USB: io_ti: check firmware version before updating
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ocfs2 / aops.c
blobe504ab76b77c95b7d71e8793745d8f3dbb20cec4
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
35 #include "ocfs2.h"
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
78 fe = (struct ocfs2_dinode *) bh->b_data;
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
115 brelse(buffer_cache_bh);
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 err = 0;
123 bail:
124 brelse(bh);
126 mlog_exit(err);
127 return err;
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
161 if (max_blocks < count)
162 count = max_blocks;
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
185 bh_result->b_size = count << inode->i_blkbits;
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
200 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
202 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
208 bail:
209 if (err < 0)
210 err = -EIO;
212 mlog_exit(err);
213 return err;
216 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
217 struct buffer_head *di_bh)
219 void *kaddr;
220 loff_t size;
221 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
224 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
226 return -EROFS;
229 size = i_size_read(inode);
231 if (size > PAGE_CACHE_SIZE ||
232 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
233 ocfs2_error(inode->i_sb,
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
236 (unsigned long long)size);
237 return -EROFS;
240 kaddr = kmap_atomic(page, KM_USER0);
241 if (size)
242 memcpy(kaddr, di->id2.i_data.id_data, size);
243 /* Clear the remaining part of the page */
244 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
245 flush_dcache_page(page);
246 kunmap_atomic(kaddr, KM_USER0);
248 SetPageUptodate(page);
250 return 0;
253 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 int ret;
256 struct buffer_head *di_bh = NULL;
258 BUG_ON(!PageLocked(page));
259 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261 ret = ocfs2_read_inode_block(inode, &di_bh);
262 if (ret) {
263 mlog_errno(ret);
264 goto out;
267 ret = ocfs2_read_inline_data(inode, page, di_bh);
268 out:
269 unlock_page(page);
271 brelse(di_bh);
272 return ret;
275 static int ocfs2_readpage(struct file *file, struct page *page)
277 struct inode *inode = page->mapping->host;
278 struct ocfs2_inode_info *oi = OCFS2_I(inode);
279 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 int ret, unlock = 1;
282 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
320 out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324 out:
325 if (unlock)
326 unlock_page(page);
327 mlog_exit(ret);
328 return ret;
332 * This is used only for read-ahead. Failures or difficult to handle
333 * situations are safe to ignore.
335 * Right now, we don't bother with BH_Boundary - in-inode extent lists
336 * are quite large (243 extents on 4k blocks), so most inodes don't
337 * grow out to a tree. If need be, detecting boundary extents could
338 * trivially be added in a future version of ocfs2_get_block().
340 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
341 struct list_head *pages, unsigned nr_pages)
343 int ret, err = -EIO;
344 struct inode *inode = mapping->host;
345 struct ocfs2_inode_info *oi = OCFS2_I(inode);
346 loff_t start;
347 struct page *last;
350 * Use the nonblocking flag for the dlm code to avoid page
351 * lock inversion, but don't bother with retrying.
353 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
354 if (ret)
355 return err;
357 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
358 ocfs2_inode_unlock(inode, 0);
359 return err;
363 * Don't bother with inline-data. There isn't anything
364 * to read-ahead in that case anyway...
366 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
367 goto out_unlock;
370 * Check whether a remote node truncated this file - we just
371 * drop out in that case as it's not worth handling here.
373 last = list_entry(pages->prev, struct page, lru);
374 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
375 if (start >= i_size_read(inode))
376 goto out_unlock;
378 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
380 out_unlock:
381 up_read(&oi->ip_alloc_sem);
382 ocfs2_inode_unlock(inode, 0);
384 return err;
387 /* Note: Because we don't support holes, our allocation has
388 * already happened (allocation writes zeros to the file data)
389 * so we don't have to worry about ordered writes in
390 * ocfs2_writepage.
392 * ->writepage is called during the process of invalidating the page cache
393 * during blocked lock processing. It can't block on any cluster locks
394 * to during block mapping. It's relying on the fact that the block
395 * mapping can't have disappeared under the dirty pages that it is
396 * being asked to write back.
398 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 int ret;
402 mlog_entry("(0x%p)\n", page);
404 ret = block_write_full_page(page, ocfs2_get_block, wbc);
406 mlog_exit(ret);
408 return ret;
412 * This is called from ocfs2_write_zero_page() which has handled it's
413 * own cluster locking and has ensured allocation exists for those
414 * blocks to be written.
