2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum
= 8;
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum
= 32;
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
23 struct throtl_rb_root
{
27 unsigned long min_disptime
;
30 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
31 .count = 0, .min_disptime = 0}
33 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
36 /* List of throtl groups on the request queue*/
37 struct hlist_node tg_node
;
39 /* active throtl group service_tree member */
40 struct rb_node rb_node
;
43 * Dispatch time in jiffies. This is the estimated time when group
44 * will unthrottle and is ready to dispatch more bio. It is used as
45 * key to sort active groups in service tree.
47 unsigned long disptime
;
49 struct blkio_group blkg
;
53 /* Two lists for READ and WRITE */
54 struct bio_list bio_lists
[2];
56 /* Number of queued bios on READ and WRITE lists */
57 unsigned int nr_queued
[2];
59 /* bytes per second rate limits */
65 /* Number of bytes disptached in current slice */
66 uint64_t bytes_disp
[2];
67 /* Number of bio's dispatched in current slice */
68 unsigned int io_disp
[2];
70 /* When did we start a new slice */
71 unsigned long slice_start
[2];
72 unsigned long slice_end
[2];
74 /* Some throttle limits got updated for the group */
80 /* List of throtl groups */
81 struct hlist_head tg_list
;
83 /* service tree for active throtl groups */
84 struct throtl_rb_root tg_service_tree
;
86 struct throtl_grp root_tg
;
87 struct request_queue
*queue
;
89 /* Total Number of queued bios on READ and WRITE lists */
90 unsigned int nr_queued
[2];
93 * number of total undestroyed groups
95 unsigned int nr_undestroyed_grps
;
97 /* Work for dispatching throttled bios */
98 struct delayed_work throtl_work
;
100 atomic_t limits_changed
;
103 enum tg_state_flags
{
104 THROTL_TG_FLAG_on_rr
= 0, /* on round-robin busy list */
107 #define THROTL_TG_FNS(name) \
108 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
110 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
112 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
114 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
116 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
118 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
121 THROTL_TG_FNS(on_rr
);
123 #define throtl_log_tg(td, tg, fmt, args...) \
124 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
125 blkg_path(&(tg)->blkg), ##args); \
127 #define throtl_log(td, fmt, args...) \
128 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
130 static inline struct throtl_grp
*tg_of_blkg(struct blkio_group
*blkg
)
133 return container_of(blkg
, struct throtl_grp
, blkg
);
138 static inline int total_nr_queued(struct throtl_data
*td
)
140 return (td
->nr_queued
[0] + td
->nr_queued
[1]);
143 static inline struct throtl_grp
*throtl_ref_get_tg(struct throtl_grp
*tg
)
145 atomic_inc(&tg
->ref
);
149 static void throtl_put_tg(struct throtl_grp
*tg
)
151 BUG_ON(atomic_read(&tg
->ref
) <= 0);
152 if (!atomic_dec_and_test(&tg
->ref
))
157 static struct throtl_grp
* throtl_find_alloc_tg(struct throtl_data
*td
,
158 struct cgroup
*cgroup
)
160 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
161 struct throtl_grp
*tg
= NULL
;
163 struct backing_dev_info
*bdi
= &td
->queue
->backing_dev_info
;
164 unsigned int major
, minor
;
167 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
168 * tree of blkg (instead of traversing through hash list all
171 tg
= tg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
173 /* Fill in device details for root group */
174 if (tg
&& !tg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
175 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
176 tg
->blkg
.dev
= MKDEV(major
, minor
);
183 tg
= kzalloc_node(sizeof(*tg
), GFP_ATOMIC
, td
->queue
->node
);
187 INIT_HLIST_NODE(&tg
->tg_node
);
188 RB_CLEAR_NODE(&tg
->rb_node
);
189 bio_list_init(&tg
->bio_lists
[0]);
190 bio_list_init(&tg
->bio_lists
[1]);
193 * Take the initial reference that will be released on destroy
194 * This can be thought of a joint reference by cgroup and
195 * request queue which will be dropped by either request queue
196 * exit or cgroup deletion path depending on who is exiting first.
