TTY: open/hangup race fixup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-crypt.c
blobd5b0e4c0e7028b75296e23e1c2cbc409877ba565
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include <linux/device-mapper.h>
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
59 struct dm_crypt_io *base_io;
62 struct dm_crypt_request {
63 struct convert_context *ctx;
64 struct scatterlist sg_in;
65 struct scatterlist sg_out;
68 struct crypt_config;
70 struct crypt_iv_operations {
71 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
72 const char *opts);
73 void (*dtr)(struct crypt_config *cc);
74 int (*init)(struct crypt_config *cc);
75 int (*wipe)(struct crypt_config *cc);
76 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
79 struct iv_essiv_private {
80 struct crypto_cipher *tfm;
81 struct crypto_hash *hash_tfm;
82 u8 *salt;
85 struct iv_benbi_private {
86 int shift;
90 * Crypt: maps a linear range of a block device
91 * and encrypts / decrypts at the same time.
93 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
94 struct crypt_config {
95 struct dm_dev *dev;
96 sector_t start;
99 * pool for per bio private data, crypto requests and
100 * encryption requeusts/buffer pages
102 mempool_t *io_pool;
103 mempool_t *req_pool;
104 mempool_t *page_pool;
105 struct bio_set *bs;
107 struct workqueue_struct *io_queue;
108 struct workqueue_struct *crypt_queue;
110 char *cipher;
111 char *cipher_mode;
113 struct crypt_iv_operations *iv_gen_ops;
114 union {
115 struct iv_essiv_private essiv;
116 struct iv_benbi_private benbi;
117 } iv_gen_private;
118 sector_t iv_offset;
119 unsigned int iv_size;
122 * Layout of each crypto request:
124 * struct ablkcipher_request
125 * context
126 * padding
127 * struct dm_crypt_request
128 * padding
129 * IV
131 * The padding is added so that dm_crypt_request and the IV are
132 * correctly aligned.
134 unsigned int dmreq_start;
135 struct ablkcipher_request *req;
137 struct crypto_ablkcipher *tfm;
138 unsigned long flags;
139 unsigned int key_size;
140 u8 key[0];
143 #define MIN_IOS 16
144 #define MIN_POOL_PAGES 32
145 #define MIN_BIO_PAGES 8
147 static struct kmem_cache *_crypt_io_pool;
149 static void clone_init(struct dm_crypt_io *, struct bio *);
150 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
153 * Different IV generation algorithms:
155 * plain: the initial vector is the 32-bit little-endian version of the sector
156 * number, padded with zeros if necessary.
158 * plain64: the initial vector is the 64-bit little-endian version of the sector
159 * number, padded with zeros if necessary.
161 * essiv: "encrypted sector|salt initial vector", the sector number is
162 * encrypted with the bulk cipher using a salt as key. The salt
163 * should be derived from the bulk cipher's key via hashing.
165 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
166 * (needed for LRW-32-AES and possible other narrow block modes)
168 * null: the initial vector is always zero. Provides compatibility with
169 * obsolete loop_fish2 devices. Do not use for new devices.
171 * plumb: unimplemented, see:
172 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
175 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
177 memset(iv, 0, cc->iv_size);
178 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
180 return 0;
183 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
184 sector_t sector)
186 memset(iv, 0, cc->iv_size);
187 *(u64 *)iv = cpu_to_le64(sector);
189 return 0;
192 /* Initialise ESSIV - compute salt but no local memory allocations */
193 static int crypt_iv_essiv_init(struct crypt_config *cc)
195 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
196 struct hash_desc desc;
197 struct scatterlist sg;
198 int err;
200 sg_init_one(&sg, cc->key, cc->key_size);
201 desc.tfm = essiv->hash_tfm;
202 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
204 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
205 if (err)
206 return err;
208 return crypto_cipher_setkey(essiv->tfm, essiv->salt,
209 crypto_hash_digestsize(essiv->hash_tfm));
212 /* Wipe salt and reset key derived from volume key */
213 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
215 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
216 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
218 memset(essiv->salt, 0, salt_size);
220 return crypto_cipher_setkey(essiv->tfm, essiv->salt, salt_size);
223 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
225 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
227 crypto_free_cipher(essiv->tfm);
228 essiv->tfm = NULL;
230 crypto_free_hash(essiv->hash_tfm);
