[PATCH] block: kill length alignment test in bio_map_user()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob1d9c3c70a9a05b84469a30f55dfbd369ec239e12
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
17 * tunables
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static kmem_cache_t *cfq_pool;
47 static kmem_cache_t *cfq_ioc_pool;
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define ASYNC (0)
57 #define SYNC (1)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
72 struct cfq_data {
73 request_queue_t *queue;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
85 * cfqq lookup hash
87 struct hlist_head *cfq_hash;
89 int rq_in_driver;
90 int hw_tag;
93 * idle window management
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
103 struct timer_list idle_class_timer;
105 sector_t last_sector;
106 unsigned long last_end_request;
109 * tunables, see top of file
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
119 struct list_head cic_list;
123 * Per process-grouping structure
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
160 /* various state flags, see below */
161 unsigned int flags;
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
215 static int cfq_queue_empty(request_queue_t *q)
217 struct cfq_data *cfqd = q->elevator->elevator_data;
219 return !cfqd->busy_queues;
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
224 if (rw == READ || rw == WRITE_SYNC)
225 return task->pid;
227 return CFQ_KEY_ASYNC;
231 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
232 * We choose the request that is closest to the head right now. Distance
233 * behind the head is penalized and only allowed to a certain extent.
235 static struct request *
236 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
238 sector_t last, s1, s2, d1 = 0, d2 = 0;
239 unsigned long back_max;
240 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
241 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
242 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
244 if (rq1 == NULL || rq1 == rq2)
245 return rq2;
246 if (rq2 == NULL)
247 return rq1;
249 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
250 return rq1;
251 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
252 return rq2;
253 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
254 return rq1;
255 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
256 return rq2;
258 s1 = rq1->sector;
259 s2 = rq2->sector;
261 last = cfqd->last_sector;
264 * by definition, 1KiB is 2 sectors
266 back_max = cfqd->cfq_back_max * 2;
269 * Strict one way elevator _except_ in the case where we allow
270 * short backward seeks which are biased as twice the cost of a
271 * similar forward seek.
273 if (s1 >= last)
274 d1 = s1 - last;
275 else if (s1 + back_max >= last)
276 d1 = (last - s1) * cfqd->cfq_back_penalty;
277 else
278 wrap |= CFQ_RQ1_WRAP;
280 if (s2 >= last)
281 d2 = s2 - last;
282 else if (s2 + back_max >= last)
283 d2 = (last - s2) * cfqd->cfq_back_penalty;
284 else
285 wrap |= CFQ_RQ2_WRAP;
287 /* Found required data */
290 * By doing switch() on the bit mask "wrap" we avoid having to
291 * check two variables for all permutations: --> faster!
293 switch (wrap) {
294 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
295 if (d1 < d2)
296 return rq1;
297 else if (d2 < d1)
298 return rq2;
299 else {
300 if (s1 >= s2)
301 return rq1;
302 else
303 return rq2;
306 case CFQ_RQ2_WRAP:
307 return rq1;
308 case CFQ_RQ1_WRAP:
309 return rq2;
310 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
311 default:
313 * Since both rqs are wrapped,
314 * start with the one that's further behind head
315 * (--> only *one* back seek required),
316 * since back seek takes more time than forward.
318 if (s1 <= s2)
319 return rq1;
320 else
321 return rq2;
326 * would be nice to take fifo expire time into account as well
328 static struct request *
329 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
330 struct request *last)
332 struct rb_node *rbnext = rb_next(&last->rb_node);
333 struct rb_node *rbprev = rb_prev(&last->rb_node);
334 struct request *next = NULL, *prev = NULL;
336 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
338 if (rbprev)
339 prev = rb_entry_rq(rbprev);
341 if (rbnext)
342 next = rb_entry_rq(rbnext);
343 else {
344 rbnext = rb_first(&cfqq->sort_list);
345 if (rbnext && rbnext != &last->rb_node)
346 next = rb_entry_rq(rbnext);
349 return cfq_choose_req(cfqd, next, prev);
352 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
354 struct cfq_data *cfqd = cfqq->cfqd;
355 struct list_head *list;
357 BUG_ON(!cfq_cfqq_on_rr(cfqq));
359 list_del(&cfqq->cfq_list);
361 if (cfq_class_rt(cfqq))
362 list = &cfqd->cur_rr;
363 else if (cfq_class_idle(cfqq))
364 list = &cfqd->idle_rr;
365 else {
367 * if cfqq has requests in flight, don't allow it to be
368 * found in cfq_set_active_queue before it has finished them.
369 * this is done to increase fairness between a process that
370 * has lots of io pending vs one that only generates one
371 * sporadically or synchronously
373 if (cfq_cfqq_dispatched(cfqq))
374 list = &cfqd->busy_rr;
375 else
376 list = &cfqd->rr_list[cfqq->ioprio];
380 * If this queue was preempted or is new (never been serviced), let
381 * it be added first for fairness but beind other new queues.
382 * Otherwise, just add to the back of the list.
384 if (preempted || cfq_cfqq_queue_new(cfqq)) {
385 struct list_head *n = list;
386 struct cfq_queue *__cfqq;
388 while (n->next != list) {
389 __cfqq = list_entry_cfqq(n->next);
390 if (!cfq_cfqq_queue_new(__cfqq))
391 break;
393 n = n->next;
396 list = n;
399 list_add_tail(&cfqq->cfq_list, list);
403 * add to busy list of queues for service, trying to be fair in ordering
404 * the pending list according to last request service
406 static inline void
407 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
409 BUG_ON(cfq_cfqq_on_rr(cfqq));
410 cfq_mark_cfqq_on_rr(cfqq);
411 cfqd->busy_queues++;
413 cfq_resort_rr_list(cfqq, 0);
416 static inline void
417 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
419 BUG_ON(!cfq_cfqq_on_rr(cfqq));
420 cfq_clear_cfqq_on_rr(cfqq);
421 list_del_init(&cfqq->cfq_list);
423 BUG_ON(!cfqd->busy_queues);
424 cfqd->busy_queues--;
428 * rb tree support functions
430 static inline void cfq_del_rq_rb(struct request *rq)
432 struct cfq_queue *cfqq = RQ_CFQQ(rq);
433 struct cfq_data *cfqd = cfqq->cfqd;
434 const int sync = rq_is_sync(rq);
436 BUG_ON(!cfqq->queued[sync]);
437 cfqq->queued[sync]--;
439 elv_rb_del(&cfqq->sort_list, rq);
441 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
442 cfq_del_cfqq_rr(cfqd, cfqq);
445 static void cfq_add_rq_rb(struct request *rq)
447 struct cfq_queue *cfqq = RQ_CFQQ(rq);
448 struct cfq_data *cfqd = cfqq->cfqd;
449 struct request *__alias;
451 cfqq->queued[rq_is_sync(rq)]++;
454 * looks a little odd, but the first insert might return an alias.