198 atomic_set(&tg
->ref
, 1);
200 /* Add group onto cgroup list */
201 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
202 blkiocg_add_blkio_group(blkcg
, &tg
->blkg
, (void *)td
,
203 MKDEV(major
, minor
), BLKIO_POLICY_THROTL
);
205 tg
->bps
[READ
] = blkcg_get_read_bps(blkcg
, tg
->blkg
.dev
);
206 tg
->bps
[WRITE
] = blkcg_get_write_bps(blkcg
, tg
->blkg
.dev
);
207 tg
->iops
[READ
] = blkcg_get_read_iops(blkcg
, tg
->blkg
.dev
);
208 tg
->iops
[WRITE
] = blkcg_get_write_iops(blkcg
, tg
->blkg
.dev
);
210 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
211 td
->nr_undestroyed_grps
++;
216 static struct throtl_grp
* throtl_get_tg(struct throtl_data
*td
)
218 struct cgroup
*cgroup
;
219 struct throtl_grp
*tg
= NULL
;
222 cgroup
= task_cgroup(current
, blkio_subsys_id
);
223 tg
= throtl_find_alloc_tg(td
, cgroup
);
230 static struct throtl_grp
*throtl_rb_first(struct throtl_rb_root
*root
)
232 /* Service tree is empty */
237 root
->left
= rb_first(&root
->rb
);
240 return rb_entry_tg(root
->left
);
245 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
251 static void throtl_rb_erase(struct rb_node
*n
, struct throtl_rb_root
*root
)
255 rb_erase_init(n
, &root
->rb
);
259 static void update_min_dispatch_time(struct throtl_rb_root
*st
)
261 struct throtl_grp
*tg
;
263 tg
= throtl_rb_first(st
);
267 st
->min_disptime
= tg
->disptime
;
271 tg_service_tree_add(struct throtl_rb_root
*st
, struct throtl_grp
*tg
)
273 struct rb_node
**node
= &st
->rb
.rb_node
;
274 struct rb_node
*parent
= NULL
;
275 struct throtl_grp
*__tg
;
276 unsigned long key
= tg
->disptime
;
279 while (*node
!= NULL
) {
281 __tg
= rb_entry_tg(parent
);
283 if (time_before(key
, __tg
->disptime
))
284 node
= &parent
->rb_left
;
286 node
= &parent
->rb_right
;
292 st
->left
= &tg
->rb_node
;
294 rb_link_node(&tg
->rb_node
, parent
, node
);
295 rb_insert_color(&tg
->rb_node
, &st
->rb
);
298 static void __throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
300 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
302 tg_service_tree_add(st
, tg
);
303 throtl_mark_tg_on_rr(tg
);
307 static void throtl_enqueue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
309 if (!throtl_tg_on_rr(tg
))
310 __throtl_enqueue_tg(td
, tg
);
313 static void __throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
315 throtl_rb_erase(&tg
->rb_node
, &td
->tg_service_tree
);
316 throtl_clear_tg_on_rr(tg
);
319 static void throtl_dequeue_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
321 if (throtl_tg_on_rr(tg
))
322 __throtl_dequeue_tg(td
, tg
);
325 static void throtl_schedule_next_dispatch(struct throtl_data
*td
)
327 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
330 * If there are more bios pending, schedule more work.
332 if (!total_nr_queued(td
))
337 update_min_dispatch_time(st
);
339 if (time_before_eq(st
->min_disptime
, jiffies
))
340 throtl_schedule_delayed_work(td
->queue
, 0);
342 throtl_schedule_delayed_work(td
->queue
,
343 (st
->min_disptime
- jiffies
));
347 throtl_start_new_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
349 tg
->bytes_disp
[rw
] = 0;
351 tg
->slice_start
[rw
] = jiffies
;
352 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
353 throtl_log_tg(td
, tg
, "[%c] new slice start=%lu end=%lu jiffies=%lu",
354 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
355 tg
->slice_end
[rw
], jiffies
);
358 static inline void throtl_set_slice_end(struct throtl_data
*td
,
359 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
361 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
364 static inline void throtl_extend_slice(struct throtl_data
*td
,
365 struct throtl_grp
*tg
, bool rw
, unsigned long jiffy_end
)
367 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
368 throtl_log_tg(td
, tg
, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
369 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
370 tg
->slice_end
[rw
], jiffies
);
373 /* Determine if previously allocated or extended slice is complete or not */
375 throtl_slice_used(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
377 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
383 /* Trim the used slices and adjust slice start accordingly */
385 throtl_trim_slice(struct throtl_data
*td
, struct throtl_grp
*tg
, bool rw
)
387 unsigned long nr_slices
, time_elapsed
, io_trim
;
390 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
393 * If bps are unlimited (-1), then time slice don't get
394 * renewed. Don't try to trim the slice if slice is used. A new
395 * slice will start when appropriate.
