4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
58 #include <linux/kmod.h>
62 char core_pattern
[65] = "core";
63 int suid_dumpable
= 0;
65 EXPORT_SYMBOL(suid_dumpable
);
66 /* The maximal length of core_pattern is also specified in sysctl.c */
68 static struct linux_binfmt
*formats
;
69 static DEFINE_RWLOCK(binfmt_lock
);
71 int register_binfmt(struct linux_binfmt
* fmt
)
73 struct linux_binfmt
** tmp
= &formats
;
79 write_lock(&binfmt_lock
);
82 write_unlock(&binfmt_lock
);
89 write_unlock(&binfmt_lock
);
93 EXPORT_SYMBOL(register_binfmt
);
95 int unregister_binfmt(struct linux_binfmt
* fmt
)
97 struct linux_binfmt
** tmp
= &formats
;
99 write_lock(&binfmt_lock
);
103 write_unlock(&binfmt_lock
);
108 write_unlock(&binfmt_lock
);
112 EXPORT_SYMBOL(unregister_binfmt
);
114 static inline void put_binfmt(struct linux_binfmt
* fmt
)
116 module_put(fmt
->module
);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from from the file itself.
125 asmlinkage
long sys_uselib(const char __user
* library
)
131 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
136 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
139 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
143 file
= nameidata_to_filp(&nd
, O_RDONLY
);
144 error
= PTR_ERR(file
);
150 struct linux_binfmt
* fmt
;
152 read_lock(&binfmt_lock
);
153 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
154 if (!fmt
->load_shlib
)
156 if (!try_module_get(fmt
->module
))
158 read_unlock(&binfmt_lock
);
159 error
= fmt
->load_shlib(file
);
160 read_lock(&binfmt_lock
);
162 if (error
!= -ENOEXEC
)
165 read_unlock(&binfmt_lock
);
171 release_open_intent(&nd
);
177 * count() counts the number of strings in array ARGV.
179 static int count(char __user
* __user
* argv
, int max
)
187 if (get_user(p
, argv
))
201 * 'copy_strings()' copies argument/environment strings from user
202 * memory to free pages in kernel mem. These are in a format ready
203 * to be put directly into the top of new user memory.
205 static int copy_strings(int argc
, char __user
* __user
* argv
,
206 struct linux_binprm
*bprm
)
208 struct page
*kmapped_page
= NULL
;
217 if (get_user(str
, argv
+argc
) ||
218 !(len
= strnlen_user(str
, bprm
->p
))) {
229 /* XXX: add architecture specific overflow check here. */
234 int offset
, bytes_to_copy
;
237 offset
= pos
% PAGE_SIZE
;
239 page
= bprm
->page
[i
];
242 page
= alloc_page(GFP_HIGHUSER
);
243 bprm
->page
[i
] = page
;
251 if (page
!= kmapped_page
) {
253 kunmap(kmapped_page
);
255 kaddr
= kmap(kmapped_page
);
258 memset(kaddr
, 0, offset
);
259 bytes_to_copy
= PAGE_SIZE
- offset
;
260 if (bytes_to_copy
> len
) {
263 memset(kaddr
+offset
+len
, 0,
264 PAGE_SIZE
-offset
-len
);
266 err
= copy_from_user(kaddr
+offset
, str
, bytes_to_copy
);
272 pos
+= bytes_to_copy
;
273 str
+= bytes_to_copy
;
274 len
-= bytes_to_copy
;
280 kunmap(kmapped_page
);
285 * Like copy_strings, but get argv and its values from kernel memory.
287 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
290 mm_segment_t oldfs
= get_fs();
292 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
297 EXPORT_SYMBOL(copy_strings_kernel
);
301 * This routine is used to map in a page into an address space: needed by
302 * execve() for the initial stack and environment pages.
304 * vma->vm_mm->mmap_sem is held for writing.