455 * if that happens, put the alias on the dispatch list
457 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
458 cfq_dispatch_insert(cfqd->queue, __alias);
460 if (!cfq_cfqq_on_rr(cfqq))
461 cfq_add_cfqq_rr(cfqd, cfqq);
464 static inline void
465 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
467 elv_rb_del(&cfqq->sort_list, rq);
468 cfqq->queued[rq_is_sync(rq)]--;
469 cfq_add_rq_rb(rq);
472 static struct request *
473 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
475 struct task_struct *tsk = current;
476 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
477 struct cfq_queue *cfqq;
479 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
480 if (cfqq) {
481 sector_t sector = bio->bi_sector + bio_sectors(bio);
483 return elv_rb_find(&cfqq->sort_list, sector);
486 return NULL;
489 static void cfq_activate_request(request_queue_t *q, struct request *rq)
491 struct cfq_data *cfqd = q->elevator->elevator_data;
493 cfqd->rq_in_driver++;
496 * If the depth is larger 1, it really could be queueing. But lets
497 * make the mark a little higher - idling could still be good for
498 * low queueing, and a low queueing number could also just indicate
499 * a SCSI mid layer like behaviour where limit+1 is often seen.
501 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
502 cfqd->hw_tag = 1;
505 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
507 struct cfq_data *cfqd = q->elevator->elevator_data;
509 WARN_ON(!cfqd->rq_in_driver);
510 cfqd->rq_in_driver--;
513 static void cfq_remove_request(struct request *rq)
515 struct cfq_queue *cfqq = RQ_CFQQ(rq);
517 if (cfqq->next_rq == rq)
518 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
520 list_del_init(&rq->queuelist);
521 cfq_del_rq_rb(rq);
523 if (rq_is_meta(rq)) {
524 WARN_ON(!cfqq->meta_pending);
525 cfqq->meta_pending--;
529 static int
530 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
532 struct cfq_data *cfqd = q->elevator->elevator_data;
533 struct request *__rq;
535 __rq = cfq_find_rq_fmerge(cfqd, bio);
536 if (__rq && elv_rq_merge_ok(__rq, bio)) {
537 *req = __rq;
538 return ELEVATOR_FRONT_MERGE;
541 return ELEVATOR_NO_MERGE;
544 static void cfq_merged_request(request_queue_t *q, struct request *req,
545 int type)
547 if (type == ELEVATOR_FRONT_MERGE) {
548 struct cfq_queue *cfqq = RQ_CFQQ(req);
550 cfq_reposition_rq_rb(cfqq, req);
554 static void
555 cfq_merged_requests(request_queue_t *q, struct request *rq,
556 struct request *next)
559 * reposition in fifo if next is older than rq
561 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
562 time_before(next->start_time, rq->start_time))
563 list_move(&rq->queuelist, &next->queuelist);
565 cfq_remove_request(next);
568 static inline void
569 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
571 if (cfqq) {
573 * stop potential idle class queues waiting service
575 del_timer(&cfqd->idle_class_timer);
577 cfqq->slice_start = jiffies;
578 cfqq->slice_end = 0;
579 cfqq->slice_left = 0;
580 cfq_clear_cfqq_must_alloc_slice(cfqq);
581 cfq_clear_cfqq_fifo_expire(cfqq);
584 cfqd->active_queue = cfqq;
588 * current cfqq expired its slice (or was too idle), select new one
590 static void
591 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
592 int preempted)
594 unsigned long now = jiffies;
596 if (cfq_cfqq_wait_request(cfqq))
597 del_timer(&cfqd->idle_slice_timer);
599 if (!preempted && !cfq_cfqq_dispatched(cfqq))
600 cfq_schedule_dispatch(cfqd);
602 cfq_clear_cfqq_must_dispatch(cfqq);
603 cfq_clear_cfqq_wait_request(cfqq);
604 cfq_clear_cfqq_queue_new(cfqq);
607 * store what was left of this slice, if the queue idled out
608 * or was preempted
610 if (time_after(cfqq->slice_end, now))
611 cfqq->slice_left = cfqq->slice_end - now;
612 else
613 cfqq->slice_left = 0;
615 if (cfq_cfqq_on_rr(cfqq))
616 cfq_resort_rr_list(cfqq, preempted);
618 if (cfqq == cfqd->active_queue)
619 cfqd->active_queue = NULL;
621 if (cfqd->active_cic) {
622 put_io_context(cfqd->active_cic->ioc);
623 cfqd->active_cic = NULL;
626 cfqd->dispatch_slice = 0;
629 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
631 struct cfq_queue *cfqq = cfqd->active_queue;
633 if (cfqq)
634 __cfq_slice_expired(cfqd, cfqq, preempted);
639 * 0,1
640 * 0,1,2
641 * 0,1,2,3
642 * 0,1,2,3,4
643 * 0,1,2,3,4,5
644 * 0,1,2,3,4,5,6
645 * 0,1,2,3,4,5,6,7
647 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
649 int prio, wrap;
651 prio = -1;
652 wrap = 0;
653 do {
654 int p;
656 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
657 if (!list_empty(&cfqd->rr_list[p])) {
658 prio = p;
659 break;
663 if (prio != -1)
664 break;
665 cfqd->cur_prio = 0;
666 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
667 cfqd->cur_end_prio = 0;
668 if (wrap)
669 break;
670 wrap = 1;
672 } while (1);
674 if (unlikely(prio == -1))
675 return -1;
677 BUG_ON(prio >= CFQ_PRIO_LISTS);
679 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
681 cfqd->cur_prio = prio + 1;
682 if (cfqd->cur_prio > cfqd->cur_end_prio) {
683 cfqd->cur_end_prio = cfqd->cur_prio;
684 cfqd->cur_prio = 0;
686 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
687 cfqd->cur_prio = 0;
688 cfqd->cur_end_prio = 0;
691 return prio;
694 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
696 struct cfq_queue *cfqq = NULL;
698 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
700 * if current list is non-empty, grab first entry. if it is
701 * empty, get next prio level and grab first entry then if any
702 * are spliced
704 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
705 } else if (!list_empty(&cfqd->busy_rr)) {
707 * If no new queues are available, check if the busy list has
708 * some before falling back to idle io.