231 essiv->hash_tfm = NULL;
233 kzfree(essiv->salt);
234 essiv->salt = NULL;
237 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
238 const char *opts)
240 struct crypto_cipher *essiv_tfm = NULL;
241 struct crypto_hash *hash_tfm = NULL;
242 u8 *salt = NULL;
243 int err;
245 if (!opts) {
246 ti->error = "Digest algorithm missing for ESSIV mode";
247 return -EINVAL;
250 /* Allocate hash algorithm */
251 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
252 if (IS_ERR(hash_tfm)) {
253 ti->error = "Error initializing ESSIV hash";
254 err = PTR_ERR(hash_tfm);
255 goto bad;
258 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
259 if (!salt) {
260 ti->error = "Error kmallocing salt storage in ESSIV";
261 err = -ENOMEM;
262 goto bad;
265 /* Allocate essiv_tfm */
266 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
267 if (IS_ERR(essiv_tfm)) {
268 ti->error = "Error allocating crypto tfm for ESSIV";
269 err = PTR_ERR(essiv_tfm);
270 goto bad;
272 if (crypto_cipher_blocksize(essiv_tfm) !=
273 crypto_ablkcipher_ivsize(cc->tfm)) {
274 ti->error = "Block size of ESSIV cipher does "
275 "not match IV size of block cipher";
276 err = -EINVAL;
277 goto bad;
280 cc->iv_gen_private.essiv.salt = salt;
281 cc->iv_gen_private.essiv.tfm = essiv_tfm;
282 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
284 return 0;
286 bad:
287 if (essiv_tfm && !IS_ERR(essiv_tfm))
288 crypto_free_cipher(essiv_tfm);
289 if (hash_tfm && !IS_ERR(hash_tfm))
290 crypto_free_hash(hash_tfm);
291 kfree(salt);
292 return err;
295 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
297 memset(iv, 0, cc->iv_size);
298 *(u64 *)iv = cpu_to_le64(sector);
299 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv.tfm, iv, iv);
300 return 0;
303 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
304 const char *opts)
306 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
307 int log = ilog2(bs);
309 /* we need to calculate how far we must shift the sector count
310 * to get the cipher block count, we use this shift in _gen */
312 if (1 << log != bs) {
313 ti->error = "cypher blocksize is not a power of 2";
314 return -EINVAL;
317 if (log > 9) {
318 ti->error = "cypher blocksize is > 512";
319 return -EINVAL;
322 cc->iv_gen_private.benbi.shift = 9 - log;
324 return 0;
327 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
331 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
333 __be64 val;
335 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
337 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi.shift) + 1);
338 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
340 return 0;
343 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
345 memset(iv, 0, cc->iv_size);
347 return 0;
350 static struct crypt_iv_operations crypt_iv_plain_ops = {
351 .generator = crypt_iv_plain_gen
354 static struct crypt_iv_operations crypt_iv_plain64_ops = {
355 .generator = crypt_iv_plain64_gen
358 static struct crypt_iv_operations crypt_iv_essiv_ops = {
359 .ctr = crypt_iv_essiv_ctr,
360 .dtr = crypt_iv_essiv_dtr,
361 .init = crypt_iv_essiv_init,
362 .wipe = crypt_iv_essiv_wipe,
363 .generator = crypt_iv_essiv_gen
366 static struct crypt_iv_operations crypt_iv_benbi_ops = {
367 .ctr = crypt_iv_benbi_ctr,
368 .dtr = crypt_iv_benbi_dtr,
369 .generator = crypt_iv_benbi_gen
372 static struct crypt_iv_operations crypt_iv_null_ops = {
373 .generator = crypt_iv_null_gen
376 static void crypt_convert_init(struct crypt_config *cc,
377 struct convert_context *ctx,
378 struct bio *bio_out, struct bio *bio_in,
379 sector_t sector)
381 ctx->bio_in = bio_in;
382 ctx->bio_out = bio_out;
383 ctx->offset_in = 0;
384 ctx->offset_out = 0;
385 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
386 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
387 ctx->sector = sector + cc->iv_offset;
388 init_completion(&ctx->restart);
391 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
392 struct ablkcipher_request *req)
394 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
397 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
398 struct dm_crypt_request *dmreq)
400 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
403 static int crypt_convert_block(struct crypt_config *cc,
404 struct convert_context *ctx,
405 struct ablkcipher_request *req)
407 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
408 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
409 struct dm_crypt_request *dmreq;
410 u8 *iv;
411 int r = 0;
413 dmreq = dmreq_of_req(cc, req);
414 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
415 crypto_ablkcipher_alignmask(cc->tfm) + 1);
