQ_SEEK_THR;
1100 return cfq_dist_from_last(cfqd, rq) <= sdist;
1103 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1104 struct cfq_queue *cur_cfqq)
1106 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1107 struct rb_node *parent, *node;
1108 struct cfq_queue *__cfqq;
1109 sector_t sector = cfqd->last_position;
1111 if (RB_EMPTY_ROOT(root))
1112 return NULL;
1115 * First, if we find a request starting at the end of the last
1116 * request, choose it.
1118 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1119 if (__cfqq)
1120 return __cfqq;
1123 * If the exact sector wasn't found, the parent of the NULL leaf
1124 * will contain the closest sector.
1126 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1127 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1128 return __cfqq;
1130 if (blk_rq_pos(__cfqq->next_rq) < sector)
1131 node = rb_next(&__cfqq->p_node);
1132 else
1133 node = rb_prev(&__cfqq->p_node);
1134 if (!node)
1135 return NULL;
1137 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1138 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1139 return __cfqq;
1141 return NULL;
1145 * cfqd - obvious
1146 * cur_cfqq - passed in so that we don't decide that the current queue is
1147 * closely cooperating with itself.
1149 * So, basically we're assuming that that cur_cfqq has dispatched at least
1150 * one request, and that cfqd->last_position reflects a position on the disk
1151 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1152 * assumption.
1154 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1155 struct cfq_queue *cur_cfqq)
1157 struct cfq_queue *cfqq;
1159 if (!cfq_cfqq_sync(cur_cfqq))
1160 return NULL;
1161 if (CFQQ_SEEKY(cur_cfqq))
1162 return NULL;
1165 * We should notice if some of the queues are cooperating, eg
1166 * working closely on the same area of the disk. In that case,
1167 * we can group them together and don't waste time idling.
1169 cfqq = cfqq_close(cfqd, cur_cfqq);
1170 if (!cfqq)
1171 return NULL;
1174 * It only makes sense to merge sync queues.
1176 if (!cfq_cfqq_sync(cfqq))
1177 return NULL;
1178 if (CFQQ_SEEKY(cfqq))
1179 return NULL;
1182 * Do not merge queues of different priority classes
1184 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1185 return NULL;
1187 return cfqq;
1191 * Determine whether we should enforce idle window for this queue.
1194 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1196 enum wl_prio_t prio = cfqq_prio(cfqq);
1197 struct cfq_rb_root *service_tree = cfqq->service_tree;
1199 /* We never do for idle class queues. */
1200 if (prio == IDLE_WORKLOAD)
1201 return false;
1203 /* We do for queues that were marked with idle window flag. */
1204 if (cfq_cfqq_idle_window(cfqq))
1205 return true;
1208 * Otherwise, we do only if they are the last ones
1209 * in their service tree.
1211 if (!service_tree)
1212 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1214 if (service_tree->count == 0)
1215 return true;
1217 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1220 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1222 struct cfq_queue *cfqq = cfqd->active_queue;
1223 struct cfq_io_context *cic;
1224 unsigned long sl;
1227 * SSD device without seek penalty, disable idling. But only do so
1228 * for devices that support queuing, otherwise we still have a problem
1229 * with sync vs async workloads.
1231 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1232 return;
1234 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1235 WARN_ON(cfq_cfqq_slice_new(cfqq));
1238 * idle is disabled, either manually or by past process history
1240 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1241 return;
1244 * still requests with the driver, don't idle
1246 if (rq_in_driver(cfqd))
1247 return;
1250 * task has exited, don't wait
1252 cic = cfqd->active_cic;
1253 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1254 return;
1257 * If our average think time is larger than the remaining time
1258 * slice, then don't idle. This avoids overrunning the allotted
1259 * time slice.
1261 if (sample_valid(cic->ttime_samples) &&
1262 (cfqq->slice_end - jiffies < cic->ttime_mean))
1263 return;
1265 cfq_mark_cfqq_wait_request(cfqq);
1267 sl = cfqd->cfq_slice_idle;
1268 /* are we servicing noidle tree, and there are more queues?
1269 * non-rotational or NCQ: no idle
1270 * non-NCQ rotational : very small idle, to allow
1271 * fair distribution of slice time for a process doing back-to-back
1272 * seeks.
1274 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
1275 service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
1276 ->count > 0) {
1277 if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
1278 return;
1279 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1282 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1283 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1287 * Move request from internal lists to the request queue dispatch list.
1289 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1291 struct cfq_data *cfqd = q->elevator->elevator_data;
1292 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1294 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1296 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1297 cfq_remove_request(rq);
1298 cfqq->dispatched++;
1299 elv_dispatch_sort(q, rq);
1301 if (cfq_cfqq_sync(cfqq))
1302 cfqd->sync_flight++;
1306 * return expired entry, or NULL to just start from scratch in rbtree
1308 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1310 struct request *rq = NULL;
1312 if (cfq_cfqq_fifo_expire(cfqq))
1313 return NULL;
1315 cfq_mark_cfqq_fifo_expire(cfqq);
1317 if (list_empty(&cfqq->fifo))
1318 return NULL;
1320 rq = rq_entry_fifo(cfqq->fifo.next);
1321 if (time_before(jiffies, rq_fifo_time(rq)))
1322 rq = NULL;
1324 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1325 return rq;
1328 static inline int
1329 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1331 const int base_rq = cfqd->cfq_slice_async_rq;
1333 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1335 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1339 * Must be called with the queue_lock held.
1341 static int cfqq_process_refs(struct cfq_queue *cfqq)
1343 int process_refs, io_refs;
1345 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1346 process_refs = atomic_read(&cfqq->ref) - io_refs;
1347 BUG_ON(process_refs < 0);
1348 return process_refs;
1351 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1353 int process_refs, new_process_refs;
1354 struct cfq_queue *__cfqq;
1356 /* Avoid a circular list and skip interim queue merges */
1357 while ((__cfqq = new_cfqq->new_cfqq)) {
1358 if (__cfqq == cfqq)
1359 return;
1360 new_cfqq = __cfqq;
1363 process_refs = cfqq_process_refs(cfqq);
1365 * If the process for the cfqq has gone away, there is no
1366 * sense in merging the queues.
1368 if (process_refs == 0)
1369 return;
1372 * Merge in the direction of the lesser amount of work.