416 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
417 unsigned from, unsigned to)
419 int ret;
421 ret = block_prepare_write(page, from, to, ocfs2_get_block);
423 return ret;
426 /* Taken from ext3. We don't necessarily need the full blown
427 * functionality yet, but IMHO it's better to cut and paste the whole
428 * thing so we can avoid introducing our own bugs (and easily pick up
429 * their fixes when they happen) --Mark */
430 int walk_page_buffers( handle_t *handle,
431 struct buffer_head *head,
432 unsigned from,
433 unsigned to,
434 int *partial,
435 int (*fn)( handle_t *handle,
436 struct buffer_head *bh))
438 struct buffer_head *bh;
439 unsigned block_start, block_end;
440 unsigned blocksize = head->b_size;
441 int err, ret = 0;
442 struct buffer_head *next;
444 for ( bh = head, block_start = 0;
445 ret == 0 && (bh != head || !block_start);
446 block_start = block_end, bh = next)
448 next = bh->b_this_page;
449 block_end = block_start + blocksize;
450 if (block_end <= from || block_start >= to) {
451 if (partial && !buffer_uptodate(bh))
452 *partial = 1;
453 continue;
455 err = (*fn)(handle, bh);
456 if (!ret)
457 ret = err;
459 return ret;
462 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
464 sector_t status;
465 u64 p_blkno = 0;
466 int err = 0;
467 struct inode *inode = mapping->host;
469 mlog_entry("(block = %llu)\n", (unsigned long long)block);
471 /* We don't need to lock journal system files, since they aren't
472 * accessed concurrently from multiple nodes.
474 if (!INODE_JOURNAL(inode)) {
475 err = ocfs2_inode_lock(inode, NULL, 0);
476 if (err) {
477 if (err != -ENOENT)
478 mlog_errno(err);
479 goto bail;
481 down_read(&OCFS2_I(inode)->ip_alloc_sem);
484 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
485 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
486 NULL);
488 if (!INODE_JOURNAL(inode)) {
489 up_read(&OCFS2_I(inode)->ip_alloc_sem);
490 ocfs2_inode_unlock(inode, 0);
493 if (err) {
494 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
495 (unsigned long long)block);
496 mlog_errno(err);
497 goto bail;
500 bail:
501 status = err ? 0 : p_blkno;
503 mlog_exit((int)status);
505 return status;
509 * TODO: Make this into a generic get_blocks function.
511 * From do_direct_io in direct-io.c:
512 * "So what we do is to permit the ->get_blocks function to populate
513 * bh.b_size with the size of IO which is permitted at this offset and
514 * this i_blkbits."
516 * This function is called directly from get_more_blocks in direct-io.c.
518 * called like this: dio->get_blocks(dio->inode, fs_startblk,
519 * fs_count, map_bh, dio->rw == WRITE);
521 * Note that we never bother to allocate blocks here, and thus ignore the
522 * create argument.
524 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
525 struct buffer_head *bh_result, int create)
527 int ret;
528 u64 p_blkno, inode_blocks, contig_blocks;
529 unsigned int ext_flags;
530 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
531 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
533 /* This function won't even be called if the request isn't all
534 * nicely aligned and of the right size, so there's no need
535 * for us to check any of that. */
537 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
539 /* This figures out the size of the next contiguous block, and
540 * our logical offset */
541 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
542 &contig_blocks, &ext_flags);
543 if (ret) {
544 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
545 (unsigned long long)iblock);
546 ret = -EIO;
547 goto bail;
550 /* We should already CoW the refcounted extent in case of create. */
551 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
554 * get_more_blocks() expects us to describe a hole by clearing
555 * the mapped bit on bh_result().
557 * Consider an unwritten extent as a hole.
559 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
560 map_bh(bh_result, inode->i_sb, p_blkno);
561 else
562 clear_buffer_mapped(bh_result);
564 /* make sure we don't map more than max_blocks blocks here as
565 that's all the kernel will handle at this point. */
566 if (max_blocks < contig_blocks)
567 contig_blocks = max_blocks;
568 bh_result->b_size = contig_blocks << blocksize_bits;
569 bail:
570 return ret;
574 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
575 * particularly interested in the aio/dio case. Like the core uses
576 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
577 * truncation on another.
579 static void ocfs2_dio_end_io(struct kiocb *iocb,
580 loff_t offset,
581 ssize_t bytes,
582 void *private)
584 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
585 int level;
587 /* this io's submitter should not have unlocked this before we could */
588 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
590 ocfs2_iocb_clear_rw_locked(iocb);
592 level = ocfs2_iocb_rw_locked_level(iocb);
593 if (!level)
594 up_read(&inode->i_alloc_sem);
595 ocfs2_rw_unlock(inode, level);
599 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
600 * from ext3. PageChecked() bits have been removed as OCFS2 does not
601 * do journalled data.