710 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
711 } else if (!list_empty(&cfqd->idle_rr)) {
713 * if we have idle queues and no rt or be queues had pending
714 * requests, either allow immediate service if the grace period
715 * has passed or arm the idle grace timer
717 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
719 if (time_after_eq(jiffies, end))
720 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
721 else
722 mod_timer(&cfqd->idle_class_timer, end);
725 __cfq_set_active_queue(cfqd, cfqq);
726 return cfqq;
729 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
731 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
734 struct cfq_io_context *cic;
735 unsigned long sl;
737 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
738 WARN_ON(cfqq != cfqd->active_queue);
741 * idle is disabled, either manually or by past process history
743 if (!cfqd->cfq_slice_idle)
744 return 0;
745 if (!cfq_cfqq_idle_window(cfqq))
746 return 0;
748 * task has exited, don't wait
750 cic = cfqd->active_cic;
751 if (!cic || !cic->ioc->task)
752 return 0;
754 cfq_mark_cfqq_must_dispatch(cfqq);
755 cfq_mark_cfqq_wait_request(cfqq);
757 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
760 * we don't want to idle for seeks, but we do want to allow
761 * fair distribution of slice time for a process doing back-to-back
762 * seeks. so allow a little bit of time for him to submit a new rq
764 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
765 sl = min(sl, msecs_to_jiffies(2));
767 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
768 return 1;
771 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
773 struct cfq_data *cfqd = q->elevator->elevator_data;
774 struct cfq_queue *cfqq = RQ_CFQQ(rq);
776 cfq_remove_request(rq);
777 cfqq->on_dispatch[rq_is_sync(rq)]++;
778 elv_dispatch_sort(q, rq);
780 rq = list_entry(q->queue_head.prev, struct request, queuelist);
781 cfqd->last_sector = rq->sector + rq->nr_sectors;
785 * return expired entry, or NULL to just start from scratch in rbtree
787 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
789 struct cfq_data *cfqd = cfqq->cfqd;
790 struct request *rq;
791 int fifo;
793 if (cfq_cfqq_fifo_expire(cfqq))
794 return NULL;
795 if (list_empty(&cfqq->fifo))
796 return NULL;
798 fifo = cfq_cfqq_class_sync(cfqq);
799 rq = rq_entry_fifo(cfqq->fifo.next);
801 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
802 cfq_mark_cfqq_fifo_expire(cfqq);
803 return rq;
806 return NULL;
810 * Scale schedule slice based on io priority. Use the sync time slice only
811 * if a queue is marked sync and has sync io queued. A sync queue with async
812 * io only, should not get full sync slice length.
814 static inline int
815 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
817 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
819 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
821 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
824 static inline void
825 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
827 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
830 static inline int
831 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
833 const int base_rq = cfqd->cfq_slice_async_rq;
835 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
837 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
841 * get next queue for service
843 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
845 unsigned long now = jiffies;
846 struct cfq_queue *cfqq;
848 cfqq = cfqd->active_queue;
849 if (!cfqq)
850 goto new_queue;
853 * slice has expired
855 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
856 goto expire;
859 * if queue has requests, dispatch one. if not, check if
860 * enough slice is left to wait for one
862 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
863 goto keep_queue;
864 else if (cfq_cfqq_dispatched(cfqq)) {
865 cfqq = NULL;
866 goto keep_queue;
867 } else if (cfq_cfqq_class_sync(cfqq)) {
868 if (cfq_arm_slice_timer(cfqd, cfqq))
869 return NULL;
872 expire:
873 cfq_slice_expired(cfqd, 0);
874 new_queue:
875 cfqq = cfq_set_active_queue(cfqd);
876 keep_queue:
877 return cfqq;
880 static int
881 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
882 int max_dispatch)
884 int dispatched = 0;
886 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
888 do {
889 struct request *rq;
892 * follow expired path, else get first next available
894 if ((rq = cfq_check_fifo(cfqq)) == NULL)
895 rq = cfqq->next_rq;
898 * finally, insert request into driver dispatch list
900 cfq_dispatch_insert(cfqd->queue, rq);
902 cfqd->dispatch_slice++;
903 dispatched++;
905 if (!cfqd->active_cic) {
906 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
907 cfqd->active_cic = RQ_CIC(rq);
910 if (RB_EMPTY_ROOT(&cfqq->sort_list))
911 break;
913 } while (dispatched < max_dispatch);
916 * if slice end isn't set yet, set it.
918 if (!cfqq->slice_end)
919 cfq_set_prio_slice(cfqd, cfqq);
922 * expire an async queue immediately if it has used up its slice. idle
923 * queue always expire after 1 dispatch round.
925 if ((!cfq_cfqq_sync(cfqq) &&
926 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
927 cfq_class_idle(cfqq) ||
928 !cfq_cfqq_idle_window(cfqq))
929 cfq_slice_expired(cfqd, 0);
931 return dispatched;
934 static int
935 cfq_forced_dispatch_cfqqs(struct list_head *list)
937 struct cfq_queue *cfqq, *next;
938 int dispatched;
940 dispatched = 0;
941 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
942 while (cfqq->next_rq) {
943 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
944 dispatched++;
946 BUG_ON(!list_empty(&cfqq->fifo));
949 return dispatched;
952 static int
953 cfq_forced_dispatch(struct cfq_data *cfqd)
955 int i, dispatched = 0;
957 for (i = 0; i < CFQ_PRIO_LISTS; i++)
958 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
960 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
961 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
962 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
964 cfq_slice_expired(cfqd, 0);
966 BUG_ON(cfqd->busy_queues);
968 return dispatched;
971 static int
972 cfq_dispatch_requests(request_queue_t *q, int force)
974 struct cfq_data *cfqd = q->elevator->elevator_data;
975 struct cfq_queue *cfqq, *prev_cfqq;
976 int dispatched;
978 if (!cfqd->busy_queues)
979 return 0;
981 if (unlikely(force))
982 return cfq_forced_dispatch(cfqd);
984 dispatched = 0;
985 prev_cfqq = NULL;
986 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
987 int max_dispatch;
990 * Don't repeat dispatch from the previous queue.