1374 new_process_refs = cfqq_process_refs(new_cfqq);
1375 if (new_process_refs >= process_refs) {
1376 cfqq->new_cfqq = new_cfqq;
1377 atomic_add(process_refs, &new_cfqq->ref);
1378 } else {
1379 new_cfqq->new_cfqq = cfqq;
1380 atomic_add(new_process_refs, &cfqq->ref);
1384 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1385 bool prio_changed)
1387 struct cfq_queue *queue;
1388 int i;
1389 bool key_valid = false;
1390 unsigned long lowest_key = 0;
1391 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1393 if (prio_changed) {
1395 * When priorities switched, we prefer starting
1396 * from SYNC_NOIDLE (first choice), or just SYNC
1397 * over ASYNC
1399 if (service_tree_for(prio, cur_best, cfqd)->count)
1400 return cur_best;
1401 cur_best = SYNC_WORKLOAD;
1402 if (service_tree_for(prio, cur_best, cfqd)->count)
1403 return cur_best;
1405 return ASYNC_WORKLOAD;
1408 for (i = 0; i < 3; ++i) {
1409 /* otherwise, select the one with lowest rb_key */
1410 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1411 if (queue &&
1412 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1413 lowest_key = queue->rb_key;
1414 cur_best = i;
1415 key_valid = true;
1419 return cur_best;
1422 static void choose_service_tree(struct cfq_data *cfqd)
1424 enum wl_prio_t previous_prio = cfqd->serving_prio;
1425 bool prio_changed;
1426 unsigned slice;
1427 unsigned count;
1429 /* Choose next priority. RT > BE > IDLE */
1430 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1431 cfqd->serving_prio = RT_WORKLOAD;
1432 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1433 cfqd->serving_prio = BE_WORKLOAD;
1434 else {
1435 cfqd->serving_prio = IDLE_WORKLOAD;
1436 cfqd->workload_expires = jiffies + 1;
1437 return;
1441 * For RT and BE, we have to choose also the type
1442 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1443 * expiration time
1445 prio_changed = (cfqd->serving_prio != previous_prio);
1446 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1447 ->count;
1450 * If priority didn't change, check workload expiration,
1451 * and that we still have other queues ready
1453 if (!prio_changed && count &&
1454 !time_after(jiffies, cfqd->workload_expires))
1455 return;
1457 /* otherwise select new workload type */
1458 cfqd->serving_type =
1459 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1460 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1461 ->count;
1464 * the workload slice is computed as a fraction of target latency
1465 * proportional to the number of queues in that workload, over
1466 * all the queues in the same priority class
1468 slice = cfq_target_latency * count /
1469 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1470 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1472 if (cfqd->serving_type == ASYNC_WORKLOAD)
1473 /* async workload slice is scaled down according to
1474 * the sync/async slice ratio. */
1475 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1476 else
1477 /* sync workload slice is at least 2 * cfq_slice_idle */
1478 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1480 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1481 cfqd->workload_expires = jiffies + slice;
1485 * Select a queue for service. If we have a current active queue,
1486 * check whether to continue servicing it, or retrieve and set a new one.
1488 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1490 struct cfq_queue *cfqq, *new_cfqq = NULL;
1492 cfqq = cfqd->active_queue;
1493 if (!cfqq)
1494 goto new_queue;
1497 * The active queue has run out of time, expire it and select new.
1499 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1500 goto expire;
1503 * The active queue has requests and isn't expired, allow it to
1504 * dispatch.
1506 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1507 goto keep_queue;
1510 * If another queue has a request waiting within our mean seek
1511 * distance, let it run. The expire code will check for close
1512 * cooperators and put the close queue at the front of the service
1513 * tree. If possible, merge the expiring queue with the new cfqq.
1515 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1516 if (new_cfqq) {
1517 if (!cfqq->new_cfqq)
1518 cfq_setup_merge(cfqq, new_cfqq);
1519 goto expire;
1523 * No requests pending. If the active queue still has requests in
1524 * flight or is idling for a new request, allow either of these
1525 * conditions to happen (or time out) before selecting a new queue.
1527 if (timer_pending(&cfqd->idle_slice_timer) ||
1528 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1529 cfqq = NULL;
1530 goto keep_queue;
1533 expire:
1534 cfq_slice_expired(cfqd, 0);
1535 new_queue:
1537 * Current queue expired. Check if we have to switch to a new
1538 * service tree
1540 if (!new_cfqq)
1541 choose_service_tree(cfqd);
1543 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1544 keep_queue:
1545 return cfqq;
1548 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1550 int dispatched = 0;
1552 while (cfqq->next_rq) {
1553 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1554 dispatched++;
1557 BUG_ON(!list_empty(&cfqq->fifo));
1558 return dispatched;
1562 * Drain our current requests. Used for barriers and when switching
1563 * io schedulers on-the-fly.
1565 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1567 struct cfq_queue *cfqq;
1568 int dispatched = 0;
1569 int i, j;
1570 for (i = 0; i < 2; ++i)
1571 for (j = 0; j < 3; ++j)
1572 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1573 != NULL)
1574 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1576 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1577 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1579 cfq_slice_expired(cfqd, 0);
1581 BUG_ON(cfqd->busy_queues);
1583 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1584 return dispatched;
1587 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1589 unsigned int max_dispatch;
1592 * Drain async requests before we start sync IO
1594 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1595 return false;
1598 * If this is an async queue and we have sync IO in flight, let it wait
1600 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1601 return false;
1603 max_dispatch = cfqd->cfq_quantum;
1604 if (cfq_class_idle(cfqq))
1605 max_dispatch = 1;
1608 * Does this cfqq already have too much IO in flight?
1610 if (cfqq->dispatched >= max_dispatch) {
1612 * idle queue must always only have a single IO in flight
1614 if (cfq_class_idle(cfqq))
1615 return false;
1618 * We have other queues, don't allow more IO from this one
1620 if (cfqd->busy_queues > 1)
1621 return false;
1624 * Sole queue user, allow bigger slice
1626 max_dispatch *= 4;
1630 * Async queues must wait a bit before being allowed dispatch.
1631 * We also ramp up the dispatch depth gradually for async IO,
1632 * based on the last sync IO we serviced
1634 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1635 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1636 unsigned int depth;
1638 depth = last_sync / cfqd->cfq_slice[1];
1639 if (!depth && !cfqq->dispatched)
1640 depth = 1;
1641 if (depth < max_dispatch)
1642 max_dispatch = depth;
1646 * If we're below the current max, allow a dispatch
1648 return cfqq->dispatched < max_dispatch;
1652 * Dispatch a request from cfqq, moving them to the request queue
1653 * dispatch list.