417 dmreq->ctx = ctx;
418 sg_init_table(&dmreq->sg_in, 1);
419 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
420 bv_in->bv_offset + ctx->offset_in);
422 sg_init_table(&dmreq->sg_out, 1);
423 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
424 bv_out->bv_offset + ctx->offset_out);
426 ctx->offset_in += 1 << SECTOR_SHIFT;
427 if (ctx->offset_in >= bv_in->bv_len) {
428 ctx->offset_in = 0;
429 ctx->idx_in++;
432 ctx->offset_out += 1 << SECTOR_SHIFT;
433 if (ctx->offset_out >= bv_out->bv_len) {
434 ctx->offset_out = 0;
435 ctx->idx_out++;
438 if (cc->iv_gen_ops) {
439 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
440 if (r < 0)
441 return r;
444 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
445 1 << SECTOR_SHIFT, iv);
447 if (bio_data_dir(ctx->bio_in) == WRITE)
448 r = crypto_ablkcipher_encrypt(req);
449 else
450 r = crypto_ablkcipher_decrypt(req);
452 return r;
455 static void kcryptd_async_done(struct crypto_async_request *async_req,
456 int error);
457 static void crypt_alloc_req(struct crypt_config *cc,
458 struct convert_context *ctx)
460 if (!cc->req)
461 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
462 ablkcipher_request_set_tfm(cc->req, cc->tfm);
463 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
464 CRYPTO_TFM_REQ_MAY_SLEEP,
465 kcryptd_async_done,
466 dmreq_of_req(cc, cc->req));
470 * Encrypt / decrypt data from one bio to another one (can be the same one)
472 static int crypt_convert(struct crypt_config *cc,
473 struct convert_context *ctx)
475 int r;
477 atomic_set(&ctx->pending, 1);
479 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
480 ctx->idx_out < ctx->bio_out->bi_vcnt) {
482 crypt_alloc_req(cc, ctx);
484 atomic_inc(&ctx->pending);
486 r = crypt_convert_block(cc, ctx, cc->req);
488 switch (r) {
489 /* async */
490 case -EBUSY:
491 wait_for_completion(&ctx->restart);
492 INIT_COMPLETION(ctx->restart);
493 /* fall through*/
494 case -EINPROGRESS:
495 cc->req = NULL;
496 ctx->sector++;
497 continue;
499 /* sync */
500 case 0:
501 atomic_dec(&ctx->pending);
502 ctx->sector++;
503 cond_resched();
504 continue;
506 /* error */
507 default:
508 atomic_dec(&ctx->pending);
509 return r;
513 return 0;
516 static void dm_crypt_bio_destructor(struct bio *bio)
518 struct dm_crypt_io *io = bio->bi_private;
519 struct crypt_config *cc = io->target->private;
521 bio_free(bio, cc->bs);
525 * Generate a new unfragmented bio with the given size
526 * This should never violate the device limitations
527 * May return a smaller bio when running out of pages, indicated by
528 * *out_of_pages set to 1.
530 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
531 unsigned *out_of_pages)
533 struct crypt_config *cc = io->target->private;
534 struct bio *clone;
535 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
536 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
537 unsigned i, len;
538 struct page *page;
540 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
541 if (!clone)
542 return NULL;
544 clone_init(io, clone);
545 *out_of_pages = 0;
547 for (i = 0; i < nr_iovecs; i++) {
548 page = mempool_alloc(cc->page_pool, gfp_mask);
549 if (!page) {
550 *out_of_pages = 1;
551 break;
555 * if additional pages cannot be allocated without waiting,
556 * return a partially allocated bio, the caller will then try
557 * to allocate additional bios while submitting this partial bio
559 if (i == (MIN_BIO_PAGES - 1))
560 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
562 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
564 if (!bio_add_page(clone, page, len, 0)) {
565 mempool_free(page, cc->page_pool);
566 break;
569 size -= len;
572 if (!clone->bi_size) {
573 bio_put(clone);
574 return NULL;
577 return clone;
580 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
582 unsigned int i;
583 struct bio_vec *bv;
585 for (i = 0; i < clone->bi_vcnt; i++) {
586 bv = bio_iovec_idx(clone, i);
587 BUG_ON(!bv->bv_page);
588 mempool_free(bv->bv_page, cc->page_pool);
589 bv->bv_page = NULL;
593 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
594 struct bio *bio, sector_t sector)
596 struct crypt_config *cc = ti->private;
597 struct dm_crypt_io *io;
599 io = mempool_alloc(cc->io_pool, GFP_NOIO);
600 io->target = ti;
601 io->base_bio = bio;
602 io->sector = sector;
603 io->error = 0;
604 io->base_io = NULL;
605 atomic_set(&io->pending, 0);
607 return io;
610 static void crypt_inc_pending(struct dm_crypt_io *io)
612 atomic_inc(&io->pending);
616 * One of the bios was finished. Check for completion of
617 * the whole request and correctly clean up the buffer.