992 if (prev_cfqq == cfqq)
993 break;
995 cfq_clear_cfqq_must_dispatch(cfqq);
996 cfq_clear_cfqq_wait_request(cfqq);
997 del_timer(&cfqd->idle_slice_timer);
999 max_dispatch = cfqd->cfq_quantum;
1000 if (cfq_class_idle(cfqq))
1001 max_dispatch = 1;
1003 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1006 * If the dispatch cfqq has idling enabled and is still
1007 * the active queue, break out.
1009 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1010 break;
1012 prev_cfqq = cfqq;
1015 return dispatched;
1019 * task holds one reference to the queue, dropped when task exits. each rq
1020 * in-flight on this queue also holds a reference, dropped when rq is freed.
1022 * queue lock must be held here.
1024 static void cfq_put_queue(struct cfq_queue *cfqq)
1026 struct cfq_data *cfqd = cfqq->cfqd;
1028 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1030 if (!atomic_dec_and_test(&cfqq->ref))
1031 return;
1033 BUG_ON(rb_first(&cfqq->sort_list));
1034 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1035 BUG_ON(cfq_cfqq_on_rr(cfqq));
1037 if (unlikely(cfqd->active_queue == cfqq))
1038 __cfq_slice_expired(cfqd, cfqq, 0);
1041 * it's on the empty list and still hashed
1043 list_del(&cfqq->cfq_list);
1044 hlist_del(&cfqq->cfq_hash);
1045 kmem_cache_free(cfq_pool, cfqq);
1048 static struct cfq_queue *
1049 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1050 const int hashval)
1052 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1053 struct hlist_node *entry;
1054 struct cfq_queue *__cfqq;
1056 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1057 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1059 if (__cfqq->key == key && (__p == prio || !prio))
1060 return __cfqq;
1063 return NULL;
1066 static struct cfq_queue *
1067 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1069 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1072 static void cfq_free_io_context(struct io_context *ioc)
1074 struct cfq_io_context *__cic;
1075 struct rb_node *n;
1076 int freed = 0;
1078 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1079 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1080 rb_erase(&__cic->rb_node, &ioc->cic_root);
1081 kmem_cache_free(cfq_ioc_pool, __cic);
1082 freed++;
1085 elv_ioc_count_mod(ioc_count, -freed);
1087 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1088 complete(ioc_gone);
1091 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1093 if (unlikely(cfqq == cfqd->active_queue))
1094 __cfq_slice_expired(cfqd, cfqq, 0);
1096 cfq_put_queue(cfqq);
1099 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1100 struct cfq_io_context *cic)
1102 list_del_init(&cic->queue_list);
1103 smp_wmb();
1104 cic->key = NULL;
1106 if (cic->cfqq[ASYNC]) {
1107 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1108 cic->cfqq[ASYNC] = NULL;
1111 if (cic->cfqq[SYNC]) {
1112 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1113 cic->cfqq[SYNC] = NULL;
1119 * Called with interrupts disabled
1121 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1123 struct cfq_data *cfqd = cic->key;
1125 if (cfqd) {
1126 request_queue_t *q = cfqd->queue;
1128 spin_lock_irq(q->queue_lock);
1129 __cfq_exit_single_io_context(cfqd, cic);
1130 spin_unlock_irq(q->queue_lock);
1134 static void cfq_exit_io_context(struct io_context *ioc)
1136 struct cfq_io_context *__cic;
1137 struct rb_node *n;
1140 * put the reference this task is holding to the various queues
1143 n = rb_first(&ioc->cic_root);
1144 while (n != NULL) {
1145 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1147 cfq_exit_single_io_context(__cic);
1148 n = rb_next(n);
1152 static struct cfq_io_context *
1153 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1155 struct cfq_io_context *cic;
1157 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1158 if (cic) {
1159 memset(cic, 0, sizeof(*cic));
1160 cic->last_end_request = jiffies;
1161 INIT_LIST_HEAD(&cic->queue_list);
1162 cic->dtor = cfq_free_io_context;
1163 cic->exit = cfq_exit_io_context;
1164 elv_ioc_count_inc(ioc_count);
1167 return cic;
1170 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1172 struct task_struct *tsk = current;
1173 int ioprio_class;
1175 if (!cfq_cfqq_prio_changed(cfqq))
1176 return;
1178 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1179 switch (ioprio_class) {
1180 default:
1181 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1182 case IOPRIO_CLASS_NONE:
1184 * no prio set, place us in the middle of the BE classes
1186 cfqq->ioprio = task_nice_ioprio(tsk);
1187 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1188 break;
1189 case IOPRIO_CLASS_RT:
1190 cfqq->ioprio = task_ioprio(tsk);
1191 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1192 break;
1193 case IOPRIO_CLASS_BE:
1194 cfqq->ioprio = task_ioprio(tsk);
1195 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1196 break;
1197 case IOPRIO_CLASS_IDLE:
1198 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1199 cfqq->ioprio = 7;
1200 cfq_clear_cfqq_idle_window(cfqq);
1201 break;
1205 * keep track of original prio settings in case we have to temporarily
1206 * elevate the priority of this queue
1208 cfqq->org_ioprio = cfqq->ioprio;
1209 cfqq->org_ioprio_class = cfqq->ioprio_class;
1211 if (cfq_cfqq_on_rr(cfqq))
1212 cfq_resort_rr_list(cfqq, 0);
1214 cfq_clear_cfqq_prio_changed(cfqq);
1217 static inline void changed_ioprio(struct cfq_io_context *cic)
1219 struct cfq_data *cfqd = cic->key;
1220 struct cfq_queue *cfqq;
1221 unsigned long flags;
1223 if (unlikely(!cfqd))
1224 return;
1226 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1228 cfqq = cic->cfqq[ASYNC];
1229 if (cfqq) {
1230 struct cfq_queue *new_cfqq;
1231 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1232 GFP_ATOMIC);
1233 if (new_cfqq) {
1234 cic->cfqq[ASYNC] = new_cfqq;
1235 cfq_put_queue(cfqq);
1239 cfqq = cic->cfqq[SYNC];
1240 if (cfqq)
1241 cfq_mark_cfqq_prio_changed(cfqq);
1243 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1246 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1248 struct cfq_io_context *cic;
1249 struct rb_node *n;
1251 ioc->ioprio_changed = 0;
1253 n = rb_first(&ioc->cic_root);
1254 while (n != NULL) {
1255 cic = rb_entry(n, struct cfq_io_context, rb_node);
1257 changed_ioprio(cic);
1258 n = rb_next(n);
1262 static struct cfq_queue *
1263 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1264 gfp_t gfp_mask)
1266 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1267 struct cfq_queue *cfqq, *new_cfqq = NULL;
1268 unsigned short ioprio;
1270 retry:
1271 ioprio = tsk->ioprio;
1272 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1274 if (!cfqq) {
1275 if (new_cfqq) {
1276 cfqq = new_cfqq;
1277 new_cfqq = NULL;
1278 } else if (gfp_mask & __GFP_WAIT) {
1280 * Inform the allocator of the fact that we will
1281 * just repeat this allocation if it fails, to allow
1282 * the allocator to do whatever it needs to attempt to
1283 * free memory.
