fix for account_group_exec_runtime(), make sure ->signal can't be freed under rq...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob50a21f964679ec42eee299cab7f7f86edc26a408
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned int nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
418 #ifdef CONFIG_SMP
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
441 #endif
442 #endif
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
472 #ifdef CONFIG_SMP
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
504 #endif
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
534 struct cfs_rq cfs;
535 struct rt_rq rt;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
557 u64 clock;
559 atomic_t nr_iowait;
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
656 * runqueue_is_locked
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
709 return 0;
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
742 kfree(buf);
744 return r;
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
756 if (cnt > 63)
757 cnt = 63;
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
762 buf[cnt] = 0;
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
781 if (!sched_feat_names[i])
782 return -EINVAL;
784 filp->f_pos += cnt;
786 return cnt;
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
904 #ifdef CONFIG_SMP
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
921 #ifdef CONFIG_SMP
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
983 spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
989 spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
998 struct rq *rq;
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1004 return rq;
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1057 #ifdef CONFIG_SMP
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1107 return NOTIFY_DONE;
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1114 #else
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1165 #ifdef CONFIG_SMP
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1171 static void resched_task(struct task_struct *p)
1173 int cpu;
1175 assert_spin_locked(&task_rq(p)->lock);
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1178 return;
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1203 #ifdef CONFIG_NO_HZ
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1219 return;
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1229 return;
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1255 #else
1256 # define WMULT_CONST (1UL << 32)
1257 #endif
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1273 u64 tmp;
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1283 tmp = (u64)delta_exec * weight;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1289 WMULT_SHIFT/2);
1290 else
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1298 lw->weight += inc;
1299 lw->inv_weight = 0;
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1304 lw->weight -= dec;
1305 lw->inv_weight = 0;
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1374 #ifdef CONFIG_SMP
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1381 static int
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1385 #endif
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389 #else
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391 #endif
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1395 update_load_add(&rq->load, load);
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1400 update_load_sub(&rq->load, load);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1412 struct task_group *parent, *child;
1413 int ret;
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1426 continue;
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1439 return ret;
1442 static int tg_nop(struct task_group *tg, void *data)
1444 return 0;
1446 #endif
1448 #ifdef CONFIG_SMP
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1455 struct rq *rq = cpu_rq(cpu);
1457 if (rq->nr_running)
1458 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1460 return rq->avg_load_per_task;
1463 #ifdef CONFIG_FAIR_GROUP_SCHED
1465 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1468 * Calculate and set the cpu's group shares.
1470 static void
1471 update_group_shares_cpu(struct task_group *tg, int cpu,
1472 unsigned long sd_shares, unsigned long sd_rq_weight)
1474 int boost = 0;
1475 unsigned long shares;
1476 unsigned long rq_weight;
1478 if (!tg->se[cpu])
1479 return;
1481 rq_weight = tg->cfs_rq[cpu]->load.weight;
1484 * If there are currently no tasks on the cpu pretend there is one of
1485 * average load so that when a new task gets to run here it will not
1486 * get delayed by group starvation.
1488 if (!rq_weight) {
1489 boost = 1;
1490 rq_weight = NICE_0_LOAD;
1493 if (unlikely(rq_weight > sd_rq_weight))
1494 rq_weight = sd_rq_weight;
1497 * \Sum shares * rq_weight
1498 * shares = -----------------------
1499 * \Sum rq_weight
1502 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1503 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1505 if (abs(shares - tg->se[cpu]->load.weight) >
1506 sysctl_sched_shares_thresh) {
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long flags;
1510 spin_lock_irqsave(&rq->lock, flags);
1512 * record the actual number of shares, not the boosted amount.
1514 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1515 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1517 __set_se_shares(tg->se[cpu], shares);
1518 spin_unlock_irqrestore(&rq->lock, flags);
1523 * Re-compute the task group their per cpu shares over the given domain.
1524 * This needs to be done in a bottom-up fashion because the rq weight of a
1525 * parent group depends on the shares of its child groups.
1527 static int tg_shares_up(struct task_group *tg, void *data)
1529 unsigned long rq_weight = 0;
1530 unsigned long shares = 0;
1531 struct sched_domain *sd = data;
1532 int i;
1534 for_each_cpu_mask(i, sd->span) {
1535 rq_weight += tg->cfs_rq[i]->load.weight;
1536 shares += tg->cfs_rq[i]->shares;
1539 if ((!shares && rq_weight) || shares > tg->shares)
1540 shares = tg->shares;
1542 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1543 shares = tg->shares;
1545 if (!rq_weight)
1546 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1548 for_each_cpu_mask(i, sd->span)
1549 update_group_shares_cpu(tg, i, shares, rq_weight);
1551 return 0;
1555 * Compute the cpu's hierarchical load factor for each task group.
1556 * This needs to be done in a top-down fashion because the load of a child
1557 * group is a fraction of its parents load.
1559 static int tg_load_down(struct task_group *tg, void *data)
1561 unsigned long load;
1562 long cpu = (long)data;
1564 if (!tg->parent) {
1565 load = cpu_rq(cpu)->load.weight;
1566 } else {
1567 load = tg->parent->cfs_rq[cpu]->h_load;
1568 load *= tg->cfs_rq[cpu]->shares;
1569 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1572 tg->cfs_rq[cpu]->h_load = load;
1574 return 0;
1577 static void update_shares(struct sched_domain *sd)
1579 u64 now = cpu_clock(raw_smp_processor_id());
1580 s64 elapsed = now - sd->last_update;
1582 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1583 sd->last_update = now;
1584 walk_tg_tree(tg_nop, tg_shares_up, sd);
1588 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590 spin_unlock(&rq->lock);
1591 update_shares(sd);
1592 spin_lock(&rq->lock);
1595 static void update_h_load(long cpu)
1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1600 #else
1602 static inline void update_shares(struct sched_domain *sd)
1606 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610 #endif
1612 #endif
1614 #ifdef CONFIG_FAIR_GROUP_SCHED
1615 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1617 #ifdef CONFIG_SMP
1618 cfs_rq->shares = shares;
1619 #endif
1621 #endif
1623 #include "sched_stats.h"
1624 #include "sched_idletask.c"
1625 #include "sched_fair.c"
1626 #include "sched_rt.c"
1627 #ifdef CONFIG_SCHED_DEBUG
1628 # include "sched_debug.c"
1629 #endif
1631 #define sched_class_highest (&rt_sched_class)
1632 #define for_each_class(class) \
1633 for (class = sched_class_highest; class; class = class->next)
1635 static void inc_nr_running(struct rq *rq)
1637 rq->nr_running++;
1640 static void dec_nr_running(struct rq *rq)
1642 rq->nr_running--;
1645 static void set_load_weight(struct task_struct *p)
1647 if (task_has_rt_policy(p)) {
1648 p->se.load.weight = prio_to_weight[0] * 2;
1649 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1650 return;
1654 * SCHED_IDLE tasks get minimal weight:
1656 if (p->policy == SCHED_IDLE) {
1657 p->se.load.weight = WEIGHT_IDLEPRIO;
1658 p->se.load.inv_weight = WMULT_IDLEPRIO;
1659 return;
1662 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1663 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1666 static void update_avg(u64 *avg, u64 sample)
1668 s64 diff = sample - *avg;
1669 *avg += diff >> 3;
1672 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1674 sched_info_queued(p);
1675 p->sched_class->enqueue_task(rq, p, wakeup);
1676 p->se.on_rq = 1;
1679 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1681 if (sleep && p->se.last_wakeup) {
1682 update_avg(&p->se.avg_overlap,
1683 p->se.sum_exec_runtime - p->se.last_wakeup);
1684 p->se.last_wakeup = 0;
1687 sched_info_dequeued(p);
1688 p->sched_class->dequeue_task(rq, p, sleep);
1689 p->se.on_rq = 0;
1693 * __normal_prio - return the priority that is based on the static prio
1695 static inline int __normal_prio(struct task_struct *p)
1697 return p->static_prio;
1701 * Calculate the expected normal priority: i.e. priority
1702 * without taking RT-inheritance into account. Might be
1703 * boosted by interactivity modifiers. Changes upon fork,
1704 * setprio syscalls, and whenever the interactivity
1705 * estimator recalculates.
1707 static inline int normal_prio(struct task_struct *p)
1709 int prio;
1711 if (task_has_rt_policy(p))
1712 prio = MAX_RT_PRIO-1 - p->rt_priority;
1713 else
1714 prio = __normal_prio(p);
1715 return prio;
1719 * Calculate the current priority, i.e. the priority
1720 * taken into account by the scheduler. This value might
1721 * be boosted by RT tasks, or might be boosted by
1722 * interactivity modifiers. Will be RT if the task got
1723 * RT-boosted. If not then it returns p->normal_prio.
1725 static int effective_prio(struct task_struct *p)
1727 p->normal_prio = normal_prio(p);
1729 * If we are RT tasks or we were boosted to RT priority,
1730 * keep the priority unchanged. Otherwise, update priority
1731 * to the normal priority:
1733 if (!rt_prio(p->prio))
1734 return p->normal_prio;
1735 return p->prio;
1739 * activate_task - move a task to the runqueue.
1741 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1743 if (task_contributes_to_load(p))
1744 rq->nr_uninterruptible--;
1746 enqueue_task(rq, p, wakeup);
1747 inc_nr_running(rq);
1751 * deactivate_task - remove a task from the runqueue.
1753 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1755 if (task_contributes_to_load(p))
1756 rq->nr_uninterruptible++;
1758 dequeue_task(rq, p, sleep);
1759 dec_nr_running(rq);
1763 * task_curr - is this task currently executing on a CPU?
1764 * @p: the task in question.
1766 inline int task_curr(const struct task_struct *p)
1768 return cpu_curr(task_cpu(p)) == p;
1771 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1773 set_task_rq(p, cpu);
1774 #ifdef CONFIG_SMP
1776 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1777 * successfuly executed on another CPU. We must ensure that updates of
1778 * per-task data have been completed by this moment.
1780 smp_wmb();
1781 task_thread_info(p)->cpu = cpu;
1782 #endif
1785 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1786 const struct sched_class *prev_class,
1787 int oldprio, int running)
1789 if (prev_class != p->sched_class) {
1790 if (prev_class->switched_from)
1791 prev_class->switched_from(rq, p, running);
1792 p->sched_class->switched_to(rq, p, running);
1793 } else
1794 p->sched_class->prio_changed(rq, p, oldprio, running);
1797 #ifdef CONFIG_SMP
1799 /* Used instead of source_load when we know the type == 0 */
1800 static unsigned long weighted_cpuload(const int cpu)
1802 return cpu_rq(cpu)->load.weight;
1806 * Is this task likely cache-hot:
1808 static int
1809 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1811 s64 delta;
1814 * Buddy candidates are cache hot:
1816 if (sched_feat(CACHE_HOT_BUDDY) &&
1817 (&p->se == cfs_rq_of(&p->se)->next ||
1818 &p->se == cfs_rq_of(&p->se)->last))
1819 return 1;
1821 if (p->sched_class != &fair_sched_class)
1822 return 0;
1824 if (sysctl_sched_migration_cost == -1)
1825 return 1;
1826 if (sysctl_sched_migration_cost == 0)
1827 return 0;
1829 delta = now - p->se.exec_start;
1831 return delta < (s64)sysctl_sched_migration_cost;
1835 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1837 int old_cpu = task_cpu(p);
1838 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1839 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1840 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1841 u64 clock_offset;
1843 clock_offset = old_rq->clock - new_rq->clock;
1845 #ifdef CONFIG_SCHEDSTATS
1846 if (p->se.wait_start)
1847 p->se.wait_start -= clock_offset;
1848 if (p->se.sleep_start)
1849 p->se.sleep_start -= clock_offset;
1850 if (p->se.block_start)
1851 p->se.block_start -= clock_offset;
1852 if (old_cpu != new_cpu) {
1853 schedstat_inc(p, se.nr_migrations);
1854 if (task_hot(p, old_rq->clock, NULL))
1855 schedstat_inc(p, se.nr_forced2_migrations);
1857 #endif
1858 p->se.vruntime -= old_cfsrq->min_vruntime -
1859 new_cfsrq->min_vruntime;
1861 __set_task_cpu(p, new_cpu);
1864 struct migration_req {
1865 struct list_head list;
1867 struct task_struct *task;
1868 int dest_cpu;
1870 struct completion done;
1874 * The task's runqueue lock must be held.
1875 * Returns true if you have to wait for migration thread.
1877 static int
1878 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1880 struct rq *rq = task_rq(p);
1883 * If the task is not on a runqueue (and not running), then
1884 * it is sufficient to simply update the task's cpu field.
1886 if (!p->se.on_rq && !task_running(rq, p)) {
1887 set_task_cpu(p, dest_cpu);
1888 return 0;
1891 init_completion(&req->done);
1892 req->task = p;
1893 req->dest_cpu = dest_cpu;
1894 list_add(&req->list, &rq->migration_queue);
1896 return 1;
1900 * wait_task_inactive - wait for a thread to unschedule.
1902 * If @match_state is nonzero, it's the @p->state value just checked and
1903 * not expected to change. If it changes, i.e. @p might have woken up,
1904 * then return zero. When we succeed in waiting for @p to be off its CPU,
1905 * we return a positive number (its total switch count). If a second call
1906 * a short while later returns the same number, the caller can be sure that
1907 * @p has remained unscheduled the whole time.
1909 * The caller must ensure that the task *will* unschedule sometime soon,
1910 * else this function might spin for a *long* time. This function can't
1911 * be called with interrupts off, or it may introduce deadlock with
1912 * smp_call_function() if an IPI is sent by the same process we are
1913 * waiting to become inactive.
1915 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1917 unsigned long flags;
1918 int running, on_rq;
1919 unsigned long ncsw;
1920 struct rq *rq;
1922 for (;;) {
1924 * We do the initial early heuristics without holding
1925 * any task-queue locks at all. We'll only try to get
1926 * the runqueue lock when things look like they will
1927 * work out!
1929 rq = task_rq(p);
1932 * If the task is actively running on another CPU
1933 * still, just relax and busy-wait without holding
1934 * any locks.
1936 * NOTE! Since we don't hold any locks, it's not
1937 * even sure that "rq" stays as the right runqueue!
1938 * But we don't care, since "task_running()" will
1939 * return false if the runqueue has changed and p
1940 * is actually now running somewhere else!
1942 while (task_running(rq, p)) {
1943 if (match_state && unlikely(p->state != match_state))
1944 return 0;
1945 cpu_relax();
1949 * Ok, time to look more closely! We need the rq
1950 * lock now, to be *sure*. If we're wrong, we'll
1951 * just go back and repeat.
1953 rq = task_rq_lock(p, &flags);
1954 trace_sched_wait_task(rq, p);
1955 running = task_running(rq, p);
1956 on_rq = p->se.on_rq;
1957 ncsw = 0;
1958 if (!match_state || p->state == match_state)
1959 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1960 task_rq_unlock(rq, &flags);
1963 * If it changed from the expected state, bail out now.
1965 if (unlikely(!ncsw))
1966 break;
1969 * Was it really running after all now that we
1970 * checked with the proper locks actually held?
1972 * Oops. Go back and try again..
1974 if (unlikely(running)) {
1975 cpu_relax();
1976 continue;
1980 * It's not enough that it's not actively running,
1981 * it must be off the runqueue _entirely_, and not
1982 * preempted!
1984 * So if it wa still runnable (but just not actively
1985 * running right now), it's preempted, and we should
1986 * yield - it could be a while.
1988 if (unlikely(on_rq)) {
1989 schedule_timeout_uninterruptible(1);
1990 continue;
1994 * Ahh, all good. It wasn't running, and it wasn't
1995 * runnable, which means that it will never become
1996 * running in the future either. We're all done!
1998 break;
2001 return ncsw;
2004 /***
2005 * kick_process - kick a running thread to enter/exit the kernel
2006 * @p: the to-be-kicked thread
2008 * Cause a process which is running on another CPU to enter
2009 * kernel-mode, without any delay. (to get signals handled.)
2011 * NOTE: this function doesnt have to take the runqueue lock,
2012 * because all it wants to ensure is that the remote task enters
2013 * the kernel. If the IPI races and the task has been migrated
2014 * to another CPU then no harm is done and the purpose has been
2015 * achieved as well.
2017 void kick_process(struct task_struct *p)
2019 int cpu;
2021 preempt_disable();
2022 cpu = task_cpu(p);
2023 if ((cpu != smp_processor_id()) && task_curr(p))
2024 smp_send_reschedule(cpu);
2025 preempt_enable();
2029 * Return a low guess at the load of a migration-source cpu weighted
2030 * according to the scheduling class and "nice" value.
2032 * We want to under-estimate the load of migration sources, to
2033 * balance conservatively.
2035 static unsigned long source_load(int cpu, int type)
2037 struct rq *rq = cpu_rq(cpu);
2038 unsigned long total = weighted_cpuload(cpu);
2040 if (type == 0 || !sched_feat(LB_BIAS))
2041 return total;
2043 return min(rq->cpu_load[type-1], total);
2047 * Return a high guess at the load of a migration-target cpu weighted
2048 * according to the scheduling class and "nice" value.
2050 static unsigned long target_load(int cpu, int type)
2052 struct rq *rq = cpu_rq(cpu);
2053 unsigned long total = weighted_cpuload(cpu);
2055 if (type == 0 || !sched_feat(LB_BIAS))
2056 return total;
2058 return max(rq->cpu_load[type-1], total);
2062 * find_idlest_group finds and returns the least busy CPU group within the
2063 * domain.
2065 static struct sched_group *
2066 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2068 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2069 unsigned long min_load = ULONG_MAX, this_load = 0;
2070 int load_idx = sd->forkexec_idx;
2071 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2073 do {
2074 unsigned long load, avg_load;
2075 int local_group;
2076 int i;
2078 /* Skip over this group if it has no CPUs allowed */
2079 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2080 continue;
2082 local_group = cpu_isset(this_cpu, group->cpumask);
2084 /* Tally up the load of all CPUs in the group */
2085 avg_load = 0;
2087 for_each_cpu_mask_nr(i, group->cpumask) {
2088 /* Bias balancing toward cpus of our domain */
2089 if (local_group)
2090 load = source_load(i, load_idx);
2091 else
2092 load = target_load(i, load_idx);
2094 avg_load += load;
2097 /* Adjust by relative CPU power of the group */
2098 avg_load = sg_div_cpu_power(group,
2099 avg_load * SCHED_LOAD_SCALE);
2101 if (local_group) {
2102 this_load = avg_load;
2103 this = group;
2104 } else if (avg_load < min_load) {
2105 min_load = avg_load;
2106 idlest = group;
2108 } while (group = group->next, group != sd->groups);
2110 if (!idlest || 100*this_load < imbalance*min_load)
2111 return NULL;
2112 return idlest;
2116 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2118 static int
2119 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2120 cpumask_t *tmp)
2122 unsigned long load, min_load = ULONG_MAX;
2123 int idlest = -1;
2124 int i;
2126 /* Traverse only the allowed CPUs */
2127 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2129 for_each_cpu_mask_nr(i, *tmp) {
2130 load = weighted_cpuload(i);
2132 if (load < min_load || (load == min_load && i == this_cpu)) {
2133 min_load = load;
2134 idlest = i;
2138 return idlest;
2142 * sched_balance_self: balance the current task (running on cpu) in domains
2143 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2144 * SD_BALANCE_EXEC.
2146 * Balance, ie. select the least loaded group.
2148 * Returns the target CPU number, or the same CPU if no balancing is needed.
2150 * preempt must be disabled.
2152 static int sched_balance_self(int cpu, int flag)
2154 struct task_struct *t = current;
2155 struct sched_domain *tmp, *sd = NULL;
2157 for_each_domain(cpu, tmp) {
2159 * If power savings logic is enabled for a domain, stop there.
2161 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2162 break;
2163 if (tmp->flags & flag)
2164 sd = tmp;
2167 if (sd)
2168 update_shares(sd);
2170 while (sd) {
2171 cpumask_t span, tmpmask;
2172 struct sched_group *group;
2173 int new_cpu, weight;
2175 if (!(sd->flags & flag)) {
2176 sd = sd->child;
2177 continue;
2180 span = sd->span;
2181 group = find_idlest_group(sd, t, cpu);
2182 if (!group) {
2183 sd = sd->child;
2184 continue;
2187 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2188 if (new_cpu == -1 || new_cpu == cpu) {
2189 /* Now try balancing at a lower domain level of cpu */
2190 sd = sd->child;
2191 continue;
2194 /* Now try balancing at a lower domain level of new_cpu */
2195 cpu = new_cpu;
2196 sd = NULL;
2197 weight = cpus_weight(span);
2198 for_each_domain(cpu, tmp) {
2199 if (weight <= cpus_weight(tmp->span))
2200 break;
2201 if (tmp->flags & flag)
2202 sd = tmp;
2204 /* while loop will break here if sd == NULL */
2207 return cpu;
2210 #endif /* CONFIG_SMP */
2212 /***
2213 * try_to_wake_up - wake up a thread
2214 * @p: the to-be-woken-up thread
2215 * @state: the mask of task states that can be woken
2216 * @sync: do a synchronous wakeup?
2218 * Put it on the run-queue if it's not already there. The "current"
2219 * thread is always on the run-queue (except when the actual
2220 * re-schedule is in progress), and as such you're allowed to do
2221 * the simpler "current->state = TASK_RUNNING" to mark yourself
2222 * runnable without the overhead of this.
2224 * returns failure only if the task is already active.
2226 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2228 int cpu, orig_cpu, this_cpu, success = 0;
2229 unsigned long flags;
2230 long old_state;
2231 struct rq *rq;
2233 if (!sched_feat(SYNC_WAKEUPS))
2234 sync = 0;
2236 #ifdef CONFIG_SMP
2237 if (sched_feat(LB_WAKEUP_UPDATE)) {
2238 struct sched_domain *sd;
2240 this_cpu = raw_smp_processor_id();
2241 cpu = task_cpu(p);
2243 for_each_domain(this_cpu, sd) {
2244 if (cpu_isset(cpu, sd->span)) {
2245 update_shares(sd);
2246 break;
2250 #endif
2252 smp_wmb();
2253 rq = task_rq_lock(p, &flags);
2254 old_state = p->state;
2255 if (!(old_state & state))
2256 goto out;
2258 if (p->se.on_rq)
2259 goto out_running;
2261 cpu = task_cpu(p);
2262 orig_cpu = cpu;
2263 this_cpu = smp_processor_id();
2265 #ifdef CONFIG_SMP
2266 if (unlikely(task_running(rq, p)))
2267 goto out_activate;
2269 cpu = p->sched_class->select_task_rq(p, sync);
2270 if (cpu != orig_cpu) {
2271 set_task_cpu(p, cpu);
2272 task_rq_unlock(rq, &flags);
2273 /* might preempt at this point */
2274 rq = task_rq_lock(p, &flags);
2275 old_state = p->state;
2276 if (!(old_state & state))
2277 goto out;
2278 if (p->se.on_rq)
2279 goto out_running;
2281 this_cpu = smp_processor_id();
2282 cpu = task_cpu(p);
2285 #ifdef CONFIG_SCHEDSTATS
2286 schedstat_inc(rq, ttwu_count);
2287 if (cpu == this_cpu)
2288 schedstat_inc(rq, ttwu_local);
2289 else {
2290 struct sched_domain *sd;
2291 for_each_domain(this_cpu, sd) {
2292 if (cpu_isset(cpu, sd->span)) {
2293 schedstat_inc(sd, ttwu_wake_remote);
2294 break;
2298 #endif /* CONFIG_SCHEDSTATS */
2300 out_activate:
2301 #endif /* CONFIG_SMP */
2302 schedstat_inc(p, se.nr_wakeups);
2303 if (sync)
2304 schedstat_inc(p, se.nr_wakeups_sync);
2305 if (orig_cpu != cpu)
2306 schedstat_inc(p, se.nr_wakeups_migrate);
2307 if (cpu == this_cpu)
2308 schedstat_inc(p, se.nr_wakeups_local);
2309 else
2310 schedstat_inc(p, se.nr_wakeups_remote);
2311 update_rq_clock(rq);
2312 activate_task(rq, p, 1);
2313 success = 1;
2315 out_running:
2316 trace_sched_wakeup(rq, p);
2317 check_preempt_curr(rq, p, sync);
2319 p->state = TASK_RUNNING;
2320 #ifdef CONFIG_SMP
2321 if (p->sched_class->task_wake_up)
2322 p->sched_class->task_wake_up(rq, p);
2323 #endif
2324 out:
2325 current->se.last_wakeup = current->se.sum_exec_runtime;
2327 task_rq_unlock(rq, &flags);
2329 return success;
2332 int wake_up_process(struct task_struct *p)
2334 return try_to_wake_up(p, TASK_ALL, 0);
2336 EXPORT_SYMBOL(wake_up_process);
2338 int wake_up_state(struct task_struct *p, unsigned int state)
2340 return try_to_wake_up(p, state, 0);
2344 * Perform scheduler related setup for a newly forked process p.
2345 * p is forked by current.
2347 * __sched_fork() is basic setup used by init_idle() too:
2349 static void __sched_fork(struct task_struct *p)
2351 p->se.exec_start = 0;
2352 p->se.sum_exec_runtime = 0;
2353 p->se.prev_sum_exec_runtime = 0;
2354 p->se.last_wakeup = 0;
2355 p->se.avg_overlap = 0;
2357 #ifdef CONFIG_SCHEDSTATS
2358 p->se.wait_start = 0;
2359 p->se.sum_sleep_runtime = 0;
2360 p->se.sleep_start = 0;
2361 p->se.block_start = 0;
2362 p->se.sleep_max = 0;
2363 p->se.block_max = 0;
2364 p->se.exec_max = 0;
2365 p->se.slice_max = 0;
2366 p->se.wait_max = 0;
2367 #endif
2369 INIT_LIST_HEAD(&p->rt.run_list);
2370 p->se.on_rq = 0;
2371 INIT_LIST_HEAD(&p->se.group_node);
2373 #ifdef CONFIG_PREEMPT_NOTIFIERS
2374 INIT_HLIST_HEAD(&p->preempt_notifiers);
2375 #endif
2378 * We mark the process as running here, but have not actually
2379 * inserted it onto the runqueue yet. This guarantees that
2380 * nobody will actually run it, and a signal or other external
2381 * event cannot wake it up and insert it on the runqueue either.