618 * If base_io is set, wait for the last fragment to complete.
620 static void crypt_dec_pending(struct dm_crypt_io *io)
622 struct crypt_config *cc = io->target->private;
623 struct bio *base_bio = io->base_bio;
624 struct dm_crypt_io *base_io = io->base_io;
625 int error = io->error;
627 if (!atomic_dec_and_test(&io->pending))
628 return;
630 mempool_free(io, cc->io_pool);
632 if (likely(!base_io))
633 bio_endio(base_bio, error);
634 else {
635 if (error && !base_io->error)
636 base_io->error = error;
637 crypt_dec_pending(base_io);
642 * kcryptd/kcryptd_io:
644 * Needed because it would be very unwise to do decryption in an
645 * interrupt context.
647 * kcryptd performs the actual encryption or decryption.
649 * kcryptd_io performs the IO submission.
651 * They must be separated as otherwise the final stages could be
652 * starved by new requests which can block in the first stages due
653 * to memory allocation.
655 static void crypt_endio(struct bio *clone, int error)
657 struct dm_crypt_io *io = clone->bi_private;
658 struct crypt_config *cc = io->target->private;
659 unsigned rw = bio_data_dir(clone);
661 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
662 error = -EIO;
665 * free the processed pages
667 if (rw == WRITE)
668 crypt_free_buffer_pages(cc, clone);
670 bio_put(clone);
672 if (rw == READ && !error) {
673 kcryptd_queue_crypt(io);
674 return;
677 if (unlikely(error))
678 io->error = error;
680 crypt_dec_pending(io);
683 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
685 struct crypt_config *cc = io->target->private;
687 clone->bi_private = io;
688 clone->bi_end_io = crypt_endio;
689 clone->bi_bdev = cc->dev->bdev;
690 clone->bi_rw = io->base_bio->bi_rw;
691 clone->bi_destructor = dm_crypt_bio_destructor;
694 static void kcryptd_io_read(struct dm_crypt_io *io)
696 struct crypt_config *cc = io->target->private;
697 struct bio *base_bio = io->base_bio;
698 struct bio *clone;
700 crypt_inc_pending(io);
703 * The block layer might modify the bvec array, so always
704 * copy the required bvecs because we need the original
705 * one in order to decrypt the whole bio data *afterwards*.
707 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
708 if (unlikely(!clone)) {
709 io->error = -ENOMEM;
710 crypt_dec_pending(io);
711 return;
714 clone_init(io, clone);
715 clone->bi_idx = 0;
716 clone->bi_vcnt = bio_segments(base_bio);
717 clone->bi_size = base_bio->bi_size;
718 clone->bi_sector = cc->start + io->sector;
719 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
720 sizeof(struct bio_vec) * clone->bi_vcnt);
722 generic_make_request(clone);
725 static void kcryptd_io_write(struct dm_crypt_io *io)
727 struct bio *clone = io->ctx.bio_out;
728 generic_make_request(clone);
731 static void kcryptd_io(struct work_struct *work)
733 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
735 if (bio_data_dir(io->base_bio) == READ)
736 kcryptd_io_read(io);
737 else
738 kcryptd_io_write(io);
741 static void kcryptd_queue_io(struct dm_crypt_io *io)
743 struct crypt_config *cc = io->target->private;
745 INIT_WORK(&io->work, kcryptd_io);
746 queue_work(cc->io_queue, &io->work);
749 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
750 int error, int async)
752 struct bio *clone = io->ctx.bio_out;
753 struct crypt_config *cc = io->target->private;
755 if (unlikely(error < 0)) {
756 crypt_free_buffer_pages(cc, clone);
757 bio_put(clone);
758 io->error = -EIO;
759 crypt_dec_pending(io);
760 return;
763 /* crypt_convert should have filled the clone bio */
764 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
766 clone->bi_sector = cc->start + io->sector;
768 if (async)
769 kcryptd_queue_io(io);
770 else
771 generic_make_request(clone);
774 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
776 struct crypt_config *cc = io->target->private;
777 struct bio *clone;
778 struct dm_crypt_io *new_io;
779 int crypt_finished;
780 unsigned out_of_pages = 0;
781 unsigned remaining = io->base_bio->bi_size;
782 sector_t sector = io->sector;
783 int r;
786 * Prevent io from disappearing until this function completes.