306 void install_arg_page(struct vm_area_struct
*vma
,
307 struct page
*page
, unsigned long address
)
309 struct mm_struct
*mm
= vma
->vm_mm
;
313 if (unlikely(anon_vma_prepare(vma
)))
316 flush_dcache_page(page
);
317 pte
= get_locked_pte(mm
, address
, &ptl
);
320 if (!pte_none(*pte
)) {
321 pte_unmap_unlock(pte
, ptl
);
324 inc_mm_counter(mm
, anon_rss
);
325 lru_cache_add_active(page
);
326 set_pte_at(mm
, address
, pte
, pte_mkdirty(pte_mkwrite(mk_pte(
327 page
, vma
->vm_page_prot
))));
328 page_add_new_anon_rmap(page
, vma
, address
);
329 pte_unmap_unlock(pte
, ptl
);
331 /* no need for flush_tlb */
335 force_sig(SIGKILL
, current
);
338 #define EXTRA_STACK_VM_PAGES 20 /* random */
340 int setup_arg_pages(struct linux_binprm
*bprm
,
341 unsigned long stack_top
,
342 int executable_stack
)
344 unsigned long stack_base
;
345 struct vm_area_struct
*mpnt
;
346 struct mm_struct
*mm
= current
->mm
;
350 #ifdef CONFIG_STACK_GROWSUP
351 /* Move the argument and environment strings to the bottom of the
357 /* Start by shifting all the pages down */
359 for (j
= 0; j
< MAX_ARG_PAGES
; j
++) {
360 struct page
*page
= bprm
->page
[j
];
363 bprm
->page
[i
++] = page
;
366 /* Now move them within their pages */
367 offset
= bprm
->p
% PAGE_SIZE
;
368 to
= kmap(bprm
->page
[0]);
369 for (j
= 1; j
< i
; j
++) {
370 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
371 from
= kmap(bprm
->page
[j
]);
372 memcpy(to
+ PAGE_SIZE
- offset
, from
, offset
);
373 kunmap(bprm
->page
[j
- 1]);
376 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
377 kunmap(bprm
->page
[j
- 1]);
379 /* Limit stack size to 1GB */
380 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
381 if (stack_base
> (1 << 30))
382 stack_base
= 1 << 30;
383 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
385 /* Adjust bprm->p to point to the end of the strings. */
386 bprm
->p
= stack_base
+ PAGE_SIZE
* i
- offset
;
388 mm
->arg_start
= stack_base
;
389 arg_size
= i
<< PAGE_SHIFT
;
391 /* zero pages that were copied above */
392 while (i
< MAX_ARG_PAGES
)
393 bprm
->page
[i
++] = NULL
;
395 stack_base
= arch_align_stack(stack_top
- MAX_ARG_PAGES
*PAGE_SIZE
);
396 stack_base
= PAGE_ALIGN(stack_base
);
397 bprm
->p
+= stack_base
;
398 mm
->arg_start
= bprm
->p
;
399 arg_size
= stack_top
- (PAGE_MASK
& (unsigned long) mm
->arg_start
);
402 arg_size
+= EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
405 bprm
->loader
+= stack_base
;
406 bprm
->exec
+= stack_base
;
408 mpnt
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
412 memset(mpnt
, 0, sizeof(*mpnt
));
414 down_write(&mm
->mmap_sem
);
417 #ifdef CONFIG_STACK_GROWSUP
418 mpnt
->vm_start
= stack_base
;
419 mpnt
->vm_end
= stack_base
+ arg_size
;
421 mpnt
->vm_end
= stack_top
;
422 mpnt
->vm_start
= mpnt
->vm_end
- arg_size
;
424 /* Adjust stack execute permissions; explicitly enable
425 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 * and leave alone (arch default) otherwise. */
427 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
428 mpnt
->vm_flags
= VM_STACK_FLAGS
| VM_EXEC
;
429 else if (executable_stack
== EXSTACK_DISABLE_X
)
430 mpnt
->vm_flags
= VM_STACK_FLAGS
& ~VM_EXEC
;
432 mpnt
->vm_flags
= VM_STACK_FLAGS
;
433 mpnt
->vm_flags
|= mm
->def_flags
;
434 mpnt
->vm_page_prot
= protection_map
[mpnt
->vm_flags
& 0x7];
435 if ((ret
= insert_vm_struct(mm
, mpnt
))) {
436 up_write(&mm
->mmap_sem
);
437 kmem_cache_free(vm_area_cachep
, mpnt
);
440 mm
->stack_vm
= mm
->total_vm