2383 p->state = TASK_RUNNING;
2387 * fork()/clone()-time setup:
2389 void sched_fork(struct task_struct *p, int clone_flags)
2391 int cpu = get_cpu();
2393 __sched_fork(p);
2395 #ifdef CONFIG_SMP
2396 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2397 #endif
2398 set_task_cpu(p, cpu);
2401 * Make sure we do not leak PI boosting priority to the child:
2403 p->prio = current->normal_prio;
2404 if (!rt_prio(p->prio))
2405 p->sched_class = &fair_sched_class;
2407 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2408 if (likely(sched_info_on()))
2409 memset(&p->sched_info, 0, sizeof(p->sched_info));
2410 #endif
2411 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2412 p->oncpu = 0;
2413 #endif
2414 #ifdef CONFIG_PREEMPT
2415 /* Want to start with kernel preemption disabled. */
2416 task_thread_info(p)->preempt_count = 1;
2417 #endif
2418 put_cpu();
2422 * wake_up_new_task - wake up a newly created task for the first time.
2424 * This function will do some initial scheduler statistics housekeeping
2425 * that must be done for every newly created context, then puts the task
2426 * on the runqueue and wakes it.
2428 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2430 unsigned long flags;
2431 struct rq *rq;
2433 rq = task_rq_lock(p, &flags);
2434 BUG_ON(p->state != TASK_RUNNING);
2435 update_rq_clock(rq);
2437 p->prio = effective_prio(p);
2439 if (!p->sched_class->task_new || !current->se.on_rq) {
2440 activate_task(rq, p, 0);
2441 } else {
2443 * Let the scheduling class do new task startup
2444 * management (if any):
2446 p->sched_class->task_new(rq, p);
2447 inc_nr_running(rq);
2449 trace_sched_wakeup_new(rq, p);
2450 check_preempt_curr(rq, p, 0);
2451 #ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2454 #endif
2455 task_rq_unlock(rq, &flags);
2458 #ifdef CONFIG_PREEMPT_NOTIFIERS
2461 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2462 * @notifier: notifier struct to register
2464 void preempt_notifier_register(struct preempt_notifier *notifier)
2466 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2468 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2471 * preempt_notifier_unregister - no longer interested in preemption notifications
2472 * @notifier: notifier struct to unregister
2474 * This is safe to call from within a preemption notifier.
2476 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2478 hlist_del(&notifier->link);
2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2482 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2484 struct preempt_notifier *notifier;
2485 struct hlist_node *node;
2487 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2488 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2491 static void
2492 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2493 struct task_struct *next)
2495 struct preempt_notifier *notifier;
2496 struct hlist_node *node;
2498 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2499 notifier->ops->sched_out(notifier, next);
2502 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2504 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 static void
2509 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2510 struct task_struct *next)
2514 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2517 * prepare_task_switch - prepare to switch tasks
2518 * @rq: the runqueue preparing to switch
2519 * @prev: the current task that is being switched out
2520 * @next: the task we are going to switch to.
2522 * This is called with the rq lock held and interrupts off. It must
2523 * be paired with a subsequent finish_task_switch after the context
2524 * switch.
2526 * prepare_task_switch sets up locking and calls architecture specific
2527 * hooks.
2529 static inline void
2530 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2531 struct task_struct *next)
2533 fire_sched_out_preempt_notifiers(prev, next);
2534 prepare_lock_switch(rq, next);
2535 prepare_arch_switch(next);
2539 * finish_task_switch - clean up after a task-switch
2540 * @rq: runqueue associated with task-switch
2541 * @prev: the thread we just switched away from.
2543 * finish_task_switch must be called after the context switch, paired
2544 * with a prepare_task_switch call before the context switch.
2545 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2546 * and do any other architecture-specific cleanup actions.
2548 * Note that we may have delayed dropping an mm in context_switch(). If
2549 * so, we finish that here outside of the runqueue lock. (Doing it
2550 * with the lock held can cause deadlocks; see schedule() for
2551 * details.)
2553 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2554 __releases(rq->lock)
2556 struct mm_struct *mm = rq->prev_mm;
2557 long prev_state;
2559 rq->prev_mm = NULL;
2562 * A task struct has one reference for the use as "current".
2563 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2564 * schedule one last time. The schedule call will never return, and
2565 * the scheduled task must drop that reference.
2566 * The test for TASK_DEAD must occur while the runqueue locks are
2567 * still held, otherwise prev could be scheduled on another cpu, die
2568 * there before we look at prev->state, and then the reference would
2569 * be dropped twice.
2570 * Manfred Spraul <manfred@colorfullife.com>
2572 prev_state = prev->state;
2573 finish_arch_switch(prev);
2574 finish_lock_switch(rq, prev);
2575 #ifdef CONFIG_SMP
2576 if (current->sched_class->post_schedule)
2577 current->sched_class->post_schedule(rq);
2578 #endif
2580 fire_sched_in_preempt_notifiers(current);
2581 if (mm)
2582 mmdrop(mm);
2583 if (unlikely(prev_state == TASK_DEAD)) {
2585 * Remove function-return probe instances associated with this
2586 * task and put them back on the free list.
2588 kprobe_flush_task(prev);
2589 put_task_struct(prev);
2594 * schedule_tail - first thing a freshly forked thread must call.
2595 * @prev: the thread we just switched away from.
2597 asmlinkage void schedule_tail(struct task_struct *prev)
2598 __releases(rq->lock)
2600 struct rq *rq = this_rq();
2602 finish_task_switch(rq, prev);
2603 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2604 /* In this case, finish_task_switch does not reenable preemption */
2605 preempt_enable();
2606 #endif
2607 if (current->set_child_tid)
2608 put_user(task_pid_vnr(current), current->set_child_tid);
2612 * context_switch - switch to the new MM and the new
2613 * thread's register state.
2615 static inline void
2616 context_switch(struct rq *rq, struct task_struct *prev,
2617 struct task_struct *next)
2619 struct mm_struct *mm, *oldmm;
2621 prepare_task_switch(rq, prev, next);
2622 trace_sched_switch(rq, prev, next);
2623 mm = next->mm;
2624 oldmm = prev->active_mm;
2626 * For paravirt, this is coupled with an exit in switch_to to
2627 * combine the page table reload and the switch backend into
2628 * one hypercall.
2630 arch_enter_lazy_cpu_mode();
2632 if (unlikely(!mm)) {
2633 next->active_mm = oldmm;
2634 atomic_inc(&oldmm->mm_count);
2635 enter_lazy_tlb(oldmm, next);
2636 } else
2637 switch_mm(oldmm, mm, next);
2639 if (unlikely(!prev->mm)) {
2640 prev->active_mm = NULL;
2641 rq->prev_mm = oldmm;
2644 * Since the runqueue lock will be released by the next
2645 * task (which is an invalid locking op but in the case
2646 * of the scheduler it's an obvious special-case), so we
2647 * do an early lockdep release here:
2649 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2650 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2651 #endif
2653 /* Here we just switch the register state and the stack. */
2654 switch_to(prev, next, prev);
2656 barrier();
2658 * this_rq must be evaluated again because prev may have moved
2659 * CPUs since it called schedule(), thus the 'rq' on its stack
2660 * frame will be invalid.
2662 finish_task_switch(this_rq(), prev);
2666 * nr_running, nr_uninterruptible and nr_context_switches:
2668 * externally visible scheduler statistics: current number of runnable
2669 * threads, current number of uninterruptible-sleeping threads, total
2670 * number of context switches performed since bootup.
2672 unsigned long nr_running(void)
2674 unsigned long i, sum = 0;
2676 for_each_online_cpu(i)
2677 sum += cpu_rq(i)->nr_running;
2679 return sum;
2682 unsigned long nr_uninterruptible(void)
2684 unsigned long i, sum = 0;
2686 for_each_possible_cpu(i)
2687 sum += cpu_rq(i)->nr_uninterruptible;
2690 * Since we read the counters lockless, it might be slightly
2691 * inaccurate. Do not allow it to go below zero though:
2693 if (unlikely((long)sum < 0))
2694 sum = 0;
2696 return sum;
2699 unsigned long long nr_context_switches(void)
2701 int i;
2702 unsigned long long sum = 0;
2704 for_each_possible_cpu(i)
2705 sum += cpu_rq(i)->nr_switches;
2707 return sum;
2710 unsigned long nr_iowait(void)
2712 unsigned long i, sum = 0;
2714 for_each_possible_cpu(i)
2715 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2717 return sum;
2720 unsigned long nr_active(void)
2722 unsigned long i, running = 0, uninterruptible = 0;
2724 for_each_online_cpu(i) {
2725 running += cpu_rq(i)->nr_running;
2726 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2729 if (unlikely((long)uninterruptible < 0))
2730 uninterruptible = 0;
2732 return running + uninterruptible;
2736 * Update rq->cpu_load[] statistics. This function is usually called every
2737 * scheduler tick (TICK_NSEC).
2739 static void update_cpu_load(struct rq *this_rq)
2741 unsigned long this_load = this_rq->load.weight;
2742 int i, scale;
2744 this_rq->nr_load_updates++;
2746 /* Update our load: */
2747 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2748 unsigned long old_load, new_load;
2750 /* scale is effectively 1 << i now, and >> i divides by scale */
2752 old_load = this_rq->cpu_load[i];
2753 new_load = this_load;
2755 * Round up the averaging division if load is increasing. This
2756 * prevents us from getting stuck on 9 if the load is 10, for
2757 * example.
2759 if (new_load > old_load)
2760 new_load += scale-1;
2761 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2765 #ifdef CONFIG_SMP
2768 * double_rq_lock - safely lock two runqueues
2770 * Note this does not disable interrupts like task_rq_lock,
2771 * you need to do so manually before calling.
2773 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2774 __acquires(rq1->lock)
2775 __acquires(rq2->lock)
2777 BUG_ON(!irqs_disabled());
2778 if (rq1 == rq2) {
2779 spin_lock(&rq1->lock);
2780 __acquire(rq2->lock); /* Fake it out ;) */
2781 } else {
2782 if (rq1 < rq2) {
2783 spin_lock(&rq1->lock);
2784 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2785 } else {
2786 spin_lock(&rq2->lock);
2787 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2790 update_rq_clock(rq1);
2791 update_rq_clock(rq2);
2795 * double_rq_unlock - safely unlock two runqueues
2797 * Note this does not restore interrupts like task_rq_unlock,
2798 * you need to do so manually after calling.
2800 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2801 __releases(rq1->lock)
2802 __releases(rq2->lock)
2804 spin_unlock(&rq1->lock);
2805 if (rq1 != rq2)
2806 spin_unlock(&rq2->lock);
2807 else
2808 __release(rq2->lock);
2812 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2814 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2815 __releases(this_rq->lock)
2816 __acquires(busiest->lock)
2817 __acquires(this_rq->lock)
2819 int ret = 0;
2821 if (unlikely(!irqs_disabled())) {
2822 /* printk() doesn't work good under rq->lock */
2823 spin_unlock(&this_rq->lock);
2824 BUG_ON(1);
2826 if (unlikely(!spin_trylock(&busiest->lock))) {
2827 if (busiest < this_rq) {
2828 spin_unlock(&this_rq->lock);
2829 spin_lock(&busiest->lock);
2830 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2831 ret = 1;
2832 } else
2833 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2835 return ret;
2838 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2839 __releases(busiest->lock)
2841 spin_unlock(&busiest->lock);
2842 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2846 * If dest_cpu is allowed for this process, migrate the task to it.
2847 * This is accomplished by forcing the cpu_allowed mask to only
2848 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2849 * the cpu_allowed mask is restored.
2851 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2853 struct migration_req req;
2854 unsigned long flags;
2855 struct rq *rq;
2857 rq = task_rq_lock(p, &flags);
2858 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2859 || unlikely(!cpu_active(dest_cpu)))
2860 goto out;
2862 trace_sched_migrate_task(rq, p, dest_cpu);
2863 /* force the process onto the specified CPU */
2864 if (migrate_task(p, dest_cpu, &req)) {
2865 /* Need to wait for migration thread (might exit: take ref). */
2866 struct task_struct *mt = rq->migration_thread;
2868 get_task_struct(mt);
2869 task_rq_unlock(rq, &flags);
2870 wake_up_process(mt);
2871 put_task_struct(mt);
2872 wait_for_completion(&req.done);
2874 return;
2876 out:
2877 task_rq_unlock(rq, &flags);
2881 * sched_exec - execve() is a valuable balancing opportunity, because at
2882 * this point the task has the smallest effective memory and cache footprint.
2884 void sched_exec(void)
2886 int new_cpu, this_cpu = get_cpu();
2887 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2888 put_cpu();
2889 if (new_cpu != this_cpu)
2890 sched_migrate_task(current, new_cpu);
2894 * pull_task - move a task from a remote runqueue to the local runqueue.
2895 * Both runqueues must be locked.
2897 static void pull_task(struct rq *src_rq, struct task_struct *p,
2898 struct rq *this_rq, int this_cpu)
2900 deactivate_task(src_rq, p, 0);
2901 set_task_cpu(p, this_cpu);
2902 activate_task(this_rq, p, 0);
2904 * Note that idle threads have a prio of MAX_PRIO, for this test
2905 * to be always true for them.
2907 check_preempt_curr(this_rq, p, 0);
2911 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2913 static
2914 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2915 struct sched_domain *sd, enum cpu_idle_type idle,
2916 int *all_pinned)
2919 * We do not migrate tasks that are:
2920 * 1) running (obviously), or
2921 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2922 * 3) are cache-hot on their current CPU.
2924 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2925 schedstat_inc(p, se.nr_failed_migrations_affine);
2926 return 0;
2928 *all_pinned = 0;
2930 if (task_running(rq, p)) {
2931 schedstat_inc(p, se.nr_failed_migrations_running);
2932 return 0;
2936 * Aggressive migration if:
2937 * 1) task is cache cold, or
2938 * 2) too many balance attempts have failed.
2941 if (!task_hot(p, rq->clock, sd) ||
2942 sd->nr_balance_failed > sd->cache_nice_tries) {
2943 #ifdef CONFIG_SCHEDSTATS
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(sd, lb_hot_gained[idle]);
2946 schedstat_inc(p, se.nr_forced_migrations);
2948 #endif
2949 return 1;
2952 if (task_hot(p, rq->clock, sd)) {
2953 schedstat_inc(p, se.nr_failed_migrations_hot);
2954 return 0;
2956 return 1;
2959 static unsigned long
2960 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2961 unsigned long max_load_move, struct sched_domain *sd,
2962 enum cpu_idle_type idle, int *all_pinned,
2963 int *this_best_prio, struct rq_iterator *iterator)
2965 int loops = 0, pulled = 0, pinned = 0;
2966 struct task_struct *p;
2967 long rem_load_move = max_load_move;
2969 if (max_load_move == 0)
2970 goto out;
2972 pinned = 1;
2975 * Start the load-balancing iterator:
2977 p = iterator->start(iterator->arg);
2978 next:
2979 if (!p || loops++ > sysctl_sched_nr_migrate)
2980 goto out;
2982 if ((p->se.load.weight >> 1) > rem_load_move ||
2983 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2984 p = iterator->next(iterator->arg);
2985 goto next;
2988 pull_task(busiest, p, this_rq, this_cpu);
2989 pulled++;
2990 rem_load_move -= p->se.load.weight;
2993 * We only want to steal up to the prescribed amount of weighted load.
2995 if (rem_load_move > 0) {
2996 if (p->prio < *this_best_prio)
2997 *this_best_prio = p->prio;
2998 p = iterator->next(iterator->arg);
2999 goto next;
3001 out:
3003 * Right now, this is one of only two places pull_task() is called,
3004 * so we can safely collect pull_task() stats here rather than
3005 * inside pull_task().
3007 schedstat_add(sd, lb_gained[idle], pulled);
3009 if (all_pinned)
3010 *all_pinned = pinned;
3012 return max_load_move - rem_load_move;
3016 * move_tasks tries to move up to max_load_move weighted load from busiest to
3017 * this_rq, as part of a balancing operation within domain "sd".
3018 * Returns 1 if successful and 0 otherwise.
3020 * Called with both runqueues locked.
3022 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3023 unsigned long max_load_move,
3024 struct sched_domain *sd, enum cpu_idle_type idle,
3025 int *all_pinned)
3027 const struct sched_class *class = sched_class_highest;
3028 unsigned long total_load_moved = 0;
3029 int this_best_prio = this_rq->curr->prio;
3031 do {
3032 total_load_moved +=
3033 class->load_balance(this_rq, this_cpu, busiest,
3034 max_load_move - total_load_moved,
3035 sd, idle, all_pinned, &this_best_prio);
3036 class = class->next;
3038 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3039 break;
3041 } while (class && max_load_move > total_load_moved);
3043 return total_load_moved > 0;
3046 static int
3047 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3048 struct sched_domain *sd, enum cpu_idle_type idle,
3049 struct rq_iterator *iterator)
3051 struct task_struct *p = iterator->start(iterator->arg);
3052 int pinned = 0;
3054 while (p) {
3055 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3056 pull_task(busiest, p, this_rq, this_cpu);
3058 * Right now, this is only the second place pull_task()
3059 * is called, so we can safely collect pull_task()
3060 * stats here rather than inside pull_task().
3062 schedstat_inc(sd, lb_gained[idle]);
3064 return 1;
3066 p = iterator->next(iterator->arg);
3069 return 0;
3073 * move_one_task tries to move exactly one task from busiest to this_rq, as
3074 * part of active balancing operations within "domain".
3075 * Returns 1 if successful and 0 otherwise.
3077 * Called with both runqueues locked.
3079 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3080 struct sched_domain *sd, enum cpu_idle_type idle)
3082 const struct sched_class *class;
3084 for (class = sched_class_highest; class; class = class->next)
3085 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3086 return 1;
3088 return 0;
3092 * find_busiest_group finds and returns the busiest CPU group within the
3093 * domain. It calculates and returns the amount of weighted load which
3094 * should be moved to restore balance via the imbalance parameter.
3096 static struct sched_group *
3097 find_busiest_group(struct sched_domain *sd, int this_cpu,
3098 unsigned long *imbalance, enum cpu_idle_type idle,
3099 int *sd_idle, const cpumask_t *cpus, int *balance)
3101 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3102 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3103 unsigned long max_pull;
3104 unsigned long busiest_load_per_task, busiest_nr_running;
3105 unsigned long this_load_per_task, this_nr_running;
3106 int load_idx, group_imb = 0;
3107 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3108 int power_savings_balance = 1;
3109 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3110 unsigned long min_nr_running = ULONG_MAX;
3111 struct sched_group *group_min = NULL, *group_leader = NULL;
3112 #endif
3114 max_load = this_load = total_load = total_pwr = 0;
3115 busiest_load_per_task = busiest_nr_running = 0;
3116 this_load_per_task = this_nr_running = 0;
3118 if (idle == CPU_NOT_IDLE)
3119 load_idx = sd->busy_idx;
3120 else if (idle == CPU_NEWLY_IDLE)
3121 load_idx = sd->newidle_idx;
3122 else
3123 load_idx = sd->idle_idx;
3125 do {
3126 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3127 int local_group;
3128 int i;
3129 int __group_imb = 0;
3130 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3131 unsigned long sum_nr_running, sum_weighted_load;
3132 unsigned long sum_avg_load_per_task;
3133 unsigned long avg_load_per_task;
3135 local_group = cpu_isset(this_cpu, group->cpumask);
3137 if (local_group)
3138 balance_cpu = first_cpu(group->cpumask);
3140 /* Tally up the load of all CPUs in the group */
3141 sum_weighted_load = sum_nr_running = avg_load = 0;
3142 sum_avg_load_per_task = avg_load_per_task = 0;
3144 max_cpu_load = 0;
3145 min_cpu_load = ~0UL;
3147 for_each_cpu_mask_nr(i, group->cpumask) {
3148 struct rq *rq;
3150 if (!cpu_isset(i, *cpus))
3151 continue;
3153 rq = cpu_rq(i);
3155 if (*sd_idle && rq->nr_running)
3156 *sd_idle = 0;
3158 /* Bias balancing toward cpus of our domain */
3159 if (local_group) {
3160 if (idle_cpu(i) && !first_idle_cpu) {
3161 first_idle_cpu = 1;
3162 balance_cpu = i;
3165 load = target_load(i, load_idx);
3166 } else {
3167 load = source_load(i, load_idx);
3168 if (load > max_cpu_load)
3169 max_cpu_load = load;
3170 if (min_cpu_load > load)
3171 min_cpu_load = load;
3174 avg_load += load;
3175 sum_nr_running += rq->nr_running;
3176 sum_weighted_load += weighted_cpuload(i);
3178 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3182 * First idle cpu or the first cpu(busiest) in this sched group
3183 * is eligible for doing load balancing at this and above
3184 * domains. In the newly idle case, we will allow all the cpu's
3185 * to do the newly idle load balance.
3187 if (idle != CPU_NEWLY_IDLE && local_group &&
3188 balance_cpu != this_cpu && balance) {
3189 *balance = 0;
3190 goto ret;
3193 total_load += avg_load;
3194 total_pwr += group->__cpu_power;
3196 /* Adjust by relative CPU power of the group */
3197 avg_load = sg_div_cpu_power(group,
3198 avg_load * SCHED_LOAD_SCALE);
3202 * Consider the group unbalanced when the imbalance is larger
3203 * than the average weight of two tasks.
3205 * APZ: with cgroup the avg task weight can vary wildly and
3206 * might not be a suitable number - should we keep a
3207 * normalized nr_running number somewhere that negates
3208 * the hierarchy?
3210 avg_load_per_task = sg_div_cpu_power(group,
3211 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3213 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3214 __group_imb = 1;
3216 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3218 if (local_group) {
3219 this_load = avg_load;
3220 this = group;
3221 this_nr_running = sum_nr_running;
3222 this_load_per_task = sum_weighted_load;
3223 } else if (avg_load > max_load &&
3224 (sum_nr_running > group_capacity || __group_imb)) {
3225 max_load = avg_load;
3226 busiest = group;
3227 busiest_nr_running = sum_nr_running;
3228 busiest_load_per_task = sum_weighted_load;
3229 group_imb = __group_imb;
3232 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3234 * Busy processors will not participate in power savings
3235 * balance.
3237 if (idle == CPU_NOT_IDLE ||
3238 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3239 goto group_next;
3242 * If the local group is idle or completely loaded
3243 * no need to do power savings balance at this domain
3245 if (local_group && (this_nr_running >= group_capacity ||
3246 !this_nr_running))
3247 power_savings_balance = 0;
3250 * If a group is already running at full capacity or idle,
3251 * don't include that group in power savings calculations
3253 if (!power_savings_balance || sum_nr_running >= group_capacity
3254 || !sum_nr_running)
3255 goto group_next;
3258 * Calculate the group which has the least non-idle load.
3259 * This is the group from where we need to pick up the load
3260 * for saving power
3262 if ((sum_nr_running < min_nr_running) ||
3263 (sum_nr_running == min_nr_running &&
3264 first_cpu(group->cpumask) <
3265 first_cpu(group_min->cpumask))) {
3266 group_min = group;
3267 min_nr_running = sum_nr_running;
3268 min_load_per_task = sum_weighted_load /
3269 sum_nr_running;
3273 * Calculate the group which is almost near its
3274 * capacity but still has some space to pick up some load
3275 * from other group and save more power
3277 if (sum_nr_running <= group_capacity - 1) {
3278 if (sum_nr_running > leader_nr_running ||
3279 (sum_nr_running == leader_nr_running &&
3280 first_cpu(group->cpumask) >
3281 first_cpu(group_leader->cpumask))) {
3282 group_leader = group;
3283 leader_nr_running = sum_nr_running;
3286 group_next:
3287 #endif
3288 group = group->next;
3289 } while (group != sd->groups);
3291 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3292 goto out_balanced;
3294 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3296 if (this_load >= avg_load ||
3297 100*max_load <= sd->imbalance_pct*this_load)
3298 goto out_balanced;
3300 busiest_load_per_task /= busiest_nr_running;
3301 if (group_imb)
3302 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3305 * We're trying to get all the cpus to the average_load, so we don't
3306 * want to push ourselves above the average load, nor do we wish to
3307 * reduce the max loaded cpu below the average load, as either of these
3308 * actions would just result in more rebalancing later, and ping-pong
3309 * tasks around. Thus we look for the minimum possible imbalance.
3310 * Negative imbalances (*we* are more loaded than anyone else) will
3311 * be counted as no imbalance for these purposes -- we can't fix that
3312 * by pulling tasks to us. Be careful of negative numbers as they'll
3313 * appear as very large values with unsigned longs.
3315 if (max_load <= busiest_load_per_task)
3316 goto out_balanced;
3319 * In the presence of smp nice balancing, certain scenarios can have
3320 * max load less than avg load(as we skip the groups at or below
3321 * its cpu_power, while calculating max_load..)
3323 if (max_load < avg_load) {
3324 *imbalance = 0;
3325 goto small_imbalance;
3328 /* Don't want to pull so many tasks that a group would go idle */
3329 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3331 /* How much load to actually move to equalise the imbalance */
3332 *imbalance = min(max_pull * busiest->__cpu_power,
3333 (avg_load - this_load) * this->__cpu_power)
3334 / SCHED_LOAD_SCALE;
3337 * if *imbalance is less than the average load per runnable task
3338 * there is no gaurantee that any tasks will be moved so we'll have
3339 * a think about bumping its value to force at least one task to be
3340 * moved
3342 if (*imbalance < busiest_load_per_task) {
3343 unsigned long tmp, pwr_now, pwr_move;
3344 unsigned int imbn;
3346 small_imbalance:
3347 pwr_move = pwr_now = 0;
3348 imbn = 2;
3349 if (this_nr_running) {
3350 this_load_per_task /= this_nr_running;
3351 if (busiest_load_per_task > this_load_per_task)
3352 imbn = 1;
3353 } else
3354 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3356 if (max_load - this_load + busiest_load_per_task >=
3357 busiest_load_per_task * imbn) {
3358 *imbalance = busiest_load_per_task;
3359 return busiest;
3363 * OK, we don't have enough imbalance to justify moving tasks,
3364 * however we may be able to increase total CPU power used by
3365 * moving them.