603 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
605 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
607 jbd2_journal_invalidatepage(journal, page, offset);
610 static int ocfs2_releasepage(struct page *page, gfp_t wait)
612 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
614 if (!page_has_buffers(page))
615 return 0;
616 return jbd2_journal_try_to_free_buffers(journal, page, wait);
619 static ssize_t ocfs2_direct_IO(int rw,
620 struct kiocb *iocb,
621 const struct iovec *iov,
622 loff_t offset,
623 unsigned long nr_segs)
625 struct file *file = iocb->ki_filp;
626 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
627 int ret;
629 mlog_entry_void();
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
642 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
643 inode->i_sb->s_bdev, iov, offset,
644 nr_segs,
645 ocfs2_direct_IO_get_blocks,
646 ocfs2_dio_end_io);
648 mlog_exit(ret);
649 return ret;
652 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
653 u32 cpos,
654 unsigned int *start,
655 unsigned int *end)
657 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
659 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
660 unsigned int cpp;
662 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
664 cluster_start = cpos % cpp;
665 cluster_start = cluster_start << osb->s_clustersize_bits;
667 cluster_end = cluster_start + osb->s_clustersize;
670 BUG_ON(cluster_start > PAGE_SIZE);
671 BUG_ON(cluster_end > PAGE_SIZE);
673 if (start)
674 *start = cluster_start;
675 if (end)
676 *end = cluster_end;
680 * 'from' and 'to' are the region in the page to avoid zeroing.
682 * If pagesize > clustersize, this function will avoid zeroing outside
683 * of the cluster boundary.
685 * from == to == 0 is code for "zero the entire cluster region"
687 static void ocfs2_clear_page_regions(struct page *page,
688 struct ocfs2_super *osb, u32 cpos,
689 unsigned from, unsigned to)
691 void *kaddr;
692 unsigned int cluster_start, cluster_end;
694 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
696 kaddr = kmap_atomic(page, KM_USER0);
698 if (from || to) {
699 if (from > cluster_start)
700 memset(kaddr + cluster_start, 0, from - cluster_start);
701 if (to < cluster_end)
702 memset(kaddr + to, 0, cluster_end - to);
703 } else {
704 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
707 kunmap_atomic(kaddr, KM_USER0);
711 * Nonsparse file systems fully allocate before we get to the write
712 * code. This prevents ocfs2_write() from tagging the write as an
713 * allocating one, which means ocfs2_map_page_blocks() might try to
714 * read-in the blocks at the tail of our file. Avoid reading them by
715 * testing i_size against each block offset.
717 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
718 unsigned int block_start)
720 u64 offset = page_offset(page) + block_start;
722 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
723 return 1;
725 if (i_size_read(inode) > offset)
726 return 1;
728 return 0;
732 * Some of this taken from block_prepare_write(). We already have our
733 * mapping by now though, and the entire write will be allocating or
734 * it won't, so not much need to use BH_New.
736 * This will also skip zeroing, which is handled externally.
738 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
739 struct inode *inode, unsigned int from,
740 unsigned int to, int new)
742 int ret = 0;
743 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
744 unsigned int block_end, block_start;
745 unsigned int bsize = 1 << inode->i_blkbits;
747 if (!page_has_buffers(page))
748 create_empty_buffers(page, bsize, 0);
750 head = page_buffers(page);
751 for (bh = head, block_start = 0; bh != head || !block_start;
752 bh = bh->b_this_page, block_start += bsize) {
753 block_end = block_start + bsize;
755 clear_buffer_new(bh);
758 * Ignore blocks outside of our i/o range -
759 * they may belong to unallocated clusters.
761 if (block_start >= to || block_end <= from) {
762 if (PageUptodate(page))
763 set_buffer_uptodate(bh);
764 continue;
768 * For an allocating write with cluster size >= page
769 * size, we always write the entire page.
771 if (new)
772 set_buffer_new(bh);
774 if (!buffer_mapped(bh)) {
775 map_bh(bh, inode->i_sb, *p_blkno);
776 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
779 if (PageUptodate(page)) {
780 if (!buffer_uptodate(bh))
781 set_buffer_uptodate(bh);
782 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
783 !buffer_new(bh) &&
784 ocfs2_should_read_blk(inode, page, block_start) &&
785 (block_start < from || block_end > to)) {
786 ll_rw_block(READ, 1, &bh);
787 *wait_bh++=bh;
790 *p_blkno = *p_blkno + 1;
794 * If we issued read requests - let them complete.