1655 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1657 struct request *rq;
1659 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1661 if (!cfq_may_dispatch(cfqd, cfqq))
1662 return false;
1665 * follow expired path, else get first next available
1667 rq = cfq_check_fifo(cfqq);
1668 if (!rq)
1669 rq = cfqq->next_rq;
1672 * insert request into driver dispatch list
1674 cfq_dispatch_insert(cfqd->queue, rq);
1676 if (!cfqd->active_cic) {
1677 struct cfq_io_context *cic = RQ_CIC(rq);
1679 atomic_long_inc(&cic->ioc->refcount);
1680 cfqd->active_cic = cic;
1683 return true;
1687 * Find the cfqq that we need to service and move a request from that to the
1688 * dispatch list
1690 static int cfq_dispatch_requests(struct request_queue *q, int force)
1692 struct cfq_data *cfqd = q->elevator->elevator_data;
1693 struct cfq_queue *cfqq;
1695 if (!cfqd->busy_queues)
1696 return 0;
1698 if (unlikely(force))
1699 return cfq_forced_dispatch(cfqd);
1701 cfqq = cfq_select_queue(cfqd);
1702 if (!cfqq)
1703 return 0;
1706 * Dispatch a request from this cfqq, if it is allowed
1708 if (!cfq_dispatch_request(cfqd, cfqq))
1709 return 0;
1711 cfqq->slice_dispatch++;
1712 cfq_clear_cfqq_must_dispatch(cfqq);
1715 * expire an async queue immediately if it has used up its slice. idle
1716 * queue always expire after 1 dispatch round.
1718 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1719 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1720 cfq_class_idle(cfqq))) {
1721 cfqq->slice_end = jiffies + 1;
1722 cfq_slice_expired(cfqd, 0);
1725 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1726 return 1;
1730 * task holds one reference to the queue, dropped when task exits. each rq
1731 * in-flight on this queue also holds a reference, dropped when rq is freed.
1733 * queue lock must be held here.
1735 static void cfq_put_queue(struct cfq_queue *cfqq)
1737 struct cfq_data *cfqd = cfqq->cfqd;
1739 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1741 if (!atomic_dec_and_test(&cfqq->ref))
1742 return;
1744 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1745 BUG_ON(rb_first(&cfqq->sort_list));
1746 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1747 BUG_ON(cfq_cfqq_on_rr(cfqq));
1749 if (unlikely(cfqd->active_queue == cfqq)) {
1750 __cfq_slice_expired(cfqd, cfqq, 0);
1751 cfq_schedule_dispatch(cfqd);
1754 kmem_cache_free(cfq_pool, cfqq);
1758 * Must always be called with the rcu_read_lock() held
1760 static void
1761 __call_for_each_cic(struct io_context *ioc,
1762 void (*func)(struct io_context *, struct cfq_io_context *))
1764 struct cfq_io_context *cic;
1765 struct hlist_node *n;
1767 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1768 func(ioc, cic);
1772 * Call func for each cic attached to this ioc.
1774 static void
1775 call_for_each_cic(struct io_context *ioc,
1776 void (*func)(struct io_context *, struct cfq_io_context *))
1778 rcu_read_lock();
1779 __call_for_each_cic(ioc, func);
1780 rcu_read_unlock();
1783 static void cfq_cic_free_rcu(struct rcu_head *head)
1785 struct cfq_io_context *cic;
1787 cic = container_of(head, struct cfq_io_context, rcu_head);
1789 kmem_cache_free(cfq_ioc_pool, cic);
1790 elv_ioc_count_dec(cfq_ioc_count);
1792 if (ioc_gone) {
1794 * CFQ scheduler is exiting, grab exit lock and check
1795 * the pending io context count. If it hits zero,
1796 * complete ioc_gone and set it back to NULL
1798 spin_lock(&ioc_gone_lock);
1799 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1800 complete(ioc_gone);
1801 ioc_gone = NULL;
1803 spin_unlock(&ioc_gone_lock);
1807 static void cfq_cic_free(struct cfq_io_context *cic)
1809 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1812 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1814 unsigned long flags;
1816 BUG_ON(!cic->dead_key);
1818 spin_lock_irqsave(&ioc->lock, flags);
1819 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1820 hlist_del_rcu(&cic->cic_list);
1821 spin_unlock_irqrestore(&ioc->lock, flags);
1823 cfq_cic_free(cic);
1827 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1828 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1829 * and ->trim() which is called with the task lock held
1831 static void cfq_free_io_context(struct io_context *ioc)
1834 * ioc->refcount is zero here, or we are called from elv_unregister(),
1835 * so no more cic's are allowed to be linked into this ioc. So it
1836 * should be ok to iterate over the known list, we will see all cic's
1837 * since no new ones are added.
1839 __call_for_each_cic(ioc, cic_free_func);
1842 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1844 struct cfq_queue *__cfqq, *next;
1846 if (unlikely(cfqq == cfqd->active_queue)) {
1847 __cfq_slice_expired(cfqd, cfqq, 0);
1848 cfq_schedule_dispatch(cfqd);
1852 * If this queue was scheduled to merge with another queue, be
1853 * sure to drop the reference taken on that queue (and others in
1854 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1856 __cfqq = cfqq->new_cfqq;
1857 while (__cfqq) {
1858 if (__cfqq == cfqq) {
1859 WARN(1, "cfqq->new_cfqq loop detected\n");
1860 break;
1862 next = __cfqq->new_cfqq;
1863 cfq_put_queue(__cfqq);
1864 __cfqq = next;
1867 cfq_put_queue(cfqq);
1870 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1871 struct cfq_io_context *cic)
1873 struct io_context *ioc = cic->ioc;
1875 list_del_init(&cic->queue_list);
1878 * Make sure key == NULL is seen for dead queues
1880 smp_wmb();
1881 cic->dead_key = (unsigned long) cic->key;
1882 cic->key = NULL;
1884 if (ioc->ioc_data == cic)
1885 rcu_assign_pointer(ioc->ioc_data, NULL);
1887 if (cic->cfqq[BLK_RW_ASYNC]) {
1888 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1889 cic->cfqq[BLK_RW_ASYNC] = NULL;
1892 if (cic->cfqq[BLK_RW_SYNC]) {
1893 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1894 cic->cfqq[BLK_RW_SYNC] = NULL;
1898 static void cfq_exit_single_io_context(struct io_context *ioc,
1899 struct cfq_io_context *cic)
1901 struct cfq_data *cfqd = cic->key;
1903 if (cfqd) {
1904 struct request_queue *q = cfqd->queue;
1905 unsigned long flags;
1907 spin_lock_irqsave(q->queue_lock, flags);
1910 * Ensure we get a fresh copy of the ->key to prevent
1911 * race between exiting task and queue
1913 smp_read_barrier_depends();
1914 if (cic->key)
1915 __cfq_exit_single_io_context(cfqd, cic);
1917 spin_unlock_irqrestore(q->queue_lock, flags);
1922 * The process that ioc belongs to has exited, we need to clean up
1923 * and put the internal structures we have that belongs to that process.