= vma_pages(mpnt
);
443 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
444 struct page
*page
= bprm
->page
[i
];
446 bprm
->page
[i
] = NULL
;
447 install_arg_page(mpnt
, page
, stack_base
);
449 stack_base
+= PAGE_SIZE
;
451 up_write(&mm
->mmap_sem
);
456 EXPORT_SYMBOL(setup_arg_pages
);
458 #define free_arg_pages(bprm) do { } while (0)
462 static inline void free_arg_pages(struct linux_binprm
*bprm
)
466 for (i
= 0; i
< MAX_ARG_PAGES
; i
++) {
468 __free_page(bprm
->page
[i
]);
469 bprm
->page
[i
] = NULL
;
473 #endif /* CONFIG_MMU */
475 struct file
*open_exec(const char *name
)
481 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
485 struct inode
*inode
= nd
.dentry
->d_inode
;
486 file
= ERR_PTR(-EACCES
);
487 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
488 S_ISREG(inode
->i_mode
)) {
489 int err
= vfs_permission(&nd
, MAY_EXEC
);
490 if (!err
&& !(inode
->i_mode
& 0111))
494 file
= nameidata_to_filp(&nd
, O_RDONLY
);
496 err
= deny_write_access(file
);
506 release_open_intent(&nd
);
512 EXPORT_SYMBOL(open_exec
);
514 int kernel_read(struct file
*file
, unsigned long offset
,
515 char *addr
, unsigned long count
)
523 /* The cast to a user pointer is valid due to the set_fs() */
524 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
529 EXPORT_SYMBOL(kernel_read
);
531 static int exec_mmap(struct mm_struct
*mm
)
533 struct task_struct
*tsk
;
534 struct mm_struct
* old_mm
, *active_mm
;
536 /* Notify parent that we're no longer interested in the old VM */
538 old_mm
= current
->mm
;
539 mm_release(tsk
, old_mm
);
543 * Make sure that if there is a core dump in progress
544 * for the old mm, we get out and die instead of going
545 * through with the exec. We must hold mmap_sem around
546 * checking core_waiters and changing tsk->mm. The
547 * core-inducing thread will increment core_waiters for
548 * each thread whose ->mm == old_mm.
550 down_read(&old_mm
->mmap_sem
);
551 if (unlikely(old_mm
->core_waiters
)) {
552 up_read(&old_mm
->mmap_sem
);
557 active_mm
= tsk
->active_mm
;
560 activate_mm(active_mm
, mm
);
562 arch_pick_mmap_layout(mm
);
564 up_read(&old_mm
->mmap_sem
);
565 BUG_ON(active_mm
!= old_mm
);
574 * This function makes sure the current process has its own signal table,
575 * so that flush_signal_handlers can later reset the handlers without
576 * disturbing other processes. (Other processes might share the signal
577 * table via the CLONE_SIGHAND option to clone().)
579 static int de_thread(struct task_struct
*tsk
)
581 struct signal_struct
*sig
= tsk
->signal
;
582 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
583 spinlock_t
*lock
= &oldsighand
->siglock
;
584 struct task_struct
*leader
= NULL
;
588 * If we don't share sighandlers, then we aren't sharing anything
589 * and we can just re-use it all.
591 if (atomic_read(&oldsighand
->count
) <= 1) {
592 BUG_ON(atomic_read(&sig
->count
) != 1);
597 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
601 if (thread_group_empty(current
))
602 goto no_thread_group
;
605 * Kill all other threads in the thread group.
606 * We must hold tasklist_lock to call zap_other_threads.
608 read_lock(&tasklist_lock
);
610 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
612 * Another group action in progress, just
613 * return so that the signal is processed.
615 spin_unlock_irq(lock
);
616 read_unlock(&tasklist_lock
);
617 kmem_cache_free(sighand_cachep
, newsighand
);
622 * child_reaper ignores SIGKILL, change it now.