796 while(wait_bh > wait) {
797 wait_on_buffer(*--wait_bh);
798 if (!buffer_uptodate(*wait_bh))
799 ret = -EIO;
802 if (ret == 0 || !new)
803 return ret;
806 * If we get -EIO above, zero out any newly allocated blocks
807 * to avoid exposing stale data.
809 bh = head;
810 block_start = 0;
811 do {
812 block_end = block_start + bsize;
813 if (block_end <= from)
814 goto next_bh;
815 if (block_start >= to)
816 break;
818 zero_user(page, block_start, bh->b_size);
819 set_buffer_uptodate(bh);
820 mark_buffer_dirty(bh);
822 next_bh:
823 block_start = block_end;
824 bh = bh->b_this_page;
825 } while (bh != head);
827 return ret;
830 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
831 #define OCFS2_MAX_CTXT_PAGES 1
832 #else
833 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
834 #endif
836 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
839 * Describe the state of a single cluster to be written to.
841 struct ocfs2_write_cluster_desc {
842 u32 c_cpos;
843 u32 c_phys;
845 * Give this a unique field because c_phys eventually gets
846 * filled.
848 unsigned c_new;
849 unsigned c_unwritten;
850 unsigned c_needs_zero;
853 struct ocfs2_write_ctxt {
854 /* Logical cluster position / len of write */
855 u32 w_cpos;
856 u32 w_clen;
858 /* First cluster allocated in a nonsparse extend */
859 u32 w_first_new_cpos;
861 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
864 * This is true if page_size > cluster_size.
866 * It triggers a set of special cases during write which might
867 * have to deal with allocating writes to partial pages.
869 unsigned int w_large_pages;
872 * Pages involved in this write.
874 * w_target_page is the page being written to by the user.
876 * w_pages is an array of pages which always contains
877 * w_target_page, and in the case of an allocating write with
878 * page_size < cluster size, it will contain zero'd and mapped
879 * pages adjacent to w_target_page which need to be written
880 * out in so that future reads from that region will get
881 * zero's.
883 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
884 unsigned int w_num_pages;
885 struct page *w_target_page;
888 * ocfs2_write_end() uses this to know what the real range to
889 * write in the target should be.
891 unsigned int w_target_from;
892 unsigned int w_target_to;
895 * We could use journal_current_handle() but this is cleaner,
896 * IMHO -Mark
898 handle_t *w_handle;
900 struct buffer_head *w_di_bh;
902 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
907 int i;
909 for(i = 0; i < num_pages; i++) {
910 if (pages[i]) {
911 unlock_page(pages[i]);
912 mark_page_accessed(pages[i]);
913 page_cache_release(pages[i]);
918 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
920 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
922 brelse(wc->w_di_bh);
923 kfree(wc);
926 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
927 struct ocfs2_super *osb, loff_t pos,
928 unsigned len, struct buffer_head *di_bh)
930 u32 cend;
931 struct ocfs2_write_ctxt *wc;
933 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
934 if (!wc)
935 return -ENOMEM;
937 wc->w_cpos = pos >> osb->s_clustersize_bits;
938 wc->w_first_new_cpos = UINT_MAX;
939 cend = (pos + len - 1) >> osb->s_clustersize_bits;
940 wc->w_clen = cend - wc->w_cpos + 1;
941 get_bh(di_bh);
942 wc->w_di_bh = di_bh;
944 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
945 wc->w_large_pages = 1;
946 else
947 wc->w_large_pages = 0;
949 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
951 *wcp = wc;
953 return 0;
957 * If a page has any new buffers, zero them out here, and mark them uptodate
958 * and dirty so they'll be written out (in order to prevent uninitialised
959 * block data from leaking). And clear the new bit.
961 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
963 unsigned int block_start, block_end;
964 struct buffer_head *head, *bh;
966 BUG_ON(!PageLocked(page));
967 if (!page_has_buffers(page))
968 return;
970 bh = head = page_buffers(page);
971 block_start = 0;
972 do {
973 block_end = block_start + bh->b_size;
975 if (buffer_new(bh)) {
976 if (block_end > from && block_start < to) {
977 if (!PageUptodate(page)) {
978 unsigned start, end;
980 start = max(from, block_start);
981 end = min(to, block_end);
983 zero_user_segment(page, start, end);
984 set_buffer_uptodate(bh);
987 clear_buffer_new(bh);
988 mark_buffer_dirty(bh);
992 block_start = block_end;
993 bh = bh->b_this_page;
994 } while (bh != head);
998 * Only called when we have a failure during allocating write to write
999 * zero's to the newly allocated region.