788 crypt_inc_pending(io);
789 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
792 * The allocated buffers can be smaller than the whole bio,
793 * so repeat the whole process until all the data can be handled.
795 while (remaining) {
796 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
797 if (unlikely(!clone)) {
798 io->error = -ENOMEM;
799 break;
802 io->ctx.bio_out = clone;
803 io->ctx.idx_out = 0;
805 remaining -= clone->bi_size;
806 sector += bio_sectors(clone);
808 crypt_inc_pending(io);
809 r = crypt_convert(cc, &io->ctx);
810 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
812 /* Encryption was already finished, submit io now */
813 if (crypt_finished) {
814 kcryptd_crypt_write_io_submit(io, r, 0);
817 * If there was an error, do not try next fragments.
818 * For async, error is processed in async handler.
820 if (unlikely(r < 0))
821 break;
823 io->sector = sector;
827 * Out of memory -> run queues
828 * But don't wait if split was due to the io size restriction
830 if (unlikely(out_of_pages))
831 congestion_wait(BLK_RW_ASYNC, HZ/100);
834 * With async crypto it is unsafe to share the crypto context
835 * between fragments, so switch to a new dm_crypt_io structure.
837 if (unlikely(!crypt_finished && remaining)) {
838 new_io = crypt_io_alloc(io->target, io->base_bio,
839 sector);
840 crypt_inc_pending(new_io);
841 crypt_convert_init(cc, &new_io->ctx, NULL,
842 io->base_bio, sector);
843 new_io->ctx.idx_in = io->ctx.idx_in;
844 new_io->ctx.offset_in = io->ctx.offset_in;
847 * Fragments after the first use the base_io
848 * pending count.
850 if (!io->base_io)
851 new_io->base_io = io;
852 else {
853 new_io->base_io = io->base_io;
854 crypt_inc_pending(io->base_io);
855 crypt_dec_pending(io);
858 io = new_io;
862 crypt_dec_pending(io);
865 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
867 if (unlikely(error < 0))
868 io->error = -EIO;
870 crypt_dec_pending(io);
873 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
875 struct crypt_config *cc = io->target->private;
876 int r = 0;
878 crypt_inc_pending(io);
880 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
881 io->sector);
883 r = crypt_convert(cc, &io->ctx);
885 if (atomic_dec_and_test(&io->ctx.pending))
886 kcryptd_crypt_read_done(io, r);
888 crypt_dec_pending(io);
891 static void kcryptd_async_done(struct crypto_async_request *async_req,
892 int error)
894 struct dm_crypt_request *dmreq = async_req->data;
895 struct convert_context *ctx = dmreq->ctx;
896 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
897 struct crypt_config *cc = io->target->private;
899 if (error == -EINPROGRESS) {
900 complete(&ctx->restart);
901 return;
904 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
906 if (!atomic_dec_and_test(&ctx->pending))
907 return;
909 if (bio_data_dir(io->base_bio) == READ)
910 kcryptd_crypt_read_done(io, error);
911 else
912 kcryptd_crypt_write_io_submit(io, error, 1);
915 static void kcryptd_crypt(struct work_struct *work)
917 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
919 if (bio_data_dir(io->base_bio) == READ)
920 kcryptd_crypt_read_convert(io);
921 else
922 kcryptd_crypt_write_convert(io);
925 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
927 struct crypt_config *cc = io->target->private;
929 INIT_WORK(&io->work, kcryptd_crypt);
930 queue_work(cc->crypt_queue, &io->work);
934 * Decode key from its hex representation
936 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
938 char buffer[3];
939 char *endp;
940 unsigned int i;
942 buffer[2] = '\0';
944 for (i = 0; i < size; i++) {
945 buffer[0] = *hex++;
946 buffer[1] = *hex++;
948 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
950 if (endp != &buffer[2])
951 return -EINVAL;
954 if (*hex != '\0')
955 return -EINVAL;
957 return 0;
961 * Encode key into its hex representation
963 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
965 unsigned int i;
967 for (i = 0; i < size; i++) {
968 sprintf(hex, "%02x", *key);
969 hex += 2;