397 if (throtl_slice_used(td
, tg
, rw
))
401 * A bio has been dispatched. Also adjust slice_end. It might happen
402 * that initially cgroup limit was very low resulting in high
403 * slice_end, but later limit was bumped up and bio was dispached
404 * sooner, then we need to reduce slice_end. A high bogus slice_end
405 * is bad because it does not allow new slice to start.
408 throtl_set_slice_end(td
, tg
, rw
, jiffies
+ throtl_slice
);
410 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
412 nr_slices
= time_elapsed
/ throtl_slice
;
416 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
420 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
422 if (!bytes_trim
&& !io_trim
)
425 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
426 tg
->bytes_disp
[rw
] -= bytes_trim
;
428 tg
->bytes_disp
[rw
] = 0;
430 if (tg
->io_disp
[rw
] >= io_trim
)
431 tg
->io_disp
[rw
] -= io_trim
;
435 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
437 throtl_log_tg(td
, tg
, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
438 " start=%lu end=%lu jiffies=%lu",
439 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
440 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
443 static bool tg_with_in_iops_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
444 struct bio
*bio
, unsigned long *wait
)
446 bool rw
= bio_data_dir(bio
);
447 unsigned int io_allowed
;
448 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
451 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
453 /* Slice has just started. Consider one slice interval */
455 jiffy_elapsed_rnd
= throtl_slice
;
457 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
460 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
461 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
462 * will allow dispatch after 1 second and after that slice should
466 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
470 io_allowed
= UINT_MAX
;
474 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
480 /* Calc approx time to dispatch */
481 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
483 if (jiffy_wait
> jiffy_elapsed
)
484 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
493 static bool tg_with_in_bps_limit(struct throtl_data
*td
, struct throtl_grp
*tg
,
494 struct bio
*bio
, unsigned long *wait
)
496 bool rw
= bio_data_dir(bio
);
497 u64 bytes_allowed
, extra_bytes
, tmp
;
498 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
500 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
502 /* Slice has just started. Consider one slice interval */
504 jiffy_elapsed_rnd
= throtl_slice
;
506 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
508 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
512 if (tg
->bytes_disp
[rw
] + bio
->bi_size
<= bytes_allowed
) {
518 /* Calc approx time to dispatch */
519 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_size
- bytes_allowed
;
520 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
526 * This wait time is without taking into consideration the rounding
527 * up we did. Add that time also.
529 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
536 * Returns whether one can dispatch a bio or not. Also returns approx number
537 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
539 static bool tg_may_dispatch(struct throtl_data
*td
, struct throtl_grp
*tg
,
540 struct bio
*bio
, unsigned long *wait
)
542 bool rw
= bio_data_dir(bio
);
543 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
546 * Currently whole state machine of group depends on first bio
547 * queued in the group bio list. So one should not be calling
548 * this function with a different bio if there are other bios
551 BUG_ON(tg
->nr_queued
[rw
] && bio
!= bio_list_peek(&tg
->bio_lists
[rw
]));
553 /* If tg->bps = -1, then BW is unlimited */
554 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
561 * If previous slice expired, start a new one otherwise renew/extend
562 * existing slice to make sure it is at least throtl_slice interval
565 if (throtl_slice_used(td
, tg
, rw
))
566 throtl_start_new_slice(td
, tg
, rw
);
568 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
569 throtl_extend_slice(td
, tg
, rw
, jiffies
+ throtl_slice
);
572 if (tg_with_in_bps_limit(td
, tg
, bio
, &bps_wait
)
573 && tg_with_in_iops_limit(td
, tg
, bio
, &iops_wait
)) {
579 max_wait
= max(bps_wait
, iops_wait
);
584 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
585 throtl_extend_slice(td
, tg
, rw
, jiffies
+ max_wait
);
590 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
592 bool rw
= bio_data_dir(bio
);
593 bool sync
= bio
->bi_rw
& REQ_SYNC
;
595 /* Charge the bio to the group */
596 tg
->bytes_disp
[rw
] += bio
->bi_size
;
600 * TODO: This will take blkg->stats_lock. Figure out a way
601 * to avoid this cost.