3368 pwr_now += busiest->__cpu_power *
3369 min(busiest_load_per_task, max_load);
3370 pwr_now += this->__cpu_power *
3371 min(this_load_per_task, this_load);
3372 pwr_now /= SCHED_LOAD_SCALE;
3374 /* Amount of load we'd subtract */
3375 tmp = sg_div_cpu_power(busiest,
3376 busiest_load_per_task * SCHED_LOAD_SCALE);
3377 if (max_load > tmp)
3378 pwr_move += busiest->__cpu_power *
3379 min(busiest_load_per_task, max_load - tmp);
3381 /* Amount of load we'd add */
3382 if (max_load * busiest->__cpu_power <
3383 busiest_load_per_task * SCHED_LOAD_SCALE)
3384 tmp = sg_div_cpu_power(this,
3385 max_load * busiest->__cpu_power);
3386 else
3387 tmp = sg_div_cpu_power(this,
3388 busiest_load_per_task * SCHED_LOAD_SCALE);
3389 pwr_move += this->__cpu_power *
3390 min(this_load_per_task, this_load + tmp);
3391 pwr_move /= SCHED_LOAD_SCALE;
3393 /* Move if we gain throughput */
3394 if (pwr_move > pwr_now)
3395 *imbalance = busiest_load_per_task;
3398 return busiest;
3400 out_balanced:
3401 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3402 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3403 goto ret;
3405 if (this == group_leader && group_leader != group_min) {
3406 *imbalance = min_load_per_task;
3407 return group_min;
3409 #endif
3410 ret:
3411 *imbalance = 0;
3412 return NULL;
3416 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3418 static struct rq *
3419 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3420 unsigned long imbalance, const cpumask_t *cpus)
3422 struct rq *busiest = NULL, *rq;
3423 unsigned long max_load = 0;
3424 int i;
3426 for_each_cpu_mask_nr(i, group->cpumask) {
3427 unsigned long wl;
3429 if (!cpu_isset(i, *cpus))
3430 continue;
3432 rq = cpu_rq(i);
3433 wl = weighted_cpuload(i);
3435 if (rq->nr_running == 1 && wl > imbalance)
3436 continue;
3438 if (wl > max_load) {
3439 max_load = wl;
3440 busiest = rq;
3444 return busiest;
3448 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3449 * so long as it is large enough.
3451 #define MAX_PINNED_INTERVAL 512
3454 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3455 * tasks if there is an imbalance.
3457 static int load_balance(int this_cpu, struct rq *this_rq,
3458 struct sched_domain *sd, enum cpu_idle_type idle,
3459 int *balance, cpumask_t *cpus)
3461 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3462 struct sched_group *group;
3463 unsigned long imbalance;
3464 struct rq *busiest;
3465 unsigned long flags;
3467 cpus_setall(*cpus);
3470 * When power savings policy is enabled for the parent domain, idle
3471 * sibling can pick up load irrespective of busy siblings. In this case,
3472 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3473 * portraying it as CPU_NOT_IDLE.
3475 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3476 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3477 sd_idle = 1;
3479 schedstat_inc(sd, lb_count[idle]);
3481 redo:
3482 update_shares(sd);
3483 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3484 cpus, balance);
3486 if (*balance == 0)
3487 goto out_balanced;
3489 if (!group) {
3490 schedstat_inc(sd, lb_nobusyg[idle]);
3491 goto out_balanced;
3494 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3495 if (!busiest) {
3496 schedstat_inc(sd, lb_nobusyq[idle]);
3497 goto out_balanced;
3500 BUG_ON(busiest == this_rq);
3502 schedstat_add(sd, lb_imbalance[idle], imbalance);
3504 ld_moved = 0;
3505 if (busiest->nr_running > 1) {
3507 * Attempt to move tasks. If find_busiest_group has found
3508 * an imbalance but busiest->nr_running <= 1, the group is
3509 * still unbalanced. ld_moved simply stays zero, so it is
3510 * correctly treated as an imbalance.
3512 local_irq_save(flags);
3513 double_rq_lock(this_rq, busiest);
3514 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3515 imbalance, sd, idle, &all_pinned);
3516 double_rq_unlock(this_rq, busiest);
3517 local_irq_restore(flags);
3520 * some other cpu did the load balance for us.
3522 if (ld_moved && this_cpu != smp_processor_id())
3523 resched_cpu(this_cpu);
3525 /* All tasks on this runqueue were pinned by CPU affinity */
3526 if (unlikely(all_pinned)) {
3527 cpu_clear(cpu_of(busiest), *cpus);
3528 if (!cpus_empty(*cpus))
3529 goto redo;
3530 goto out_balanced;
3534 if (!ld_moved) {
3535 schedstat_inc(sd, lb_failed[idle]);
3536 sd->nr_balance_failed++;
3538 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3540 spin_lock_irqsave(&busiest->lock, flags);
3542 /* don't kick the migration_thread, if the curr
3543 * task on busiest cpu can't be moved to this_cpu
3545 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3546 spin_unlock_irqrestore(&busiest->lock, flags);
3547 all_pinned = 1;
3548 goto out_one_pinned;
3551 if (!busiest->active_balance) {
3552 busiest->active_balance = 1;
3553 busiest->push_cpu = this_cpu;
3554 active_balance = 1;
3556 spin_unlock_irqrestore(&busiest->lock, flags);
3557 if (active_balance)
3558 wake_up_process(busiest->migration_thread);
3561 * We've kicked active balancing, reset the failure
3562 * counter.
3564 sd->nr_balance_failed = sd->cache_nice_tries+1;
3566 } else
3567 sd->nr_balance_failed = 0;
3569 if (likely(!active_balance)) {
3570 /* We were unbalanced, so reset the balancing interval */
3571 sd->balance_interval = sd->min_interval;
3572 } else {
3574 * If we've begun active balancing, start to back off. This
3575 * case may not be covered by the all_pinned logic if there
3576 * is only 1 task on the busy runqueue (because we don't call
3577 * move_tasks).
3579 if (sd->balance_interval < sd->max_interval)
3580 sd->balance_interval *= 2;
3583 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3584 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3585 ld_moved = -1;
3587 goto out;
3589 out_balanced:
3590 schedstat_inc(sd, lb_balanced[idle]);
3592 sd->nr_balance_failed = 0;
3594 out_one_pinned:
3595 /* tune up the balancing interval */
3596 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3597 (sd->balance_interval < sd->max_interval))
3598 sd->balance_interval *= 2;
3600 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3601 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3602 ld_moved = -1;
3603 else
3604 ld_moved = 0;
3605 out:
3606 if (ld_moved)
3607 update_shares(sd);
3608 return ld_moved;
3612 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3613 * tasks if there is an imbalance.
3615 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3616 * this_rq is locked.
3618 static int
3619 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3620 cpumask_t *cpus)
3622 struct sched_group *group;
3623 struct rq *busiest = NULL;
3624 unsigned long imbalance;
3625 int ld_moved = 0;
3626 int sd_idle = 0;
3627 int all_pinned = 0;
3629 cpus_setall(*cpus);
3632 * When power savings policy is enabled for the parent domain, idle
3633 * sibling can pick up load irrespective of busy siblings. In this case,
3634 * let the state of idle sibling percolate up as IDLE, instead of
3635 * portraying it as CPU_NOT_IDLE.
3637 if (sd->flags & SD_SHARE_CPUPOWER &&
3638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3639 sd_idle = 1;
3641 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3642 redo:
3643 update_shares_locked(this_rq, sd);
3644 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3645 &sd_idle, cpus, NULL);
3646 if (!group) {
3647 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3648 goto out_balanced;
3651 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3652 if (!busiest) {
3653 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3654 goto out_balanced;
3657 BUG_ON(busiest == this_rq);
3659 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3661 ld_moved = 0;
3662 if (busiest->nr_running > 1) {
3663 /* Attempt to move tasks */
3664 double_lock_balance(this_rq, busiest);
3665 /* this_rq->clock is already updated */
3666 update_rq_clock(busiest);
3667 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3668 imbalance, sd, CPU_NEWLY_IDLE,
3669 &all_pinned);
3670 double_unlock_balance(this_rq, busiest);
3672 if (unlikely(all_pinned)) {
3673 cpu_clear(cpu_of(busiest), *cpus);
3674 if (!cpus_empty(*cpus))
3675 goto redo;
3679 if (!ld_moved) {
3680 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3681 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3682 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3683 return -1;
3684 } else
3685 sd->nr_balance_failed = 0;
3687 update_shares_locked(this_rq, sd);
3688 return ld_moved;
3690 out_balanced:
3691 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3692 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3694 return -1;
3695 sd->nr_balance_failed = 0;
3697 return 0;
3701 * idle_balance is called by schedule() if this_cpu is about to become
3702 * idle. Attempts to pull tasks from other CPUs.
3704 static void idle_balance(int this_cpu, struct rq *this_rq)
3706 struct sched_domain *sd;
3707 int pulled_task = -1;
3708 unsigned long next_balance = jiffies + HZ;
3709 cpumask_t tmpmask;
3711 for_each_domain(this_cpu, sd) {
3712 unsigned long interval;
3714 if (!(sd->flags & SD_LOAD_BALANCE))
3715 continue;
3717 if (sd->flags & SD_BALANCE_NEWIDLE)
3718 /* If we've pulled tasks over stop searching: */
3719 pulled_task = load_balance_newidle(this_cpu, this_rq,
3720 sd, &tmpmask);
3722 interval = msecs_to_jiffies(sd->balance_interval);
3723 if (time_after(next_balance, sd->last_balance + interval))
3724 next_balance = sd->last_balance + interval;
3725 if (pulled_task)
3726 break;
3728 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3730 * We are going idle. next_balance may be set based on
3731 * a busy processor. So reset next_balance.
3733 this_rq->next_balance = next_balance;
3738 * active_load_balance is run by migration threads. It pushes running tasks
3739 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3740 * running on each physical CPU where possible, and avoids physical /
3741 * logical imbalances.
3743 * Called with busiest_rq locked.
3745 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3747 int target_cpu = busiest_rq->push_cpu;
3748 struct sched_domain *sd;
3749 struct rq *target_rq;
3751 /* Is there any task to move? */
3752 if (busiest_rq->nr_running <= 1)
3753 return;
3755 target_rq = cpu_rq(target_cpu);
3758 * This condition is "impossible", if it occurs
3759 * we need to fix it. Originally reported by
3760 * Bjorn Helgaas on a 128-cpu setup.
3762 BUG_ON(busiest_rq == target_rq);
3764 /* move a task from busiest_rq to target_rq */
3765 double_lock_balance(busiest_rq, target_rq);
3766 update_rq_clock(busiest_rq);
3767 update_rq_clock(target_rq);
3769 /* Search for an sd spanning us and the target CPU. */
3770 for_each_domain(target_cpu, sd) {
3771 if ((sd->flags & SD_LOAD_BALANCE) &&
3772 cpu_isset(busiest_cpu, sd->span))
3773 break;
3776 if (likely(sd)) {
3777 schedstat_inc(sd, alb_count);
3779 if (move_one_task(target_rq, target_cpu, busiest_rq,
3780 sd, CPU_IDLE))
3781 schedstat_inc(sd, alb_pushed);
3782 else
3783 schedstat_inc(sd, alb_failed);
3785 double_unlock_balance(busiest_rq, target_rq);
3788 #ifdef CONFIG_NO_HZ
3789 static struct {
3790 atomic_t load_balancer;
3791 cpumask_t cpu_mask;
3792 } nohz ____cacheline_aligned = {
3793 .load_balancer = ATOMIC_INIT(-1),
3794 .cpu_mask = CPU_MASK_NONE,
3798 * This routine will try to nominate the ilb (idle load balancing)
3799 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3800 * load balancing on behalf of all those cpus. If all the cpus in the system
3801 * go into this tickless mode, then there will be no ilb owner (as there is
3802 * no need for one) and all the cpus will sleep till the next wakeup event
3803 * arrives...
3805 * For the ilb owner, tick is not stopped. And this tick will be used
3806 * for idle load balancing. ilb owner will still be part of
3807 * nohz.cpu_mask..
3809 * While stopping the tick, this cpu will become the ilb owner if there
3810 * is no other owner. And will be the owner till that cpu becomes busy
3811 * or if all cpus in the system stop their ticks at which point
3812 * there is no need for ilb owner.
3814 * When the ilb owner becomes busy, it nominates another owner, during the
3815 * next busy scheduler_tick()
3817 int select_nohz_load_balancer(int stop_tick)
3819 int cpu = smp_processor_id();
3821 if (stop_tick) {
3822 cpu_set(cpu, nohz.cpu_mask);
3823 cpu_rq(cpu)->in_nohz_recently = 1;
3826 * If we are going offline and still the leader, give up!
3828 if (!cpu_active(cpu) &&
3829 atomic_read(&nohz.load_balancer) == cpu) {
3830 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3831 BUG();
3832 return 0;
3835 /* time for ilb owner also to sleep */
3836 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3837 if (atomic_read(&nohz.load_balancer) == cpu)
3838 atomic_set(&nohz.load_balancer, -1);
3839 return 0;
3842 if (atomic_read(&nohz.load_balancer) == -1) {
3843 /* make me the ilb owner */
3844 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3845 return 1;
3846 } else if (atomic_read(&nohz.load_balancer) == cpu)
3847 return 1;
3848 } else {
3849 if (!cpu_isset(cpu, nohz.cpu_mask))
3850 return 0;
3852 cpu_clear(cpu, nohz.cpu_mask);
3854 if (atomic_read(&nohz.load_balancer) == cpu)
3855 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3856 BUG();
3858 return 0;
3860 #endif
3862 static DEFINE_SPINLOCK(balancing);
3865 * It checks each scheduling domain to see if it is due to be balanced,
3866 * and initiates a balancing operation if so.
3868 * Balancing parameters are set up in arch_init_sched_domains.
3870 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3872 int balance = 1;
3873 struct rq *rq = cpu_rq(cpu);
3874 unsigned long interval;
3875 struct sched_domain *sd;
3876 /* Earliest time when we have to do rebalance again */
3877 unsigned long next_balance = jiffies + 60*HZ;
3878 int update_next_balance = 0;
3879 int need_serialize;
3880 cpumask_t tmp;
3882 for_each_domain(cpu, sd) {
3883 if (!(sd->flags & SD_LOAD_BALANCE))
3884 continue;
3886 interval = sd->balance_interval;
3887 if (idle != CPU_IDLE)
3888 interval *= sd->busy_factor;
3890 /* scale ms to jiffies */
3891 interval = msecs_to_jiffies(interval);
3892 if (unlikely(!interval))
3893 interval = 1;
3894 if (interval > HZ*NR_CPUS/10)
3895 interval = HZ*NR_CPUS/10;
3897 need_serialize = sd->flags & SD_SERIALIZE;
3899 if (need_serialize) {
3900 if (!spin_trylock(&balancing))
3901 goto out;
3904 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3905 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3907 * We've pulled tasks over so either we're no
3908 * longer idle, or one of our SMT siblings is
3909 * not idle.
3911 idle = CPU_NOT_IDLE;
3913 sd->last_balance = jiffies;
3915 if (need_serialize)
3916 spin_unlock(&balancing);
3917 out:
3918 if (time_after(next_balance, sd->last_balance + interval)) {
3919 next_balance = sd->last_balance + interval;
3920 update_next_balance = 1;
3924 * Stop the load balance at this level. There is another
3925 * CPU in our sched group which is doing load balancing more
3926 * actively.
3928 if (!balance)
3929 break;
3933 * next_balance will be updated only when there is a need.
3934 * When the cpu is attached to null domain for ex, it will not be
3935 * updated.
3937 if (likely(update_next_balance))
3938 rq->next_balance = next_balance;
3942 * run_rebalance_domains is triggered when needed from the scheduler tick.
3943 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3944 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3946 static void run_rebalance_domains(struct softirq_action *h)
3948 int this_cpu = smp_processor_id();
3949 struct rq *this_rq = cpu_rq(this_cpu);
3950 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3951 CPU_IDLE : CPU_NOT_IDLE;
3953 rebalance_domains(this_cpu, idle);
3955 #ifdef CONFIG_NO_HZ
3957 * If this cpu is the owner for idle load balancing, then do the
3958 * balancing on behalf of the other idle cpus whose ticks are
3959 * stopped.
3961 if (this_rq->idle_at_tick &&
3962 atomic_read(&nohz.load_balancer) == this_cpu) {
3963 cpumask_t cpus = nohz.cpu_mask;
3964 struct rq *rq;
3965 int balance_cpu;
3967 cpu_clear(this_cpu, cpus);
3968 for_each_cpu_mask_nr(balance_cpu, cpus) {
3970 * If this cpu gets work to do, stop the load balancing
3971 * work being done for other cpus. Next load
3972 * balancing owner will pick it up.
3974 if (need_resched())
3975 break;
3977 rebalance_domains(balance_cpu, CPU_IDLE);
3979 rq = cpu_rq(balance_cpu);
3980 if (time_after(this_rq->next_balance, rq->next_balance))
3981 this_rq->next_balance = rq->next_balance;
3984 #endif
3988 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3990 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3991 * idle load balancing owner or decide to stop the periodic load balancing,
3992 * if the whole system is idle.
3994 static inline void trigger_load_balance(struct rq *rq, int cpu)
3996 #ifdef CONFIG_NO_HZ
3998 * If we were in the nohz mode recently and busy at the current
3999 * scheduler tick, then check if we need to nominate new idle
4000 * load balancer.
4002 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4003 rq->in_nohz_recently = 0;
4005 if (atomic_read(&nohz.load_balancer) == cpu) {
4006 cpu_clear(cpu, nohz.cpu_mask);
4007 atomic_set(&nohz.load_balancer, -1);
4010 if (atomic_read(&nohz.load_balancer) == -1) {
4012 * simple selection for now: Nominate the
4013 * first cpu in the nohz list to be the next
4014 * ilb owner.
4016 * TBD: Traverse the sched domains and nominate
4017 * the nearest cpu in the nohz.cpu_mask.
4019 int ilb = first_cpu(nohz.cpu_mask);
4021 if (ilb < nr_cpu_ids)
4022 resched_cpu(ilb);
4027 * If this cpu is idle and doing idle load balancing for all the
4028 * cpus with ticks stopped, is it time for that to stop?
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4031 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4032 resched_cpu(cpu);
4033 return;
4037 * If this cpu is idle and the idle load balancing is done by
4038 * someone else, then no need raise the SCHED_SOFTIRQ
4040 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4041 cpu_isset(cpu, nohz.cpu_mask))
4042 return;
4043 #endif
4044 if (time_after_eq(jiffies, rq->next_balance))
4045 raise_softirq(SCHED_SOFTIRQ);
4048 #else /* CONFIG_SMP */
4051 * on UP we do not need to balance between CPUs:
4053 static inline void idle_balance(int cpu, struct rq *rq)
4057 #endif
4059 DEFINE_PER_CPU(struct kernel_stat, kstat);
4061 EXPORT_PER_CPU_SYMBOL(kstat);
4064 * Return any ns on the sched_clock that have not yet been banked in
4065 * @p in case that task is currently running.
4067 unsigned long long task_delta_exec(struct task_struct *p)
4069 unsigned long flags;
4070 struct rq *rq;
4071 u64 ns = 0;
4073 rq = task_rq_lock(p, &flags);
4075 if (task_current(rq, p)) {
4076 u64 delta_exec;
4078 update_rq_clock(rq);
4079 delta_exec = rq->clock - p->se.exec_start;
4080 if ((s64)delta_exec > 0)
4081 ns = delta_exec;
4084 task_rq_unlock(rq, &flags);
4086 return ns;
4090 * Account user cpu time to a process.
4091 * @p: the process that the cpu time gets accounted to
4092 * @cputime: the cpu time spent in user space since the last update
4094 void account_user_time(struct task_struct *p, cputime_t cputime)
4096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4097 cputime64_t tmp;
4099 p->utime = cputime_add(p->utime, cputime);
4100 account_group_user_time(p, cputime);
4102 /* Add user time to cpustat. */
4103 tmp = cputime_to_cputime64(cputime);
4104 if (TASK_NICE(p) > 0)
4105 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4106 else
4107 cpustat->user = cputime64_add(cpustat->user, tmp);
4108 /* Account for user time used */
4109 acct_update_integrals(p);
4113 * Account guest cpu time to a process.
4114 * @p: the process that the cpu time gets accounted to
4115 * @cputime: the cpu time spent in virtual machine since the last update
4117 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4119 cputime64_t tmp;
4120 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4122 tmp = cputime_to_cputime64(cputime);
4124 p->utime = cputime_add(p->utime, cputime);
4125 account_group_user_time(p, cputime);
4126 p->gtime = cputime_add(p->gtime, cputime);
4128 cpustat->user = cputime64_add(cpustat->user, tmp);
4129 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4133 * Account scaled user cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @cputime: the cpu time spent in user space since the last update
4137 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4139 p->utimescaled = cputime_add(p->utimescaled, cputime);
4143 * Account system cpu time to a process.
4144 * @p: the process that the cpu time gets accounted to
4145 * @hardirq_offset: the offset to subtract from hardirq_count()
4146 * @cputime: the cpu time spent in kernel space since the last update
4148 void account_system_time(struct task_struct *p, int hardirq_offset,
4149 cputime_t cputime)
4151 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4152 struct rq *rq = this_rq();
4153 cputime64_t tmp;
4155 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4156 account_guest_time(p, cputime);
4157 return;
4160 p->stime = cputime_add(p->stime, cputime);
4161 account_group_system_time(p, cputime);
4163 /* Add system time to cpustat. */
4164 tmp = cputime_to_cputime64(cputime);
4165 if (hardirq_count() - hardirq_offset)
4166 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4167 else if (softirq_count())
4168 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4169 else if (p != rq->idle)
4170 cpustat->system = cputime64_add(cpustat->system, tmp);
4171 else if (atomic_read(&rq->nr_iowait) > 0)
4172 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4173 else
4174 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4175 /* Account for system time used */
4176 acct_update_integrals(p);
4180 * Account scaled system cpu time to a process.
4181 * @p: the process that the cpu time gets accounted to
4182 * @hardirq_offset: the offset to subtract from hardirq_count()
4183 * @cputime: the cpu time spent in kernel space since the last update
4185 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4187 p->stimescaled = cputime_add(p->stimescaled, cputime);
4191 * Account for involuntary wait time.
4192 * @p: the process from which the cpu time has been stolen
4193 * @steal: the cpu time spent in involuntary wait
4195 void account_steal_time(struct task_struct *p, cputime_t steal)
4197 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4198 cputime64_t tmp = cputime_to_cputime64(steal);
4199 struct rq *rq = this_rq();
4201 if (p == rq->idle) {
4202 p->stime = cputime_add(p->stime, steal);
4203 account_group_system_time(p, steal);
4204 if (atomic_read(&rq->nr_iowait) > 0)
4205 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4206 else
4207 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4208 } else
4209 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4213 * Use precise platform statistics if available:
4215 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4216 cputime_t task_utime(struct task_struct *p)
4218 return p->utime;
4221 cputime_t task_stime(struct task_struct *p)
4223 return p->stime;
4225 #else
4226 cputime_t task_utime(struct task_struct *p)
4228 clock_t utime = cputime_to_clock_t(p->utime),
4229 total = utime + cputime_to_clock_t(p->stime);
4230 u64 temp;
4233 * Use CFS's precise accounting:
4235 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4237 if (total) {
4238 temp *= utime;
4239 do_div(temp, total);
4241 utime = (clock_t)temp;
4243 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4244 return p->prev_utime;
4247 cputime_t task_stime(struct task_struct *p)
4249 clock_t stime;
4252 * Use CFS's precise accounting. (we subtract utime from
4253 * the total, to make sure the total observed by userspace
4254 * grows monotonically - apps rely on that):
4256 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4257 cputime_to_clock_t(task_utime(p));
4259 if (stime >= 0)
4260 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4262 return p->prev_stime;
4264 #endif
4266 inline cputime_t task_gtime(struct task_struct *p)
4268 return p->gtime;
4272 * This function gets called by the timer code, with HZ frequency.
4273 * We call it with interrupts disabled.
4275 * It also gets called by the fork code, when changing the parent's
4276 * timeslices.
4278 void scheduler_tick(void)
4280 int cpu = smp_processor_id();
4281 struct rq *rq = cpu_rq(cpu);
4282 struct task_struct *curr = rq->curr;
4284 sched_clock_tick();
4286 spin_lock(&rq->lock);
4287 update_rq_clock(rq);
4288 update_cpu_load(rq);
4289 curr->sched_class->task_tick(rq, curr, 0);
4290 spin_unlock(&rq->lock);
4292 #ifdef CONFIG_SMP
4293 rq->idle_at_tick = idle_cpu(cpu);
4294 trigger_load_balance(rq, cpu);
4295 #endif
4298 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4299 defined(CONFIG_PREEMPT_TRACER))
4301 static inline unsigned long get_parent_ip(unsigned long addr)
4303 if (in_lock_functions(addr)) {
4304 addr = CALLER_ADDR2;
4305 if (in_lock_functions(addr))
4306 addr = CALLER_ADDR3;
4308 return addr;
4311 void __kprobes add_preempt_count(int val)
4313 #ifdef CONFIG_DEBUG_PREEMPT
4315 * Underflow?
4317 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4318 return;
4319 #endif
4320 preempt_count() += val;
4321 #ifdef CONFIG_DEBUG_PREEMPT
4323 * Spinlock count overflowing soon?
4325 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4326 PREEMPT_MASK - 10);
4327 #endif
4328 if (preempt_count() == val)
4329 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4331 EXPORT_SYMBOL(add_preempt_count);
4333 void __kprobes sub_preempt_count(int val)
4335 #ifdef CONFIG_DEBUG_PREEMPT
4337 * Underflow?
4339 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4340 return;
4342 * Is the spinlock portion underflowing?
4344 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4345 !(preempt_count() & PREEMPT_MASK)))
4346 return;
4347 #endif
4349 if (preempt_count() == val)
4350 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4351 preempt_count() -= val;
4353 EXPORT_SYMBOL(sub_preempt_count);
4355 #endif
4358 * Print scheduling while atomic bug:
4360 static noinline void __schedule_bug(struct task_struct *prev)
4362 struct pt_regs *regs = get_irq_regs();
4364 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4365 prev->comm, prev->pid, preempt_count());
4367 debug_show_held_locks(prev);
4368 print_modules();
4369 if (irqs_disabled())
4370 print_irqtrace_events(prev);
4372 if (regs)
4373 show_regs(regs);
4374 else
4375 dump_stack();
4379 * Various schedule()-time debugging checks and statistics:
4381 static inline void schedule_debug(struct task_struct *prev)
4384 * Test if we are atomic. Since do_exit() needs to call into
4385 * schedule() atomically, we ignore that path for now.
4386 * Otherwise, whine if we are scheduling when we should not be.