970 key++;
974 static int crypt_set_key(struct crypt_config *cc, char *key)
976 unsigned key_size = strlen(key) >> 1;
978 if (cc->key_size && cc->key_size != key_size)
979 return -EINVAL;
981 cc->key_size = key_size; /* initial settings */
983 if ((!key_size && strcmp(key, "-")) ||
984 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
985 return -EINVAL;
987 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
989 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
992 static int crypt_wipe_key(struct crypt_config *cc)
994 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
995 memset(&cc->key, 0, cc->key_size * sizeof(u8));
996 return crypto_ablkcipher_setkey(cc->tfm, cc->key, cc->key_size);
999 static void crypt_dtr(struct dm_target *ti)
1001 struct crypt_config *cc = ti->private;
1003 ti->private = NULL;
1005 if (!cc)
1006 return;
1008 if (cc->io_queue)
1009 destroy_workqueue(cc->io_queue);
1010 if (cc->crypt_queue)
1011 destroy_workqueue(cc->crypt_queue);
1013 if (cc->bs)
1014 bioset_free(cc->bs);
1016 if (cc->page_pool)
1017 mempool_destroy(cc->page_pool);
1018 if (cc->req_pool)
1019 mempool_destroy(cc->req_pool);
1020 if (cc->io_pool)
1021 mempool_destroy(cc->io_pool);
1023 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1024 cc->iv_gen_ops->dtr(cc);
1026 if (cc->tfm && !IS_ERR(cc->tfm))
1027 crypto_free_ablkcipher(cc->tfm);
1029 if (cc->dev)
1030 dm_put_device(ti, cc->dev);
1032 kzfree(cc->cipher);
1033 kzfree(cc->cipher_mode);
1035 /* Must zero key material before freeing */
1036 kzfree(cc);
1039 static int crypt_ctr_cipher(struct dm_target *ti,
1040 char *cipher_in, char *key)
1042 struct crypt_config *cc = ti->private;
1043 char *tmp, *cipher, *chainmode, *ivmode, *ivopts;
1044 char *cipher_api = NULL;
1045 int ret = -EINVAL;
1047 /* Convert to crypto api definition? */
1048 if (strchr(cipher_in, '(')) {
1049 ti->error = "Bad cipher specification";
1050 return -EINVAL;
1054 * Legacy dm-crypt cipher specification
1055 * cipher-mode-iv:ivopts
1057 tmp = cipher_in;
1058 cipher = strsep(&tmp, "-");
1060 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1061 if (!cc->cipher)
1062 goto bad_mem;
1064 if (tmp) {
1065 cc->cipher_mode = kstrdup(tmp, GFP_KERNEL);
1066 if (!cc->cipher_mode)
1067 goto bad_mem;
1070 chainmode = strsep(&tmp, "-");
1071 ivopts = strsep(&tmp, "-");
1072 ivmode = strsep(&ivopts, ":");
1074 if (tmp)
1075 DMWARN("Ignoring unexpected additional cipher options");
1077 /* Compatibility mode for old dm-crypt mappings */
1078 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1079 kfree(cc->cipher_mode);
1080 cc->cipher_mode = kstrdup("cbc-plain", GFP_KERNEL);
1081 chainmode = "cbc";
1082 ivmode = "plain";
1085 if (strcmp(chainmode, "ecb") && !ivmode) {
1086 ti->error = "IV mechanism required";
1087 return -EINVAL;
1090 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1091 if (!cipher_api)
1092 goto bad_mem;
1094 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1095 "%s(%s)", chainmode, cipher);
1096 if (ret < 0) {
1097 kfree(cipher_api);
1098 goto bad_mem;
1101 /* Allocate cipher */
1102 cc->tfm = crypto_alloc_ablkcipher(cipher_api, 0, 0);
1103 if (IS_ERR(cc->tfm)) {
1104 ret = PTR_ERR(cc->tfm);
1105 ti->error = "Error allocating crypto tfm";
1106 goto bad;
1109 /* Initialize and set key */
1110 ret = crypt_set_key(cc, key);
1111 if (ret < 0) {
1112 ti->error = "Error decoding and setting key";
1113 goto bad;
1116 /* Initialize IV */
1117 cc->iv_size = crypto_ablkcipher_ivsize(cc->tfm);
1118 if (cc->iv_size)
1119 /* at least a 64 bit sector number should fit in our buffer */
1120 cc->iv_size = max(cc->iv_size,
1121 (unsigned int)(sizeof(u64) / sizeof(u8)));
1122 else if (ivmode) {
1123 DMWARN("Selected cipher does not support IVs");
1124 ivmode = NULL;
1127 /* Choose ivmode, see comments at iv code. */
1128 if (ivmode == NULL)
1129 cc->iv_gen_ops = NULL;
1130 else if (strcmp(ivmode, "plain") == 0)
1131 cc->iv_gen_ops = &crypt_iv_plain_ops;
1132 else if (strcmp(ivmode, "plain64") == 0)