623 * Reparenting needs write_lock on tasklist_lock,
624 * so it is safe to do it under read_lock.
626 if (unlikely(current
->group_leader
== child_reaper
))
627 child_reaper
= current
;
629 zap_other_threads(current
);
630 read_unlock(&tasklist_lock
);
633 * Account for the thread group leader hanging around:
636 if (!thread_group_leader(current
)) {
639 * The SIGALRM timer survives the exec, but needs to point
640 * at us as the new group leader now. We have a race with
641 * a timer firing now getting the old leader, so we need to
642 * synchronize with any firing (by calling del_timer_sync)
643 * before we can safely let the old group leader die.
646 spin_unlock_irq(lock
);
647 if (hrtimer_cancel(&sig
->real_timer
))
648 hrtimer_restart(&sig
->real_timer
);
651 while (atomic_read(&sig
->count
) > count
) {
652 sig
->group_exit_task
= current
;
653 sig
->notify_count
= count
;
654 __set_current_state(TASK_UNINTERRUPTIBLE
);
655 spin_unlock_irq(lock
);
659 sig
->group_exit_task
= NULL
;
660 sig
->notify_count
= 0;
661 spin_unlock_irq(lock
);
664 * At this point all other threads have exited, all we have to
665 * do is to wait for the thread group leader to become inactive,
666 * and to assume its PID:
668 if (!thread_group_leader(current
)) {
670 * Wait for the thread group leader to be a zombie.
671 * It should already be zombie at this point, most
674 leader
= current
->group_leader
;
675 while (leader
->exit_state
!= EXIT_ZOMBIE
)
679 * The only record we have of the real-time age of a
680 * process, regardless of execs it's done, is start_time.
681 * All the past CPU time is accumulated in signal_struct
682 * from sister threads now dead. But in this non-leader
683 * exec, nothing survives from the original leader thread,
684 * whose birth marks the true age of this process now.
685 * When we take on its identity by switching to its PID, we
686 * also take its birthdate (always earlier than our own).
688 current
->start_time
= leader
->start_time
;
690 write_lock_irq(&tasklist_lock
);
692 BUG_ON(leader
->tgid
!= current
->tgid
);
693 BUG_ON(current
->pid
== current
->tgid
);
695 * An exec() starts a new thread group with the
696 * TGID of the previous thread group. Rehash the
697 * two threads with a switched PID, and release
698 * the former thread group leader:
701 /* Become a process group leader with the old leader's pid.
702 * Note: The old leader also uses thispid until release_task
703 * is called. Odd but simple and correct.
705 detach_pid(current
, PIDTYPE_PID
);
706 current
->pid
= leader
->pid
;
707 attach_pid(current
, PIDTYPE_PID
, current
->pid
);
708 attach_pid(current
, PIDTYPE_PGID
, current
->signal
->pgrp
);
709 attach_pid(current
, PIDTYPE_SID
, current
->signal
->session
);
710 list_replace_rcu(&leader
->tasks
, ¤t
->tasks
);
712 current
->group_leader
= current
;
713 leader
->group_leader
= current
;
715 /* Reduce leader to a thread */
716 detach_pid(leader
, PIDTYPE_PGID
);
717 detach_pid(leader
, PIDTYPE_SID
);
719 current
->exit_signal
= SIGCHLD
;
721 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
722 leader
->exit_state
= EXIT_DEAD
;
724 write_unlock_irq(&tasklist_lock
);
728 * There may be one thread left which is just exiting,
729 * but it's safe to stop telling the group to kill themselves.
736 release_task(leader
);
738 BUG_ON(atomic_read(&sig
->count
) != 1);
740 if (atomic_read(&oldsighand
->count
) == 1) {
742 * Now that we nuked the rest of the thread group,
743 * it turns out we are not sharing sighand any more either.
744 * So we can just keep it.
746 kmem_cache_free(sighand_cachep
, newsighand
);
749 * Move our state over to newsighand and switch it in.