4388 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4389 __schedule_bug(prev);
4391 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4393 schedstat_inc(this_rq(), sched_count);
4394 #ifdef CONFIG_SCHEDSTATS
4395 if (unlikely(prev->lock_depth >= 0)) {
4396 schedstat_inc(this_rq(), bkl_count);
4397 schedstat_inc(prev, sched_info.bkl_count);
4399 #endif
4403 * Pick up the highest-prio task:
4405 static inline struct task_struct *
4406 pick_next_task(struct rq *rq, struct task_struct *prev)
4408 const struct sched_class *class;
4409 struct task_struct *p;
4412 * Optimization: we know that if all tasks are in
4413 * the fair class we can call that function directly:
4415 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4416 p = fair_sched_class.pick_next_task(rq);
4417 if (likely(p))
4418 return p;
4421 class = sched_class_highest;
4422 for ( ; ; ) {
4423 p = class->pick_next_task(rq);
4424 if (p)
4425 return p;
4427 * Will never be NULL as the idle class always
4428 * returns a non-NULL p:
4430 class = class->next;
4435 * schedule() is the main scheduler function.
4437 asmlinkage void __sched schedule(void)
4439 struct task_struct *prev, *next;
4440 unsigned long *switch_count;
4441 struct rq *rq;
4442 int cpu;
4444 need_resched:
4445 preempt_disable();
4446 cpu = smp_processor_id();
4447 rq = cpu_rq(cpu);
4448 rcu_qsctr_inc(cpu);
4449 prev = rq->curr;
4450 switch_count = &prev->nivcsw;
4452 release_kernel_lock(prev);
4453 need_resched_nonpreemptible:
4455 schedule_debug(prev);
4457 if (sched_feat(HRTICK))
4458 hrtick_clear(rq);
4460 spin_lock_irq(&rq->lock);
4461 update_rq_clock(rq);
4462 clear_tsk_need_resched(prev);
4464 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4465 if (unlikely(signal_pending_state(prev->state, prev)))
4466 prev->state = TASK_RUNNING;
4467 else
4468 deactivate_task(rq, prev, 1);
4469 switch_count = &prev->nvcsw;
4472 #ifdef CONFIG_SMP
4473 if (prev->sched_class->pre_schedule)
4474 prev->sched_class->pre_schedule(rq, prev);
4475 #endif
4477 if (unlikely(!rq->nr_running))
4478 idle_balance(cpu, rq);
4480 prev->sched_class->put_prev_task(rq, prev);
4481 next = pick_next_task(rq, prev);
4483 if (likely(prev != next)) {
4484 sched_info_switch(prev, next);
4486 rq->nr_switches++;
4487 rq->curr = next;
4488 ++*switch_count;
4490 context_switch(rq, prev, next); /* unlocks the rq */
4492 * the context switch might have flipped the stack from under
4493 * us, hence refresh the local variables.
4495 cpu = smp_processor_id();
4496 rq = cpu_rq(cpu);
4497 } else
4498 spin_unlock_irq(&rq->lock);
4500 if (unlikely(reacquire_kernel_lock(current) < 0))
4501 goto need_resched_nonpreemptible;
4503 preempt_enable_no_resched();
4504 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4505 goto need_resched;
4507 EXPORT_SYMBOL(schedule);
4509 #ifdef CONFIG_PREEMPT
4511 * this is the entry point to schedule() from in-kernel preemption
4512 * off of preempt_enable. Kernel preemptions off return from interrupt
4513 * occur there and call schedule directly.
4515 asmlinkage void __sched preempt_schedule(void)
4517 struct thread_info *ti = current_thread_info();
4520 * If there is a non-zero preempt_count or interrupts are disabled,
4521 * we do not want to preempt the current task. Just return..
4523 if (likely(ti->preempt_count || irqs_disabled()))
4524 return;
4526 do {
4527 add_preempt_count(PREEMPT_ACTIVE);
4528 schedule();
4529 sub_preempt_count(PREEMPT_ACTIVE);
4532 * Check again in case we missed a preemption opportunity
4533 * between schedule and now.
4535 barrier();
4536 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4538 EXPORT_SYMBOL(preempt_schedule);
4541 * this is the entry point to schedule() from kernel preemption
4542 * off of irq context.
4543 * Note, that this is called and return with irqs disabled. This will
4544 * protect us against recursive calling from irq.
4546 asmlinkage void __sched preempt_schedule_irq(void)
4548 struct thread_info *ti = current_thread_info();
4550 /* Catch callers which need to be fixed */
4551 BUG_ON(ti->preempt_count || !irqs_disabled());
4553 do {
4554 add_preempt_count(PREEMPT_ACTIVE);
4555 local_irq_enable();
4556 schedule();
4557 local_irq_disable();
4558 sub_preempt_count(PREEMPT_ACTIVE);
4561 * Check again in case we missed a preemption opportunity
4562 * between schedule and now.
4564 barrier();
4565 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4568 #endif /* CONFIG_PREEMPT */
4570 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4571 void *key)
4573 return try_to_wake_up(curr->private, mode, sync);
4575 EXPORT_SYMBOL(default_wake_function);
4578 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4579 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4580 * number) then we wake all the non-exclusive tasks and one exclusive task.
4582 * There are circumstances in which we can try to wake a task which has already
4583 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4584 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4586 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4587 int nr_exclusive, int sync, void *key)
4589 wait_queue_t *curr, *next;
4591 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4592 unsigned flags = curr->flags;
4594 if (curr->func(curr, mode, sync, key) &&
4595 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4596 break;
4601 * __wake_up - wake up threads blocked on a waitqueue.
4602 * @q: the waitqueue
4603 * @mode: which threads
4604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4605 * @key: is directly passed to the wakeup function
4607 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4608 int nr_exclusive, void *key)
4610 unsigned long flags;
4612 spin_lock_irqsave(&q->lock, flags);
4613 __wake_up_common(q, mode, nr_exclusive, 0, key);
4614 spin_unlock_irqrestore(&q->lock, flags);
4616 EXPORT_SYMBOL(__wake_up);
4619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4621 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4623 __wake_up_common(q, mode, 1, 0, NULL);
4627 * __wake_up_sync - wake up threads blocked on a waitqueue.
4628 * @q: the waitqueue
4629 * @mode: which threads
4630 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4632 * The sync wakeup differs that the waker knows that it will schedule
4633 * away soon, so while the target thread will be woken up, it will not
4634 * be migrated to another CPU - ie. the two threads are 'synchronized'
4635 * with each other. This can prevent needless bouncing between CPUs.
4637 * On UP it can prevent extra preemption.
4639 void
4640 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4642 unsigned long flags;
4643 int sync = 1;
4645 if (unlikely(!q))
4646 return;
4648 if (unlikely(!nr_exclusive))
4649 sync = 0;
4651 spin_lock_irqsave(&q->lock, flags);
4652 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4653 spin_unlock_irqrestore(&q->lock, flags);
4655 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4658 * complete: - signals a single thread waiting on this completion
4659 * @x: holds the state of this particular completion
4661 * This will wake up a single thread waiting on this completion. Threads will be
4662 * awakened in the same order in which they were queued.
4664 * See also complete_all(), wait_for_completion() and related routines.
4666 void complete(struct completion *x)
4668 unsigned long flags;
4670 spin_lock_irqsave(&x->wait.lock, flags);
4671 x->done++;
4672 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4673 spin_unlock_irqrestore(&x->wait.lock, flags);
4675 EXPORT_SYMBOL(complete);
4678 * complete_all: - signals all threads waiting on this completion
4679 * @x: holds the state of this particular completion
4681 * This will wake up all threads waiting on this particular completion event.
4683 void complete_all(struct completion *x)
4685 unsigned long flags;
4687 spin_lock_irqsave(&x->wait.lock, flags);
4688 x->done += UINT_MAX/2;
4689 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4690 spin_unlock_irqrestore(&x->wait.lock, flags);
4692 EXPORT_SYMBOL(complete_all);
4694 static inline long __sched
4695 do_wait_for_common(struct completion *x, long timeout, int state)
4697 if (!x->done) {
4698 DECLARE_WAITQUEUE(wait, current);
4700 wait.flags |= WQ_FLAG_EXCLUSIVE;
4701 __add_wait_queue_tail(&x->wait, &wait);
4702 do {
4703 if (signal_pending_state(state, current)) {
4704 timeout = -ERESTARTSYS;
4705 break;
4707 __set_current_state(state);
4708 spin_unlock_irq(&x->wait.lock);
4709 timeout = schedule_timeout(timeout);
4710 spin_lock_irq(&x->wait.lock);
4711 } while (!x->done && timeout);
4712 __remove_wait_queue(&x->wait, &wait);
4713 if (!x->done)
4714 return timeout;
4716 x->done--;
4717 return timeout ?: 1;
4720 static long __sched
4721 wait_for_common(struct completion *x, long timeout, int state)
4723 might_sleep();
4725 spin_lock_irq(&x->wait.lock);
4726 timeout = do_wait_for_common(x, timeout, state);
4727 spin_unlock_irq(&x->wait.lock);
4728 return timeout;
4732 * wait_for_completion: - waits for completion of a task
4733 * @x: holds the state of this particular completion
4735 * This waits to be signaled for completion of a specific task. It is NOT
4736 * interruptible and there is no timeout.
4738 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4739 * and interrupt capability. Also see complete().
4741 void __sched wait_for_completion(struct completion *x)
4743 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4745 EXPORT_SYMBOL(wait_for_completion);
4748 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4749 * @x: holds the state of this particular completion
4750 * @timeout: timeout value in jiffies
4752 * This waits for either a completion of a specific task to be signaled or for a
4753 * specified timeout to expire. The timeout is in jiffies. It is not
4754 * interruptible.
4756 unsigned long __sched
4757 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4759 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4761 EXPORT_SYMBOL(wait_for_completion_timeout);
4764 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4765 * @x: holds the state of this particular completion
4767 * This waits for completion of a specific task to be signaled. It is
4768 * interruptible.
4770 int __sched wait_for_completion_interruptible(struct completion *x)
4772 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4773 if (t == -ERESTARTSYS)
4774 return t;
4775 return 0;
4777 EXPORT_SYMBOL(wait_for_completion_interruptible);
4780 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4781 * @x: holds the state of this particular completion
4782 * @timeout: timeout value in jiffies
4784 * This waits for either a completion of a specific task to be signaled or for a
4785 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4787 unsigned long __sched
4788 wait_for_completion_interruptible_timeout(struct completion *x,
4789 unsigned long timeout)
4791 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4793 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4796 * wait_for_completion_killable: - waits for completion of a task (killable)
4797 * @x: holds the state of this particular completion
4799 * This waits to be signaled for completion of a specific task. It can be
4800 * interrupted by a kill signal.
4802 int __sched wait_for_completion_killable(struct completion *x)
4804 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4805 if (t == -ERESTARTSYS)
4806 return t;
4807 return 0;
4809 EXPORT_SYMBOL(wait_for_completion_killable);
4812 * try_wait_for_completion - try to decrement a completion without blocking
4813 * @x: completion structure
4815 * Returns: 0 if a decrement cannot be done without blocking
4816 * 1 if a decrement succeeded.
4818 * If a completion is being used as a counting completion,
4819 * attempt to decrement the counter without blocking. This
4820 * enables us to avoid waiting if the resource the completion
4821 * is protecting is not available.
4823 bool try_wait_for_completion(struct completion *x)
4825 int ret = 1;
4827 spin_lock_irq(&x->wait.lock);
4828 if (!x->done)
4829 ret = 0;
4830 else
4831 x->done--;
4832 spin_unlock_irq(&x->wait.lock);
4833 return ret;
4835 EXPORT_SYMBOL(try_wait_for_completion);
4838 * completion_done - Test to see if a completion has any waiters
4839 * @x: completion structure
4841 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4842 * 1 if there are no waiters.
4845 bool completion_done(struct completion *x)
4847 int ret = 1;
4849 spin_lock_irq(&x->wait.lock);
4850 if (!x->done)
4851 ret = 0;
4852 spin_unlock_irq(&x->wait.lock);
4853 return ret;
4855 EXPORT_SYMBOL(completion_done);
4857 static long __sched
4858 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4860 unsigned long flags;
4861 wait_queue_t wait;
4863 init_waitqueue_entry(&wait, current);
4865 __set_current_state(state);
4867 spin_lock_irqsave(&q->lock, flags);
4868 __add_wait_queue(q, &wait);
4869 spin_unlock(&q->lock);
4870 timeout = schedule_timeout(timeout);
4871 spin_lock_irq(&q->lock);
4872 __remove_wait_queue(q, &wait);
4873 spin_unlock_irqrestore(&q->lock, flags);
4875 return timeout;
4878 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4880 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4882 EXPORT_SYMBOL(interruptible_sleep_on);
4884 long __sched
4885 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4887 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4889 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4891 void __sched sleep_on(wait_queue_head_t *q)
4893 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4895 EXPORT_SYMBOL(sleep_on);
4897 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4899 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4901 EXPORT_SYMBOL(sleep_on_timeout);
4903 #ifdef CONFIG_RT_MUTEXES
4906 * rt_mutex_setprio - set the current priority of a task
4907 * @p: task
4908 * @prio: prio value (kernel-internal form)
4910 * This function changes the 'effective' priority of a task. It does
4911 * not touch ->normal_prio like __setscheduler().
4913 * Used by the rt_mutex code to implement priority inheritance logic.
4915 void rt_mutex_setprio(struct task_struct *p, int prio)
4917 unsigned long flags;
4918 int oldprio, on_rq, running;
4919 struct rq *rq;
4920 const struct sched_class *prev_class = p->sched_class;
4922 BUG_ON(prio < 0 || prio > MAX_PRIO);
4924 rq = task_rq_lock(p, &flags);
4925 update_rq_clock(rq);
4927 oldprio = p->prio;
4928 on_rq = p->se.on_rq;
4929 running = task_current(rq, p);
4930 if (on_rq)
4931 dequeue_task(rq, p, 0);
4932 if (running)
4933 p->sched_class->put_prev_task(rq, p);
4935 if (rt_prio(prio))
4936 p->sched_class = &rt_sched_class;
4937 else
4938 p->sched_class = &fair_sched_class;
4940 p->prio = prio;
4942 if (running)
4943 p->sched_class->set_curr_task(rq);
4944 if (on_rq) {
4945 enqueue_task(rq, p, 0);
4947 check_class_changed(rq, p, prev_class, oldprio, running);
4949 task_rq_unlock(rq, &flags);
4952 #endif
4954 void set_user_nice(struct task_struct *p, long nice)
4956 int old_prio, delta, on_rq;
4957 unsigned long flags;
4958 struct rq *rq;
4960 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4961 return;
4963 * We have to be careful, if called from sys_setpriority(),
4964 * the task might be in the middle of scheduling on another CPU.
4966 rq = task_rq_lock(p, &flags);
4967 update_rq_clock(rq);
4969 * The RT priorities are set via sched_setscheduler(), but we still
4970 * allow the 'normal' nice value to be set - but as expected
4971 * it wont have any effect on scheduling until the task is
4972 * SCHED_FIFO/SCHED_RR:
4974 if (task_has_rt_policy(p)) {
4975 p->static_prio = NICE_TO_PRIO(nice);
4976 goto out_unlock;
4978 on_rq = p->se.on_rq;
4979 if (on_rq)
4980 dequeue_task(rq, p, 0);
4982 p->static_prio = NICE_TO_PRIO(nice);
4983 set_load_weight(p);
4984 old_prio = p->prio;
4985 p->prio = effective_prio(p);
4986 delta = p->prio - old_prio;
4988 if (on_rq) {
4989 enqueue_task(rq, p, 0);
4991 * If the task increased its priority or is running and
4992 * lowered its priority, then reschedule its CPU:
4994 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4995 resched_task(rq->curr);
4997 out_unlock:
4998 task_rq_unlock(rq, &flags);
5000 EXPORT_SYMBOL(set_user_nice);
5003 * can_nice - check if a task can reduce its nice value
5004 * @p: task
5005 * @nice: nice value
5007 int can_nice(const struct task_struct *p, const int nice)
5009 /* convert nice value [19,-20] to rlimit style value [1,40] */
5010 int nice_rlim = 20 - nice;
5012 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5013 capable(CAP_SYS_NICE));
5016 #ifdef __ARCH_WANT_SYS_NICE
5019 * sys_nice - change the priority of the current process.
5020 * @increment: priority increment
5022 * sys_setpriority is a more generic, but much slower function that
5023 * does similar things.
5025 asmlinkage long sys_nice(int increment)
5027 long nice, retval;
5030 * Setpriority might change our priority at the same moment.
5031 * We don't have to worry. Conceptually one call occurs first
5032 * and we have a single winner.
5034 if (increment < -40)
5035 increment = -40;
5036 if (increment > 40)
5037 increment = 40;
5039 nice = PRIO_TO_NICE(current->static_prio) + increment;
5040 if (nice < -20)
5041 nice = -20;
5042 if (nice > 19)
5043 nice = 19;
5045 if (increment < 0 && !can_nice(current, nice))
5046 return -EPERM;
5048 retval = security_task_setnice(current, nice);
5049 if (retval)
5050 return retval;
5052 set_user_nice(current, nice);
5053 return 0;
5056 #endif
5059 * task_prio - return the priority value of a given task.
5060 * @p: the task in question.
5062 * This is the priority value as seen by users in /proc.
5063 * RT tasks are offset by -200. Normal tasks are centered
5064 * around 0, value goes from -16 to +15.
5066 int task_prio(const struct task_struct *p)
5068 return p->prio - MAX_RT_PRIO;
5072 * task_nice - return the nice value of a given task.
5073 * @p: the task in question.
5075 int task_nice(const struct task_struct *p)
5077 return TASK_NICE(p);
5079 EXPORT_SYMBOL(task_nice);
5082 * idle_cpu - is a given cpu idle currently?
5083 * @cpu: the processor in question.
5085 int idle_cpu(int cpu)
5087 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5091 * idle_task - return the idle task for a given cpu.
5092 * @cpu: the processor in question.
5094 struct task_struct *idle_task(int cpu)
5096 return cpu_rq(cpu)->idle;
5100 * find_process_by_pid - find a process with a matching PID value.
5101 * @pid: the pid in question.
5103 static struct task_struct *find_process_by_pid(pid_t pid)
5105 return pid ? find_task_by_vpid(pid) : current;
5108 /* Actually do priority change: must hold rq lock. */
5109 static void
5110 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5112 BUG_ON(p->se.on_rq);
5114 p->policy = policy;
5115 switch (p->policy) {
5116 case SCHED_NORMAL:
5117 case SCHED_BATCH:
5118 case SCHED_IDLE:
5119 p->sched_class = &fair_sched_class;
5120 break;
5121 case SCHED_FIFO:
5122 case SCHED_RR:
5123 p->sched_class = &rt_sched_class;
5124 break;
5127 p->rt_priority = prio;
5128 p->normal_prio = normal_prio(p);
5129 /* we are holding p->pi_lock already */
5130 p->prio = rt_mutex_getprio(p);
5131 set_load_weight(p);
5134 static int __sched_setscheduler(struct task_struct *p, int policy,
5135 struct sched_param *param, bool user)
5137 int retval, oldprio, oldpolicy = -1, on_rq, running;
5138 unsigned long flags;
5139 const struct sched_class *prev_class = p->sched_class;
5140 struct rq *rq;
5142 /* may grab non-irq protected spin_locks */
5143 BUG_ON(in_interrupt());
5144 recheck:
5145 /* double check policy once rq lock held */
5146 if (policy < 0)
5147 policy = oldpolicy = p->policy;
5148 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5149 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5150 policy != SCHED_IDLE)
5151 return -EINVAL;
5153 * Valid priorities for SCHED_FIFO and SCHED_RR are
5154 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5155 * SCHED_BATCH and SCHED_IDLE is 0.
5157 if (param->sched_priority < 0 ||
5158 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5159 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5160 return -EINVAL;
5161 if (rt_policy(policy) != (param->sched_priority != 0))
5162 return -EINVAL;
5165 * Allow unprivileged RT tasks to decrease priority:
5167 if (user && !capable(CAP_SYS_NICE)) {
5168 if (rt_policy(policy)) {
5169 unsigned long rlim_rtprio;
5171 if (!lock_task_sighand(p, &flags))
5172 return -ESRCH;
5173 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5174 unlock_task_sighand(p, &flags);
5176 /* can't set/change the rt policy */
5177 if (policy != p->policy && !rlim_rtprio)
5178 return -EPERM;
5180 /* can't increase priority */
5181 if (param->sched_priority > p->rt_priority &&
5182 param->sched_priority > rlim_rtprio)
5183 return -EPERM;
5186 * Like positive nice levels, dont allow tasks to
5187 * move out of SCHED_IDLE either:
5189 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5190 return -EPERM;
5192 /* can't change other user's priorities */
5193 if ((current->euid != p->euid) &&
5194 (current->euid != p->uid))
5195 return -EPERM;
5198 if (user) {
5199 #ifdef CONFIG_RT_GROUP_SCHED
5201 * Do not allow realtime tasks into groups that have no runtime
5202 * assigned.
5204 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5205 task_group(p)->rt_bandwidth.rt_runtime == 0)
5206 return -EPERM;
5207 #endif
5209 retval = security_task_setscheduler(p, policy, param);
5210 if (retval)
5211 return retval;
5215 * make sure no PI-waiters arrive (or leave) while we are
5216 * changing the priority of the task:
5218 spin_lock_irqsave(&p->pi_lock, flags);
5220 * To be able to change p->policy safely, the apropriate
5221 * runqueue lock must be held.
5223 rq = __task_rq_lock(p);
5224 /* recheck policy now with rq lock held */
5225 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5226 policy = oldpolicy = -1;
5227 __task_rq_unlock(rq);
5228 spin_unlock_irqrestore(&p->pi_lock, flags);
5229 goto recheck;
5231 update_rq_clock(rq);
5232 on_rq = p->se.on_rq;
5233 running = task_current(rq, p);
5234 if (on_rq)
5235 deactivate_task(rq, p, 0);
5236 if (running)
5237 p->sched_class->put_prev_task(rq, p);
5239 oldprio = p->prio;
5240 __setscheduler(rq, p, policy, param->sched_priority);
5242 if (running)
5243 p->sched_class->set_curr_task(rq);
5244 if (on_rq) {
5245 activate_task(rq, p, 0);
5247 check_class_changed(rq, p, prev_class, oldprio, running);
5249 __task_rq_unlock(rq);
5250 spin_unlock_irqrestore(&p->pi_lock, flags);
5252 rt_mutex_adjust_pi(p);
5254 return 0;
5258 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5259 * @p: the task in question.
5260 * @policy: new policy.
5261 * @param: structure containing the new RT priority.
5263 * NOTE that the task may be already dead.
5265 int sched_setscheduler(struct task_struct *p, int policy,
5266 struct sched_param *param)
5268 return __sched_setscheduler(p, policy, param, true);
5270 EXPORT_SYMBOL_GPL(sched_setscheduler);
5273 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5274 * @p: the task in question.
5275 * @policy: new policy.
5276 * @param: structure containing the new RT priority.
5278 * Just like sched_setscheduler, only don't bother checking if the
5279 * current context has permission. For example, this is needed in
5280 * stop_machine(): we create temporary high priority worker threads,
5281 * but our caller might not have that capability.
5283 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5284 struct sched_param *param)
5286 return __sched_setscheduler(p, policy, param, false);
5289 static int
5290 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5292 struct sched_param lparam;
5293 struct task_struct *p;
5294 int retval;
5296 if (!param || pid < 0)
5297 return -EINVAL;
5298 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5299 return -EFAULT;
5301 rcu_read_lock();
5302 retval = -ESRCH;
5303 p = find_process_by_pid(pid);
5304 if (p != NULL)
5305 retval = sched_setscheduler(p, policy, &lparam);
5306 rcu_read_unlock();
5308 return retval;
5312 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5313 * @pid: the pid in question.
5314 * @policy: new policy.
5315 * @param: structure containing the new RT priority.
5317 asmlinkage long
5318 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5320 /* negative values for policy are not valid */
5321 if (policy < 0)
5322 return -EINVAL;
5324 return do_sched_setscheduler(pid, policy, param);
5328 * sys_sched_setparam - set/change the RT priority of a thread
5329 * @pid: the pid in question.
5330 * @param: structure containing the new RT priority.
5332 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5334 return do_sched_setscheduler(pid, -1, param);
5338 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5339 * @pid: the pid in question.
5341 asmlinkage long sys_sched_getscheduler(pid_t pid)
5343 struct task_struct *p;
5344 int retval;
5346 if (pid < 0)
5347 return -EINVAL;
5349 retval = -ESRCH;
5350 read_lock(&tasklist_lock);
5351 p = find_process_by_pid(pid);
5352 if (p) {
5353 retval = security_task_getscheduler(p);
5354 if (!retval)
5355 retval = p->policy;
5357 read_unlock(&tasklist_lock);
5358 return retval;
5362 * sys_sched_getscheduler - get the RT priority of a thread
5363 * @pid: the pid in question.
5364 * @param: structure containing the RT priority.
5366 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5368 struct sched_param lp;
5369 struct task_struct *p;
5370 int retval;
5372 if (!param || pid < 0)
5373 return -EINVAL;
5375 read_lock(&tasklist_lock);
5376 p = find_process_by_pid(pid);
5377 retval = -ESRCH;
5378 if (!p)
5379 goto out_unlock;
5381 retval = security_task_getscheduler(p);
5382 if (retval)
5383 goto out_unlock;
5385 lp.sched_priority = p->rt_priority;
5386 read_unlock(&tasklist_lock);
5389 * This one might sleep, we cannot do it with a spinlock held ...
5391 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5393 return retval;
5395 out_unlock:
5396 read_unlock(&tasklist_lock);
5397 return retval;
5400 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5402 cpumask_t cpus_allowed;
5403 cpumask_t new_mask = *in_mask;
5404 struct task_struct *p;
5405 int retval;
5407 get_online_cpus();
5408 read_lock(&tasklist_lock);
5410 p = find_process_by_pid(pid);
5411 if (!p) {
5412 read_unlock(&tasklist_lock);
5413 put_online_cpus();
5414 return -ESRCH;
5418 * It is not safe to call set_cpus_allowed with the
5419 * tasklist_lock held. We will bump the task_struct's
5420 * usage count and then drop tasklist_lock.