1133 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1134 else if (strcmp(ivmode, "essiv") == 0)
1135 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1136 else if (strcmp(ivmode, "benbi") == 0)
1137 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1138 else if (strcmp(ivmode, "null") == 0)
1139 cc->iv_gen_ops = &crypt_iv_null_ops;
1140 else {
1141 ret = -EINVAL;
1142 ti->error = "Invalid IV mode";
1143 goto bad;
1146 /* Allocate IV */
1147 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1148 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1149 if (ret < 0) {
1150 ti->error = "Error creating IV";
1151 goto bad;
1155 /* Initialize IV (set keys for ESSIV etc) */
1156 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1157 ret = cc->iv_gen_ops->init(cc);
1158 if (ret < 0) {
1159 ti->error = "Error initialising IV";
1160 goto bad;
1164 ret = 0;
1165 bad:
1166 kfree(cipher_api);
1167 return ret;
1169 bad_mem:
1170 ti->error = "Cannot allocate cipher strings";
1171 return -ENOMEM;
1175 * Construct an encryption mapping:
1176 * <cipher> <key> <iv_offset> <dev_path> <start>
1178 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1180 struct crypt_config *cc;
1181 unsigned int key_size;
1182 unsigned long long tmpll;
1183 int ret;
1185 if (argc != 5) {
1186 ti->error = "Not enough arguments";
1187 return -EINVAL;
1190 key_size = strlen(argv[1]) >> 1;
1192 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1193 if (!cc) {
1194 ti->error = "Cannot allocate encryption context";
1195 return -ENOMEM;
1198 ti->private = cc;
1199 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1200 if (ret < 0)
1201 goto bad;
1203 ret = -ENOMEM;
1204 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1205 if (!cc->io_pool) {
1206 ti->error = "Cannot allocate crypt io mempool";
1207 goto bad;
1210 cc->dmreq_start = sizeof(struct ablkcipher_request);
1211 cc->dmreq_start += crypto_ablkcipher_reqsize(cc->tfm);
1212 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1213 cc->dmreq_start += crypto_ablkcipher_alignmask(cc->tfm) &
1214 ~(crypto_tfm_ctx_alignment() - 1);
1216 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1217 sizeof(struct dm_crypt_request) + cc->iv_size);
1218 if (!cc->req_pool) {
1219 ti->error = "Cannot allocate crypt request mempool";
1220 goto bad;
1222 cc->req = NULL;
1224 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1225 if (!cc->page_pool) {
1226 ti->error = "Cannot allocate page mempool";
1227 goto bad;
1230 cc->bs = bioset_create(MIN_IOS, 0);
1231 if (!cc->bs) {
1232 ti->error = "Cannot allocate crypt bioset";
1233 goto bad;
1236 ret = -EINVAL;
1237 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1238 ti->error = "Invalid iv_offset sector";
1239 goto bad;
1241 cc->iv_offset = tmpll;
1243 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1244 ti->error = "Device lookup failed";
1245 goto bad;
1248 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1249 ti->error = "Invalid device sector";
1250 goto bad;
1252 cc->start = tmpll;
1254 ret = -ENOMEM;
1255 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1256 if (!cc->io_queue) {
1257 ti->error = "Couldn't create kcryptd io queue";
1258 goto bad;
1261 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1262 if (!cc->crypt_queue) {
1263 ti->error = "Couldn't create kcryptd queue";
1264 goto bad;
1267 ti->num_flush_requests = 1;
1268 return 0;
1270 bad:
1271 crypt_dtr(ti);
1272 return ret;
1275 static int crypt_map(struct dm_target *ti, struct bio *bio,
1276 union map_info *map_context)
1278 struct dm_crypt_io *io;
1279 struct crypt_config *cc;
1281 if (bio->bi_rw & REQ_FLUSH) {
1282 cc = ti->private;
1283 bio->bi_bdev = cc->dev->bdev;
1284 return DM_MAPIO_REMAPPED;
1287 io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1289 if (bio_data_dir(io->base_bio) == READ)
1290 kcryptd_queue_io(io);
1291 else
1292 kcryptd_queue_crypt(io);
1294 return DM_MAPIO_SUBMITTED;
1297 static int crypt_status(struct dm_target *ti, status_type_t type,