1285 spin_unlock_irq(cfqd->queue->queue_lock);
1286 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1287 spin_lock_irq(cfqd->queue->queue_lock);
1288 goto retry;
1289 } else {
1290 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1291 if (!cfqq)
1292 goto out;
1295 memset(cfqq, 0, sizeof(*cfqq));
1297 INIT_HLIST_NODE(&cfqq->cfq_hash);
1298 INIT_LIST_HEAD(&cfqq->cfq_list);
1299 INIT_LIST_HEAD(&cfqq->fifo);
1301 cfqq->key = key;
1302 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1303 atomic_set(&cfqq->ref, 0);
1304 cfqq->cfqd = cfqd;
1306 * set ->slice_left to allow preemption for a new process
1308 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1309 cfq_mark_cfqq_idle_window(cfqq);
1310 cfq_mark_cfqq_prio_changed(cfqq);
1311 cfq_mark_cfqq_queue_new(cfqq);
1312 cfq_init_prio_data(cfqq);
1315 if (new_cfqq)
1316 kmem_cache_free(cfq_pool, new_cfqq);
1318 atomic_inc(&cfqq->ref);
1319 out:
1320 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1321 return cfqq;
1324 static void
1325 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1327 WARN_ON(!list_empty(&cic->queue_list));
1328 rb_erase(&cic->rb_node, &ioc->cic_root);
1329 kmem_cache_free(cfq_ioc_pool, cic);
1330 elv_ioc_count_dec(ioc_count);
1333 static struct cfq_io_context *
1334 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1336 struct rb_node *n;
1337 struct cfq_io_context *cic;
1338 void *k, *key = cfqd;
1340 restart:
1341 n = ioc->cic_root.rb_node;
1342 while (n) {
1343 cic = rb_entry(n, struct cfq_io_context, rb_node);
1344 /* ->key must be copied to avoid race with cfq_exit_queue() */
1345 k = cic->key;
1346 if (unlikely(!k)) {
1347 cfq_drop_dead_cic(ioc, cic);
1348 goto restart;
1351 if (key < k)
1352 n = n->rb_left;
1353 else if (key > k)
1354 n = n->rb_right;
1355 else
1356 return cic;
1359 return NULL;
1362 static inline void
1363 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1364 struct cfq_io_context *cic)
1366 struct rb_node **p;
1367 struct rb_node *parent;
1368 struct cfq_io_context *__cic;
1369 unsigned long flags;
1370 void *k;
1372 cic->ioc = ioc;
1373 cic->key = cfqd;
1375 restart:
1376 parent = NULL;
1377 p = &ioc->cic_root.rb_node;
1378 while (*p) {
1379 parent = *p;
1380 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1381 /* ->key must be copied to avoid race with cfq_exit_queue() */
1382 k = __cic->key;
1383 if (unlikely(!k)) {
1384 cfq_drop_dead_cic(ioc, __cic);
1385 goto restart;
1388 if (cic->key < k)
1389 p = &(*p)->rb_left;
1390 else if (cic->key > k)
1391 p = &(*p)->rb_right;
1392 else
1393 BUG();
1396 rb_link_node(&cic->rb_node, parent, p);
1397 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1399 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1400 list_add(&cic->queue_list, &cfqd->cic_list);
1401 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1405 * Setup general io context and cfq io context. There can be several cfq
1406 * io contexts per general io context, if this process is doing io to more
1407 * than one device managed by cfq.
1409 static struct cfq_io_context *
1410 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1412 struct io_context *ioc = NULL;
1413 struct cfq_io_context *cic;
1415 might_sleep_if(gfp_mask & __GFP_WAIT);
1417 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1418 if (!ioc)
1419 return NULL;
1421 cic = cfq_cic_rb_lookup(cfqd, ioc);
1422 if (cic)
1423 goto out;
1425 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1426 if (cic == NULL)
1427 goto err;
1429 cfq_cic_link(cfqd, ioc, cic);
1430 out:
1431 smp_read_barrier_depends();
1432 if (unlikely(ioc->ioprio_changed))
1433 cfq_ioc_set_ioprio(ioc);
1435 return cic;
1436 err:
1437 put_io_context(ioc);
1438 return NULL;
1441 static void
1442 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1444 unsigned long elapsed, ttime;
1447 * if this context already has stuff queued, thinktime is from
1448 * last queue not last end
1450 #if 0
1451 if (time_after(cic->last_end_request, cic->last_queue))
1452 elapsed = jiffies - cic->last_end_request;
1453 else
1454 elapsed = jiffies - cic->last_queue;
1455 #else
1456 elapsed = jiffies - cic->last_end_request;
1457 #endif
1459 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1461 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1462 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1463 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1466 static void
1467 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1468 struct request *rq)
1470 sector_t sdist;
1471 u64 total;
1473 if (cic->last_request_pos < rq->sector)
1474 sdist = rq->sector - cic->last_request_pos;
1475 else
1476 sdist = cic->last_request_pos - rq->sector;
1479 * Don't allow the seek distance to get too large from the
1480 * odd fragment, pagein, etc
1482 if (cic->seek_samples <= 60) /* second&third seek */
1483 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1484 else
1485 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1487 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1488 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1489 total = cic->seek_total + (cic->seek_samples/2);
1490 do_div(total, cic->seek_samples);
1491 cic->seek_mean = (sector_t)total;
1495 * Disable idle window if the process thinks too long or seeks so much that
1496 * it doesn't matter
1498 static void
1499 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1500 struct cfq_io_context *cic)
1502 int enable_idle = cfq_cfqq_idle_window(cfqq);
1504 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1505 (cfqd->hw_tag && CIC_SEEKY(cic)))
1506 enable_idle = 0;
1507 else if (sample_valid(cic->ttime_samples)) {
1508 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1509 enable_idle = 0;
1510 else
1511 enable_idle = 1;
1514 if (enable_idle)
1515 cfq_mark_cfqq_idle_window(cfqq);
1516 else
1517 cfq_clear_cfqq_idle_window(cfqq);
1522 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1523 * no or if we aren't sure, a 1 will cause a preempt.