1001 static void ocfs2_write_failure(struct inode *inode,
1002 struct ocfs2_write_ctxt *wc,
1003 loff_t user_pos, unsigned user_len)
1005 int i;
1006 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1007 to = user_pos + user_len;
1008 struct page *tmppage;
1010 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1012 for(i = 0; i < wc->w_num_pages; i++) {
1013 tmppage = wc->w_pages[i];
1015 if (page_has_buffers(tmppage)) {
1016 if (ocfs2_should_order_data(inode))
1017 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1019 block_commit_write(tmppage, from, to);
1024 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1025 struct ocfs2_write_ctxt *wc,
1026 struct page *page, u32 cpos,
1027 loff_t user_pos, unsigned user_len,
1028 int new)
1030 int ret;
1031 unsigned int map_from = 0, map_to = 0;
1032 unsigned int cluster_start, cluster_end;
1033 unsigned int user_data_from = 0, user_data_to = 0;
1035 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1036 &cluster_start, &cluster_end);
1038 if (page == wc->w_target_page) {
1039 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1040 map_to = map_from + user_len;
1042 if (new)
1043 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1044 cluster_start, cluster_end,
1045 new);
1046 else
1047 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1048 map_from, map_to, new);
1049 if (ret) {
1050 mlog_errno(ret);
1051 goto out;
1054 user_data_from = map_from;
1055 user_data_to = map_to;
1056 if (new) {
1057 map_from = cluster_start;
1058 map_to = cluster_end;
1060 } else {
1062 * If we haven't allocated the new page yet, we
1063 * shouldn't be writing it out without copying user
1064 * data. This is likely a math error from the caller.
1066 BUG_ON(!new);
1068 map_from = cluster_start;
1069 map_to = cluster_end;
1071 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1072 cluster_start, cluster_end, new);
1073 if (ret) {
1074 mlog_errno(ret);
1075 goto out;
1080 * Parts of newly allocated pages need to be zero'd.
1082 * Above, we have also rewritten 'to' and 'from' - as far as
1083 * the rest of the function is concerned, the entire cluster
1084 * range inside of a page needs to be written.
1086 * We can skip this if the page is up to date - it's already
1087 * been zero'd from being read in as a hole.
1089 if (new && !PageUptodate(page))
1090 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1091 cpos, user_data_from, user_data_to);
1093 flush_dcache_page(page);
1095 out:
1096 return ret;
1100 * This function will only grab one clusters worth of pages.
1102 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1103 struct ocfs2_write_ctxt *wc,
1104 u32 cpos, loff_t user_pos,
1105 unsigned user_len, int new,
1106 struct page *mmap_page)
1108 int ret = 0, i;
1109 unsigned long start, target_index, end_index, index;
1110 struct inode *inode = mapping->host;
1111 loff_t last_byte;
1113 target_index = user_pos >> PAGE_CACHE_SHIFT;
1116 * Figure out how many pages we'll be manipulating here. For
1117 * non allocating write, we just change the one
1118 * page. Otherwise, we'll need a whole clusters worth. If we're
1119 * writing past i_size, we only need enough pages to cover the
1120 * last page of the write.
1122 if (new) {
1123 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1124 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1126 * We need the index *past* the last page we could possibly
1127 * touch. This is the page past the end of the write or
1128 * i_size, whichever is greater.
1130 last_byte = max(user_pos + user_len, i_size_read(inode));
1131 BUG_ON(last_byte < 1);
1132 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1133 if ((start + wc->w_num_pages) > end_index)
1134 wc->w_num_pages = end_index - start;
1135 } else {
1136 wc->w_num_pages = 1;
1137 start = target_index;
1140 for(i = 0; i < wc->w_num_pages; i++) {
1141 index = start + i;
1143 if (index == target_index && mmap_page) {
1145 * ocfs2_pagemkwrite() is a little different
1146 * and wants us to directly use the page
1147 * passed in.
1149 lock_page(mmap_page);
1151 if (mmap_page->mapping != mapping) {
1152 unlock_page(mmap_page);
1154 * Sanity check - the locking in
1155 * ocfs2_pagemkwrite() should ensure
1156 * that this code doesn't trigger.
1158 ret = -EINVAL;
1159 mlog_errno(ret);
1160 goto out;
1163 page_cache_get(mmap_page);
1164 wc->w_pages[i] = mmap_page;
1165 } else {
1166 wc->w_pages[i] = find_or_create_page(mapping, index,
1167 GFP_NOFS);
1168 if (!wc->w_pages[i]) {
1169 ret = -ENOMEM;
1170 mlog_errno(ret);
1171 goto out;
1175 if (index == target_index)
1176 wc->w_target_page = wc->w_pages[i];
1178 out:
1179 return ret;
1183 * Prepare a single cluster for write one cluster into the file.