751 atomic_set(&newsighand
->count
, 1);
752 memcpy(newsighand
->action
, oldsighand
->action
,
753 sizeof(newsighand
->action
));
755 write_lock_irq(&tasklist_lock
);
756 spin_lock(&oldsighand
->siglock
);
757 spin_lock(&newsighand
->siglock
);
759 rcu_assign_pointer(current
->sighand
, newsighand
);
762 spin_unlock(&newsighand
->siglock
);
763 spin_unlock(&oldsighand
->siglock
);
764 write_unlock_irq(&tasklist_lock
);
766 if (atomic_dec_and_test(&oldsighand
->count
))
767 kmem_cache_free(sighand_cachep
, oldsighand
);
770 BUG_ON(!thread_group_leader(current
));
775 * These functions flushes out all traces of the currently running executable
776 * so that a new one can be started
779 static void flush_old_files(struct files_struct
* files
)
784 spin_lock(&files
->file_lock
);
786 unsigned long set
, i
;
790 fdt
= files_fdtable(files
);
791 if (i
>= fdt
->max_fds
|| i
>= fdt
->max_fdset
)
793 set
= fdt
->close_on_exec
->fds_bits
[j
];
796 fdt
->close_on_exec
->fds_bits
[j
] = 0;
797 spin_unlock(&files
->file_lock
);
798 for ( ; set
; i
++,set
>>= 1) {
803 spin_lock(&files
->file_lock
);
806 spin_unlock(&files
->file_lock
);
809 void get_task_comm(char *buf
, struct task_struct
*tsk
)
811 /* buf must be at least sizeof(tsk->comm) in size */
813 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
817 void set_task_comm(struct task_struct
*tsk
, char *buf
)
820 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
824 int flush_old_exec(struct linux_binprm
* bprm
)
828 struct files_struct
*files
;
829 char tcomm
[sizeof(current
->comm
)];
832 * Make sure we have a private signal table and that
833 * we are unassociated from the previous thread group.
835 retval
= de_thread(current
);
840 * Make sure we have private file handles. Ask the
841 * fork helper to do the work for us and the exit
842 * helper to do the cleanup of the old one.
844 files
= current
->files
; /* refcounted so safe to hold */
845 retval
= unshare_files();
849 * Release all of the old mmap stuff
851 retval
= exec_mmap(bprm
->mm
);
855 bprm
->mm
= NULL
; /* We're using it now */
857 /* This is the point of no return */
858 put_files_struct(files
);
860 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
862 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
863 current
->mm
->dumpable
= 1;
865 current
->mm
->dumpable
= suid_dumpable
;
867 name
= bprm
->filename
;
869 /* Copies the binary name from after last slash */
870 for (i
=0; (ch
= *(name
++)) != '\0';) {
872 i
= 0; /* overwrite what we wrote */
874 if (i
< (sizeof(tcomm
) - 1))
878 set_task_comm(current
, tcomm
);
880 current
->flags
&= ~PF_RANDOMIZE
;
883 /* Set the new mm task size. We have to do that late because it may
884 * depend on TIF_32BIT which is only updated in flush_thread() on
885 * some architectures like powerpc
887 current
->mm
->task_size
= TASK_SIZE
;
889 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
||
890 file_permission(bprm
->file
, MAY_READ
) ||
891 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
893 current
->mm
->dumpable
= suid_dumpable
;
896 /* An exec changes our domain. We are no longer part of the thread
899 current
->self_exec_id
++;
901 flush_signal_handlers(current
, 0);
902 flush_old_files(current
->files
);
907 put_files_struct(current
->files
);
908 current
->files
= files
;
913 EXPORT_SYMBOL(flush_old_exec
);
916 * Fill the binprm structure from the inode.