1925 static void cfq_exit_io_context(struct io_context *ioc)
1927 call_for_each_cic(ioc, cfq_exit_single_io_context);
1930 static struct cfq_io_context *
1931 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1933 struct cfq_io_context *cic;
1935 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1936 cfqd->queue->node);
1937 if (cic) {
1938 cic->last_end_request = jiffies;
1939 INIT_LIST_HEAD(&cic->queue_list);
1940 INIT_HLIST_NODE(&cic->cic_list);
1941 cic->dtor = cfq_free_io_context;
1942 cic->exit = cfq_exit_io_context;
1943 elv_ioc_count_inc(cfq_ioc_count);
1946 return cic;
1949 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1951 struct task_struct *tsk = current;
1952 int ioprio_class;
1954 if (!cfq_cfqq_prio_changed(cfqq))
1955 return;
1957 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1958 switch (ioprio_class) {
1959 default:
1960 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1961 case IOPRIO_CLASS_NONE:
1963 * no prio set, inherit CPU scheduling settings
1965 cfqq->ioprio = task_nice_ioprio(tsk);
1966 cfqq->ioprio_class = task_nice_ioclass(tsk);
1967 break;
1968 case IOPRIO_CLASS_RT:
1969 cfqq->ioprio = task_ioprio(ioc);
1970 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1971 break;
1972 case IOPRIO_CLASS_BE:
1973 cfqq->ioprio = task_ioprio(ioc);
1974 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1975 break;
1976 case IOPRIO_CLASS_IDLE:
1977 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1978 cfqq->ioprio = 7;
1979 cfq_clear_cfqq_idle_window(cfqq);
1980 break;
1984 * keep track of original prio settings in case we have to temporarily
1985 * elevate the priority of this queue
1987 cfqq->org_ioprio = cfqq->ioprio;
1988 cfqq->org_ioprio_class = cfqq->ioprio_class;
1989 cfq_clear_cfqq_prio_changed(cfqq);
1992 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1994 struct cfq_data *cfqd = cic->key;
1995 struct cfq_queue *cfqq;
1996 unsigned long flags;
1998 if (unlikely(!cfqd))
1999 return;
2001 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2003 cfqq = cic->cfqq[BLK_RW_ASYNC];
2004 if (cfqq) {
2005 struct cfq_queue *new_cfqq;
2006 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2007 GFP_ATOMIC);
2008 if (new_cfqq) {
2009 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2010 cfq_put_queue(cfqq);
2014 cfqq = cic->cfqq[BLK_RW_SYNC];
2015 if (cfqq)
2016 cfq_mark_cfqq_prio_changed(cfqq);
2018 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2021 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2023 call_for_each_cic(ioc, changed_ioprio);
2024 ioc->ioprio_changed = 0;
2027 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2028 pid_t pid, bool is_sync)
2030 RB_CLEAR_NODE(&cfqq->rb_node);
2031 RB_CLEAR_NODE(&cfqq->p_node);
2032 INIT_LIST_HEAD(&cfqq->fifo);
2034 atomic_set(&cfqq->ref, 0);
2035 cfqq->cfqd = cfqd;
2037 cfq_mark_cfqq_prio_changed(cfqq);
2039 if (is_sync) {
2040 if (!cfq_class_idle(cfqq))
2041 cfq_mark_cfqq_idle_window(cfqq);
2042 cfq_mark_cfqq_sync(cfqq);
2044 cfqq->pid = pid;
2047 static struct cfq_queue *
2048 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2049 struct io_context *ioc, gfp_t gfp_mask)
2051 struct cfq_queue *cfqq, *new_cfqq = NULL;
2052 struct cfq_io_context *cic;
2054 retry:
2055 cic = cfq_cic_lookup(cfqd, ioc);
2056 /* cic always exists here */
2057 cfqq = cic_to_cfqq(cic, is_sync);
2060 * Always try a new alloc if we fell back to the OOM cfqq
2061 * originally, since it should just be a temporary situation.
2063 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2064 cfqq = NULL;
2065 if (new_cfqq) {
2066 cfqq = new_cfqq;
2067 new_cfqq = NULL;
2068 } else if (gfp_mask & __GFP_WAIT) {
2069 spin_unlock_irq(cfqd->queue->queue_lock);
2070 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2071 gfp_mask | __GFP_ZERO,
2072 cfqd->queue->node);
2073 spin_lock_irq(cfqd->queue->queue_lock);
2074 if (new_cfqq)
2075 goto retry;
2076 } else {
2077 cfqq = kmem_cache_alloc_node(cfq_pool,
2078 gfp_mask | __GFP_ZERO,
2079 cfqd->queue->node);
2082 if (cfqq) {
2083 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2084 cfq_init_prio_data(cfqq, ioc);
2085 cfq_log_cfqq(cfqd, cfqq, "alloced");
2086 } else
2087 cfqq = &cfqd->oom_cfqq;
2090 if (new_cfqq)
2091 kmem_cache_free(cfq_pool, new_cfqq);
2093 return cfqq;
2096 static struct cfq_queue **
2097 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2099 switch (ioprio_class) {
2100 case IOPRIO_CLASS_RT:
2101 return &cfqd->async_cfqq[0][ioprio];
2102 case IOPRIO_CLASS_BE:
2103 return &cfqd->async_cfqq[1][ioprio];
2104 case IOPRIO_CLASS_IDLE:
2105 return &cfqd->async_idle_cfqq;
2106 default:
2107 BUG();
2111 static struct cfq_queue *
2112 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2113 gfp_t gfp_mask)
2115 const int ioprio = task_ioprio(ioc);
2116 const int ioprio_class = task_ioprio_class(ioc);
2117 struct cfq_queue **async_cfqq = NULL;
2118 struct cfq_queue *cfqq = NULL;
2120 if (!is_sync) {
2121 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2122 cfqq = *async_cfqq;
2125 if (!cfqq)
2126 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2129 * pin the queue now that it's allocated, scheduler exit will prune it
2131 if (!is_sync && !(*async_cfqq)) {
2132 atomic_inc(&cfqq->ref);
2133 *async_cfqq = cfqq;
2136 atomic_inc(&cfqq->ref);
2137 return cfqq;
2141 * We drop cfq io contexts lazily, so we may find a dead one.