1185 static int ocfs2_write_cluster(struct address_space *mapping,
1186 u32 phys, unsigned int unwritten,
1187 unsigned int should_zero,
1188 struct ocfs2_alloc_context *data_ac,
1189 struct ocfs2_alloc_context *meta_ac,
1190 struct ocfs2_write_ctxt *wc, u32 cpos,
1191 loff_t user_pos, unsigned user_len)
1193 int ret, i, new;
1194 u64 v_blkno, p_blkno;
1195 struct inode *inode = mapping->host;
1196 struct ocfs2_extent_tree et;
1198 new = phys == 0 ? 1 : 0;
1199 if (new) {
1200 u32 tmp_pos;
1203 * This is safe to call with the page locks - it won't take
1204 * any additional semaphores or cluster locks.
1206 tmp_pos = cpos;
1207 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1208 &tmp_pos, 1, 0, wc->w_di_bh,
1209 wc->w_handle, data_ac,
1210 meta_ac, NULL);
1212 * This shouldn't happen because we must have already
1213 * calculated the correct meta data allocation required. The
1214 * internal tree allocation code should know how to increase
1215 * transaction credits itself.
1217 * If need be, we could handle -EAGAIN for a
1218 * RESTART_TRANS here.
1220 mlog_bug_on_msg(ret == -EAGAIN,
1221 "Inode %llu: EAGAIN return during allocation.\n",
1222 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1223 if (ret < 0) {
1224 mlog_errno(ret);
1225 goto out;
1227 } else if (unwritten) {
1228 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1229 wc->w_di_bh);
1230 ret = ocfs2_mark_extent_written(inode, &et,
1231 wc->w_handle, cpos, 1, phys,
1232 meta_ac, &wc->w_dealloc);
1233 if (ret < 0) {
1234 mlog_errno(ret);
1235 goto out;
1239 if (should_zero)
1240 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1241 else
1242 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1245 * The only reason this should fail is due to an inability to
1246 * find the extent added.
1248 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1249 NULL);
1250 if (ret < 0) {
1251 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1252 "at logical block %llu",
1253 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1254 (unsigned long long)v_blkno);
1255 goto out;
1258 BUG_ON(p_blkno == 0);
1260 for(i = 0; i < wc->w_num_pages; i++) {
1261 int tmpret;
1263 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1264 wc->w_pages[i], cpos,
1265 user_pos, user_len,
1266 should_zero);
1267 if (tmpret) {
1268 mlog_errno(tmpret);
1269 if (ret == 0)
1270 ret = tmpret;
1275 * We only have cleanup to do in case of allocating write.
1277 if (ret && new)
1278 ocfs2_write_failure(inode, wc, user_pos, user_len);
1280 out:
1282 return ret;
1285 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1286 struct ocfs2_alloc_context *data_ac,
1287 struct ocfs2_alloc_context *meta_ac,
1288 struct ocfs2_write_ctxt *wc,
1289 loff_t pos, unsigned len)
1291 int ret, i;
1292 loff_t cluster_off;
1293 unsigned int local_len = len;
1294 struct ocfs2_write_cluster_desc *desc;
1295 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1297 for (i = 0; i < wc->w_clen; i++) {
1298 desc = &wc->w_desc[i];
1301 * We have to make sure that the total write passed in
1302 * doesn't extend past a single cluster.
1304 local_len = len;
1305 cluster_off = pos & (osb->s_clustersize - 1);
1306 if ((cluster_off + local_len) > osb->s_clustersize)
1307 local_len = osb->s_clustersize - cluster_off;
1309 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1310 desc->c_unwritten,
1311 desc->c_needs_zero,
1312 data_ac, meta_ac,
1313 wc, desc->c_cpos, pos, local_len);
1314 if (ret) {
1315 mlog_errno(ret);
1316 goto out;
1319 len -= local_len;
1320 pos += local_len;
1323 ret = 0;
1324 out:
1325 return ret;
1329 * ocfs2_write_end() wants to know which parts of the target page it
1330 * should complete the write on. It's easiest to compute them ahead of
1331 * time when a more complete view of the write is available.
1333 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1334 struct ocfs2_write_ctxt *wc,
1335 loff_t pos, unsigned len, int alloc)
1337 struct ocfs2_write_cluster_desc *desc;
1339 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1340 wc->w_target_to = wc->w_target_from + len;
1342 if (alloc == 0)
1343 return;
1346 * Allocating write - we may have different boundaries based
1347 * on page size and cluster size.
1349 * NOTE: We can no longer compute one value from the other as
1350 * the actual write length and user provided length may be
1351 * different.