917 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
919 int prepare_binprm(struct linux_binprm
*bprm
)
922 struct inode
* inode
= bprm
->file
->f_dentry
->d_inode
;
925 mode
= inode
->i_mode
;
927 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
928 * generic_permission lets a non-executable through
930 if (!(mode
& 0111)) /* with at least _one_ execute bit set */
932 if (bprm
->file
->f_op
== NULL
)
935 bprm
->e_uid
= current
->euid
;
936 bprm
->e_gid
= current
->egid
;
938 if(!(bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)) {
940 if (mode
& S_ISUID
) {
941 current
->personality
&= ~PER_CLEAR_ON_SETID
;
942 bprm
->e_uid
= inode
->i_uid
;
947 * If setgid is set but no group execute bit then this
948 * is a candidate for mandatory locking, not a setgid
951 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
952 current
->personality
&= ~PER_CLEAR_ON_SETID
;
953 bprm
->e_gid
= inode
->i_gid
;
957 /* fill in binprm security blob */
958 retval
= security_bprm_set(bprm
);
962 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
963 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
966 EXPORT_SYMBOL(prepare_binprm
);
968 static int unsafe_exec(struct task_struct
*p
)
971 if (p
->ptrace
& PT_PTRACED
) {
972 if (p
->ptrace
& PT_PTRACE_CAP
)
973 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
975 unsafe
|= LSM_UNSAFE_PTRACE
;
977 if (atomic_read(&p
->fs
->count
) > 1 ||
978 atomic_read(&p
->files
->count
) > 1 ||
979 atomic_read(&p
->sighand
->count
) > 1)
980 unsafe
|= LSM_UNSAFE_SHARE
;
985 void compute_creds(struct linux_binprm
*bprm
)
989 if (bprm
->e_uid
!= current
->uid
)
994 unsafe
= unsafe_exec(current
);
995 security_bprm_apply_creds(bprm
, unsafe
);
996 task_unlock(current
);
997 security_bprm_post_apply_creds(bprm
);
1000 EXPORT_SYMBOL(compute_creds
);
1002 void remove_arg_zero(struct linux_binprm
*bprm
)
1005 unsigned long offset
;
1009 offset
= bprm
->p
% PAGE_SIZE
;
1012 while (bprm
->p
++, *(kaddr
+offset
++)) {
1013 if (offset
!= PAGE_SIZE
)
1016 kunmap_atomic(kaddr
, KM_USER0
);
1018 page
= bprm
->page
[bprm
->p
/PAGE_SIZE
];
1019 kaddr
= kmap_atomic(page
, KM_USER0
);
1021 kunmap_atomic(kaddr
, KM_USER0
);
1026 EXPORT_SYMBOL(remove_arg_zero
);
1029 * cycle the list of binary formats handler, until one recognizes the image
1031 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1034 struct linux_binfmt
*fmt
;
1036 /* handle /sbin/loader.. */
1038 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1040 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1041 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1044 unsigned long loader
;
1046 allow_write_access(bprm
->file
);
1050 loader
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1052 file
= open_exec("/sbin/loader");
1053 retval
= PTR_ERR(file
);
1057 /* Remember if the application is TASO. */
1058 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1061 bprm
->loader
= loader
;
1062 retval
= prepare_binprm(bprm
);
1065 /* should call search_binary_handler recursively here,
1066 but it does not matter */
1070 retval
= security_bprm_check(bprm
);
1074 /* kernel module loader fixup */
1075 /* so we don't try to load run modprobe in kernel space. */
1078 retval
= audit_bprm(bprm
);
1083 for (try=0; try<2; try++) {
1084 read_lock(&binfmt_lock
);
1085 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
1086 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1089 if (!try_module_get(fmt
->module
))
1091 read_unlock(&binfmt_lock
);
1092 retval
= fn(bprm
, regs
);
1095 allow_write_access(bprm
->file
);
1099 current
->did_exec
= 1;
1100 proc_exec_connector(current
);
1103 read_lock(&binfmt_lock
);
1105 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1108 read_unlock(&binfmt_lock
);
1112 read_unlock(&binfmt_lock
);
1113 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1117 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1118 if (printable(bprm
->buf
[0]) &&
1119 printable(bprm
->buf
[1]) &&
1120 printable(bprm
->buf
[2]) &&
1121 printable(bprm
->buf
[3]))
1122 break; /* -ENOEXEC */
1123 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1130 EXPORT_SYMBOL(search_binary_handler
);
1133 * sys_execve() executes a new program.