5422 get_task_struct(p);
5423 read_unlock(&tasklist_lock);
5425 retval = -EPERM;
5426 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5427 !capable(CAP_SYS_NICE))
5428 goto out_unlock;
5430 retval = security_task_setscheduler(p, 0, NULL);
5431 if (retval)
5432 goto out_unlock;
5434 cpuset_cpus_allowed(p, &cpus_allowed);
5435 cpus_and(new_mask, new_mask, cpus_allowed);
5436 again:
5437 retval = set_cpus_allowed_ptr(p, &new_mask);
5439 if (!retval) {
5440 cpuset_cpus_allowed(p, &cpus_allowed);
5441 if (!cpus_subset(new_mask, cpus_allowed)) {
5443 * We must have raced with a concurrent cpuset
5444 * update. Just reset the cpus_allowed to the
5445 * cpuset's cpus_allowed
5447 new_mask = cpus_allowed;
5448 goto again;
5451 out_unlock:
5452 put_task_struct(p);
5453 put_online_cpus();
5454 return retval;
5457 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5458 cpumask_t *new_mask)
5460 if (len < sizeof(cpumask_t)) {
5461 memset(new_mask, 0, sizeof(cpumask_t));
5462 } else if (len > sizeof(cpumask_t)) {
5463 len = sizeof(cpumask_t);
5465 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5469 * sys_sched_setaffinity - set the cpu affinity of a process
5470 * @pid: pid of the process
5471 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5472 * @user_mask_ptr: user-space pointer to the new cpu mask
5474 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5475 unsigned long __user *user_mask_ptr)
5477 cpumask_t new_mask;
5478 int retval;
5480 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5481 if (retval)
5482 return retval;
5484 return sched_setaffinity(pid, &new_mask);
5487 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5489 struct task_struct *p;
5490 int retval;
5492 get_online_cpus();
5493 read_lock(&tasklist_lock);
5495 retval = -ESRCH;
5496 p = find_process_by_pid(pid);
5497 if (!p)
5498 goto out_unlock;
5500 retval = security_task_getscheduler(p);
5501 if (retval)
5502 goto out_unlock;
5504 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5506 out_unlock:
5507 read_unlock(&tasklist_lock);
5508 put_online_cpus();
5510 return retval;
5514 * sys_sched_getaffinity - get the cpu affinity of a process
5515 * @pid: pid of the process
5516 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5517 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5519 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5520 unsigned long __user *user_mask_ptr)
5522 int ret;
5523 cpumask_t mask;
5525 if (len < sizeof(cpumask_t))
5526 return -EINVAL;
5528 ret = sched_getaffinity(pid, &mask);
5529 if (ret < 0)
5530 return ret;
5532 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5533 return -EFAULT;
5535 return sizeof(cpumask_t);
5539 * sys_sched_yield - yield the current processor to other threads.
5541 * This function yields the current CPU to other tasks. If there are no
5542 * other threads running on this CPU then this function will return.
5544 asmlinkage long sys_sched_yield(void)
5546 struct rq *rq = this_rq_lock();
5548 schedstat_inc(rq, yld_count);
5549 current->sched_class->yield_task(rq);
5552 * Since we are going to call schedule() anyway, there's
5553 * no need to preempt or enable interrupts:
5555 __release(rq->lock);
5556 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5557 _raw_spin_unlock(&rq->lock);
5558 preempt_enable_no_resched();
5560 schedule();
5562 return 0;
5565 static void __cond_resched(void)
5567 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5568 __might_sleep(__FILE__, __LINE__);
5569 #endif
5571 * The BKS might be reacquired before we have dropped
5572 * PREEMPT_ACTIVE, which could trigger a second
5573 * cond_resched() call.
5575 do {
5576 add_preempt_count(PREEMPT_ACTIVE);
5577 schedule();
5578 sub_preempt_count(PREEMPT_ACTIVE);
5579 } while (need_resched());
5582 int __sched _cond_resched(void)
5584 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5585 system_state == SYSTEM_RUNNING) {
5586 __cond_resched();
5587 return 1;
5589 return 0;
5591 EXPORT_SYMBOL(_cond_resched);
5594 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5595 * call schedule, and on return reacquire the lock.
5597 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5598 * operations here to prevent schedule() from being called twice (once via
5599 * spin_unlock(), once by hand).
5601 int cond_resched_lock(spinlock_t *lock)
5603 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5604 int ret = 0;
5606 if (spin_needbreak(lock) || resched) {
5607 spin_unlock(lock);
5608 if (resched && need_resched())
5609 __cond_resched();
5610 else
5611 cpu_relax();
5612 ret = 1;
5613 spin_lock(lock);
5615 return ret;
5617 EXPORT_SYMBOL(cond_resched_lock);
5619 int __sched cond_resched_softirq(void)
5621 BUG_ON(!in_softirq());
5623 if (need_resched() && system_state == SYSTEM_RUNNING) {
5624 local_bh_enable();
5625 __cond_resched();
5626 local_bh_disable();
5627 return 1;
5629 return 0;
5631 EXPORT_SYMBOL(cond_resched_softirq);
5634 * yield - yield the current processor to other threads.
5636 * This is a shortcut for kernel-space yielding - it marks the
5637 * thread runnable and calls sys_sched_yield().
5639 void __sched yield(void)
5641 set_current_state(TASK_RUNNING);
5642 sys_sched_yield();
5644 EXPORT_SYMBOL(yield);
5647 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5648 * that process accounting knows that this is a task in IO wait state.
5650 * But don't do that if it is a deliberate, throttling IO wait (this task
5651 * has set its backing_dev_info: the queue against which it should throttle)
5653 void __sched io_schedule(void)
5655 struct rq *rq = &__raw_get_cpu_var(runqueues);
5657 delayacct_blkio_start();
5658 atomic_inc(&rq->nr_iowait);
5659 schedule();
5660 atomic_dec(&rq->nr_iowait);
5661 delayacct_blkio_end();
5663 EXPORT_SYMBOL(io_schedule);
5665 long __sched io_schedule_timeout(long timeout)
5667 struct rq *rq = &__raw_get_cpu_var(runqueues);
5668 long ret;
5670 delayacct_blkio_start();
5671 atomic_inc(&rq->nr_iowait);
5672 ret = schedule_timeout(timeout);
5673 atomic_dec(&rq->nr_iowait);
5674 delayacct_blkio_end();
5675 return ret;
5679 * sys_sched_get_priority_max - return maximum RT priority.
5680 * @policy: scheduling class.
5682 * this syscall returns the maximum rt_priority that can be used
5683 * by a given scheduling class.
5685 asmlinkage long sys_sched_get_priority_max(int policy)
5687 int ret = -EINVAL;
5689 switch (policy) {
5690 case SCHED_FIFO:
5691 case SCHED_RR:
5692 ret = MAX_USER_RT_PRIO-1;
5693 break;
5694 case SCHED_NORMAL:
5695 case SCHED_BATCH:
5696 case SCHED_IDLE:
5697 ret = 0;
5698 break;
5700 return ret;
5704 * sys_sched_get_priority_min - return minimum RT priority.
5705 * @policy: scheduling class.
5707 * this syscall returns the minimum rt_priority that can be used
5708 * by a given scheduling class.
5710 asmlinkage long sys_sched_get_priority_min(int policy)
5712 int ret = -EINVAL;
5714 switch (policy) {
5715 case SCHED_FIFO:
5716 case SCHED_RR:
5717 ret = 1;
5718 break;
5719 case SCHED_NORMAL:
5720 case SCHED_BATCH:
5721 case SCHED_IDLE:
5722 ret = 0;
5724 return ret;
5728 * sys_sched_rr_get_interval - return the default timeslice of a process.
5729 * @pid: pid of the process.
5730 * @interval: userspace pointer to the timeslice value.
5732 * this syscall writes the default timeslice value of a given process
5733 * into the user-space timespec buffer. A value of '0' means infinity.
5735 asmlinkage
5736 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5738 struct task_struct *p;
5739 unsigned int time_slice;
5740 int retval;
5741 struct timespec t;
5743 if (pid < 0)
5744 return -EINVAL;
5746 retval = -ESRCH;
5747 read_lock(&tasklist_lock);
5748 p = find_process_by_pid(pid);
5749 if (!p)
5750 goto out_unlock;
5752 retval = security_task_getscheduler(p);
5753 if (retval)
5754 goto out_unlock;
5757 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5758 * tasks that are on an otherwise idle runqueue:
5760 time_slice = 0;
5761 if (p->policy == SCHED_RR) {
5762 time_slice = DEF_TIMESLICE;
5763 } else if (p->policy != SCHED_FIFO) {
5764 struct sched_entity *se = &p->se;
5765 unsigned long flags;
5766 struct rq *rq;
5768 rq = task_rq_lock(p, &flags);
5769 if (rq->cfs.load.weight)
5770 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5771 task_rq_unlock(rq, &flags);
5773 read_unlock(&tasklist_lock);
5774 jiffies_to_timespec(time_slice, &t);
5775 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5776 return retval;
5778 out_unlock:
5779 read_unlock(&tasklist_lock);
5780 return retval;
5783 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5785 void sched_show_task(struct task_struct *p)
5787 unsigned long free = 0;
5788 unsigned state;
5790 state = p->state ? __ffs(p->state) + 1 : 0;
5791 printk(KERN_INFO "%-13.13s %c", p->comm,
5792 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5793 #if BITS_PER_LONG == 32
5794 if (state == TASK_RUNNING)
5795 printk(KERN_CONT " running ");
5796 else
5797 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5798 #else
5799 if (state == TASK_RUNNING)
5800 printk(KERN_CONT " running task ");
5801 else
5802 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5803 #endif
5804 #ifdef CONFIG_DEBUG_STACK_USAGE
5806 unsigned long *n = end_of_stack(p);
5807 while (!*n)
5808 n++;
5809 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5811 #endif
5812 printk(KERN_CONT "%5lu %5d %6d\n", free,
5813 task_pid_nr(p), task_pid_nr(p->real_parent));
5815 show_stack(p, NULL);
5818 void show_state_filter(unsigned long state_filter)
5820 struct task_struct *g, *p;
5822 #if BITS_PER_LONG == 32
5823 printk(KERN_INFO
5824 " task PC stack pid father\n");
5825 #else
5826 printk(KERN_INFO
5827 " task PC stack pid father\n");
5828 #endif
5829 read_lock(&tasklist_lock);
5830 do_each_thread(g, p) {
5832 * reset the NMI-timeout, listing all files on a slow
5833 * console might take alot of time:
5835 touch_nmi_watchdog();
5836 if (!state_filter || (p->state & state_filter))
5837 sched_show_task(p);
5838 } while_each_thread(g, p);
5840 touch_all_softlockup_watchdogs();
5842 #ifdef CONFIG_SCHED_DEBUG
5843 sysrq_sched_debug_show();
5844 #endif
5845 read_unlock(&tasklist_lock);
5847 * Only show locks if all tasks are dumped:
5849 if (state_filter == -1)
5850 debug_show_all_locks();
5853 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5855 idle->sched_class = &idle_sched_class;
5859 * init_idle - set up an idle thread for a given CPU
5860 * @idle: task in question
5861 * @cpu: cpu the idle task belongs to
5863 * NOTE: this function does not set the idle thread's NEED_RESCHED
5864 * flag, to make booting more robust.
5866 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5868 struct rq *rq = cpu_rq(cpu);
5869 unsigned long flags;
5871 __sched_fork(idle);
5872 idle->se.exec_start = sched_clock();
5874 idle->prio = idle->normal_prio = MAX_PRIO;
5875 idle->cpus_allowed = cpumask_of_cpu(cpu);
5876 __set_task_cpu(idle, cpu);
5878 spin_lock_irqsave(&rq->lock, flags);
5879 rq->curr = rq->idle = idle;
5880 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5881 idle->oncpu = 1;
5882 #endif
5883 spin_unlock_irqrestore(&rq->lock, flags);
5885 /* Set the preempt count _outside_ the spinlocks! */
5886 #if defined(CONFIG_PREEMPT)
5887 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5888 #else
5889 task_thread_info(idle)->preempt_count = 0;
5890 #endif
5892 * The idle tasks have their own, simple scheduling class:
5894 idle->sched_class = &idle_sched_class;
5898 * In a system that switches off the HZ timer nohz_cpu_mask
5899 * indicates which cpus entered this state. This is used
5900 * in the rcu update to wait only for active cpus. For system
5901 * which do not switch off the HZ timer nohz_cpu_mask should
5902 * always be CPU_MASK_NONE.
5904 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5907 * Increase the granularity value when there are more CPUs,
5908 * because with more CPUs the 'effective latency' as visible
5909 * to users decreases. But the relationship is not linear,
5910 * so pick a second-best guess by going with the log2 of the
5911 * number of CPUs.
5913 * This idea comes from the SD scheduler of Con Kolivas:
5915 static inline void sched_init_granularity(void)
5917 unsigned int factor = 1 + ilog2(num_online_cpus());
5918 const unsigned long limit = 200000000;
5920 sysctl_sched_min_granularity *= factor;
5921 if (sysctl_sched_min_granularity > limit)
5922 sysctl_sched_min_granularity = limit;
5924 sysctl_sched_latency *= factor;
5925 if (sysctl_sched_latency > limit)
5926 sysctl_sched_latency = limit;
5928 sysctl_sched_wakeup_granularity *= factor;
5930 sysctl_sched_shares_ratelimit *= factor;
5933 #ifdef CONFIG_SMP
5935 * This is how migration works:
5937 * 1) we queue a struct migration_req structure in the source CPU's
5938 * runqueue and wake up that CPU's migration thread.
5939 * 2) we down() the locked semaphore => thread blocks.
5940 * 3) migration thread wakes up (implicitly it forces the migrated
5941 * thread off the CPU)
5942 * 4) it gets the migration request and checks whether the migrated
5943 * task is still in the wrong runqueue.
5944 * 5) if it's in the wrong runqueue then the migration thread removes
5945 * it and puts it into the right queue.
5946 * 6) migration thread up()s the semaphore.
5947 * 7) we wake up and the migration is done.
5951 * Change a given task's CPU affinity. Migrate the thread to a
5952 * proper CPU and schedule it away if the CPU it's executing on
5953 * is removed from the allowed bitmask.
5955 * NOTE: the caller must have a valid reference to the task, the
5956 * task must not exit() & deallocate itself prematurely. The
5957 * call is not atomic; no spinlocks may be held.
5959 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5961 struct migration_req req;
5962 unsigned long flags;
5963 struct rq *rq;
5964 int ret = 0;
5966 rq = task_rq_lock(p, &flags);
5967 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5968 ret = -EINVAL;
5969 goto out;
5972 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5973 !cpus_equal(p->cpus_allowed, *new_mask))) {
5974 ret = -EINVAL;
5975 goto out;
5978 if (p->sched_class->set_cpus_allowed)
5979 p->sched_class->set_cpus_allowed(p, new_mask);
5980 else {
5981 p->cpus_allowed = *new_mask;
5982 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5985 /* Can the task run on the task's current CPU? If so, we're done */
5986 if (cpu_isset(task_cpu(p), *new_mask))
5987 goto out;
5989 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5990 /* Need help from migration thread: drop lock and wait. */
5991 task_rq_unlock(rq, &flags);
5992 wake_up_process(rq->migration_thread);
5993 wait_for_completion(&req.done);
5994 tlb_migrate_finish(p->mm);
5995 return 0;
5997 out:
5998 task_rq_unlock(rq, &flags);
6000 return ret;
6002 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6005 * Move (not current) task off this cpu, onto dest cpu. We're doing
6006 * this because either it can't run here any more (set_cpus_allowed()
6007 * away from this CPU, or CPU going down), or because we're
6008 * attempting to rebalance this task on exec (sched_exec).
6010 * So we race with normal scheduler movements, but that's OK, as long
6011 * as the task is no longer on this CPU.
6013 * Returns non-zero if task was successfully migrated.
6015 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6017 struct rq *rq_dest, *rq_src;
6018 int ret = 0, on_rq;
6020 if (unlikely(!cpu_active(dest_cpu)))
6021 return ret;
6023 rq_src = cpu_rq(src_cpu);
6024 rq_dest = cpu_rq(dest_cpu);
6026 double_rq_lock(rq_src, rq_dest);
6027 /* Already moved. */
6028 if (task_cpu(p) != src_cpu)
6029 goto done;
6030 /* Affinity changed (again). */
6031 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6032 goto fail;
6034 on_rq = p->se.on_rq;
6035 if (on_rq)
6036 deactivate_task(rq_src, p, 0);
6038 set_task_cpu(p, dest_cpu);
6039 if (on_rq) {
6040 activate_task(rq_dest, p, 0);
6041 check_preempt_curr(rq_dest, p, 0);
6043 done:
6044 ret = 1;
6045 fail:
6046 double_rq_unlock(rq_src, rq_dest);
6047 return ret;
6051 * migration_thread - this is a highprio system thread that performs
6052 * thread migration by bumping thread off CPU then 'pushing' onto
6053 * another runqueue.
6055 static int migration_thread(void *data)
6057 int cpu = (long)data;
6058 struct rq *rq;
6060 rq = cpu_rq(cpu);
6061 BUG_ON(rq->migration_thread != current);
6063 set_current_state(TASK_INTERRUPTIBLE);
6064 while (!kthread_should_stop()) {
6065 struct migration_req *req;
6066 struct list_head *head;
6068 spin_lock_irq(&rq->lock);
6070 if (cpu_is_offline(cpu)) {
6071 spin_unlock_irq(&rq->lock);
6072 goto wait_to_die;
6075 if (rq->active_balance) {
6076 active_load_balance(rq, cpu);
6077 rq->active_balance = 0;
6080 head = &rq->migration_queue;
6082 if (list_empty(head)) {
6083 spin_unlock_irq(&rq->lock);
6084 schedule();
6085 set_current_state(TASK_INTERRUPTIBLE);
6086 continue;
6088 req = list_entry(head->next, struct migration_req, list);
6089 list_del_init(head->next);
6091 spin_unlock(&rq->lock);
6092 __migrate_task(req->task, cpu, req->dest_cpu);
6093 local_irq_enable();
6095 complete(&req->done);
6097 __set_current_state(TASK_RUNNING);
6098 return 0;
6100 wait_to_die:
6101 /* Wait for kthread_stop */
6102 set_current_state(TASK_INTERRUPTIBLE);
6103 while (!kthread_should_stop()) {
6104 schedule();
6105 set_current_state(TASK_INTERRUPTIBLE);
6107 __set_current_state(TASK_RUNNING);
6108 return 0;
6111 #ifdef CONFIG_HOTPLUG_CPU
6113 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6115 int ret;
6117 local_irq_disable();
6118 ret = __migrate_task(p, src_cpu, dest_cpu);
6119 local_irq_enable();
6120 return ret;
6124 * Figure out where task on dead CPU should go, use force if necessary.
6125 * NOTE: interrupts should be disabled by the caller
6127 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6129 unsigned long flags;
6130 cpumask_t mask;
6131 struct rq *rq;
6132 int dest_cpu;
6134 do {
6135 /* On same node? */
6136 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6137 cpus_and(mask, mask, p->cpus_allowed);
6138 dest_cpu = any_online_cpu(mask);
6140 /* On any allowed CPU? */
6141 if (dest_cpu >= nr_cpu_ids)
6142 dest_cpu = any_online_cpu(p->cpus_allowed);
6144 /* No more Mr. Nice Guy. */
6145 if (dest_cpu >= nr_cpu_ids) {
6146 cpumask_t cpus_allowed;
6148 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6150 * Try to stay on the same cpuset, where the
6151 * current cpuset may be a subset of all cpus.
6152 * The cpuset_cpus_allowed_locked() variant of
6153 * cpuset_cpus_allowed() will not block. It must be
6154 * called within calls to cpuset_lock/cpuset_unlock.
6156 rq = task_rq_lock(p, &flags);
6157 p->cpus_allowed = cpus_allowed;
6158 dest_cpu = any_online_cpu(p->cpus_allowed);
6159 task_rq_unlock(rq, &flags);
6162 * Don't tell them about moving exiting tasks or
6163 * kernel threads (both mm NULL), since they never
6164 * leave kernel.
6166 if (p->mm && printk_ratelimit()) {
6167 printk(KERN_INFO "process %d (%s) no "
6168 "longer affine to cpu%d\n",
6169 task_pid_nr(p), p->comm, dead_cpu);
6172 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6176 * While a dead CPU has no uninterruptible tasks queued at this point,
6177 * it might still have a nonzero ->nr_uninterruptible counter, because
6178 * for performance reasons the counter is not stricly tracking tasks to
6179 * their home CPUs. So we just add the counter to another CPU's counter,
6180 * to keep the global sum constant after CPU-down:
6182 static void migrate_nr_uninterruptible(struct rq *rq_src)
6184 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6185 unsigned long flags;
6187 local_irq_save(flags);
6188 double_rq_lock(rq_src, rq_dest);
6189 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6190 rq_src->nr_uninterruptible = 0;
6191 double_rq_unlock(rq_src, rq_dest);
6192 local_irq_restore(flags);
6195 /* Run through task list and migrate tasks from the dead cpu. */
6196 static void migrate_live_tasks(int src_cpu)
6198 struct task_struct *p, *t;
6200 read_lock(&tasklist_lock);
6202 do_each_thread(t, p) {
6203 if (p == current)
6204 continue;
6206 if (task_cpu(p) == src_cpu)
6207 move_task_off_dead_cpu(src_cpu, p);
6208 } while_each_thread(t, p);
6210 read_unlock(&tasklist_lock);
6214 * Schedules idle task to be the next runnable task on current CPU.
6215 * It does so by boosting its priority to highest possible.
6216 * Used by CPU offline code.
6218 void sched_idle_next(void)
6220 int this_cpu = smp_processor_id();
6221 struct rq *rq = cpu_rq(this_cpu);
6222 struct task_struct *p = rq->idle;
6223 unsigned long flags;
6225 /* cpu has to be offline */
6226 BUG_ON(cpu_online(this_cpu));
6229 * Strictly not necessary since rest of the CPUs are stopped by now
6230 * and interrupts disabled on the current cpu.
6232 spin_lock_irqsave(&rq->lock, flags);
6234 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6236 update_rq_clock(rq);
6237 activate_task(rq, p, 0);
6239 spin_unlock_irqrestore(&rq->lock, flags);
6243 * Ensures that the idle task is using init_mm right before its cpu goes
6244 * offline.
6246 void idle_task_exit(void)
6248 struct mm_struct *mm = current->active_mm;
6250 BUG_ON(cpu_online(smp_processor_id()));
6252 if (mm != &init_mm)
6253 switch_mm(mm, &init_mm, current);
6254 mmdrop(mm);
6257 /* called under rq->lock with disabled interrupts */
6258 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6260 struct rq *rq = cpu_rq(dead_cpu);
6262 /* Must be exiting, otherwise would be on tasklist. */
6263 BUG_ON(!p->exit_state);
6265 /* Cannot have done final schedule yet: would have vanished. */
6266 BUG_ON(p->state == TASK_DEAD);
6268 get_task_struct(p);
6271 * Drop lock around migration; if someone else moves it,
6272 * that's OK. No task can be added to this CPU, so iteration is
6273 * fine.
6275 spin_unlock_irq(&rq->lock);
6276 move_task_off_dead_cpu(dead_cpu, p);
6277 spin_lock_irq(&rq->lock);
6279 put_task_struct(p);
6282 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6283 static void migrate_dead_tasks(unsigned int dead_cpu)
6285 struct rq *rq = cpu_rq(dead_cpu);
6286 struct task_struct *next;
6288 for ( ; ; ) {
6289 if (!rq->nr_running)
6290 break;
6291 update_rq_clock(rq);
6292 next = pick_next_task(rq, rq->curr);
6293 if (!next)
6294 break;
6295 next->sched_class->put_prev_task(rq, next);
6296 migrate_dead(dead_cpu, next);
6300 #endif /* CONFIG_HOTPLUG_CPU */
6302 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6304 static struct ctl_table sd_ctl_dir[] = {
6306 .procname = "sched_domain",
6307 .mode = 0555,
6309 {0, },
6312 static struct ctl_table sd_ctl_root[] = {
6314 .ctl_name = CTL_KERN,
6315 .procname = "kernel",
6316 .mode = 0555,
6317 .child = sd_ctl_dir,
6319 {0, },
6322 static struct ctl_table *sd_alloc_ctl_entry(int n)
6324 struct ctl_table *entry =
6325 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6327 return entry;
6330 static void sd_free_ctl_entry(struct ctl_table **tablep)
6332 struct ctl_table *entry;
6335 * In the intermediate directories, both the child directory and
6336 * procname are dynamically allocated and could fail but the mode
6337 * will always be set. In the lowest directory the names are
6338 * static strings and all have proc handlers.
6340 for (entry = *tablep; entry->mode; entry++) {
6341 if (entry->child)
6342 sd_free_ctl_entry(&entry->child);
6343 if (entry->proc_handler == NULL)
6344 kfree(entry->procname);
6347 kfree(*tablep);
6348 *tablep = NULL;
6351 static void
6352 set_table_entry(struct ctl_table *entry,
6353 const char *procname, void *data, int maxlen,
6354 mode_t mode, proc_handler *proc_handler)
6356 entry->procname = procname;
6357 entry->data = data;
6358 entry->maxlen = maxlen;
6359 entry->mode = mode;
6360 entry->proc_handler = proc_handler;
6363 static struct ctl_table *
6364 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6366 struct ctl_table *table = sd_alloc_ctl_entry(13);
6368 if (table == NULL)
6369 return NULL;
6371 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6372 sizeof(long), 0644, proc_doulongvec_minmax);
6373 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6374 sizeof(long), 0644, proc_doulongvec_minmax);
6375 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6378 sizeof(int), 0644, proc_dointvec_minmax);
6379 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6382 sizeof(int), 0644, proc_dointvec_minmax);
6383 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6384 sizeof(int), 0644, proc_dointvec_minmax);
6385 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6386 sizeof(int), 0644, proc_dointvec_minmax);
6387 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6388 sizeof(int), 0644, proc_dointvec_minmax);
6389 set_table_entry(&table[9], "cache_nice_tries",
6390 &sd->cache_nice_tries,
6391 sizeof(int), 0644, proc_dointvec_minmax);
6392 set_table_entry(&table[10], "flags", &sd->flags,
6393 sizeof(int), 0644, proc_dointvec_minmax);
6394 set_table_entry(&table[11], "name", sd->name,
6395 CORENAME_MAX_SIZE, 0444, proc_dostring);
6396 /* &table[12] is terminator */
6398 return table;
6401 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6403 struct ctl_table *entry, *table;
6404 struct sched_domain *sd;
6405 int domain_num = 0, i;
6406 char buf[32];
6408 for_each_domain(cpu, sd)
6409 domain_num++;
6410 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6411 if (table == NULL)
6412 return NULL;
6414 i = 0;
6415 for_each_domain(cpu, sd) {
6416 snprintf(buf, 32, "domain%d", i);
6417 entry->procname = kstrdup(buf, GFP_KERNEL);
6418 entry->mode = 0555;
6419 entry->child = sd_alloc_ctl_domain_table(sd);
6420 entry++;
6421 i++;
6423 return table;
6426 static struct ctl_table_header *sd_sysctl_header;
6427 static void register_sched_domain_sysctl(void)
6429 int i, cpu_num = num_online_cpus();
6430 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6431 char buf[32];
6433 WARN_ON(sd_ctl_dir[0].child);
6434 sd_ctl_dir[0].child = entry;
6436 if (entry == NULL)
6437 return;
6439 for_each_online_cpu(i) {
6440 snprintf(buf, 32, "cpu%d", i);
6441 entry->procname = kstrdup(buf, GFP_KERNEL);
6442 entry->mode = 0555;
6443 entry->child = sd_alloc_ctl_cpu_table(i);
6444 entry++;
6447 WARN_ON(sd_sysctl_header);
6448 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6451 /* may be called multiple times per register */
6452 static void unregister_sched_domain_sysctl(void)
6454 if (sd_sysctl_header)
6455 unregister_sysctl_table(sd_sysctl_header);
6456 sd_sysctl_header = NULL;
6457 if (sd_ctl_dir[0].child)
6458 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6460 #else
6461 static void register_sched_domain_sysctl(void)
6464 static void unregister_sched_domain_sysctl(void)
6467 #endif
6469 static void set_rq_online(struct rq *rq)
6471 if (!rq->online) {
6472 const struct sched_class *class;
6474 cpu_set(rq->cpu, rq->rd->online);
6475 rq->online = 1;
6477 for_each_class(class) {
6478 if (class->rq_online)
6479 class->rq_online(rq);
6484 static void set_rq_offline(struct rq *rq)
6486 if (rq->online) {
6487 const struct sched_class *class;
6489 for_each_class(class) {
6490 if (class->rq_offline)
6491 class->rq_offline(rq);
6494 cpu_clear(rq->cpu, rq->rd->online);
6495 rq->online = 0;
6500 * migration_call - callback that gets triggered when a CPU is added.