603 blkiocg_update_dispatch_stats(&tg
->blkg
, bio
->bi_size
, rw
, sync
);
606 static void throtl_add_bio_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
609 bool rw
= bio_data_dir(bio
);
611 bio_list_add(&tg
->bio_lists
[rw
], bio
);
612 /* Take a bio reference on tg */
613 throtl_ref_get_tg(tg
);
616 throtl_enqueue_tg(td
, tg
);
619 static void tg_update_disptime(struct throtl_data
*td
, struct throtl_grp
*tg
)
621 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
624 if ((bio
= bio_list_peek(&tg
->bio_lists
[READ
])))
625 tg_may_dispatch(td
, tg
, bio
, &read_wait
);
627 if ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
])))
628 tg_may_dispatch(td
, tg
, bio
, &write_wait
);
630 min_wait
= min(read_wait
, write_wait
);
631 disptime
= jiffies
+ min_wait
;
633 /* Update dispatch time */
634 throtl_dequeue_tg(td
, tg
);
635 tg
->disptime
= disptime
;
636 throtl_enqueue_tg(td
, tg
);
639 static void tg_dispatch_one_bio(struct throtl_data
*td
, struct throtl_grp
*tg
,
640 bool rw
, struct bio_list
*bl
)
644 bio
= bio_list_pop(&tg
->bio_lists
[rw
]);
646 /* Drop bio reference on tg */
649 BUG_ON(td
->nr_queued
[rw
] <= 0);
652 throtl_charge_bio(tg
, bio
);
653 bio_list_add(bl
, bio
);
654 bio
->bi_rw
|= REQ_THROTTLED
;
656 throtl_trim_slice(td
, tg
, rw
);
659 static int throtl_dispatch_tg(struct throtl_data
*td
, struct throtl_grp
*tg
,
662 unsigned int nr_reads
= 0, nr_writes
= 0;
663 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
664 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
667 /* Try to dispatch 75% READS and 25% WRITES */
669 while ((bio
= bio_list_peek(&tg
->bio_lists
[READ
]))
670 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
672 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
675 if (nr_reads
>= max_nr_reads
)
679 while ((bio
= bio_list_peek(&tg
->bio_lists
[WRITE
]))
680 && tg_may_dispatch(td
, tg
, bio
, NULL
)) {
682 tg_dispatch_one_bio(td
, tg
, bio_data_dir(bio
), bl
);
685 if (nr_writes
>= max_nr_writes
)
689 return nr_reads
+ nr_writes
;
692 static int throtl_select_dispatch(struct throtl_data
*td
, struct bio_list
*bl
)
694 unsigned int nr_disp
= 0;
695 struct throtl_grp
*tg
;
696 struct throtl_rb_root
*st
= &td
->tg_service_tree
;
699 tg
= throtl_rb_first(st
);
704 if (time_before(jiffies
, tg
->disptime
))
707 throtl_dequeue_tg(td
, tg
);
709 nr_disp
+= throtl_dispatch_tg(td
, tg
, bl
);
711 if (tg
->nr_queued
[0] || tg
->nr_queued
[1]) {
712 tg_update_disptime(td
, tg
);
713 throtl_enqueue_tg(td
, tg
);
716 if (nr_disp
>= throtl_quantum
)
723 static void throtl_process_limit_change(struct throtl_data
*td
)
725 struct throtl_grp
*tg
;
726 struct hlist_node
*pos
, *n
;
728 if (!atomic_read(&td
->limits_changed
))
731 throtl_log(td
, "limit changed =%d", atomic_read(&td
->limits_changed
));
734 * Make sure updates from throtl_update_blkio_group_read_bps() group
735 * of functions to tg->limits_changed are visible. We do not
736 * want update td->limits_changed to be visible but update to
737 * tg->limits_changed not being visible yet on this cpu. Hence
742 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
743 if (throtl_tg_on_rr(tg
) && tg
->limits_changed
) {
744 throtl_log_tg(td
, tg
, "limit change rbps=%llu wbps=%llu"