2143 static void
2144 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2145 struct cfq_io_context *cic)
2147 unsigned long flags;
2149 WARN_ON(!list_empty(&cic->queue_list));
2151 spin_lock_irqsave(&ioc->lock, flags);
2153 BUG_ON(ioc->ioc_data == cic);
2155 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2156 hlist_del_rcu(&cic->cic_list);
2157 spin_unlock_irqrestore(&ioc->lock, flags);
2159 cfq_cic_free(cic);
2162 static struct cfq_io_context *
2163 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2165 struct cfq_io_context *cic;
2166 unsigned long flags;
2167 void *k;
2169 if (unlikely(!ioc))
2170 return NULL;
2172 rcu_read_lock();
2175 * we maintain a last-hit cache, to avoid browsing over the tree
2177 cic = rcu_dereference(ioc->ioc_data);
2178 if (cic && cic->key == cfqd) {
2179 rcu_read_unlock();
2180 return cic;
2183 do {
2184 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2185 rcu_read_unlock();
2186 if (!cic)
2187 break;
2188 /* ->key must be copied to avoid race with cfq_exit_queue() */
2189 k = cic->key;
2190 if (unlikely(!k)) {
2191 cfq_drop_dead_cic(cfqd, ioc, cic);
2192 rcu_read_lock();
2193 continue;
2196 spin_lock_irqsave(&ioc->lock, flags);
2197 rcu_assign_pointer(ioc->ioc_data, cic);
2198 spin_unlock_irqrestore(&ioc->lock, flags);
2199 break;
2200 } while (1);
2202 return cic;
2206 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2207 * the process specific cfq io context when entered from the block layer.
2208 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2210 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2211 struct cfq_io_context *cic, gfp_t gfp_mask)
2213 unsigned long flags;
2214 int ret;
2216 ret = radix_tree_preload(gfp_mask);
2217 if (!ret) {
2218 cic->ioc = ioc;
2219 cic->key = cfqd;
2221 spin_lock_irqsave(&ioc->lock, flags);
2222 ret = radix_tree_insert(&ioc->radix_root,
2223 (unsigned long) cfqd, cic);
2224 if (!ret)
2225 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2226 spin_unlock_irqrestore(&ioc->lock, flags);
2228 radix_tree_preload_end();
2230 if (!ret) {
2231 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2232 list_add(&cic->queue_list, &cfqd->cic_list);
2233 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2237 if (ret)
2238 printk(KERN_ERR "cfq: cic link failed!\n");
2240 return ret;
2244 * Setup general io context and cfq io context. There can be several cfq
2245 * io contexts per general io context, if this process is doing io to more
2246 * than one device managed by cfq.
2248 static struct cfq_io_context *
2249 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2251 struct io_context *ioc = NULL;
2252 struct cfq_io_context *cic;
2254 might_sleep_if(gfp_mask & __GFP_WAIT);
2256 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2257 if (!ioc)
2258 return NULL;
2260 cic = cfq_cic_lookup(cfqd, ioc);
2261 if (cic)
2262 goto out;
2264 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2265 if (cic == NULL)
2266 goto err;
2268 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2269 goto err_free;
2271 out:
2272 smp_read_barrier_depends();
2273 if (unlikely(ioc->ioprio_changed))
2274 cfq_ioc_set_ioprio(ioc);
2276 return cic;
2277 err_free:
2278 cfq_cic_free(cic);
2279 err:
2280 put_io_context(ioc);
2281 return NULL;
2284 static void
2285 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2287 unsigned long elapsed = jiffies - cic->last_end_request;
2288 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2290 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2291 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2292 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2295 static void
2296 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2297 struct request *rq)
2299 sector_t sdist;
2300 u64 total;
2302 if (!cfqq->last_request_pos)
2303 sdist = 0;
2304 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2305 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2306 else
2307 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2310 * Don't allow the seek distance to get too large from the
2311 * odd fragment, pagein, etc
2313 if (cfqq->seek_samples <= 60) /* second&third seek */
2314 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2315 else
2316 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2318 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2319 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2320 total = cfqq->seek_total + (cfqq->seek_samples/2);
2321 do_div(total, cfqq->seek_samples);
2322 cfqq->seek_mean = (sector_t)total;
2325 * If this cfqq is shared between multiple processes, check to
2326 * make sure that those processes are still issuing I/Os within
2327 * the mean seek distance. If not, it may be time to break the
2328 * queues apart again.
2330 if (cfq_cfqq_coop(cfqq)) {
2331 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2332 cfqq->seeky_start = jiffies;
2333 else if (!CFQQ_SEEKY(cfqq))
2334 cfqq->seeky_start = 0;
2339 * Disable idle window if the process thinks too long or seeks so much that
2340 * it doesn't matter
2342 static void
2343 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2344 struct cfq_io_context *cic)
2346 int old_idle, enable_idle;
2349 * Don't idle for async or idle io prio class
2351 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2352 return;
2354 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2356 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2357 (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2358 enable_idle = 0;
2359 else if (sample_valid(cic->ttime_samples)) {
2360 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2361 enable_idle = 0;
2362 else
2363 enable_idle = 1;
2366 if (old_idle != enable_idle) {
2367 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2368 if (enable_idle)
2369 cfq_mark_cfqq_idle_window(cfqq);
2370 else
2371 cfq_clear_cfqq_idle_window(cfqq);
2376 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2377 * no or if we aren't sure, a 1 will cause a preempt.
2379 static bool
2380 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2381 struct request *rq)
2383 struct cfq_queue *cfqq;
2385 cfqq = cfqd->active_queue;
2386 if (!cfqq)
2387 return false;
2389 if (cfq_slice_used(cfqq))
2390 return true;
2392 if (cfq_class_idle(new_cfqq))
2393 return false;
2395 if (cfq_class_idle(cfqq))
2396 return true;
2398 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
2399 && new_cfqq->service_tree == cfqq->service_tree)
2400 return true;
2403 * if the new request is sync, but the currently running queue is
2404 * not, let the sync request have priority.
2406 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2407 return true;
2410 * So both queues are sync. Let the new request get disk time if
2411 * it's a metadata request and the current queue is doing regular IO.
2413 if (rq_is_meta(rq) && !cfqq->meta_pending)
2414 return true;
2417 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2419 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2420 return true;
2422 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2423 return false;
2426 * if this request is as-good as one we would expect from the
2427 * current cfqq, let it preempt
2429 if (cfq_rq_close(cfqd, cfqq, rq))
2430 return true;
2432 return false;
2436 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2437 * let it have half of its nominal slice.