1354 if (wc->w_large_pages) {
1356 * We only care about the 1st and last cluster within
1357 * our range and whether they should be zero'd or not. Either
1358 * value may be extended out to the start/end of a
1359 * newly allocated cluster.
1361 desc = &wc->w_desc[0];
1362 if (desc->c_needs_zero)
1363 ocfs2_figure_cluster_boundaries(osb,
1364 desc->c_cpos,
1365 &wc->w_target_from,
1366 NULL);
1368 desc = &wc->w_desc[wc->w_clen - 1];
1369 if (desc->c_needs_zero)
1370 ocfs2_figure_cluster_boundaries(osb,
1371 desc->c_cpos,
1372 NULL,
1373 &wc->w_target_to);
1374 } else {
1375 wc->w_target_from = 0;
1376 wc->w_target_to = PAGE_CACHE_SIZE;
1381 * Populate each single-cluster write descriptor in the write context
1382 * with information about the i/o to be done.
1384 * Returns the number of clusters that will have to be allocated, as
1385 * well as a worst case estimate of the number of extent records that
1386 * would have to be created during a write to an unwritten region.
1388 static int ocfs2_populate_write_desc(struct inode *inode,
1389 struct ocfs2_write_ctxt *wc,
1390 unsigned int *clusters_to_alloc,
1391 unsigned int *extents_to_split)
1393 int ret;
1394 struct ocfs2_write_cluster_desc *desc;
1395 unsigned int num_clusters = 0;
1396 unsigned int ext_flags = 0;
1397 u32 phys = 0;
1398 int i;
1400 *clusters_to_alloc = 0;
1401 *extents_to_split = 0;
1403 for (i = 0; i < wc->w_clen; i++) {
1404 desc = &wc->w_desc[i];
1405 desc->c_cpos = wc->w_cpos + i;
1407 if (num_clusters == 0) {
1409 * Need to look up the next extent record.
1411 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1412 &num_clusters, &ext_flags);
1413 if (ret) {
1414 mlog_errno(ret);
1415 goto out;
1418 /* We should already CoW the refcountd extent. */
1419 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1422 * Assume worst case - that we're writing in
1423 * the middle of the extent.
1425 * We can assume that the write proceeds from
1426 * left to right, in which case the extent
1427 * insert code is smart enough to coalesce the
1428 * next splits into the previous records created.
1430 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1431 *extents_to_split = *extents_to_split + 2;
1432 } else if (phys) {
1434 * Only increment phys if it doesn't describe
1435 * a hole.
1437 phys++;
1441 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1442 * file that got extended. w_first_new_cpos tells us
1443 * where the newly allocated clusters are so we can
1444 * zero them.
1446 if (desc->c_cpos >= wc->w_first_new_cpos) {
1447 BUG_ON(phys == 0);
1448 desc->c_needs_zero = 1;
1451 desc->c_phys = phys;
1452 if (phys == 0) {
1453 desc->c_new = 1;
1454 desc->c_needs_zero = 1;
1455 *clusters_to_alloc = *clusters_to_alloc + 1;
1458 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1459 desc->c_unwritten = 1;
1460 desc->c_needs_zero = 1;
1463 num_clusters--;
1466 ret = 0;
1467 out:
1468 return ret;
1471 static int ocfs2_write_begin_inline(struct address_space *mapping,
1472 struct inode *inode,
1473 struct ocfs2_write_ctxt *wc)
1475 int ret;
1476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1477 struct page *page;
1478 handle_t *handle;
1479 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481 page = find_or_create_page(mapping, 0, GFP_NOFS);
1482 if (!page) {
1483 ret = -ENOMEM;
1484 mlog_errno(ret);
1485 goto out;
1488 * If we don't set w_num_pages then this page won't get unlocked
1489 * and freed on cleanup of the write context.
1491 wc->w_pages[0] = wc->w_target_page = page;
1492 wc->w_num_pages = 1;
1494 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1495 if (IS_ERR(handle)) {
1496 ret = PTR_ERR(handle);
1497 mlog_errno(ret);
1498 goto out;
1501 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1502 OCFS2_JOURNAL_ACCESS_WRITE);
1503 if (ret) {
1504 ocfs2_commit_trans(osb, handle);
1506 mlog_errno(ret);
1507 goto out;
1510 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1511 ocfs2_set_inode_data_inline(inode, di);
1513 if (!PageUptodate(page)) {
1514 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1515 if (ret) {
1516 ocfs2_commit_trans(osb, handle);
1518 goto out;
1522 wc->w_handle = handle;
1523 out:
1524 return ret;
1527 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1529 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1531 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1532 return 1;
1533 return 0;
1536 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1537 struct inode *inode, loff_t pos,
1538 unsigned len, struct page *mmap_page,
1539 struct ocfs2_write_ctxt *wc)
1541 int ret, written = 0;
1542 loff_t end = pos + len;
1543 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1544 struct ocfs2_dinode *di = NULL;
1546 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1547 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1548 oi->ip_dyn_features);
1551 * Handle inodes which already have inline data 1st.