6501 * Here we can start up the necessary migration thread for the new CPU.
6503 static int __cpuinit
6504 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6506 struct task_struct *p;
6507 int cpu = (long)hcpu;
6508 unsigned long flags;
6509 struct rq *rq;
6511 switch (action) {
6513 case CPU_UP_PREPARE:
6514 case CPU_UP_PREPARE_FROZEN:
6515 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6516 if (IS_ERR(p))
6517 return NOTIFY_BAD;
6518 kthread_bind(p, cpu);
6519 /* Must be high prio: stop_machine expects to yield to it. */
6520 rq = task_rq_lock(p, &flags);
6521 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6522 task_rq_unlock(rq, &flags);
6523 cpu_rq(cpu)->migration_thread = p;
6524 break;
6526 case CPU_ONLINE:
6527 case CPU_ONLINE_FROZEN:
6528 /* Strictly unnecessary, as first user will wake it. */
6529 wake_up_process(cpu_rq(cpu)->migration_thread);
6531 /* Update our root-domain */
6532 rq = cpu_rq(cpu);
6533 spin_lock_irqsave(&rq->lock, flags);
6534 if (rq->rd) {
6535 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6537 set_rq_online(rq);
6539 spin_unlock_irqrestore(&rq->lock, flags);
6540 break;
6542 #ifdef CONFIG_HOTPLUG_CPU
6543 case CPU_UP_CANCELED:
6544 case CPU_UP_CANCELED_FROZEN:
6545 if (!cpu_rq(cpu)->migration_thread)
6546 break;
6547 /* Unbind it from offline cpu so it can run. Fall thru. */
6548 kthread_bind(cpu_rq(cpu)->migration_thread,
6549 any_online_cpu(cpu_online_map));
6550 kthread_stop(cpu_rq(cpu)->migration_thread);
6551 cpu_rq(cpu)->migration_thread = NULL;
6552 break;
6554 case CPU_DEAD:
6555 case CPU_DEAD_FROZEN:
6556 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6557 migrate_live_tasks(cpu);
6558 rq = cpu_rq(cpu);
6559 kthread_stop(rq->migration_thread);
6560 rq->migration_thread = NULL;
6561 /* Idle task back to normal (off runqueue, low prio) */
6562 spin_lock_irq(&rq->lock);
6563 update_rq_clock(rq);
6564 deactivate_task(rq, rq->idle, 0);
6565 rq->idle->static_prio = MAX_PRIO;
6566 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6567 rq->idle->sched_class = &idle_sched_class;
6568 migrate_dead_tasks(cpu);
6569 spin_unlock_irq(&rq->lock);
6570 cpuset_unlock();
6571 migrate_nr_uninterruptible(rq);
6572 BUG_ON(rq->nr_running != 0);
6575 * No need to migrate the tasks: it was best-effort if
6576 * they didn't take sched_hotcpu_mutex. Just wake up
6577 * the requestors.
6579 spin_lock_irq(&rq->lock);
6580 while (!list_empty(&rq->migration_queue)) {
6581 struct migration_req *req;
6583 req = list_entry(rq->migration_queue.next,
6584 struct migration_req, list);
6585 list_del_init(&req->list);
6586 complete(&req->done);
6588 spin_unlock_irq(&rq->lock);
6589 break;
6591 case CPU_DYING:
6592 case CPU_DYING_FROZEN:
6593 /* Update our root-domain */
6594 rq = cpu_rq(cpu);
6595 spin_lock_irqsave(&rq->lock, flags);
6596 if (rq->rd) {
6597 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6598 set_rq_offline(rq);
6600 spin_unlock_irqrestore(&rq->lock, flags);
6601 break;
6602 #endif
6604 return NOTIFY_OK;
6607 /* Register at highest priority so that task migration (migrate_all_tasks)
6608 * happens before everything else.
6610 static struct notifier_block __cpuinitdata migration_notifier = {
6611 .notifier_call = migration_call,
6612 .priority = 10
6615 static int __init migration_init(void)
6617 void *cpu = (void *)(long)smp_processor_id();
6618 int err;
6620 /* Start one for the boot CPU: */
6621 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6622 BUG_ON(err == NOTIFY_BAD);
6623 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6624 register_cpu_notifier(&migration_notifier);
6626 return err;
6628 early_initcall(migration_init);
6629 #endif
6631 #ifdef CONFIG_SMP
6633 #ifdef CONFIG_SCHED_DEBUG
6635 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6637 switch (lvl) {
6638 case SD_LV_NONE:
6639 return "NONE";
6640 case SD_LV_SIBLING:
6641 return "SIBLING";
6642 case SD_LV_MC:
6643 return "MC";
6644 case SD_LV_CPU:
6645 return "CPU";
6646 case SD_LV_NODE:
6647 return "NODE";
6648 case SD_LV_ALLNODES:
6649 return "ALLNODES";
6650 case SD_LV_MAX:
6651 return "MAX";
6654 return "MAX";
6657 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6658 cpumask_t *groupmask)
6660 struct sched_group *group = sd->groups;
6661 char str[256];
6663 cpulist_scnprintf(str, sizeof(str), sd->span);
6664 cpus_clear(*groupmask);
6666 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6668 if (!(sd->flags & SD_LOAD_BALANCE)) {
6669 printk("does not load-balance\n");
6670 if (sd->parent)
6671 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6672 " has parent");
6673 return -1;
6676 printk(KERN_CONT "span %s level %s\n",
6677 str, sd_level_to_string(sd->level));
6679 if (!cpu_isset(cpu, sd->span)) {
6680 printk(KERN_ERR "ERROR: domain->span does not contain "
6681 "CPU%d\n", cpu);
6683 if (!cpu_isset(cpu, group->cpumask)) {
6684 printk(KERN_ERR "ERROR: domain->groups does not contain"
6685 " CPU%d\n", cpu);
6688 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6689 do {
6690 if (!group) {
6691 printk("\n");
6692 printk(KERN_ERR "ERROR: group is NULL\n");
6693 break;
6696 if (!group->__cpu_power) {
6697 printk(KERN_CONT "\n");
6698 printk(KERN_ERR "ERROR: domain->cpu_power not "
6699 "set\n");
6700 break;
6703 if (!cpus_weight(group->cpumask)) {
6704 printk(KERN_CONT "\n");
6705 printk(KERN_ERR "ERROR: empty group\n");
6706 break;
6709 if (cpus_intersects(*groupmask, group->cpumask)) {
6710 printk(KERN_CONT "\n");
6711 printk(KERN_ERR "ERROR: repeated CPUs\n");
6712 break;
6715 cpus_or(*groupmask, *groupmask, group->cpumask);
6717 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6718 printk(KERN_CONT " %s", str);
6720 group = group->next;
6721 } while (group != sd->groups);
6722 printk(KERN_CONT "\n");
6724 if (!cpus_equal(sd->span, *groupmask))
6725 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6727 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6728 printk(KERN_ERR "ERROR: parent span is not a superset "
6729 "of domain->span\n");
6730 return 0;
6733 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6735 cpumask_t *groupmask;
6736 int level = 0;
6738 if (!sd) {
6739 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6740 return;
6743 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6745 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6746 if (!groupmask) {
6747 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6748 return;
6751 for (;;) {
6752 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6753 break;
6754 level++;
6755 sd = sd->parent;
6756 if (!sd)
6757 break;
6759 kfree(groupmask);
6761 #else /* !CONFIG_SCHED_DEBUG */
6762 # define sched_domain_debug(sd, cpu) do { } while (0)
6763 #endif /* CONFIG_SCHED_DEBUG */
6765 static int sd_degenerate(struct sched_domain *sd)
6767 if (cpus_weight(sd->span) == 1)
6768 return 1;
6770 /* Following flags need at least 2 groups */
6771 if (sd->flags & (SD_LOAD_BALANCE |
6772 SD_BALANCE_NEWIDLE |
6773 SD_BALANCE_FORK |
6774 SD_BALANCE_EXEC |
6775 SD_SHARE_CPUPOWER |
6776 SD_SHARE_PKG_RESOURCES)) {
6777 if (sd->groups != sd->groups->next)
6778 return 0;
6781 /* Following flags don't use groups */
6782 if (sd->flags & (SD_WAKE_IDLE |
6783 SD_WAKE_AFFINE |
6784 SD_WAKE_BALANCE))
6785 return 0;
6787 return 1;
6790 static int
6791 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6793 unsigned long cflags = sd->flags, pflags = parent->flags;
6795 if (sd_degenerate(parent))
6796 return 1;
6798 if (!cpus_equal(sd->span, parent->span))
6799 return 0;
6801 /* Does parent contain flags not in child? */
6802 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6803 if (cflags & SD_WAKE_AFFINE)
6804 pflags &= ~SD_WAKE_BALANCE;
6805 /* Flags needing groups don't count if only 1 group in parent */
6806 if (parent->groups == parent->groups->next) {
6807 pflags &= ~(SD_LOAD_BALANCE |
6808 SD_BALANCE_NEWIDLE |
6809 SD_BALANCE_FORK |
6810 SD_BALANCE_EXEC |
6811 SD_SHARE_CPUPOWER |
6812 SD_SHARE_PKG_RESOURCES);
6814 if (~cflags & pflags)
6815 return 0;
6817 return 1;
6820 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6822 unsigned long flags;
6824 spin_lock_irqsave(&rq->lock, flags);
6826 if (rq->rd) {
6827 struct root_domain *old_rd = rq->rd;
6829 if (cpu_isset(rq->cpu, old_rd->online))
6830 set_rq_offline(rq);
6832 cpu_clear(rq->cpu, old_rd->span);
6834 if (atomic_dec_and_test(&old_rd->refcount))
6835 kfree(old_rd);
6838 atomic_inc(&rd->refcount);
6839 rq->rd = rd;
6841 cpu_set(rq->cpu, rd->span);
6842 if (cpu_isset(rq->cpu, cpu_online_map))
6843 set_rq_online(rq);
6845 spin_unlock_irqrestore(&rq->lock, flags);
6848 static void init_rootdomain(struct root_domain *rd)
6850 memset(rd, 0, sizeof(*rd));
6852 cpus_clear(rd->span);
6853 cpus_clear(rd->online);
6855 cpupri_init(&rd->cpupri);
6858 static void init_defrootdomain(void)
6860 init_rootdomain(&def_root_domain);
6861 atomic_set(&def_root_domain.refcount, 1);
6864 static struct root_domain *alloc_rootdomain(void)
6866 struct root_domain *rd;
6868 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6869 if (!rd)
6870 return NULL;
6872 init_rootdomain(rd);
6874 return rd;
6878 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6879 * hold the hotplug lock.
6881 static void
6882 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6884 struct rq *rq = cpu_rq(cpu);
6885 struct sched_domain *tmp;
6887 /* Remove the sched domains which do not contribute to scheduling. */
6888 for (tmp = sd; tmp; ) {
6889 struct sched_domain *parent = tmp->parent;
6890 if (!parent)
6891 break;
6893 if (sd_parent_degenerate(tmp, parent)) {
6894 tmp->parent = parent->parent;
6895 if (parent->parent)
6896 parent->parent->child = tmp;
6897 } else
6898 tmp = tmp->parent;
6901 if (sd && sd_degenerate(sd)) {
6902 sd = sd->parent;
6903 if (sd)
6904 sd->child = NULL;
6907 sched_domain_debug(sd, cpu);
6909 rq_attach_root(rq, rd);
6910 rcu_assign_pointer(rq->sd, sd);
6913 /* cpus with isolated domains */
6914 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6916 /* Setup the mask of cpus configured for isolated domains */
6917 static int __init isolated_cpu_setup(char *str)
6919 static int __initdata ints[NR_CPUS];
6920 int i;
6922 str = get_options(str, ARRAY_SIZE(ints), ints);
6923 cpus_clear(cpu_isolated_map);
6924 for (i = 1; i <= ints[0]; i++)
6925 if (ints[i] < NR_CPUS)
6926 cpu_set(ints[i], cpu_isolated_map);
6927 return 1;
6930 __setup("isolcpus=", isolated_cpu_setup);
6933 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6934 * to a function which identifies what group(along with sched group) a CPU
6935 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6936 * (due to the fact that we keep track of groups covered with a cpumask_t).
6938 * init_sched_build_groups will build a circular linked list of the groups
6939 * covered by the given span, and will set each group's ->cpumask correctly,
6940 * and ->cpu_power to 0.
6942 static void
6943 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6944 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6945 struct sched_group **sg,
6946 cpumask_t *tmpmask),
6947 cpumask_t *covered, cpumask_t *tmpmask)
6949 struct sched_group *first = NULL, *last = NULL;
6950 int i;
6952 cpus_clear(*covered);
6954 for_each_cpu_mask_nr(i, *span) {
6955 struct sched_group *sg;
6956 int group = group_fn(i, cpu_map, &sg, tmpmask);
6957 int j;
6959 if (cpu_isset(i, *covered))
6960 continue;
6962 cpus_clear(sg->cpumask);
6963 sg->__cpu_power = 0;
6965 for_each_cpu_mask_nr(j, *span) {
6966 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6967 continue;
6969 cpu_set(j, *covered);
6970 cpu_set(j, sg->cpumask);
6972 if (!first)
6973 first = sg;
6974 if (last)
6975 last->next = sg;
6976 last = sg;
6978 last->next = first;
6981 #define SD_NODES_PER_DOMAIN 16
6983 #ifdef CONFIG_NUMA
6986 * find_next_best_node - find the next node to include in a sched_domain
6987 * @node: node whose sched_domain we're building
6988 * @used_nodes: nodes already in the sched_domain
6990 * Find the next node to include in a given scheduling domain. Simply
6991 * finds the closest node not already in the @used_nodes map.
6993 * Should use nodemask_t.
6995 static int find_next_best_node(int node, nodemask_t *used_nodes)
6997 int i, n, val, min_val, best_node = 0;
6999 min_val = INT_MAX;
7001 for (i = 0; i < nr_node_ids; i++) {
7002 /* Start at @node */
7003 n = (node + i) % nr_node_ids;
7005 if (!nr_cpus_node(n))
7006 continue;
7008 /* Skip already used nodes */
7009 if (node_isset(n, *used_nodes))
7010 continue;
7012 /* Simple min distance search */
7013 val = node_distance(node, n);
7015 if (val < min_val) {
7016 min_val = val;
7017 best_node = n;
7021 node_set(best_node, *used_nodes);
7022 return best_node;
7026 * sched_domain_node_span - get a cpumask for a node's sched_domain
7027 * @node: node whose cpumask we're constructing
7028 * @span: resulting cpumask
7030 * Given a node, construct a good cpumask for its sched_domain to span. It
7031 * should be one that prevents unnecessary balancing, but also spreads tasks
7032 * out optimally.
7034 static void sched_domain_node_span(int node, cpumask_t *span)
7036 nodemask_t used_nodes;
7037 node_to_cpumask_ptr(nodemask, node);
7038 int i;
7040 cpus_clear(*span);
7041 nodes_clear(used_nodes);
7043 cpus_or(*span, *span, *nodemask);
7044 node_set(node, used_nodes);
7046 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7047 int next_node = find_next_best_node(node, &used_nodes);
7049 node_to_cpumask_ptr_next(nodemask, next_node);
7050 cpus_or(*span, *span, *nodemask);
7053 #endif /* CONFIG_NUMA */
7055 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7058 * SMT sched-domains:
7060 #ifdef CONFIG_SCHED_SMT
7061 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7062 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7064 static int
7065 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7066 cpumask_t *unused)
7068 if (sg)
7069 *sg = &per_cpu(sched_group_cpus, cpu);
7070 return cpu;
7072 #endif /* CONFIG_SCHED_SMT */
7075 * multi-core sched-domains:
7077 #ifdef CONFIG_SCHED_MC
7078 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7079 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7080 #endif /* CONFIG_SCHED_MC */
7082 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7083 static int
7084 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7085 cpumask_t *mask)
7087 int group;
7089 *mask = per_cpu(cpu_sibling_map, cpu);
7090 cpus_and(*mask, *mask, *cpu_map);
7091 group = first_cpu(*mask);
7092 if (sg)
7093 *sg = &per_cpu(sched_group_core, group);
7094 return group;
7096 #elif defined(CONFIG_SCHED_MC)
7097 static int
7098 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7099 cpumask_t *unused)
7101 if (sg)
7102 *sg = &per_cpu(sched_group_core, cpu);
7103 return cpu;
7105 #endif
7107 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7108 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7110 static int
7111 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7112 cpumask_t *mask)
7114 int group;
7115 #ifdef CONFIG_SCHED_MC
7116 *mask = cpu_coregroup_map(cpu);
7117 cpus_and(*mask, *mask, *cpu_map);
7118 group = first_cpu(*mask);
7119 #elif defined(CONFIG_SCHED_SMT)
7120 *mask = per_cpu(cpu_sibling_map, cpu);
7121 cpus_and(*mask, *mask, *cpu_map);
7122 group = first_cpu(*mask);
7123 #else
7124 group = cpu;
7125 #endif
7126 if (sg)
7127 *sg = &per_cpu(sched_group_phys, group);
7128 return group;
7131 #ifdef CONFIG_NUMA
7133 * The init_sched_build_groups can't handle what we want to do with node
7134 * groups, so roll our own. Now each node has its own list of groups which
7135 * gets dynamically allocated.
7137 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7138 static struct sched_group ***sched_group_nodes_bycpu;
7140 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7141 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7143 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7144 struct sched_group **sg, cpumask_t *nodemask)
7146 int group;
7148 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7149 cpus_and(*nodemask, *nodemask, *cpu_map);
7150 group = first_cpu(*nodemask);
7152 if (sg)
7153 *sg = &per_cpu(sched_group_allnodes, group);
7154 return group;
7157 static void init_numa_sched_groups_power(struct sched_group *group_head)
7159 struct sched_group *sg = group_head;
7160 int j;
7162 if (!sg)
7163 return;
7164 do {
7165 for_each_cpu_mask_nr(j, sg->cpumask) {
7166 struct sched_domain *sd;
7168 sd = &per_cpu(phys_domains, j);
7169 if (j != first_cpu(sd->groups->cpumask)) {
7171 * Only add "power" once for each
7172 * physical package.
7174 continue;
7177 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7179 sg = sg->next;
7180 } while (sg != group_head);
7182 #endif /* CONFIG_NUMA */
7184 #ifdef CONFIG_NUMA
7185 /* Free memory allocated for various sched_group structures */
7186 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7188 int cpu, i;
7190 for_each_cpu_mask_nr(cpu, *cpu_map) {
7191 struct sched_group **sched_group_nodes
7192 = sched_group_nodes_bycpu[cpu];
7194 if (!sched_group_nodes)
7195 continue;
7197 for (i = 0; i < nr_node_ids; i++) {
7198 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7200 *nodemask = node_to_cpumask(i);
7201 cpus_and(*nodemask, *nodemask, *cpu_map);
7202 if (cpus_empty(*nodemask))
7203 continue;
7205 if (sg == NULL)
7206 continue;
7207 sg = sg->next;
7208 next_sg:
7209 oldsg = sg;
7210 sg = sg->next;
7211 kfree(oldsg);
7212 if (oldsg != sched_group_nodes[i])
7213 goto next_sg;
7215 kfree(sched_group_nodes);
7216 sched_group_nodes_bycpu[cpu] = NULL;
7219 #else /* !CONFIG_NUMA */
7220 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7223 #endif /* CONFIG_NUMA */
7226 * Initialize sched groups cpu_power.
7228 * cpu_power indicates the capacity of sched group, which is used while
7229 * distributing the load between different sched groups in a sched domain.
7230 * Typically cpu_power for all the groups in a sched domain will be same unless
7231 * there are asymmetries in the topology. If there are asymmetries, group
7232 * having more cpu_power will pickup more load compared to the group having
7233 * less cpu_power.
7235 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7236 * the maximum number of tasks a group can handle in the presence of other idle
7237 * or lightly loaded groups in the same sched domain.
7239 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7241 struct sched_domain *child;
7242 struct sched_group *group;
7244 WARN_ON(!sd || !sd->groups);
7246 if (cpu != first_cpu(sd->groups->cpumask))
7247 return;
7249 child = sd->child;
7251 sd->groups->__cpu_power = 0;
7254 * For perf policy, if the groups in child domain share resources
7255 * (for example cores sharing some portions of the cache hierarchy
7256 * or SMT), then set this domain groups cpu_power such that each group
7257 * can handle only one task, when there are other idle groups in the
7258 * same sched domain.
7260 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7261 (child->flags &
7262 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7263 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7264 return;
7268 * add cpu_power of each child group to this groups cpu_power
7270 group = child->groups;
7271 do {
7272 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7273 group = group->next;
7274 } while (group != child->groups);
7278 * Initializers for schedule domains
7279 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7282 #ifdef CONFIG_SCHED_DEBUG
7283 # define SD_INIT_NAME(sd, type) sd->name = #type
7284 #else
7285 # define SD_INIT_NAME(sd, type) do { } while (0)
7286 #endif
7288 #define SD_INIT(sd, type) sd_init_##type(sd)
7290 #define SD_INIT_FUNC(type) \
7291 static noinline void sd_init_##type(struct sched_domain *sd) \
7293 memset(sd, 0, sizeof(*sd)); \
7294 *sd = SD_##type##_INIT; \
7295 sd->level = SD_LV_##type; \
7296 SD_INIT_NAME(sd, type); \
7299 SD_INIT_FUNC(CPU)
7300 #ifdef CONFIG_NUMA
7301 SD_INIT_FUNC(ALLNODES)
7302 SD_INIT_FUNC(NODE)
7303 #endif
7304 #ifdef CONFIG_SCHED_SMT
7305 SD_INIT_FUNC(SIBLING)
7306 #endif
7307 #ifdef CONFIG_SCHED_MC
7308 SD_INIT_FUNC(MC)
7309 #endif
7312 * To minimize stack usage kmalloc room for cpumasks and share the
7313 * space as the usage in build_sched_domains() dictates. Used only
7314 * if the amount of space is significant.
7316 struct allmasks {
7317 cpumask_t tmpmask; /* make this one first */
7318 union {
7319 cpumask_t nodemask;
7320 cpumask_t this_sibling_map;
7321 cpumask_t this_core_map;
7323 cpumask_t send_covered;
7325 #ifdef CONFIG_NUMA
7326 cpumask_t domainspan;
7327 cpumask_t covered;
7328 cpumask_t notcovered;
7329 #endif
7332 #if NR_CPUS > 128
7333 #define SCHED_CPUMASK_ALLOC 1
7334 #define SCHED_CPUMASK_FREE(v) kfree(v)
7335 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7336 #else
7337 #define SCHED_CPUMASK_ALLOC 0
7338 #define SCHED_CPUMASK_FREE(v)
7339 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7340 #endif
7342 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7343 ((unsigned long)(a) + offsetof(struct allmasks, v))
7345 static int default_relax_domain_level = -1;
7347 static int __init setup_relax_domain_level(char *str)
7349 unsigned long val;
7351 val = simple_strtoul(str, NULL, 0);
7352 if (val < SD_LV_MAX)
7353 default_relax_domain_level = val;
7355 return 1;
7357 __setup("relax_domain_level=", setup_relax_domain_level);
7359 static void set_domain_attribute(struct sched_domain *sd,
7360 struct sched_domain_attr *attr)
7362 int request;
7364 if (!attr || attr->relax_domain_level < 0) {
7365 if (default_relax_domain_level < 0)
7366 return;
7367 else
7368 request = default_relax_domain_level;
7369 } else
7370 request = attr->relax_domain_level;
7371 if (request < sd->level) {
7372 /* turn off idle balance on this domain */
7373 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7374 } else {
7375 /* turn on idle balance on this domain */
7376 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7381 * Build sched domains for a given set of cpus and attach the sched domains
7382 * to the individual cpus
7384 static int __build_sched_domains(const cpumask_t *cpu_map,
7385 struct sched_domain_attr *attr)
7387 int i;
7388 struct root_domain *rd;
7389 SCHED_CPUMASK_DECLARE(allmasks);
7390 cpumask_t *tmpmask;
7391 #ifdef CONFIG_NUMA
7392 struct sched_group **sched_group_nodes = NULL;
7393 int sd_allnodes = 0;
7396 * Allocate the per-node list of sched groups
7398 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7399 GFP_KERNEL);
7400 if (!sched_group_nodes) {
7401 printk(KERN_WARNING "Can not alloc sched group node list\n");
7402 return -ENOMEM;
7404 #endif
7406 rd = alloc_rootdomain();
7407 if (!rd) {
7408 printk(KERN_WARNING "Cannot alloc root domain\n");
7409 #ifdef CONFIG_NUMA
7410 kfree(sched_group_nodes);
7411 #endif
7412 return -ENOMEM;
7415 #if SCHED_CPUMASK_ALLOC
7416 /* get space for all scratch cpumask variables */
7417 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7418 if (!allmasks) {
7419 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7420 kfree(rd);
7421 #ifdef CONFIG_NUMA
7422 kfree(sched_group_nodes);
7423 #endif
7424 return -ENOMEM;
7426 #endif
7427 tmpmask = (cpumask_t *)allmasks;
7430 #ifdef CONFIG_NUMA
7431 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7432 #endif
7435 * Set up domains for cpus specified by the cpu_map.