2439 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2441 cfq_log_cfqq(cfqd, cfqq, "preempt");
2442 cfq_slice_expired(cfqd, 1);
2445 * Put the new queue at the front of the of the current list,
2446 * so we know that it will be selected next.
2448 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2450 cfq_service_tree_add(cfqd, cfqq, 1);
2452 cfqq->slice_end = 0;
2453 cfq_mark_cfqq_slice_new(cfqq);
2457 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2458 * something we should do about it
2460 static void
2461 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2462 struct request *rq)
2464 struct cfq_io_context *cic = RQ_CIC(rq);
2466 cfqd->rq_queued++;
2467 if (rq_is_meta(rq))
2468 cfqq->meta_pending++;
2470 cfq_update_io_thinktime(cfqd, cic);
2471 cfq_update_io_seektime(cfqd, cfqq, rq);
2472 cfq_update_idle_window(cfqd, cfqq, cic);
2474 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2476 if (cfqq == cfqd->active_queue) {
2478 * Remember that we saw a request from this process, but
2479 * don't start queuing just yet. Otherwise we risk seeing lots
2480 * of tiny requests, because we disrupt the normal plugging
2481 * and merging. If the request is already larger than a single
2482 * page, let it rip immediately. For that case we assume that
2483 * merging is already done. Ditto for a busy system that
2484 * has other work pending, don't risk delaying until the
2485 * idle timer unplug to continue working.
2487 if (cfq_cfqq_wait_request(cfqq)) {
2488 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2489 cfqd->busy_queues > 1) {
2490 del_timer(&cfqd->idle_slice_timer);
2491 __blk_run_queue(cfqd->queue);
2493 cfq_mark_cfqq_must_dispatch(cfqq);
2495 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2497 * not the active queue - expire current slice if it is
2498 * idle and has expired it's mean thinktime or this new queue
2499 * has some old slice time left and is of higher priority or
2500 * this new queue is RT and the current one is BE
2502 cfq_preempt_queue(cfqd, cfqq);
2503 __blk_run_queue(cfqd->queue);
2507 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2509 struct cfq_data *cfqd = q->elevator->elevator_data;
2510 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2512 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2513 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2515 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2516 list_add_tail(&rq->queuelist, &cfqq->fifo);
2517 cfq_add_rq_rb(rq);
2519 cfq_rq_enqueued(cfqd, cfqq, rq);
2523 * Update hw_tag based on peak queue depth over 50 samples under
2524 * sufficient load.
2526 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2528 struct cfq_queue *cfqq = cfqd->active_queue;
2530 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2531 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2533 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2534 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2535 return;
2538 * If active queue hasn't enough requests and can idle, cfq might not
2539 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2540 * case
2542 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2543 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2544 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2545 return;
2547 if (cfqd->hw_tag_samples++ < 50)
2548 return;
2550 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2551 cfqd->hw_tag = 1;
2552 else
2553 cfqd->hw_tag = 0;
2555 cfqd->hw_tag_samples = 0;
2556 cfqd->rq_in_driver_peak = 0;
2559 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2561 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2562 struct cfq_data *cfqd = cfqq->cfqd;
2563 const int sync = rq_is_sync(rq);
2564 unsigned long now;
2566 now = jiffies;
2567 cfq_log_cfqq(cfqd, cfqq, "complete");
2569 cfq_update_hw_tag(cfqd);
2571 WARN_ON(!cfqd->rq_in_driver[sync]);
2572 WARN_ON(!cfqq->dispatched);
2573 cfqd->rq_in_driver[sync]--;
2574 cfqq->dispatched--;
2576 if (cfq_cfqq_sync(cfqq))
2577 cfqd->sync_flight--;
2579 if (sync) {
2580 RQ_CIC(rq)->last_end_request = now;
2581 cfqd->last_end_sync_rq = now;
2585 * If this is the active queue, check if it needs to be expired,
2586 * or if we want to idle in case it has no pending requests.
2588 if (cfqd->active_queue == cfqq) {
2589 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2591 if (cfq_cfqq_slice_new(cfqq)) {
2592 cfq_set_prio_slice(cfqd, cfqq);
2593 cfq_clear_cfqq_slice_new(cfqq);
2596 * If there are no requests waiting in this queue, and
2597 * there are other queues ready to issue requests, AND
2598 * those other queues are issuing requests within our
2599 * mean seek distance, give them a chance to run instead
2600 * of idling.
2602 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2603 cfq_slice_expired(cfqd, 1);
2604 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2605 sync && !rq_noidle(rq))
2606 cfq_arm_slice_timer(cfqd);
2609 if (!rq_in_driver(cfqd))
2610 cfq_schedule_dispatch(cfqd);
2614 * we temporarily boost lower priority queues if they are holding fs exclusive
2615 * resources. they are boosted to normal prio (CLASS_BE/4)
2617 static void cfq_prio_boost(struct cfq_queue *cfqq)
2619 if (has_fs_excl()) {
2621 * boost idle prio on transactions that would lock out other
2622 * users of the filesystem
2624 if (cfq_class_idle(cfqq))
2625 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2626 if (cfqq->ioprio > IOPRIO_NORM)
2627 cfqq->ioprio = IOPRIO_NORM;
2628 } else {
2630 * unboost the queue (if needed)
2632 cfqq->ioprio_class = cfqq->org_ioprio_class;
2633 cfqq->ioprio = cfqq->org_ioprio;
2637 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2639 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2640 cfq_mark_cfqq_must_alloc_slice(cfqq);
2641 return ELV_MQUEUE_MUST;
2644 return ELV_MQUEUE_MAY;
2647 static int cfq_may_queue(struct request_queue *q, int rw)
2649 struct cfq_data *cfqd = q->elevator->elevator_data;
2650 struct task_struct *tsk = current;
2651 struct cfq_io_context *cic;
2652 struct cfq_queue *cfqq;
2655 * don't force setup of a queue from here, as a call to may_queue
2656 * does not necessarily imply that a request actually will be queued.