1298 char *result, unsigned int maxlen)
1300 struct crypt_config *cc = ti->private;
1301 unsigned int sz = 0;
1303 switch (type) {
1304 case STATUSTYPE_INFO:
1305 result[0] = '\0';
1306 break;
1308 case STATUSTYPE_TABLE:
1309 if (cc->cipher_mode)
1310 DMEMIT("%s-%s ", cc->cipher, cc->cipher_mode);
1311 else
1312 DMEMIT("%s ", cc->cipher);
1314 if (cc->key_size > 0) {
1315 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1316 return -ENOMEM;
1318 crypt_encode_key(result + sz, cc->key, cc->key_size);
1319 sz += cc->key_size << 1;
1320 } else {
1321 if (sz >= maxlen)
1322 return -ENOMEM;
1323 result[sz++] = '-';
1326 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1327 cc->dev->name, (unsigned long long)cc->start);
1328 break;
1330 return 0;
1333 static void crypt_postsuspend(struct dm_target *ti)
1335 struct crypt_config *cc = ti->private;
1337 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1340 static int crypt_preresume(struct dm_target *ti)
1342 struct crypt_config *cc = ti->private;
1344 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1345 DMERR("aborting resume - crypt key is not set.");
1346 return -EAGAIN;
1349 return 0;
1352 static void crypt_resume(struct dm_target *ti)
1354 struct crypt_config *cc = ti->private;
1356 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1359 /* Message interface
1360 * key set <key>
1361 * key wipe
1363 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1365 struct crypt_config *cc = ti->private;
1366 int ret = -EINVAL;
1368 if (argc < 2)
1369 goto error;
1371 if (!strnicmp(argv[0], MESG_STR("key"))) {
1372 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1373 DMWARN("not suspended during key manipulation.");
1374 return -EINVAL;
1376 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1377 ret = crypt_set_key(cc, argv[2]);
1378 if (ret)
1379 return ret;
1380 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1381 ret = cc->iv_gen_ops->init(cc);
1382 return ret;
1384 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1385 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1386 ret = cc->iv_gen_ops->wipe(cc);
1387 if (ret)
1388 return ret;
1390 return crypt_wipe_key(cc);
1394 error:
1395 DMWARN("unrecognised message received.");
1396 return -EINVAL;
1399 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1400 struct bio_vec *biovec, int max_size)
1402 struct crypt_config *cc = ti->private;
1403 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1405 if (!q->merge_bvec_fn)
1406 return max_size;
1408 bvm->bi_bdev = cc->dev->bdev;
1409 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1411 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1414 static int crypt_iterate_devices(struct dm_target *ti,
1415 iterate_devices_callout_fn fn, void *data)
1417 struct crypt_config *cc = ti->private;
1419 return fn(ti, cc->dev, cc->start, ti->len, data);
1422 static struct target_type crypt_target = {
1423 .name = "crypt",
1424 .version = {1, 7, 0},
1425 .module = THIS_MODULE,
1426 .ctr = crypt_ctr,
1427 .dtr = crypt_dtr,
1428 .map = crypt_map,
1429 .status = crypt_status,
1430 .postsuspend = crypt_postsuspend,
1431 .preresume = crypt_preresume,
1432 .resume = crypt_resume,
1433 .message = crypt_message,
1434 .merge = crypt_merge,
1435 .iterate_devices = crypt_iterate_devices,
1438 static int __init dm_crypt_init(void)
1440 int r;
1442 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1443 if (!_crypt_io_pool)
1444 return -ENOMEM;
1446 r = dm_register_target(&crypt_target);
1447 if (r < 0) {
1448 DMERR("register failed %d", r);
1449 kmem_cache_destroy(_crypt_io_pool);
1452 return r;
1455 static void __exit dm_crypt_exit(void)
1457 dm_unregister_target(&crypt_target);
1458 kmem_cache_destroy(_crypt_io_pool);
1461 module_init(dm_crypt_init);
1462 module_exit(dm_crypt_exit);
1464 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1465 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1466 MODULE_LICENSE("GPL");