1525 static int
1526 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1527 struct request *rq)
1529 struct cfq_queue *cfqq = cfqd->active_queue;
1531 if (cfq_class_idle(new_cfqq))
1532 return 0;
1534 if (!cfqq)
1535 return 0;
1537 if (cfq_class_idle(cfqq))
1538 return 1;
1539 if (!cfq_cfqq_wait_request(new_cfqq))
1540 return 0;
1542 * if it doesn't have slice left, forget it
1544 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1545 return 0;
1547 * if the new request is sync, but the currently running queue is
1548 * not, let the sync request have priority.
1550 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1551 return 1;
1553 * So both queues are sync. Let the new request get disk time if
1554 * it's a metadata request and the current queue is doing regular IO.
1556 if (rq_is_meta(rq) && !cfqq->meta_pending)
1557 return 1;
1559 return 0;
1563 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1564 * let it have half of its nominal slice.
1566 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1568 cfq_slice_expired(cfqd, 1);
1570 if (!cfqq->slice_left)
1571 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1574 * Put the new queue at the front of the of the current list,
1575 * so we know that it will be selected next.
1577 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1578 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1580 cfqq->slice_end = cfqq->slice_left + jiffies;
1584 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1585 * something we should do about it
1587 static void
1588 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1589 struct request *rq)
1591 struct cfq_io_context *cic = RQ_CIC(rq);
1593 if (rq_is_meta(rq))
1594 cfqq->meta_pending++;
1597 * check if this request is a better next-serve candidate)) {
1599 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1600 BUG_ON(!cfqq->next_rq);
1603 * we never wait for an async request and we don't allow preemption
1604 * of an async request. so just return early
1606 if (!rq_is_sync(rq)) {
1608 * sync process issued an async request, if it's waiting
1609 * then expire it and kick rq handling.
1611 if (cic == cfqd->active_cic &&
1612 del_timer(&cfqd->idle_slice_timer)) {
1613 cfq_slice_expired(cfqd, 0);
1614 blk_start_queueing(cfqd->queue);
1616 return;
1619 cfq_update_io_thinktime(cfqd, cic);
1620 cfq_update_io_seektime(cfqd, cic, rq);
1621 cfq_update_idle_window(cfqd, cfqq, cic);
1623 cic->last_queue = jiffies;
1624 cic->last_request_pos = rq->sector + rq->nr_sectors;
1626 if (cfqq == cfqd->active_queue) {
1628 * if we are waiting for a request for this queue, let it rip
1629 * immediately and flag that we must not expire this queue
1630 * just now
1632 if (cfq_cfqq_wait_request(cfqq)) {
1633 cfq_mark_cfqq_must_dispatch(cfqq);
1634 del_timer(&cfqd->idle_slice_timer);
1635 blk_start_queueing(cfqd->queue);
1637 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1639 * not the active queue - expire current slice if it is
1640 * idle and has expired it's mean thinktime or this new queue
1641 * has some old slice time left and is of higher priority
1643 cfq_preempt_queue(cfqd, cfqq);
1644 cfq_mark_cfqq_must_dispatch(cfqq);
1645 blk_start_queueing(cfqd->queue);
1649 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1651 struct cfq_data *cfqd = q->elevator->elevator_data;
1652 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1654 cfq_init_prio_data(cfqq);
1656 cfq_add_rq_rb(rq);
1658 list_add_tail(&rq->queuelist, &cfqq->fifo);
1660 cfq_rq_enqueued(cfqd, cfqq, rq);
1663 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1665 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1666 struct cfq_data *cfqd = cfqq->cfqd;
1667 const int sync = rq_is_sync(rq);
1668 unsigned long now;
1670 now = jiffies;
1672 WARN_ON(!cfqd->rq_in_driver);
1673 WARN_ON(!cfqq->on_dispatch[sync]);
1674 cfqd->rq_in_driver--;
1675 cfqq->on_dispatch[sync]--;
1677 if (!cfq_class_idle(cfqq))
1678 cfqd->last_end_request = now;
1680 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1681 cfq_resort_rr_list(cfqq, 0);
1683 if (sync)
1684 RQ_CIC(rq)->last_end_request = now;
1687 * If this is the active queue, check if it needs to be expired,
1688 * or if we want to idle in case it has no pending requests.
1690 if (cfqd->active_queue == cfqq) {
1691 if (time_after(now, cfqq->slice_end))
1692 cfq_slice_expired(cfqd, 0);
1693 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1694 if (!cfq_arm_slice_timer(cfqd, cfqq))
1695 cfq_schedule_dispatch(cfqd);
1701 * we temporarily boost lower priority queues if they are holding fs exclusive
1702 * resources. they are boosted to normal prio (CLASS_BE/4)
1704 static void cfq_prio_boost(struct cfq_queue *cfqq)
1706 const int ioprio_class = cfqq->ioprio_class;
1707 const int ioprio = cfqq->ioprio;
1709 if (has_fs_excl()) {
1711 * boost idle prio on transactions that would lock out other
1712 * users of the filesystem
1714 if (cfq_class_idle(cfqq))
1715 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1716 if (cfqq->ioprio > IOPRIO_NORM)
1717 cfqq->ioprio = IOPRIO_NORM;
1718 } else {
1720 * check if we need to unboost the queue
1722 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1723 cfqq->ioprio_class = cfqq->org_ioprio_class;
1724 if (cfqq->ioprio != cfqq->org_ioprio)
1725 cfqq->ioprio = cfqq->org_ioprio;
1729 * refile between round-robin lists if we moved the priority class
1731 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1732 cfq_cfqq_on_rr(cfqq))
1733 cfq_resort_rr_list(cfqq, 0);
1736 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1738 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1739 !cfq_cfqq_must_alloc_slice(cfqq)) {
1740 cfq_mark_cfqq_must_alloc_slice(cfqq);
1741 return ELV_MQUEUE_MUST;
1744 return ELV_MQUEUE_MAY;
1747 static int cfq_may_queue(request_queue_t *q, int rw)
1749 struct cfq_data *cfqd = q->elevator->elevator_data;
1750 struct task_struct *tsk = current;
1751 struct cfq_queue *cfqq;
1754 * don't force setup of a queue from here, as a call to may_queue
1755 * does not necessarily imply that a request actually will be queued.