1135 int do_execve(char * filename
,
1136 char __user
*__user
*argv
,
1137 char __user
*__user
*envp
,
1138 struct pt_regs
* regs
)
1140 struct linux_binprm
*bprm
;
1146 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1150 file
= open_exec(filename
);
1151 retval
= PTR_ERR(file
);
1157 bprm
->p
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1160 bprm
->filename
= filename
;
1161 bprm
->interp
= filename
;
1162 bprm
->mm
= mm_alloc();
1167 retval
= init_new_context(current
, bprm
->mm
);
1171 bprm
->argc
= count(argv
, bprm
->p
/ sizeof(void *));
1172 if ((retval
= bprm
->argc
) < 0)
1175 bprm
->envc
= count(envp
, bprm
->p
/ sizeof(void *));
1176 if ((retval
= bprm
->envc
) < 0)
1179 retval
= security_bprm_alloc(bprm
);
1183 retval
= prepare_binprm(bprm
);
1187 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1191 bprm
->exec
= bprm
->p
;
1192 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1196 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1200 retval
= search_binary_handler(bprm
,regs
);
1202 free_arg_pages(bprm
);
1204 /* execve success */
1205 security_bprm_free(bprm
);
1206 acct_update_integrals(current
);
1212 /* Something went wrong, return the inode and free the argument pages*/
1213 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1214 struct page
* page
= bprm
->page
[i
];
1220 security_bprm_free(bprm
);
1228 allow_write_access(bprm
->file
);
1239 int set_binfmt(struct linux_binfmt
*new)
1241 struct linux_binfmt
*old
= current
->binfmt
;
1244 if (!try_module_get(new->module
))
1247 current
->binfmt
= new;
1249 module_put(old
->module
);
1253 EXPORT_SYMBOL(set_binfmt
);
1255 #define CORENAME_MAX_SIZE 64
1257 /* format_corename will inspect the pattern parameter, and output a
1258 * name into corename, which must have space for at least
1259 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1261 static void format_corename(char *corename
, const char *pattern
, long signr
)
1263 const char *pat_ptr
= pattern
;
1264 char *out_ptr
= corename
;
1265 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1267 int pid_in_pattern
= 0;
1269 /* Repeat as long as we have more pattern to process and more output
1272 if (*pat_ptr
!= '%') {
1273 if (out_ptr
== out_end
)
1275 *out_ptr
++ = *pat_ptr
++;
1277 switch (*++pat_ptr
) {
1280 /* Double percent, output one percent */
1282 if (out_ptr
== out_end
)
1289 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1290 "%d", current
->tgid
);
1291 if (rc
> out_end
- out_ptr
)
1297 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1298 "%d", current
->uid
);
1299 if (rc
> out_end
- out_ptr
)
1305 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1306 "%d", current
->gid
);
1307 if (rc
> out_end
- out_ptr
)
1311 /* signal that caused the coredump */
1313 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1315 if (rc
> out_end
- out_ptr
)
1319 /* UNIX time of coredump */
1322 do_gettimeofday(&tv
);
1323 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1325 if (rc
> out_end
- out_ptr
)
1332 down_read(&uts_sem
);
1333 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1334 "%s", system_utsname
.nodename
);
1336 if (rc
> out_end
- out_ptr
)
1342 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1343 "%s", current
->comm
);
1344 if (rc
> out_end
- out_ptr
)
1354 /* Backward compatibility with core_uses_pid:
1356 * If core_pattern does not include a %p (as is the default)
1357 * and core_uses_pid is set, then .%pid will be appended to
1360 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1361 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1362 ".%d", current
->tgid
);
1363 if (rc
> out_end
- out_ptr
)
1371 static void zap_process(struct task_struct
*start
, int *ptraced
)
1373 struct task_struct
*t
;
1377 if (t
!= current
&& t
->mm
) {
1378 t
->mm
->core_waiters
++;
1379 force_sig_specific(SIGKILL
, t
);
1380 if (unlikely(t
->ptrace
) &&
1381 unlikely(t
->parent
->mm
== t
->mm
))
1384 } while ((t
= next_thread(t
)) != start
);
1387 static void zap_threads (struct mm_struct
*mm
)
1389 struct task_struct
*g
, *p
;
1390 struct task_struct
*tsk
= current
;
1391 struct completion
*vfork_done
= tsk
->vfork_done
;
1395 * Make sure nobody is waiting for us to release the VM,
1396 * otherwise we can deadlock when we wait on each other
1399 tsk
->vfork_done
= NULL
;
1400 complete(vfork_done
);
1403 read_lock(&tasklist_lock
);
1404 for_each_process(g
) {
1409 zap_process(p
, &traced
);
1412 } while ((p
= next_thread(p
)) != g
);
1414 read_unlock(&tasklist_lock
);
1416 if (unlikely(traced
)) {
1418 * We are zapping a thread and the thread it ptraces.