7437 for_each_cpu_mask_nr(i, *cpu_map) {
7438 struct sched_domain *sd = NULL, *p;
7439 SCHED_CPUMASK_VAR(nodemask, allmasks);
7441 *nodemask = node_to_cpumask(cpu_to_node(i));
7442 cpus_and(*nodemask, *nodemask, *cpu_map);
7444 #ifdef CONFIG_NUMA
7445 if (cpus_weight(*cpu_map) >
7446 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7447 sd = &per_cpu(allnodes_domains, i);
7448 SD_INIT(sd, ALLNODES);
7449 set_domain_attribute(sd, attr);
7450 sd->span = *cpu_map;
7451 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7452 p = sd;
7453 sd_allnodes = 1;
7454 } else
7455 p = NULL;
7457 sd = &per_cpu(node_domains, i);
7458 SD_INIT(sd, NODE);
7459 set_domain_attribute(sd, attr);
7460 sched_domain_node_span(cpu_to_node(i), &sd->span);
7461 sd->parent = p;
7462 if (p)
7463 p->child = sd;
7464 cpus_and(sd->span, sd->span, *cpu_map);
7465 #endif
7467 p = sd;
7468 sd = &per_cpu(phys_domains, i);
7469 SD_INIT(sd, CPU);
7470 set_domain_attribute(sd, attr);
7471 sd->span = *nodemask;
7472 sd->parent = p;
7473 if (p)
7474 p->child = sd;
7475 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7477 #ifdef CONFIG_SCHED_MC
7478 p = sd;
7479 sd = &per_cpu(core_domains, i);
7480 SD_INIT(sd, MC);
7481 set_domain_attribute(sd, attr);
7482 sd->span = cpu_coregroup_map(i);
7483 cpus_and(sd->span, sd->span, *cpu_map);
7484 sd->parent = p;
7485 p->child = sd;
7486 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7487 #endif
7489 #ifdef CONFIG_SCHED_SMT
7490 p = sd;
7491 sd = &per_cpu(cpu_domains, i);
7492 SD_INIT(sd, SIBLING);
7493 set_domain_attribute(sd, attr);
7494 sd->span = per_cpu(cpu_sibling_map, i);
7495 cpus_and(sd->span, sd->span, *cpu_map);
7496 sd->parent = p;
7497 p->child = sd;
7498 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7499 #endif
7502 #ifdef CONFIG_SCHED_SMT
7503 /* Set up CPU (sibling) groups */
7504 for_each_cpu_mask_nr(i, *cpu_map) {
7505 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7506 SCHED_CPUMASK_VAR(send_covered, allmasks);
7508 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7509 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7510 if (i != first_cpu(*this_sibling_map))
7511 continue;
7513 init_sched_build_groups(this_sibling_map, cpu_map,
7514 &cpu_to_cpu_group,
7515 send_covered, tmpmask);
7517 #endif
7519 #ifdef CONFIG_SCHED_MC
7520 /* Set up multi-core groups */
7521 for_each_cpu_mask_nr(i, *cpu_map) {
7522 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7523 SCHED_CPUMASK_VAR(send_covered, allmasks);
7525 *this_core_map = cpu_coregroup_map(i);
7526 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7527 if (i != first_cpu(*this_core_map))
7528 continue;
7530 init_sched_build_groups(this_core_map, cpu_map,
7531 &cpu_to_core_group,
7532 send_covered, tmpmask);
7534 #endif
7536 /* Set up physical groups */
7537 for (i = 0; i < nr_node_ids; i++) {
7538 SCHED_CPUMASK_VAR(nodemask, allmasks);
7539 SCHED_CPUMASK_VAR(send_covered, allmasks);
7541 *nodemask = node_to_cpumask(i);
7542 cpus_and(*nodemask, *nodemask, *cpu_map);
7543 if (cpus_empty(*nodemask))
7544 continue;
7546 init_sched_build_groups(nodemask, cpu_map,
7547 &cpu_to_phys_group,
7548 send_covered, tmpmask);
7551 #ifdef CONFIG_NUMA
7552 /* Set up node groups */
7553 if (sd_allnodes) {
7554 SCHED_CPUMASK_VAR(send_covered, allmasks);
7556 init_sched_build_groups(cpu_map, cpu_map,
7557 &cpu_to_allnodes_group,
7558 send_covered, tmpmask);
7561 for (i = 0; i < nr_node_ids; i++) {
7562 /* Set up node groups */
7563 struct sched_group *sg, *prev;
7564 SCHED_CPUMASK_VAR(nodemask, allmasks);
7565 SCHED_CPUMASK_VAR(domainspan, allmasks);
7566 SCHED_CPUMASK_VAR(covered, allmasks);
7567 int j;
7569 *nodemask = node_to_cpumask(i);
7570 cpus_clear(*covered);
7572 cpus_and(*nodemask, *nodemask, *cpu_map);
7573 if (cpus_empty(*nodemask)) {
7574 sched_group_nodes[i] = NULL;
7575 continue;
7578 sched_domain_node_span(i, domainspan);
7579 cpus_and(*domainspan, *domainspan, *cpu_map);
7581 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7582 if (!sg) {
7583 printk(KERN_WARNING "Can not alloc domain group for "
7584 "node %d\n", i);
7585 goto error;
7587 sched_group_nodes[i] = sg;
7588 for_each_cpu_mask_nr(j, *nodemask) {
7589 struct sched_domain *sd;
7591 sd = &per_cpu(node_domains, j);
7592 sd->groups = sg;
7594 sg->__cpu_power = 0;
7595 sg->cpumask = *nodemask;
7596 sg->next = sg;
7597 cpus_or(*covered, *covered, *nodemask);
7598 prev = sg;
7600 for (j = 0; j < nr_node_ids; j++) {
7601 SCHED_CPUMASK_VAR(notcovered, allmasks);
7602 int n = (i + j) % nr_node_ids;
7603 node_to_cpumask_ptr(pnodemask, n);
7605 cpus_complement(*notcovered, *covered);
7606 cpus_and(*tmpmask, *notcovered, *cpu_map);
7607 cpus_and(*tmpmask, *tmpmask, *domainspan);
7608 if (cpus_empty(*tmpmask))
7609 break;
7611 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7612 if (cpus_empty(*tmpmask))
7613 continue;
7615 sg = kmalloc_node(sizeof(struct sched_group),
7616 GFP_KERNEL, i);
7617 if (!sg) {
7618 printk(KERN_WARNING
7619 "Can not alloc domain group for node %d\n", j);
7620 goto error;
7622 sg->__cpu_power = 0;
7623 sg->cpumask = *tmpmask;
7624 sg->next = prev->next;
7625 cpus_or(*covered, *covered, *tmpmask);
7626 prev->next = sg;
7627 prev = sg;
7630 #endif
7632 /* Calculate CPU power for physical packages and nodes */
7633 #ifdef CONFIG_SCHED_SMT
7634 for_each_cpu_mask_nr(i, *cpu_map) {
7635 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7637 init_sched_groups_power(i, sd);
7639 #endif
7640 #ifdef CONFIG_SCHED_MC
7641 for_each_cpu_mask_nr(i, *cpu_map) {
7642 struct sched_domain *sd = &per_cpu(core_domains, i);
7644 init_sched_groups_power(i, sd);
7646 #endif
7648 for_each_cpu_mask_nr(i, *cpu_map) {
7649 struct sched_domain *sd = &per_cpu(phys_domains, i);
7651 init_sched_groups_power(i, sd);
7654 #ifdef CONFIG_NUMA
7655 for (i = 0; i < nr_node_ids; i++)
7656 init_numa_sched_groups_power(sched_group_nodes[i]);
7658 if (sd_allnodes) {
7659 struct sched_group *sg;
7661 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7662 tmpmask);
7663 init_numa_sched_groups_power(sg);
7665 #endif
7667 /* Attach the domains */
7668 for_each_cpu_mask_nr(i, *cpu_map) {
7669 struct sched_domain *sd;
7670 #ifdef CONFIG_SCHED_SMT
7671 sd = &per_cpu(cpu_domains, i);
7672 #elif defined(CONFIG_SCHED_MC)
7673 sd = &per_cpu(core_domains, i);
7674 #else
7675 sd = &per_cpu(phys_domains, i);
7676 #endif
7677 cpu_attach_domain(sd, rd, i);
7680 SCHED_CPUMASK_FREE((void *)allmasks);
7681 return 0;
7683 #ifdef CONFIG_NUMA
7684 error:
7685 free_sched_groups(cpu_map, tmpmask);
7686 SCHED_CPUMASK_FREE((void *)allmasks);
7687 kfree(rd);
7688 return -ENOMEM;
7689 #endif
7692 static int build_sched_domains(const cpumask_t *cpu_map)
7694 return __build_sched_domains(cpu_map, NULL);
7697 static cpumask_t *doms_cur; /* current sched domains */
7698 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7699 static struct sched_domain_attr *dattr_cur;
7700 /* attribues of custom domains in 'doms_cur' */
7703 * Special case: If a kmalloc of a doms_cur partition (array of
7704 * cpumask_t) fails, then fallback to a single sched domain,
7705 * as determined by the single cpumask_t fallback_doms.
7707 static cpumask_t fallback_doms;
7709 void __attribute__((weak)) arch_update_cpu_topology(void)
7714 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7715 * For now this just excludes isolated cpus, but could be used to
7716 * exclude other special cases in the future.
7718 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7720 int err;
7722 arch_update_cpu_topology();
7723 ndoms_cur = 1;
7724 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7725 if (!doms_cur)
7726 doms_cur = &fallback_doms;
7727 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7728 dattr_cur = NULL;
7729 err = build_sched_domains(doms_cur);
7730 register_sched_domain_sysctl();
7732 return err;
7735 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7736 cpumask_t *tmpmask)
7738 free_sched_groups(cpu_map, tmpmask);
7742 * Detach sched domains from a group of cpus specified in cpu_map
7743 * These cpus will now be attached to the NULL domain
7745 static void detach_destroy_domains(const cpumask_t *cpu_map)
7747 cpumask_t tmpmask;
7748 int i;
7750 unregister_sched_domain_sysctl();
7752 for_each_cpu_mask_nr(i, *cpu_map)
7753 cpu_attach_domain(NULL, &def_root_domain, i);
7754 synchronize_sched();
7755 arch_destroy_sched_domains(cpu_map, &tmpmask);
7758 /* handle null as "default" */
7759 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7760 struct sched_domain_attr *new, int idx_new)
7762 struct sched_domain_attr tmp;
7764 /* fast path */
7765 if (!new && !cur)
7766 return 1;
7768 tmp = SD_ATTR_INIT;
7769 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7770 new ? (new + idx_new) : &tmp,
7771 sizeof(struct sched_domain_attr));
7775 * Partition sched domains as specified by the 'ndoms_new'
7776 * cpumasks in the array doms_new[] of cpumasks. This compares
7777 * doms_new[] to the current sched domain partitioning, doms_cur[].
7778 * It destroys each deleted domain and builds each new domain.
7780 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7781 * The masks don't intersect (don't overlap.) We should setup one
7782 * sched domain for each mask. CPUs not in any of the cpumasks will
7783 * not be load balanced. If the same cpumask appears both in the
7784 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7785 * it as it is.
7787 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7788 * ownership of it and will kfree it when done with it. If the caller
7789 * failed the kmalloc call, then it can pass in doms_new == NULL,
7790 * and partition_sched_domains() will fallback to the single partition
7791 * 'fallback_doms', it also forces the domains to be rebuilt.
7793 * If doms_new==NULL it will be replaced with cpu_online_map.
7794 * ndoms_new==0 is a special case for destroying existing domains.
7795 * It will not create the default domain.
7797 * Call with hotplug lock held
7799 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7800 struct sched_domain_attr *dattr_new)
7802 int i, j, n;
7804 mutex_lock(&sched_domains_mutex);
7806 /* always unregister in case we don't destroy any domains */
7807 unregister_sched_domain_sysctl();
7809 n = doms_new ? ndoms_new : 0;
7811 /* Destroy deleted domains */
7812 for (i = 0; i < ndoms_cur; i++) {
7813 for (j = 0; j < n; j++) {
7814 if (cpus_equal(doms_cur[i], doms_new[j])
7815 && dattrs_equal(dattr_cur, i, dattr_new, j))
7816 goto match1;
7818 /* no match - a current sched domain not in new doms_new[] */
7819 detach_destroy_domains(doms_cur + i);
7820 match1:
7824 if (doms_new == NULL) {
7825 ndoms_cur = 0;
7826 doms_new = &fallback_doms;
7827 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7828 dattr_new = NULL;
7831 /* Build new domains */
7832 for (i = 0; i < ndoms_new; i++) {
7833 for (j = 0; j < ndoms_cur; j++) {
7834 if (cpus_equal(doms_new[i], doms_cur[j])
7835 && dattrs_equal(dattr_new, i, dattr_cur, j))
7836 goto match2;
7838 /* no match - add a new doms_new */
7839 __build_sched_domains(doms_new + i,
7840 dattr_new ? dattr_new + i : NULL);
7841 match2:
7845 /* Remember the new sched domains */
7846 if (doms_cur != &fallback_doms)
7847 kfree(doms_cur);
7848 kfree(dattr_cur); /* kfree(NULL) is safe */
7849 doms_cur = doms_new;
7850 dattr_cur = dattr_new;
7851 ndoms_cur = ndoms_new;
7853 register_sched_domain_sysctl();
7855 mutex_unlock(&sched_domains_mutex);
7858 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7859 int arch_reinit_sched_domains(void)
7861 get_online_cpus();
7863 /* Destroy domains first to force the rebuild */
7864 partition_sched_domains(0, NULL, NULL);
7866 rebuild_sched_domains();
7867 put_online_cpus();
7869 return 0;
7872 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7874 int ret;
7876 if (buf[0] != '0' && buf[0] != '1')
7877 return -EINVAL;
7879 if (smt)
7880 sched_smt_power_savings = (buf[0] == '1');
7881 else
7882 sched_mc_power_savings = (buf[0] == '1');
7884 ret = arch_reinit_sched_domains();
7886 return ret ? ret : count;
7889 #ifdef CONFIG_SCHED_MC
7890 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7891 char *page)
7893 return sprintf(page, "%u\n", sched_mc_power_savings);
7895 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7896 const char *buf, size_t count)
7898 return sched_power_savings_store(buf, count, 0);
7900 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7901 sched_mc_power_savings_show,
7902 sched_mc_power_savings_store);
7903 #endif
7905 #ifdef CONFIG_SCHED_SMT
7906 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7907 char *page)
7909 return sprintf(page, "%u\n", sched_smt_power_savings);
7911 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7912 const char *buf, size_t count)
7914 return sched_power_savings_store(buf, count, 1);
7916 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7917 sched_smt_power_savings_show,
7918 sched_smt_power_savings_store);
7919 #endif
7921 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7923 int err = 0;
7925 #ifdef CONFIG_SCHED_SMT
7926 if (smt_capable())
7927 err = sysfs_create_file(&cls->kset.kobj,
7928 &attr_sched_smt_power_savings.attr);
7929 #endif
7930 #ifdef CONFIG_SCHED_MC
7931 if (!err && mc_capable())
7932 err = sysfs_create_file(&cls->kset.kobj,
7933 &attr_sched_mc_power_savings.attr);
7934 #endif
7935 return err;
7937 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7939 #ifndef CONFIG_CPUSETS
7941 * Add online and remove offline CPUs from the scheduler domains.
7942 * When cpusets are enabled they take over this function.
7944 static int update_sched_domains(struct notifier_block *nfb,
7945 unsigned long action, void *hcpu)
7947 switch (action) {
7948 case CPU_ONLINE:
7949 case CPU_ONLINE_FROZEN:
7950 case CPU_DEAD:
7951 case CPU_DEAD_FROZEN:
7952 partition_sched_domains(1, NULL, NULL);
7953 return NOTIFY_OK;
7955 default:
7956 return NOTIFY_DONE;
7959 #endif
7961 static int update_runtime(struct notifier_block *nfb,
7962 unsigned long action, void *hcpu)
7964 int cpu = (int)(long)hcpu;
7966 switch (action) {
7967 case CPU_DOWN_PREPARE:
7968 case CPU_DOWN_PREPARE_FROZEN:
7969 disable_runtime(cpu_rq(cpu));
7970 return NOTIFY_OK;
7972 case CPU_DOWN_FAILED:
7973 case CPU_DOWN_FAILED_FROZEN:
7974 case CPU_ONLINE:
7975 case CPU_ONLINE_FROZEN:
7976 enable_runtime(cpu_rq(cpu));
7977 return NOTIFY_OK;
7979 default:
7980 return NOTIFY_DONE;
7984 void __init sched_init_smp(void)
7986 cpumask_t non_isolated_cpus;
7988 #if defined(CONFIG_NUMA)
7989 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7990 GFP_KERNEL);
7991 BUG_ON(sched_group_nodes_bycpu == NULL);
7992 #endif
7993 get_online_cpus();
7994 mutex_lock(&sched_domains_mutex);
7995 arch_init_sched_domains(&cpu_online_map);
7996 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7997 if (cpus_empty(non_isolated_cpus))
7998 cpu_set(smp_processor_id(), non_isolated_cpus);
7999 mutex_unlock(&sched_domains_mutex);
8000 put_online_cpus();
8002 #ifndef CONFIG_CPUSETS
8003 /* XXX: Theoretical race here - CPU may be hotplugged now */
8004 hotcpu_notifier(update_sched_domains, 0);
8005 #endif
8007 /* RT runtime code needs to handle some hotplug events */
8008 hotcpu_notifier(update_runtime, 0);
8010 init_hrtick();
8012 /* Move init over to a non-isolated CPU */
8013 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8014 BUG();
8015 sched_init_granularity();
8017 #else
8018 void __init sched_init_smp(void)
8020 sched_init_granularity();
8022 #endif /* CONFIG_SMP */
8024 int in_sched_functions(unsigned long addr)
8026 return in_lock_functions(addr) ||
8027 (addr >= (unsigned long)__sched_text_start
8028 && addr < (unsigned long)__sched_text_end);
8031 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8033 cfs_rq->tasks_timeline = RB_ROOT;
8034 INIT_LIST_HEAD(&cfs_rq->tasks);
8035 #ifdef CONFIG_FAIR_GROUP_SCHED
8036 cfs_rq->rq = rq;
8037 #endif
8038 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8041 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8043 struct rt_prio_array *array;
8044 int i;
8046 array = &rt_rq->active;
8047 for (i = 0; i < MAX_RT_PRIO; i++) {
8048 INIT_LIST_HEAD(array->queue + i);
8049 __clear_bit(i, array->bitmap);
8051 /* delimiter for bitsearch: */
8052 __set_bit(MAX_RT_PRIO, array->bitmap);
8054 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8055 rt_rq->highest_prio = MAX_RT_PRIO;
8056 #endif
8057 #ifdef CONFIG_SMP
8058 rt_rq->rt_nr_migratory = 0;
8059 rt_rq->overloaded = 0;
8060 #endif
8062 rt_rq->rt_time = 0;
8063 rt_rq->rt_throttled = 0;
8064 rt_rq->rt_runtime = 0;
8065 spin_lock_init(&rt_rq->rt_runtime_lock);
8067 #ifdef CONFIG_RT_GROUP_SCHED
8068 rt_rq->rt_nr_boosted = 0;
8069 rt_rq->rq = rq;
8070 #endif
8073 #ifdef CONFIG_FAIR_GROUP_SCHED
8074 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8075 struct sched_entity *se, int cpu, int add,
8076 struct sched_entity *parent)
8078 struct rq *rq = cpu_rq(cpu);
8079 tg->cfs_rq[cpu] = cfs_rq;
8080 init_cfs_rq(cfs_rq, rq);
8081 cfs_rq->tg = tg;
8082 if (add)
8083 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8085 tg->se[cpu] = se;
8086 /* se could be NULL for init_task_group */
8087 if (!se)
8088 return;
8090 if (!parent)
8091 se->cfs_rq = &rq->cfs;
8092 else
8093 se->cfs_rq = parent->my_q;
8095 se->my_q = cfs_rq;
8096 se->load.weight = tg->shares;
8097 se->load.inv_weight = 0;
8098 se->parent = parent;
8100 #endif
8102 #ifdef CONFIG_RT_GROUP_SCHED
8103 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8104 struct sched_rt_entity *rt_se, int cpu, int add,
8105 struct sched_rt_entity *parent)
8107 struct rq *rq = cpu_rq(cpu);
8109 tg->rt_rq[cpu] = rt_rq;
8110 init_rt_rq(rt_rq, rq);
8111 rt_rq->tg = tg;
8112 rt_rq->rt_se = rt_se;
8113 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8114 if (add)
8115 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8117 tg->rt_se[cpu] = rt_se;
8118 if (!rt_se)
8119 return;
8121 if (!parent)
8122 rt_se->rt_rq = &rq->rt;
8123 else
8124 rt_se->rt_rq = parent->my_q;
8126 rt_se->my_q = rt_rq;
8127 rt_se->parent = parent;
8128 INIT_LIST_HEAD(&rt_se->run_list);
8130 #endif
8132 void __init sched_init(void)
8134 int i, j;
8135 unsigned long alloc_size = 0, ptr;
8137 #ifdef CONFIG_FAIR_GROUP_SCHED
8138 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8139 #endif
8140 #ifdef CONFIG_RT_GROUP_SCHED
8141 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8142 #endif
8143 #ifdef CONFIG_USER_SCHED
8144 alloc_size *= 2;
8145 #endif
8147 * As sched_init() is called before page_alloc is setup,
8148 * we use alloc_bootmem().
8150 if (alloc_size) {
8151 ptr = (unsigned long)alloc_bootmem(alloc_size);
8153 #ifdef CONFIG_FAIR_GROUP_SCHED
8154 init_task_group.se = (struct sched_entity **)ptr;
8155 ptr += nr_cpu_ids * sizeof(void **);
8157 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8158 ptr += nr_cpu_ids * sizeof(void **);
8160 #ifdef CONFIG_USER_SCHED
8161 root_task_group.se = (struct sched_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8164 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8166 #endif /* CONFIG_USER_SCHED */
8167 #endif /* CONFIG_FAIR_GROUP_SCHED */
8168 #ifdef CONFIG_RT_GROUP_SCHED
8169 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
8172 init_task_group.rt_rq = (struct rt_rq **)ptr;
8173 ptr += nr_cpu_ids * sizeof(void **);
8175 #ifdef CONFIG_USER_SCHED
8176 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
8179 root_task_group.rt_rq = (struct rt_rq **)ptr;
8180 ptr += nr_cpu_ids * sizeof(void **);
8181 #endif /* CONFIG_USER_SCHED */
8182 #endif /* CONFIG_RT_GROUP_SCHED */
8185 #ifdef CONFIG_SMP
8186 init_defrootdomain();
8187 #endif
8189 init_rt_bandwidth(&def_rt_bandwidth,
8190 global_rt_period(), global_rt_runtime());
8192 #ifdef CONFIG_RT_GROUP_SCHED
8193 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8194 global_rt_period(), global_rt_runtime());
8195 #ifdef CONFIG_USER_SCHED
8196 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8197 global_rt_period(), RUNTIME_INF);
8198 #endif /* CONFIG_USER_SCHED */
8199 #endif /* CONFIG_RT_GROUP_SCHED */
8201 #ifdef CONFIG_GROUP_SCHED
8202 list_add(&init_task_group.list, &task_groups);
8203 INIT_LIST_HEAD(&init_task_group.children);
8205 #ifdef CONFIG_USER_SCHED
8206 INIT_LIST_HEAD(&root_task_group.children);
8207 init_task_group.parent = &root_task_group;
8208 list_add(&init_task_group.siblings, &root_task_group.children);
8209 #endif /* CONFIG_USER_SCHED */
8210 #endif /* CONFIG_GROUP_SCHED */
8212 for_each_possible_cpu(i) {
8213 struct rq *rq;
8215 rq = cpu_rq(i);
8216 spin_lock_init(&rq->lock);
8217 rq->nr_running = 0;
8218 init_cfs_rq(&rq->cfs, rq);
8219 init_rt_rq(&rq->rt, rq);
8220 #ifdef CONFIG_FAIR_GROUP_SCHED
8221 init_task_group.shares = init_task_group_load;
8222 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8223 #ifdef CONFIG_CGROUP_SCHED
8225 * How much cpu bandwidth does init_task_group get?
8227 * In case of task-groups formed thr' the cgroup filesystem, it
8228 * gets 100% of the cpu resources in the system. This overall
8229 * system cpu resource is divided among the tasks of
8230 * init_task_group and its child task-groups in a fair manner,
8231 * based on each entity's (task or task-group's) weight
8232 * (se->load.weight).
8234 * In other words, if init_task_group has 10 tasks of weight
8235 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8236 * then A0's share of the cpu resource is:
8238 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8240 * We achieve this by letting init_task_group's tasks sit
8241 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8243 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8244 #elif defined CONFIG_USER_SCHED
8245 root_task_group.shares = NICE_0_LOAD;
8246 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8248 * In case of task-groups formed thr' the user id of tasks,
8249 * init_task_group represents tasks belonging to root user.
8250 * Hence it forms a sibling of all subsequent groups formed.