2657 * so just lookup a possibly existing queue, or return 'may queue'
2658 * if that fails
2660 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2661 if (!cic)
2662 return ELV_MQUEUE_MAY;
2664 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2665 if (cfqq) {
2666 cfq_init_prio_data(cfqq, cic->ioc);
2667 cfq_prio_boost(cfqq);
2669 return __cfq_may_queue(cfqq);
2672 return ELV_MQUEUE_MAY;
2676 * queue lock held here
2678 static void cfq_put_request(struct request *rq)
2680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2682 if (cfqq) {
2683 const int rw = rq_data_dir(rq);
2685 BUG_ON(!cfqq->allocated[rw]);
2686 cfqq->allocated[rw]--;
2688 put_io_context(RQ_CIC(rq)->ioc);
2690 rq->elevator_private = NULL;
2691 rq->elevator_private2 = NULL;
2693 cfq_put_queue(cfqq);
2697 static struct cfq_queue *
2698 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2699 struct cfq_queue *cfqq)
2701 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2702 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2703 cfq_mark_cfqq_coop(cfqq->new_cfqq);
2704 cfq_put_queue(cfqq);
2705 return cic_to_cfqq(cic, 1);
2708 static int should_split_cfqq(struct cfq_queue *cfqq)
2710 if (cfqq->seeky_start &&
2711 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2712 return 1;
2713 return 0;
2717 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2718 * was the last process referring to said cfqq.
2720 static struct cfq_queue *
2721 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2723 if (cfqq_process_refs(cfqq) == 1) {
2724 cfqq->seeky_start = 0;
2725 cfqq->pid = current->pid;
2726 cfq_clear_cfqq_coop(cfqq);
2727 return cfqq;
2730 cic_set_cfqq(cic, NULL, 1);
2731 cfq_put_queue(cfqq);
2732 return NULL;
2735 * Allocate cfq data structures associated with this request.
2737 static int
2738 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2740 struct cfq_data *cfqd = q->elevator->elevator_data;
2741 struct cfq_io_context *cic;
2742 const int rw = rq_data_dir(rq);
2743 const bool is_sync = rq_is_sync(rq);
2744 struct cfq_queue *cfqq;
2745 unsigned long flags;
2747 might_sleep_if(gfp_mask & __GFP_WAIT);
2749 cic = cfq_get_io_context(cfqd, gfp_mask);
2751 spin_lock_irqsave(q->queue_lock, flags);
2753 if (!cic)
2754 goto queue_fail;
2756 new_queue:
2757 cfqq = cic_to_cfqq(cic, is_sync);
2758 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2759 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2760 cic_set_cfqq(cic, cfqq, is_sync);
2761 } else {
2763 * If the queue was seeky for too long, break it apart.
2765 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2766 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2767 cfqq = split_cfqq(cic, cfqq);
2768 if (!cfqq)
2769 goto new_queue;
2773 * Check to see if this queue is scheduled to merge with
2774 * another, closely cooperating queue. The merging of
2775 * queues happens here as it must be done in process context.
2776 * The reference on new_cfqq was taken in merge_cfqqs.
2778 if (cfqq->new_cfqq)
2779 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2782 cfqq->allocated[rw]++;
2783 atomic_inc(&cfqq->ref);
2785 spin_unlock_irqrestore(q->queue_lock, flags);
2787 rq->elevator_private = cic;
2788 rq->elevator_private2 = cfqq;
2789 return 0;
2791 queue_fail:
2792 if (cic)
2793 put_io_context(cic->ioc);
2795 cfq_schedule_dispatch(cfqd);
2796 spin_unlock_irqrestore(q->queue_lock, flags);
2797 cfq_log(cfqd, "set_request fail");
2798 return 1;
2801 static void cfq_kick_queue(struct work_struct *work)
2803 struct cfq_data *cfqd =
2804 container_of(work, struct cfq_data, unplug_work);
2805 struct request_queue *q = cfqd->queue;
2807 spin_lock_irq(q->queue_lock);
2808 __blk_run_queue(cfqd->queue);
2809 spin_unlock_irq(q->queue_lock);
2813 * Timer running if the active_queue is currently idling inside its time slice
2815 static void cfq_idle_slice_timer(unsigned long data)
2817 struct cfq_data *cfqd = (struct cfq_data *) data;
2818 struct cfq_queue *cfqq;
2819 unsigned long flags;
2820 int timed_out = 1;
2822 cfq_log(cfqd, "idle timer fired");
2824 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2826 cfqq = cfqd->active_queue;
2827 if (cfqq) {
2828 timed_out = 0;
2831 * We saw a request before the queue expired, let it through
2833 if (cfq_cfqq_must_dispatch(cfqq))
2834 goto out_kick;
2837 * expired
2839 if (cfq_slice_used(cfqq))
2840 goto expire;
2843 * only expire and reinvoke request handler, if there are
2844 * other queues with pending requests
2846 if (!cfqd->busy_queues)
2847 goto out_cont;
2850 * not expired and it has a request pending, let it dispatch
2852 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2853 goto out_kick;
2855 expire:
2856 cfq_slice_expired(cfqd, timed_out);
2857 out_kick:
2858 cfq_schedule_dispatch(cfqd);
2859 out_cont:
2860 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2863 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2865 del_timer_sync(&cfqd->idle_slice_timer);
2866 cancel_work_sync(&cfqd->unplug_work);
2869 static void cfq_put_async_queues(struct cfq_data *cfqd)
2871 int i;
2873 for (i = 0; i < IOPRIO_BE_NR; i++) {
2874 if (cfqd->async_cfqq[0][i])
2875 cfq_put_queue(cfqd->async_cfqq[0][i]);
2876 if (cfqd->async_cfqq[1][i])
2877 cfq_put_queue(cfqd->async_cfqq[1][i]);
2880 if (cfqd->async_idle_cfqq)
2881 cfq_put_queue(cfqd->async_idle_cfqq);
2884 static void cfq_exit_queue(struct elevator_queue *e)
2886 struct cfq_data *cfqd = e->elevator_data;
2887 struct request_queue *q = cfqd->queue;
2889 cfq_shutdown_timer_wq(cfqd);
2891 spin_lock_irq(q->queue_lock);
2893 if (cfqd->active_queue)
2894 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2896 while (!list_empty(&cfqd->cic_list)) {
2897 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2898 struct cfq_io_context,
2899 queue_list);
2901 __cfq_exit_single_io_context(cfqd, cic);
2904 cfq_put_async_queues(cfqd);
2906 spin_unlock_irq(q->queue_lock);
2908 cfq_shutdown_timer_wq(cfqd);
2910 kfree(cfqd);
2913 static void *cfq_init_queue(struct request_queue *q)
2915 struct cfq_data *cfqd;
2916 int i, j;
2918 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2919 if (!cfqd)
2920 return NULL;
2922 for (i = 0; i < 2; ++i)
2923 for (j = 0; j < 3; ++j)
2924 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2925 cfqd->service_tree_idle = CFQ_RB_ROOT;
2928 * Not strictly needed (since RB_ROOT just clears the node and we
2929 * zeroed cfqd on alloc), but better be safe in case someone decides
2930 * to add magic to the rb code
2932 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2933 cfqd->prio_trees[i] = RB_ROOT;
2936 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2937 * Grab a permanent reference to it, so that the normal code flow
2938 * will not attempt to free it.