1419 * If the tracee went into a ptrace stop for exit tracing,
1420 * we could deadlock since the tracer is waiting for this
1421 * coredump to finish. Detach them so they can both die.
1423 write_lock_irq(&tasklist_lock
);
1424 do_each_thread(g
,p
) {
1425 if (mm
== p
->mm
&& p
!= tsk
&&
1426 p
->ptrace
&& p
->parent
->mm
== mm
) {
1427 __ptrace_detach(p
, 0);
1429 } while_each_thread(g
,p
);
1430 write_unlock_irq(&tasklist_lock
);
1434 static void coredump_wait(struct mm_struct
*mm
)
1436 DECLARE_COMPLETION(startup_done
);
1439 mm
->core_startup_done
= &startup_done
;
1442 core_waiters
= mm
->core_waiters
;
1443 up_write(&mm
->mmap_sem
);
1446 wait_for_completion(&startup_done
);
1447 BUG_ON(mm
->core_waiters
);
1450 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1452 char corename
[CORENAME_MAX_SIZE
+ 1];
1453 struct mm_struct
*mm
= current
->mm
;
1454 struct linux_binfmt
* binfmt
;
1455 struct inode
* inode
;
1458 int fsuid
= current
->fsuid
;
1461 binfmt
= current
->binfmt
;
1462 if (!binfmt
|| !binfmt
->core_dump
)
1464 down_write(&mm
->mmap_sem
);
1465 if (!mm
->dumpable
) {
1466 up_write(&mm
->mmap_sem
);
1471 * We cannot trust fsuid as being the "true" uid of the
1472 * process nor do we know its entire history. We only know it
1473 * was tainted so we dump it as root in mode 2.
1475 if (mm
->dumpable
== 2) { /* Setuid core dump mode */
1476 flag
= O_EXCL
; /* Stop rewrite attacks */
1477 current
->fsuid
= 0; /* Dump root private */
1482 spin_lock_irq(¤t
->sighand
->siglock
);
1483 if (!(current
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1484 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1485 current
->signal
->group_exit_code
= exit_code
;
1486 current
->signal
->group_stop_count
= 0;
1489 spin_unlock_irq(¤t
->sighand
->siglock
);
1491 up_write(&mm
->mmap_sem
);
1495 init_completion(&mm
->core_done
);
1499 * Clear any false indication of pending signals that might
1500 * be seen by the filesystem code called to write the core file.
1502 clear_thread_flag(TIF_SIGPENDING
);
1504 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1508 * lock_kernel() because format_corename() is controlled by sysctl, which
1509 * uses lock_kernel()
1512 format_corename(corename
, core_pattern
, signr
);
1514 file
= filp_open(corename
, O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
, 0600);
1517 inode
= file
->f_dentry
->d_inode
;
1518 if (inode
->i_nlink
> 1)
1519 goto close_fail
; /* multiple links - don't dump */
1520 if (d_unhashed(file
->f_dentry
))
1523 if (!S_ISREG(inode
->i_mode
))
1527 if (!file
->f_op
->write
)
1529 if (do_truncate(file
->f_dentry
, 0, 0, file
) != 0)
1532 retval
= binfmt
->core_dump(signr
, regs
, file
);
1535 current
->signal
->group_exit_code
|= 0x80;
1537 filp_close(file
, NULL
);
1539 current
->fsuid
= fsuid
;
1540 complete_all(&mm
->core_done
);