745 " riops=%u wiops=%u", tg
->bps
[READ
],
746 tg
->bps
[WRITE
], tg
->iops
[READ
],
748 tg_update_disptime(td
, tg
);
749 tg
->limits_changed
= false;
753 smp_mb__before_atomic_dec();
754 atomic_dec(&td
->limits_changed
);
755 smp_mb__after_atomic_dec();
758 /* Dispatch throttled bios. Should be called without queue lock held. */
759 static int throtl_dispatch(struct request_queue
*q
)
761 struct throtl_data
*td
= q
->td
;
762 unsigned int nr_disp
= 0;
763 struct bio_list bio_list_on_stack
;
766 spin_lock_irq(q
->queue_lock
);
768 throtl_process_limit_change(td
);
770 if (!total_nr_queued(td
))
773 bio_list_init(&bio_list_on_stack
);
775 throtl_log(td
, "dispatch nr_queued=%lu read=%u write=%u",
776 total_nr_queued(td
), td
->nr_queued
[READ
],
777 td
->nr_queued
[WRITE
]);
779 nr_disp
= throtl_select_dispatch(td
, &bio_list_on_stack
);
782 throtl_log(td
, "bios disp=%u", nr_disp
);
784 throtl_schedule_next_dispatch(td
);
786 spin_unlock_irq(q
->queue_lock
);
789 * If we dispatched some requests, unplug the queue to make sure
793 while((bio
= bio_list_pop(&bio_list_on_stack
)))
794 generic_make_request(bio
);
800 void blk_throtl_work(struct work_struct
*work
)
802 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
804 struct request_queue
*q
= td
->queue
;
809 /* Call with queue lock held */
810 void throtl_schedule_delayed_work(struct request_queue
*q
, unsigned long delay
)
813 struct throtl_data
*td
= q
->td
;
814 struct delayed_work
*dwork
= &td
->throtl_work
;
816 if (total_nr_queued(td
) > 0) {
818 * We might have a work scheduled to be executed in future.
819 * Cancel that and schedule a new one.
821 __cancel_delayed_work(dwork
);
822 kblockd_schedule_delayed_work(q
, dwork
, delay
);
823 throtl_log(td
, "schedule work. delay=%lu jiffies=%lu",
827 EXPORT_SYMBOL(throtl_schedule_delayed_work
);
830 throtl_destroy_tg(struct throtl_data
*td
, struct throtl_grp
*tg
)
832 /* Something wrong if we are trying to remove same group twice */
833 BUG_ON(hlist_unhashed(&tg
->tg_node
));
835 hlist_del_init(&tg
->tg_node
);
838 * Put the reference taken at the time of creation so that when all
839 * queues are gone, group can be destroyed.
842 td
->nr_undestroyed_grps
--;
845 static void throtl_release_tgs(struct throtl_data
*td
)
847 struct hlist_node
*pos
, *n
;
848 struct throtl_grp
*tg
;
850 hlist_for_each_entry_safe(tg
, pos
, n
, &td
->tg_list
, tg_node
) {
852 * If cgroup removal path got to blk_group first and removed
853 * it from cgroup list, then it will take care of destroying
856 if (!blkiocg_del_blkio_group(&tg
->blkg
))
857 throtl_destroy_tg(td
, tg
);
861 static void throtl_td_free(struct throtl_data
*td
)
867 * Blk cgroup controller notification saying that blkio_group object is being
868 * delinked as associated cgroup object is going away. That also means that
869 * no new IO will come in this group. So get rid of this group as soon as
870 * any pending IO in the group is finished.
872 * This function is called under rcu_read_lock(). key is the rcu protected
873 * pointer. That means "key" is a valid throtl_data pointer as long as we are
876 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
877 * it should not be NULL as even if queue was going away, cgroup deltion
878 * path got to it first.