1756 * so just lookup a possibly existing queue, or return 'may queue'
1757 * if that fails
1759 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1760 if (cfqq) {
1761 cfq_init_prio_data(cfqq);
1762 cfq_prio_boost(cfqq);
1764 return __cfq_may_queue(cfqq);
1767 return ELV_MQUEUE_MAY;
1771 * queue lock held here
1773 static void cfq_put_request(request_queue_t *q, struct request *rq)
1775 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1777 if (cfqq) {
1778 const int rw = rq_data_dir(rq);
1780 BUG_ON(!cfqq->allocated[rw]);
1781 cfqq->allocated[rw]--;
1783 put_io_context(RQ_CIC(rq)->ioc);
1785 rq->elevator_private = NULL;
1786 rq->elevator_private2 = NULL;
1788 cfq_put_queue(cfqq);
1793 * Allocate cfq data structures associated with this request.
1795 static int
1796 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1798 struct cfq_data *cfqd = q->elevator->elevator_data;
1799 struct task_struct *tsk = current;
1800 struct cfq_io_context *cic;
1801 const int rw = rq_data_dir(rq);
1802 pid_t key = cfq_queue_pid(tsk, rw);
1803 struct cfq_queue *cfqq;
1804 unsigned long flags;
1805 int is_sync = key != CFQ_KEY_ASYNC;
1807 might_sleep_if(gfp_mask & __GFP_WAIT);
1809 cic = cfq_get_io_context(cfqd, gfp_mask);
1811 spin_lock_irqsave(q->queue_lock, flags);
1813 if (!cic)
1814 goto queue_fail;
1816 if (!cic->cfqq[is_sync]) {
1817 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1818 if (!cfqq)
1819 goto queue_fail;
1821 cic->cfqq[is_sync] = cfqq;
1822 } else
1823 cfqq = cic->cfqq[is_sync];
1825 cfqq->allocated[rw]++;
1826 cfq_clear_cfqq_must_alloc(cfqq);
1827 atomic_inc(&cfqq->ref);
1829 spin_unlock_irqrestore(q->queue_lock, flags);
1831 rq->elevator_private = cic;
1832 rq->elevator_private2 = cfqq;
1833 return 0;
1835 queue_fail:
1836 if (cic)
1837 put_io_context(cic->ioc);
1839 cfq_schedule_dispatch(cfqd);
1840 spin_unlock_irqrestore(q->queue_lock, flags);
1841 return 1;
1844 static void cfq_kick_queue(void *data)
1846 request_queue_t *q = data;
1847 unsigned long flags;
1849 spin_lock_irqsave(q->queue_lock, flags);
1850 blk_start_queueing(q);
1851 spin_unlock_irqrestore(q->queue_lock, flags);
1855 * Timer running if the active_queue is currently idling inside its time slice
1857 static void cfq_idle_slice_timer(unsigned long data)
1859 struct cfq_data *cfqd = (struct cfq_data *) data;
1860 struct cfq_queue *cfqq;
1861 unsigned long flags;
1863 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1865 if ((cfqq = cfqd->active_queue) != NULL) {
1866 unsigned long now = jiffies;
1869 * expired
1871 if (time_after(now, cfqq->slice_end))
1872 goto expire;
1875 * only expire and reinvoke request handler, if there are
1876 * other queues with pending requests
1878 if (!cfqd->busy_queues)
1879 goto out_cont;
1882 * not expired and it has a request pending, let it dispatch
1884 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1885 cfq_mark_cfqq_must_dispatch(cfqq);
1886 goto out_kick;
1889 expire:
1890 cfq_slice_expired(cfqd, 0);
1891 out_kick:
1892 cfq_schedule_dispatch(cfqd);
1893 out_cont:
1894 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1898 * Timer running if an idle class queue is waiting for service
1900 static void cfq_idle_class_timer(unsigned long data)
1902 struct cfq_data *cfqd = (struct cfq_data *) data;
1903 unsigned long flags, end;
1905 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1908 * race with a non-idle queue, reset timer
1910 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1911 if (!time_after_eq(jiffies, end))
1912 mod_timer(&cfqd->idle_class_timer, end);
1913 else
1914 cfq_schedule_dispatch(cfqd);
1916 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1919 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1921 del_timer_sync(&cfqd->idle_slice_timer);
1922 del_timer_sync(&cfqd->idle_class_timer);
1923 blk_sync_queue(cfqd->queue);
1926 static void cfq_exit_queue(elevator_t *e)
1928 struct cfq_data *cfqd = e->elevator_data;
1929 request_queue_t *q = cfqd->queue;
1931 cfq_shutdown_timer_wq(cfqd);
1933 spin_lock_irq(q->queue_lock);
1935 if (cfqd->active_queue)
1936 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1938 while (!list_empty(&cfqd->cic_list)) {
1939 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1940 struct cfq_io_context,
1941 queue_list);
1943 __cfq_exit_single_io_context(cfqd, cic);
1946 spin_unlock_irq(q->queue_lock);
1948 cfq_shutdown_timer_wq(cfqd);
1950 kfree(cfqd->cfq_hash);
1951 kfree(cfqd);
1954 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
1956 struct cfq_data *cfqd;
1957 int i;
1959 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1960 if (!cfqd)
1961 return NULL;
1963 memset(cfqd, 0, sizeof(*cfqd));
1965 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1966 INIT_LIST_HEAD(&cfqd->rr_list[i]);
1968 INIT_LIST_HEAD(&cfqd->busy_rr);
1969 INIT_LIST_HEAD(&cfqd->cur_rr);
1970 INIT_LIST_HEAD(&cfqd->idle_rr);
1971 INIT_LIST_HEAD(&cfqd->cic_list);
1973 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1974 if (!cfqd->cfq_hash)
1975 goto out_free;
1977 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1978 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1980 cfqd->queue = q;
1982 init_timer(&cfqd->idle_slice_timer);
1983 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1984 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1986 init_timer(&cfqd->idle_class_timer);
1987 cfqd->idle_class_timer.function = cfq_idle_class_timer;
1988 cfqd->idle_class_timer.data = (unsigned long) cfqd;