2940 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2941 atomic_inc(&cfqd->oom_cfqq.ref);
2943 INIT_LIST_HEAD(&cfqd->cic_list);
2945 cfqd->queue = q;
2947 init_timer(&cfqd->idle_slice_timer);
2948 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2949 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2951 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2953 cfqd->cfq_quantum = cfq_quantum;
2954 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2955 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2956 cfqd->cfq_back_max = cfq_back_max;
2957 cfqd->cfq_back_penalty = cfq_back_penalty;
2958 cfqd->cfq_slice[0] = cfq_slice_async;
2959 cfqd->cfq_slice[1] = cfq_slice_sync;
2960 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2961 cfqd->cfq_slice_idle = cfq_slice_idle;
2962 cfqd->cfq_latency = 1;
2963 cfqd->hw_tag = 1;
2964 cfqd->last_end_sync_rq = jiffies;
2965 return cfqd;
2968 static void cfq_slab_kill(void)
2971 * Caller already ensured that pending RCU callbacks are completed,
2972 * so we should have no busy allocations at this point.
2974 if (cfq_pool)
2975 kmem_cache_destroy(cfq_pool);
2976 if (cfq_ioc_pool)
2977 kmem_cache_destroy(cfq_ioc_pool);
2980 static int __init cfq_slab_setup(void)
2982 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2983 if (!cfq_pool)
2984 goto fail;
2986 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2987 if (!cfq_ioc_pool)
2988 goto fail;
2990 return 0;
2991 fail:
2992 cfq_slab_kill();
2993 return -ENOMEM;
2997 * sysfs parts below -->
2999 static ssize_t
3000 cfq_var_show(unsigned int var, char *page)
3002 return sprintf(page, "%d\n", var);
3005 static ssize_t
3006 cfq_var_store(unsigned int *var, const char *page, size_t count)
3008 char *p = (char *) page;
3010 *var = simple_strtoul(p, &p, 10);
3011 return count;
3014 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3015 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3017 struct cfq_data *cfqd = e->elevator_data; \
3018 unsigned int __data = __VAR; \
3019 if (__CONV) \
3020 __data = jiffies_to_msecs(__data); \
3021 return cfq_var_show(__data, (page)); \
3023 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3024 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3025 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3026 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3027 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3028 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3029 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3030 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3031 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3032 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3033 #undef SHOW_FUNCTION
3035 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3036 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3038 struct cfq_data *cfqd = e->elevator_data; \
3039 unsigned int __data; \
3040 int ret = cfq_var_store(&__data, (page), count); \
3041 if (__data < (MIN)) \
3042 __data = (MIN); \
3043 else if (__data > (MAX)) \
3044 __data = (MAX); \
3045 if (__CONV) \
3046 *(__PTR) = msecs_to_jiffies(__data); \
3047 else \
3048 *(__PTR) = __data; \
3049 return ret; \
3051 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3052 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3053 UINT_MAX, 1);
3054 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3055 UINT_MAX, 1);
3056 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3057 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3058 UINT_MAX, 0);
3059 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3060 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3061 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3062 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3063 UINT_MAX, 0);
3064 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3065 #undef STORE_FUNCTION
3067 #define CFQ_ATTR(name) \
3068 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3070 static struct elv_fs_entry cfq_attrs[] = {
3071 CFQ_ATTR(quantum),
3072 CFQ_ATTR(fifo_expire_sync),
3073 CFQ_ATTR(fifo_expire_async),
3074 CFQ_ATTR(back_seek_max),
3075 CFQ_ATTR(back_seek_penalty),
3076 CFQ_ATTR(slice_sync),
3077 CFQ_ATTR(slice_async),
3078 CFQ_ATTR(slice_async_rq),
3079 CFQ_ATTR(slice_idle),
3080 CFQ_ATTR(low_latency),
3081 __ATTR_NULL
3084 static struct elevator_type iosched_cfq = {
3085 .ops = {
3086 .elevator_merge_fn = cfq_merge,
3087 .elevator_merged_fn = cfq_merged_request,
3088 .elevator_merge_req_fn = cfq_merged_requests,
3089 .elevator_allow_merge_fn = cfq_allow_merge,
3090 .elevator_dispatch_fn = cfq_dispatch_requests,
3091 .elevator_add_req_fn = cfq_insert_request,
3092 .elevator_activate_req_fn = cfq_activate_request,
3093 .elevator_deactivate_req_fn = cfq_deactivate_request,
3094 .elevator_queue_empty_fn = cfq_queue_empty,
3095 .elevator_completed_req_fn = cfq_completed_request,
3096 .elevator_former_req_fn = elv_rb_former_request,
3097 .elevator_latter_req_fn = elv_rb_latter_request,
3098 .elevator_set_req_fn = cfq_set_request,
3099 .elevator_put_req_fn = cfq_put_request,
3100 .elevator_may_queue_fn = cfq_may_queue,
3101 .elevator_init_fn = cfq_init_queue,
3102 .elevator_exit_fn = cfq_exit_queue,
3103 .trim = cfq_free_io_context,
3105 .elevator_attrs = cfq_attrs,
3106 .elevator_name = "cfq",
3107 .elevator_owner = THIS_MODULE,
3110 static int __init cfq_init(void)
3113 * could be 0 on HZ < 1000 setups
3115 if (!cfq_slice_async)
3116 cfq_slice_async = 1;
3117 if (!cfq_slice_idle)
3118 cfq_slice_idle = 1;
3120 if (cfq_slab_setup())
3121 return -ENOMEM;
3123 elv_register(&iosched_cfq);
3125 return 0;
3128 static void __exit cfq_exit(void)
3130 DECLARE_COMPLETION_ONSTACK(all_gone);
3131 elv_unregister(&iosched_cfq);
3132 ioc_gone = &all_gone;
3133 /* ioc_gone's update must be visible before reading ioc_count */
3134 smp_wmb();
3137 * this also protects us from entering cfq_slab_kill() with
3138 * pending RCU callbacks
3140 if (elv_ioc_count_read(cfq_ioc_count))
3141 wait_for_completion(&all_gone);
3142 cfq_slab_kill();
3145 module_init(cfq_init);
3146 module_exit(cfq_exit);
3148 MODULE_AUTHOR("Jens Axboe");
3149 MODULE_LICENSE("GPL");
3150 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");