880 void throtl_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
883 struct throtl_data
*td
= key
;
885 spin_lock_irqsave(td
->queue
->queue_lock
, flags
);
886 throtl_destroy_tg(td
, tg_of_blkg(blkg
));
887 spin_unlock_irqrestore(td
->queue
->queue_lock
, flags
);
891 * For all update functions, key should be a valid pointer because these
892 * update functions are called under blkcg_lock, that means, blkg is
893 * valid and in turn key is valid. queue exit path can not race becuase
896 * Can not take queue lock in update functions as queue lock under blkcg_lock
897 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
899 static void throtl_update_blkio_group_read_bps(void *key
,
900 struct blkio_group
*blkg
, u64 read_bps
)
902 struct throtl_data
*td
= key
;
904 tg_of_blkg(blkg
)->bps
[READ
] = read_bps
;
905 /* Make sure read_bps is updated before setting limits_changed */
907 tg_of_blkg(blkg
)->limits_changed
= true;
909 /* Make sure tg->limits_changed is updated before td->limits_changed */
910 smp_mb__before_atomic_inc();
911 atomic_inc(&td
->limits_changed
);
912 smp_mb__after_atomic_inc();
914 /* Schedule a work now to process the limit change */
915 throtl_schedule_delayed_work(td
->queue
, 0);
918 static void throtl_update_blkio_group_write_bps(void *key
,
919 struct blkio_group
*blkg
, u64 write_bps
)
921 struct throtl_data
*td
= key
;
923 tg_of_blkg(blkg
)->bps
[WRITE
] = write_bps
;
925 tg_of_blkg(blkg
)->limits_changed
= true;
926 smp_mb__before_atomic_inc();
927 atomic_inc(&td
->limits_changed
);
928 smp_mb__after_atomic_inc();
929 throtl_schedule_delayed_work(td
->queue
, 0);
932 static void throtl_update_blkio_group_read_iops(void *key
,
933 struct blkio_group
*blkg
, unsigned int read_iops
)
935 struct throtl_data
*td
= key
;
937 tg_of_blkg(blkg
)->iops
[READ
] = read_iops
;
939 tg_of_blkg(blkg
)->limits_changed
= true;
940 smp_mb__before_atomic_inc();
941 atomic_inc(&td
->limits_changed
);
942 smp_mb__after_atomic_inc();
943 throtl_schedule_delayed_work(td
->queue
, 0);
946 static void throtl_update_blkio_group_write_iops(void *key
,
947 struct blkio_group
*blkg
, unsigned int write_iops
)
949 struct throtl_data
*td
= key
;
951 tg_of_blkg(blkg
)->iops
[WRITE
] = write_iops
;
953 tg_of_blkg(blkg
)->limits_changed
= true;
954 smp_mb__before_atomic_inc();
955 atomic_inc(&td
->limits_changed
);
956 smp_mb__after_atomic_inc();
957 throtl_schedule_delayed_work(td
->queue
, 0);
960 void throtl_shutdown_timer_wq(struct request_queue
*q
)
962 struct throtl_data
*td
= q
->td
;
964 cancel_delayed_work_sync(&td
->throtl_work
);
967 static struct blkio_policy_type blkio_policy_throtl
= {
969 .blkio_unlink_group_fn
= throtl_unlink_blkio_group
,
970 .blkio_update_group_read_bps_fn
=
971 throtl_update_blkio_group_read_bps
,
972 .blkio_update_group_write_bps_fn
=
973 throtl_update_blkio_group_write_bps
,
974 .blkio_update_group_read_iops_fn
=
975 throtl_update_blkio_group_read_iops
,
976 .blkio_update_group_write_iops_fn
=
977 throtl_update_blkio_group_write_iops
,
979 .plid
= BLKIO_POLICY_THROTL
,
982 int blk_throtl_bio(struct request_queue
*q
, struct bio
**biop
)
984 struct throtl_data
*td
= q
->td
;
985 struct throtl_grp
*tg
;
986 struct bio
*bio
= *biop
;
987 bool rw
= bio_data_dir(bio
), update_disptime
= true;
989 if (bio
->bi_rw
& REQ_THROTTLED
) {
990 bio
->bi_rw
&= ~REQ_THROTTLED
;
994 spin_lock_irq(q
->queue_lock
);
995 tg
= throtl_get_tg(td
);
997 if (tg
->nr_queued
[rw
]) {
999 * There is already another bio queued in same dir. No
1000 * need to update dispatch time.