8251 * In this case, init_task_group gets only a fraction of overall
8252 * system cpu resource, based on the weight assigned to root
8253 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8254 * by letting tasks of init_task_group sit in a separate cfs_rq
8255 * (init_cfs_rq) and having one entity represent this group of
8256 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8258 init_tg_cfs_entry(&init_task_group,
8259 &per_cpu(init_cfs_rq, i),
8260 &per_cpu(init_sched_entity, i), i, 1,
8261 root_task_group.se[i]);
8263 #endif
8264 #endif /* CONFIG_FAIR_GROUP_SCHED */
8266 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8267 #ifdef CONFIG_RT_GROUP_SCHED
8268 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8269 #ifdef CONFIG_CGROUP_SCHED
8270 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8271 #elif defined CONFIG_USER_SCHED
8272 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8273 init_tg_rt_entry(&init_task_group,
8274 &per_cpu(init_rt_rq, i),
8275 &per_cpu(init_sched_rt_entity, i), i, 1,
8276 root_task_group.rt_se[i]);
8277 #endif
8278 #endif
8280 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8281 rq->cpu_load[j] = 0;
8282 #ifdef CONFIG_SMP
8283 rq->sd = NULL;
8284 rq->rd = NULL;
8285 rq->active_balance = 0;
8286 rq->next_balance = jiffies;
8287 rq->push_cpu = 0;
8288 rq->cpu = i;
8289 rq->online = 0;
8290 rq->migration_thread = NULL;
8291 INIT_LIST_HEAD(&rq->migration_queue);
8292 rq_attach_root(rq, &def_root_domain);
8293 #endif
8294 init_rq_hrtick(rq);
8295 atomic_set(&rq->nr_iowait, 0);
8298 set_load_weight(&init_task);
8300 #ifdef CONFIG_PREEMPT_NOTIFIERS
8301 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8302 #endif
8304 #ifdef CONFIG_SMP
8305 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8306 #endif
8308 #ifdef CONFIG_RT_MUTEXES
8309 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8310 #endif
8313 * The boot idle thread does lazy MMU switching as well:
8315 atomic_inc(&init_mm.mm_count);
8316 enter_lazy_tlb(&init_mm, current);
8319 * Make us the idle thread. Technically, schedule() should not be
8320 * called from this thread, however somewhere below it might be,
8321 * but because we are the idle thread, we just pick up running again
8322 * when this runqueue becomes "idle".
8324 init_idle(current, smp_processor_id());
8326 * During early bootup we pretend to be a normal task:
8328 current->sched_class = &fair_sched_class;
8330 scheduler_running = 1;
8333 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8334 void __might_sleep(char *file, int line)
8336 #ifdef in_atomic
8337 static unsigned long prev_jiffy; /* ratelimiting */
8339 if ((!in_atomic() && !irqs_disabled()) ||
8340 system_state != SYSTEM_RUNNING || oops_in_progress)
8341 return;
8342 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8343 return;
8344 prev_jiffy = jiffies;
8346 printk(KERN_ERR
8347 "BUG: sleeping function called from invalid context at %s:%d\n",
8348 file, line);
8349 printk(KERN_ERR
8350 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8351 in_atomic(), irqs_disabled(),
8352 current->pid, current->comm);
8354 debug_show_held_locks(current);
8355 if (irqs_disabled())
8356 print_irqtrace_events(current);
8357 dump_stack();
8358 #endif
8360 EXPORT_SYMBOL(__might_sleep);
8361 #endif
8363 #ifdef CONFIG_MAGIC_SYSRQ
8364 static void normalize_task(struct rq *rq, struct task_struct *p)
8366 int on_rq;
8368 update_rq_clock(rq);
8369 on_rq = p->se.on_rq;
8370 if (on_rq)
8371 deactivate_task(rq, p, 0);
8372 __setscheduler(rq, p, SCHED_NORMAL, 0);
8373 if (on_rq) {
8374 activate_task(rq, p, 0);
8375 resched_task(rq->curr);
8379 void normalize_rt_tasks(void)
8381 struct task_struct *g, *p;
8382 unsigned long flags;
8383 struct rq *rq;
8385 read_lock_irqsave(&tasklist_lock, flags);
8386 do_each_thread(g, p) {
8388 * Only normalize user tasks:
8390 if (!p->mm)
8391 continue;
8393 p->se.exec_start = 0;
8394 #ifdef CONFIG_SCHEDSTATS
8395 p->se.wait_start = 0;
8396 p->se.sleep_start = 0;
8397 p->se.block_start = 0;
8398 #endif
8400 if (!rt_task(p)) {
8402 * Renice negative nice level userspace
8403 * tasks back to 0:
8405 if (TASK_NICE(p) < 0 && p->mm)
8406 set_user_nice(p, 0);
8407 continue;
8410 spin_lock(&p->pi_lock);
8411 rq = __task_rq_lock(p);
8413 normalize_task(rq, p);
8415 __task_rq_unlock(rq);
8416 spin_unlock(&p->pi_lock);
8417 } while_each_thread(g, p);
8419 read_unlock_irqrestore(&tasklist_lock, flags);
8422 #endif /* CONFIG_MAGIC_SYSRQ */
8424 #ifdef CONFIG_IA64
8426 * These functions are only useful for the IA64 MCA handling.
8428 * They can only be called when the whole system has been
8429 * stopped - every CPU needs to be quiescent, and no scheduling
8430 * activity can take place. Using them for anything else would
8431 * be a serious bug, and as a result, they aren't even visible
8432 * under any other configuration.
8436 * curr_task - return the current task for a given cpu.
8437 * @cpu: the processor in question.
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 struct task_struct *curr_task(int cpu)
8443 return cpu_curr(cpu);
8447 * set_curr_task - set the current task for a given cpu.
8448 * @cpu: the processor in question.
8449 * @p: the task pointer to set.
8451 * Description: This function must only be used when non-maskable interrupts
8452 * are serviced on a separate stack. It allows the architecture to switch the
8453 * notion of the current task on a cpu in a non-blocking manner. This function
8454 * must be called with all CPU's synchronized, and interrupts disabled, the
8455 * and caller must save the original value of the current task (see
8456 * curr_task() above) and restore that value before reenabling interrupts and
8457 * re-starting the system.
8459 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8461 void set_curr_task(int cpu, struct task_struct *p)
8463 cpu_curr(cpu) = p;
8466 #endif
8468 #ifdef CONFIG_FAIR_GROUP_SCHED
8469 static void free_fair_sched_group(struct task_group *tg)
8471 int i;
8473 for_each_possible_cpu(i) {
8474 if (tg->cfs_rq)
8475 kfree(tg->cfs_rq[i]);
8476 if (tg->se)
8477 kfree(tg->se[i]);
8480 kfree(tg->cfs_rq);
8481 kfree(tg->se);
8484 static
8485 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8487 struct cfs_rq *cfs_rq;
8488 struct sched_entity *se, *parent_se;
8489 struct rq *rq;
8490 int i;
8492 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8493 if (!tg->cfs_rq)
8494 goto err;
8495 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8496 if (!tg->se)
8497 goto err;
8499 tg->shares = NICE_0_LOAD;
8501 for_each_possible_cpu(i) {
8502 rq = cpu_rq(i);
8504 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8505 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8506 if (!cfs_rq)
8507 goto err;
8509 se = kmalloc_node(sizeof(struct sched_entity),
8510 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8511 if (!se)
8512 goto err;
8514 parent_se = parent ? parent->se[i] : NULL;
8515 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8518 return 1;
8520 err:
8521 return 0;
8524 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8526 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8527 &cpu_rq(cpu)->leaf_cfs_rq_list);
8530 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8532 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8534 #else /* !CONFG_FAIR_GROUP_SCHED */
8535 static inline void free_fair_sched_group(struct task_group *tg)
8539 static inline
8540 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8542 return 1;
8545 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8549 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8552 #endif /* CONFIG_FAIR_GROUP_SCHED */
8554 #ifdef CONFIG_RT_GROUP_SCHED
8555 static void free_rt_sched_group(struct task_group *tg)
8557 int i;
8559 destroy_rt_bandwidth(&tg->rt_bandwidth);
8561 for_each_possible_cpu(i) {
8562 if (tg->rt_rq)
8563 kfree(tg->rt_rq[i]);
8564 if (tg->rt_se)
8565 kfree(tg->rt_se[i]);
8568 kfree(tg->rt_rq);
8569 kfree(tg->rt_se);
8572 static
8573 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8575 struct rt_rq *rt_rq;
8576 struct sched_rt_entity *rt_se, *parent_se;
8577 struct rq *rq;
8578 int i;
8580 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8581 if (!tg->rt_rq)
8582 goto err;
8583 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8584 if (!tg->rt_se)
8585 goto err;
8587 init_rt_bandwidth(&tg->rt_bandwidth,
8588 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8590 for_each_possible_cpu(i) {
8591 rq = cpu_rq(i);
8593 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8594 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8595 if (!rt_rq)
8596 goto err;
8598 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8599 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8600 if (!rt_se)
8601 goto err;
8603 parent_se = parent ? parent->rt_se[i] : NULL;
8604 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8607 return 1;
8609 err:
8610 return 0;
8613 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8615 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8616 &cpu_rq(cpu)->leaf_rt_rq_list);
8619 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8621 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8623 #else /* !CONFIG_RT_GROUP_SCHED */
8624 static inline void free_rt_sched_group(struct task_group *tg)
8628 static inline
8629 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8631 return 1;
8634 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8638 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8641 #endif /* CONFIG_RT_GROUP_SCHED */
8643 #ifdef CONFIG_GROUP_SCHED
8644 static void free_sched_group(struct task_group *tg)
8646 free_fair_sched_group(tg);
8647 free_rt_sched_group(tg);
8648 kfree(tg);
8651 /* allocate runqueue etc for a new task group */
8652 struct task_group *sched_create_group(struct task_group *parent)
8654 struct task_group *tg;
8655 unsigned long flags;
8656 int i;
8658 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8659 if (!tg)
8660 return ERR_PTR(-ENOMEM);
8662 if (!alloc_fair_sched_group(tg, parent))
8663 goto err;
8665 if (!alloc_rt_sched_group(tg, parent))
8666 goto err;
8668 spin_lock_irqsave(&task_group_lock, flags);
8669 for_each_possible_cpu(i) {
8670 register_fair_sched_group(tg, i);
8671 register_rt_sched_group(tg, i);
8673 list_add_rcu(&tg->list, &task_groups);
8675 WARN_ON(!parent); /* root should already exist */
8677 tg->parent = parent;
8678 INIT_LIST_HEAD(&tg->children);
8679 list_add_rcu(&tg->siblings, &parent->children);
8680 spin_unlock_irqrestore(&task_group_lock, flags);
8682 return tg;
8684 err:
8685 free_sched_group(tg);
8686 return ERR_PTR(-ENOMEM);
8689 /* rcu callback to free various structures associated with a task group */
8690 static void free_sched_group_rcu(struct rcu_head *rhp)
8692 /* now it should be safe to free those cfs_rqs */
8693 free_sched_group(container_of(rhp, struct task_group, rcu));
8696 /* Destroy runqueue etc associated with a task group */
8697 void sched_destroy_group(struct task_group *tg)
8699 unsigned long flags;
8700 int i;
8702 spin_lock_irqsave(&task_group_lock, flags);
8703 for_each_possible_cpu(i) {
8704 unregister_fair_sched_group(tg, i);
8705 unregister_rt_sched_group(tg, i);
8707 list_del_rcu(&tg->list);
8708 list_del_rcu(&tg->siblings);
8709 spin_unlock_irqrestore(&task_group_lock, flags);
8711 /* wait for possible concurrent references to cfs_rqs complete */
8712 call_rcu(&tg->rcu, free_sched_group_rcu);
8715 /* change task's runqueue when it moves between groups.
8716 * The caller of this function should have put the task in its new group
8717 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8718 * reflect its new group.
8720 void sched_move_task(struct task_struct *tsk)
8722 int on_rq, running;
8723 unsigned long flags;
8724 struct rq *rq;
8726 rq = task_rq_lock(tsk, &flags);
8728 update_rq_clock(rq);
8730 running = task_current(rq, tsk);
8731 on_rq = tsk->se.on_rq;
8733 if (on_rq)
8734 dequeue_task(rq, tsk, 0);
8735 if (unlikely(running))
8736 tsk->sched_class->put_prev_task(rq, tsk);
8738 set_task_rq(tsk, task_cpu(tsk));
8740 #ifdef CONFIG_FAIR_GROUP_SCHED
8741 if (tsk->sched_class->moved_group)
8742 tsk->sched_class->moved_group(tsk);
8743 #endif
8745 if (unlikely(running))
8746 tsk->sched_class->set_curr_task(rq);
8747 if (on_rq)
8748 enqueue_task(rq, tsk, 0);
8750 task_rq_unlock(rq, &flags);
8752 #endif /* CONFIG_GROUP_SCHED */
8754 #ifdef CONFIG_FAIR_GROUP_SCHED
8755 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8757 struct cfs_rq *cfs_rq = se->cfs_rq;
8758 int on_rq;
8760 on_rq = se->on_rq;
8761 if (on_rq)
8762 dequeue_entity(cfs_rq, se, 0);
8764 se->load.weight = shares;
8765 se->load.inv_weight = 0;
8767 if (on_rq)
8768 enqueue_entity(cfs_rq, se, 0);
8771 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8773 struct cfs_rq *cfs_rq = se->cfs_rq;
8774 struct rq *rq = cfs_rq->rq;
8775 unsigned long flags;
8777 spin_lock_irqsave(&rq->lock, flags);
8778 __set_se_shares(se, shares);
8779 spin_unlock_irqrestore(&rq->lock, flags);
8782 static DEFINE_MUTEX(shares_mutex);
8784 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8786 int i;
8787 unsigned long flags;
8790 * We can't change the weight of the root cgroup.
8792 if (!tg->se[0])
8793 return -EINVAL;
8795 if (shares < MIN_SHARES)
8796 shares = MIN_SHARES;
8797 else if (shares > MAX_SHARES)
8798 shares = MAX_SHARES;
8800 mutex_lock(&shares_mutex);
8801 if (tg->shares == shares)
8802 goto done;
8804 spin_lock_irqsave(&task_group_lock, flags);
8805 for_each_possible_cpu(i)
8806 unregister_fair_sched_group(tg, i);
8807 list_del_rcu(&tg->siblings);
8808 spin_unlock_irqrestore(&task_group_lock, flags);
8810 /* wait for any ongoing reference to this group to finish */
8811 synchronize_sched();
8814 * Now we are free to modify the group's share on each cpu
8815 * w/o tripping rebalance_share or load_balance_fair.
8817 tg->shares = shares;
8818 for_each_possible_cpu(i) {
8820 * force a rebalance
8822 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8823 set_se_shares(tg->se[i], shares);
8827 * Enable load balance activity on this group, by inserting it back on
8828 * each cpu's rq->leaf_cfs_rq_list.
8830 spin_lock_irqsave(&task_group_lock, flags);
8831 for_each_possible_cpu(i)
8832 register_fair_sched_group(tg, i);
8833 list_add_rcu(&tg->siblings, &tg->parent->children);
8834 spin_unlock_irqrestore(&task_group_lock, flags);
8835 done:
8836 mutex_unlock(&shares_mutex);
8837 return 0;
8840 unsigned long sched_group_shares(struct task_group *tg)
8842 return tg->shares;
8844 #endif
8846 #ifdef CONFIG_RT_GROUP_SCHED
8848 * Ensure that the real time constraints are schedulable.
8850 static DEFINE_MUTEX(rt_constraints_mutex);
8852 static unsigned long to_ratio(u64 period, u64 runtime)
8854 if (runtime == RUNTIME_INF)
8855 return 1ULL << 20;
8857 return div64_u64(runtime << 20, period);
8860 /* Must be called with tasklist_lock held */
8861 static inline int tg_has_rt_tasks(struct task_group *tg)
8863 struct task_struct *g, *p;
8865 do_each_thread(g, p) {
8866 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8867 return 1;
8868 } while_each_thread(g, p);
8870 return 0;
8873 struct rt_schedulable_data {
8874 struct task_group *tg;
8875 u64 rt_period;
8876 u64 rt_runtime;
8879 static int tg_schedulable(struct task_group *tg, void *data)
8881 struct rt_schedulable_data *d = data;
8882 struct task_group *child;
8883 unsigned long total, sum = 0;
8884 u64 period, runtime;
8886 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8887 runtime = tg->rt_bandwidth.rt_runtime;
8889 if (tg == d->tg) {
8890 period = d->rt_period;
8891 runtime = d->rt_runtime;
8895 * Cannot have more runtime than the period.
8897 if (runtime > period && runtime != RUNTIME_INF)
8898 return -EINVAL;
8901 * Ensure we don't starve existing RT tasks.
8903 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8904 return -EBUSY;
8906 total = to_ratio(period, runtime);
8909 * Nobody can have more than the global setting allows.
8911 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8912 return -EINVAL;
8915 * The sum of our children's runtime should not exceed our own.
8917 list_for_each_entry_rcu(child, &tg->children, siblings) {
8918 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8919 runtime = child->rt_bandwidth.rt_runtime;
8921 if (child == d->tg) {
8922 period = d->rt_period;
8923 runtime = d->rt_runtime;
8926 sum += to_ratio(period, runtime);
8929 if (sum > total)
8930 return -EINVAL;
8932 return 0;
8935 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8937 struct rt_schedulable_data data = {
8938 .tg = tg,
8939 .rt_period = period,
8940 .rt_runtime = runtime,
8943 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8946 static int tg_set_bandwidth(struct task_group *tg,
8947 u64 rt_period, u64 rt_runtime)
8949 int i, err = 0;
8951 mutex_lock(&rt_constraints_mutex);
8952 read_lock(&tasklist_lock);
8953 err = __rt_schedulable(tg, rt_period, rt_runtime);
8954 if (err)
8955 goto unlock;
8957 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8958 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8959 tg->rt_bandwidth.rt_runtime = rt_runtime;
8961 for_each_possible_cpu(i) {
8962 struct rt_rq *rt_rq = tg->rt_rq[i];
8964 spin_lock(&rt_rq->rt_runtime_lock);
8965 rt_rq->rt_runtime = rt_runtime;
8966 spin_unlock(&rt_rq->rt_runtime_lock);
8968 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8969 unlock:
8970 read_unlock(&tasklist_lock);
8971 mutex_unlock(&rt_constraints_mutex);
8973 return err;
8976 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8978 u64 rt_runtime, rt_period;
8980 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8981 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8982 if (rt_runtime_us < 0)
8983 rt_runtime = RUNTIME_INF;
8985 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8988 long sched_group_rt_runtime(struct task_group *tg)
8990 u64 rt_runtime_us;
8992 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8993 return -1;
8995 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8996 do_div(rt_runtime_us, NSEC_PER_USEC);
8997 return rt_runtime_us;
9000 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9002 u64 rt_runtime, rt_period;
9004 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9005 rt_runtime = tg->rt_bandwidth.rt_runtime;
9007 if (rt_period == 0)
9008 return -EINVAL;
9010 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9013 long sched_group_rt_period(struct task_group *tg)
9015 u64 rt_period_us;
9017 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9018 do_div(rt_period_us, NSEC_PER_USEC);
9019 return rt_period_us;
9022 static int sched_rt_global_constraints(void)
9024 u64 runtime, period;
9025 int ret = 0;
9027 if (sysctl_sched_rt_period <= 0)
9028 return -EINVAL;
9030 runtime = global_rt_runtime();
9031 period = global_rt_period();
9034 * Sanity check on the sysctl variables.
9036 if (runtime > period && runtime != RUNTIME_INF)
9037 return -EINVAL;
9039 mutex_lock(&rt_constraints_mutex);
9040 read_lock(&tasklist_lock);
9041 ret = __rt_schedulable(NULL, 0, 0);
9042 read_unlock(&tasklist_lock);
9043 mutex_unlock(&rt_constraints_mutex);
9045 return ret;
9047 #else /* !CONFIG_RT_GROUP_SCHED */
9048 static int sched_rt_global_constraints(void)
9050 unsigned long flags;
9051 int i;
9053 if (sysctl_sched_rt_period <= 0)
9054 return -EINVAL;
9056 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9057 for_each_possible_cpu(i) {
9058 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9060 spin_lock(&rt_rq->rt_runtime_lock);
9061 rt_rq->rt_runtime = global_rt_runtime();
9062 spin_unlock(&rt_rq->rt_runtime_lock);
9064 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9066 return 0;
9068 #endif /* CONFIG_RT_GROUP_SCHED */
9070 int sched_rt_handler(struct ctl_table *table, int write,
9071 struct file *filp, void __user *buffer, size_t *lenp,
9072 loff_t *ppos)
9074 int ret;
9075 int old_period, old_runtime;
9076 static DEFINE_MUTEX(mutex);
9078 mutex_lock(&mutex);
9079 old_period = sysctl_sched_rt_period;
9080 old_runtime = sysctl_sched_rt_runtime;
9082 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9084 if (!ret && write) {
9085 ret = sched_rt_global_constraints();
9086 if (ret) {
9087 sysctl_sched_rt_period = old_period;
9088 sysctl_sched_rt_runtime = old_runtime;
9089 } else {
9090 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9091 def_rt_bandwidth.rt_period =
9092 ns_to_ktime(global_rt_period());
9095 mutex_unlock(&mutex);
9097 return ret;
9100 #ifdef CONFIG_CGROUP_SCHED
9102 /* return corresponding task_group object of a cgroup */
9103 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9105 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9106 struct task_group, css);
9109 static struct cgroup_subsys_state *
9110 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9112 struct task_group *tg, *parent;
9114 if (!cgrp->parent) {
9115 /* This is early initialization for the top cgroup */
9116 return &init_task_group.css;
9119 parent = cgroup_tg(cgrp->parent);
9120 tg = sched_create_group(parent);
9121 if (IS_ERR(tg))
9122 return ERR_PTR(-ENOMEM);
9124 return &tg->css;
9127 static void
9128 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9130 struct task_group *tg = cgroup_tg(cgrp);
9132 sched_destroy_group(tg);
9135 static int
9136 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9137 struct task_struct *tsk)
9139 #ifdef CONFIG_RT_GROUP_SCHED
9140 /* Don't accept realtime tasks when there is no way for them to run */
9141 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9142 return -EINVAL;
9143 #else
9144 /* We don't support RT-tasks being in separate groups */
9145 if (tsk->sched_class != &fair_sched_class)
9146 return -EINVAL;
9147 #endif
9149 return 0;
9152 static void
9153 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9154 struct cgroup *old_cont, struct task_struct *tsk)
9156 sched_move_task(tsk);
9159 #ifdef CONFIG_FAIR_GROUP_SCHED
9160 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9161 u64 shareval)
9163 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9166 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9168 struct task_group *tg = cgroup_tg(cgrp);
9170 return (u64) tg->shares;
9172 #endif /* CONFIG_FAIR_GROUP_SCHED */
9174 #ifdef CONFIG_RT_GROUP_SCHED
9175 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9176 s64 val)
9178 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9181 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9183 return sched_group_rt_runtime(cgroup_tg(cgrp));
9186 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9187 u64 rt_period_us)
9189 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9192 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9194 return sched_group_rt_period(cgroup_tg(cgrp));
9196 #endif /* CONFIG_RT_GROUP_SCHED */
9198 static struct cftype cpu_files[] = {
9199 #ifdef CONFIG_FAIR_GROUP_SCHED
9201 .name = "shares",
9202 .read_u64 = cpu_shares_read_u64,
9203 .write_u64 = cpu_shares_write_u64,
9205 #endif
9206 #ifdef CONFIG_RT_GROUP_SCHED
9208 .name = "rt_runtime_us",
9209 .read_s64 = cpu_rt_runtime_read,
9210 .write_s64 = cpu_rt_runtime_write,
9213 .name = "rt_period_us",
9214 .read_u64 = cpu_rt_period_read_uint,
9215 .write_u64 = cpu_rt_period_write_uint,
9217 #endif
9220 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9222 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9225 struct cgroup_subsys cpu_cgroup_subsys = {
9226 .name = "cpu",
9227 .create = cpu_cgroup_create,
9228 .destroy = cpu_cgroup_destroy,
9229 .can_attach = cpu_cgroup_can_attach,
9230 .attach = cpu_cgroup_attach,
9231 .populate = cpu_cgroup_populate,
9232 .subsys_id = cpu_cgroup_subsys_id,
9233 .early_init = 1,
9236 #endif /* CONFIG_CGROUP_SCHED */
9238 #ifdef CONFIG_CGROUP_CPUACCT
9241 * CPU accounting code for task groups.
9243 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9244 * (balbir@in.ibm.com).
9247 /* track cpu usage of a group of tasks */
9248 struct cpuacct {
9249 struct cgroup_subsys_state css;
9250 /* cpuusage holds pointer to a u64-type object on every cpu */
9251 u64 *cpuusage;
9254 struct cgroup_subsys cpuacct_subsys;
9256 /* return cpu accounting group corresponding to this container */
9257 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9259 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9260 struct cpuacct, css);
9263 /* return cpu accounting group to which this task belongs */
9264 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9266 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9267 struct cpuacct, css);
9270 /* create a new cpu accounting group */
9271 static struct cgroup_subsys_state *cpuacct_create(
9272 struct cgroup_subsys *ss, struct cgroup *cgrp)
9274 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9276 if (!ca)
9277 return ERR_PTR(-ENOMEM);
9279 ca->cpuusage = alloc_percpu(u64);
9280 if (!ca->cpuusage) {
9281 kfree(ca);
9282 return ERR_PTR(-ENOMEM);
9285 return &ca->css;
9288 /* destroy an existing cpu accounting group */
9289 static void
9290 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9292 struct cpuacct *ca = cgroup_ca(cgrp);
9294 free_percpu(ca->cpuusage);
9295 kfree(ca);
9298 /* return total cpu usage (in nanoseconds) of a group */
9299 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9301 struct cpuacct *ca = cgroup_ca(cgrp);
9302 u64 totalcpuusage = 0;
9303 int i;
9305 for_each_possible_cpu(i) {
9306 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9309 * Take rq->lock to make 64-bit addition safe on 32-bit
9310 * platforms.
9312 spin_lock_irq(&cpu_rq(i)->lock);
9313 totalcpuusage += *cpuusage;
9314 spin_unlock_irq(&cpu_rq(i)->lock);
9317 return totalcpuusage;
9320 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9321 u64 reset)
9323 struct cpuacct *ca = cgroup_ca(cgrp);
9324 int err = 0;
9325 int i;
9327 if (reset) {
9328 err = -EINVAL;
9329 goto out;
9332 for_each_possible_cpu(i) {
9333 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9335 spin_lock_irq(&cpu_rq(i)->lock);
9336 *cpuusage = 0;
9337 spin_unlock_irq(&cpu_rq(i)->lock);
9339 out:
9340 return err;
9343 static struct cftype files[] = {
9345 .name = "usage",
9346 .read_u64 = cpuusage_read,
9347 .write_u64 = cpuusage_write,
9351 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9353 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9357 * charge this task's execution time to its accounting group.
9359 * called with rq->lock held.
9361 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9363 struct cpuacct *ca;
9365 if (!cpuacct_subsys.active)
9366 return;
9368 ca = task_ca(tsk);
9369 if (ca) {
9370 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9372 *cpuusage += cputime;
9376 struct cgroup_subsys cpuacct_subsys = {
9377 .name = "cpuacct",
9378 .create = cpuacct_create,
9379 .destroy = cpuacct_destroy,
9380 .populate = cpuacct_populate,
9381 .subsys_id = cpuacct_subsys_id,
9383 #endif /* CONFIG_CGROUP_CPUACCT */