1990 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
1992 cfqd->cfq_quantum = cfq_quantum;
1993 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1994 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1995 cfqd->cfq_back_max = cfq_back_max;
1996 cfqd->cfq_back_penalty = cfq_back_penalty;
1997 cfqd->cfq_slice[0] = cfq_slice_async;
1998 cfqd->cfq_slice[1] = cfq_slice_sync;
1999 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2000 cfqd->cfq_slice_idle = cfq_slice_idle;
2002 return cfqd;
2003 out_free:
2004 kfree(cfqd);
2005 return NULL;
2008 static void cfq_slab_kill(void)
2010 if (cfq_pool)
2011 kmem_cache_destroy(cfq_pool);
2012 if (cfq_ioc_pool)
2013 kmem_cache_destroy(cfq_ioc_pool);
2016 static int __init cfq_slab_setup(void)
2018 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2019 NULL, NULL);
2020 if (!cfq_pool)
2021 goto fail;
2023 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2024 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2025 if (!cfq_ioc_pool)
2026 goto fail;
2028 return 0;
2029 fail:
2030 cfq_slab_kill();
2031 return -ENOMEM;
2035 * sysfs parts below -->
2038 static ssize_t
2039 cfq_var_show(unsigned int var, char *page)
2041 return sprintf(page, "%d\n", var);
2044 static ssize_t
2045 cfq_var_store(unsigned int *var, const char *page, size_t count)
2047 char *p = (char *) page;
2049 *var = simple_strtoul(p, &p, 10);
2050 return count;
2053 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2054 static ssize_t __FUNC(elevator_t *e, char *page) \
2056 struct cfq_data *cfqd = e->elevator_data; \
2057 unsigned int __data = __VAR; \
2058 if (__CONV) \
2059 __data = jiffies_to_msecs(__data); \
2060 return cfq_var_show(__data, (page)); \
2062 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2063 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2064 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2065 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2066 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2067 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2068 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2069 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2070 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2071 #undef SHOW_FUNCTION
2073 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2074 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2076 struct cfq_data *cfqd = e->elevator_data; \
2077 unsigned int __data; \
2078 int ret = cfq_var_store(&__data, (page), count); \
2079 if (__data < (MIN)) \
2080 __data = (MIN); \
2081 else if (__data > (MAX)) \
2082 __data = (MAX); \
2083 if (__CONV) \
2084 *(__PTR) = msecs_to_jiffies(__data); \
2085 else \
2086 *(__PTR) = __data; \
2087 return ret; \
2089 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2090 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2091 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2092 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2093 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2094 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2095 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2096 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2097 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2098 #undef STORE_FUNCTION
2100 #define CFQ_ATTR(name) \
2101 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2103 static struct elv_fs_entry cfq_attrs[] = {
2104 CFQ_ATTR(quantum),
2105 CFQ_ATTR(fifo_expire_sync),
2106 CFQ_ATTR(fifo_expire_async),
2107 CFQ_ATTR(back_seek_max),
2108 CFQ_ATTR(back_seek_penalty),
2109 CFQ_ATTR(slice_sync),
2110 CFQ_ATTR(slice_async),
2111 CFQ_ATTR(slice_async_rq),
2112 CFQ_ATTR(slice_idle),
2113 __ATTR_NULL
2116 static struct elevator_type iosched_cfq = {
2117 .ops = {
2118 .elevator_merge_fn = cfq_merge,
2119 .elevator_merged_fn = cfq_merged_request,
2120 .elevator_merge_req_fn = cfq_merged_requests,
2121 .elevator_dispatch_fn = cfq_dispatch_requests,
2122 .elevator_add_req_fn = cfq_insert_request,
2123 .elevator_activate_req_fn = cfq_activate_request,
2124 .elevator_deactivate_req_fn = cfq_deactivate_request,
2125 .elevator_queue_empty_fn = cfq_queue_empty,
2126 .elevator_completed_req_fn = cfq_completed_request,
2127 .elevator_former_req_fn = elv_rb_former_request,
2128 .elevator_latter_req_fn = elv_rb_latter_request,
2129 .elevator_set_req_fn = cfq_set_request,
2130 .elevator_put_req_fn = cfq_put_request,
2131 .elevator_may_queue_fn = cfq_may_queue,
2132 .elevator_init_fn = cfq_init_queue,
2133 .elevator_exit_fn = cfq_exit_queue,
2134 .trim = cfq_free_io_context,
2136 .elevator_attrs = cfq_attrs,
2137 .elevator_name = "cfq",
2138 .elevator_owner = THIS_MODULE,
2141 static int __init cfq_init(void)
2143 int ret;
2146 * could be 0 on HZ < 1000 setups
2148 if (!cfq_slice_async)
2149 cfq_slice_async = 1;
2150 if (!cfq_slice_idle)
2151 cfq_slice_idle = 1;
2153 if (cfq_slab_setup())
2154 return -ENOMEM;
2156 ret = elv_register(&iosched_cfq);
2157 if (ret)
2158 cfq_slab_kill();
2160 return ret;
2163 static void __exit cfq_exit(void)
2165 DECLARE_COMPLETION_ONSTACK(all_gone);
2166 elv_unregister(&iosched_cfq);
2167 ioc_gone = &all_gone;
2168 /* ioc_gone's update must be visible before reading ioc_count */
2169 smp_wmb();
2170 if (elv_ioc_count_read(ioc_count))
2171 wait_for_completion(ioc_gone);
2172 synchronize_rcu();
2173 cfq_slab_kill();
2176 module_init(cfq_init);
2177 module_exit(cfq_exit);
2179 MODULE_AUTHOR("Jens Axboe");
2180 MODULE_LICENSE("GPL");
2181 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");