1001 * Still update the disptime if rate limits on this group
1004 if (!tg
->limits_changed
)
1005 update_disptime
= false;
1007 tg
->limits_changed
= false;
1012 /* Bio is with-in rate limit of group */
1013 if (tg_may_dispatch(td
, tg
, bio
, NULL
)) {
1014 throtl_charge_bio(tg
, bio
);
1019 throtl_log_tg(td
, tg
, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1020 " iodisp=%u iops=%u queued=%d/%d",
1021 rw
== READ
? 'R' : 'W',
1022 tg
->bytes_disp
[rw
], bio
->bi_size
, tg
->bps
[rw
],
1023 tg
->io_disp
[rw
], tg
->iops
[rw
],
1024 tg
->nr_queued
[READ
], tg
->nr_queued
[WRITE
]);
1026 throtl_add_bio_tg(q
->td
, tg
, bio
);
1029 if (update_disptime
) {
1030 tg_update_disptime(td
, tg
);
1031 throtl_schedule_next_dispatch(td
);
1035 spin_unlock_irq(q
->queue_lock
);
1039 int blk_throtl_init(struct request_queue
*q
)
1041 struct throtl_data
*td
;
1042 struct throtl_grp
*tg
;
1044 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1048 INIT_HLIST_HEAD(&td
->tg_list
);
1049 td
->tg_service_tree
= THROTL_RB_ROOT
;
1050 atomic_set(&td
->limits_changed
, 0);
1052 /* Init root group */
1054 INIT_HLIST_NODE(&tg
->tg_node
);
1055 RB_CLEAR_NODE(&tg
->rb_node
);
1056 bio_list_init(&tg
->bio_lists
[0]);
1057 bio_list_init(&tg
->bio_lists
[1]);
1059 /* Practically unlimited BW */
1060 tg
->bps
[0] = tg
->bps
[1] = -1;
1061 tg
->iops
[0] = tg
->iops
[1] = -1;
1064 * Set root group reference to 2. One reference will be dropped when
1065 * all groups on tg_list are being deleted during queue exit. Other
1066 * reference will remain there as we don't want to delete this group
1067 * as it is statically allocated and gets destroyed when throtl_data
1070 atomic_set(&tg
->ref
, 2);
1071 hlist_add_head(&tg
->tg_node
, &td
->tg_list
);
1072 td
->nr_undestroyed_grps
++;
1074 INIT_DELAYED_WORK(&td
->throtl_work
, blk_throtl_work
);
1077 blkiocg_add_blkio_group(&blkio_root_cgroup
, &tg
->blkg
, (void *)td
,
1078 0, BLKIO_POLICY_THROTL
);
1081 /* Attach throtl data to request queue */
1087 void blk_throtl_exit(struct request_queue
*q
)
1089 struct throtl_data
*td
= q
->td
;
1094 throtl_shutdown_timer_wq(q
);
1096 spin_lock_irq(q
->queue_lock
);
1097 throtl_release_tgs(td
);
1099 /* If there are other groups */
1100 if (td
->nr_undestroyed_grps
> 0)
1103 spin_unlock_irq(q
->queue_lock
);
1106 * Wait for tg->blkg->key accessors to exit their grace periods.
1107 * Do this wait only if there are other undestroyed groups out
1108 * there (other than root group). This can happen if cgroup deletion
1109 * path claimed the responsibility of cleaning up a group before
1110 * queue cleanup code get to the group.
1112 * Do not call synchronize_rcu() unconditionally as there are drivers
1113 * which create/delete request queue hundreds of times during scan/boot
1114 * and synchronize_rcu() can take significant time and slow down boot.
1120 * Just being safe to make sure after previous flush if some body did
1121 * update limits through cgroup and another work got queued, cancel
1124 throtl_shutdown_timer_wq(q
);
1128 static int __init
throtl_init(void)
1130 blkio_policy_register(&blkio_policy_throtl
);
1134 module_init(throtl_init
);