1553 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1554 if (mmap_page == NULL &&
1555 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1556 goto do_inline_write;
1559 * The write won't fit - we have to give this inode an
1560 * inline extent list now.
1562 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1563 if (ret)
1564 mlog_errno(ret);
1565 goto out;
1569 * Check whether the inode can accept inline data.
1571 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1572 return 0;
1575 * Check whether the write can fit.
1577 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1578 if (mmap_page ||
1579 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1580 return 0;
1582 do_inline_write:
1583 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1584 if (ret) {
1585 mlog_errno(ret);
1586 goto out;
1590 * This signals to the caller that the data can be written
1591 * inline.
1593 written = 1;
1594 out:
1595 return written ? written : ret;
1599 * This function only does anything for file systems which can't
1600 * handle sparse files.
1602 * What we want to do here is fill in any hole between the current end
1603 * of allocation and the end of our write. That way the rest of the
1604 * write path can treat it as an non-allocating write, which has no
1605 * special case code for sparse/nonsparse files.
1607 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1608 unsigned len,
1609 struct ocfs2_write_ctxt *wc)
1611 int ret;
1612 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1613 loff_t newsize = pos + len;
1615 if (ocfs2_sparse_alloc(osb))
1616 return 0;
1618 if (newsize <= i_size_read(inode))
1619 return 0;
1621 ret = ocfs2_extend_no_holes(inode, newsize, pos);
1622 if (ret)
1623 mlog_errno(ret);
1625 wc->w_first_new_cpos =
1626 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1628 return ret;
1631 int ocfs2_write_begin_nolock(struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned flags,
1633 struct page **pagep, void **fsdata,
1634 struct buffer_head *di_bh, struct page *mmap_page)
1636 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1637 unsigned int clusters_to_alloc, extents_to_split;
1638 struct ocfs2_write_ctxt *wc;
1639 struct inode *inode = mapping->host;
1640 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1641 struct ocfs2_dinode *di;
1642 struct ocfs2_alloc_context *data_ac = NULL;
1643 struct ocfs2_alloc_context *meta_ac = NULL;
1644 handle_t *handle;
1645 struct ocfs2_extent_tree et;
1647 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1648 if (ret) {
1649 mlog_errno(ret);
1650 return ret;
1653 if (ocfs2_supports_inline_data(osb)) {
1654 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1655 mmap_page, wc);
1656 if (ret == 1) {
1657 ret = 0;
1658 goto success;
1660 if (ret < 0) {
1661 mlog_errno(ret);
1662 goto out;
1666 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1667 if (ret) {
1668 mlog_errno(ret);
1669 goto out;
1672 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1673 if (ret < 0) {
1674 mlog_errno(ret);
1675 goto out;
1676 } else if (ret == 1) {
1677 ret = ocfs2_refcount_cow(inode, di_bh,
1678 wc->w_cpos, wc->w_clen, UINT_MAX);
1679 if (ret) {
1680 mlog_errno(ret);
1681 goto out;
1685 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1686 &extents_to_split);
1687 if (ret) {
1688 mlog_errno(ret);
1689 goto out;
1692 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1695 * We set w_target_from, w_target_to here so that
1696 * ocfs2_write_end() knows which range in the target page to
1697 * write out. An allocation requires that we write the entire
1698 * cluster range.
1700 if (clusters_to_alloc || extents_to_split) {
1702 * XXX: We are stretching the limits of
1703 * ocfs2_lock_allocators(). It greatly over-estimates
1704 * the work to be done.
1706 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1707 " clusters_to_add = %u, extents_to_split = %u\n",
1708 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1709 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1710 clusters_to_alloc, extents_to_split);
1712 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1713 wc->w_di_bh);
1714 ret = ocfs2_lock_allocators(inode, &et,
1715 clusters_to_alloc, extents_to_split,
1716 &data_ac, &meta_ac);
1717 if (ret) {
1718 mlog_errno(ret);
1719 goto out;
1722 credits = ocfs2_calc_extend_credits(inode->i_sb,
1723 &di->id2.i_list,
1724 clusters_to_alloc);
1729 * We have to zero sparse allocated clusters, unwritten extent clusters,
1730 * and non-sparse clusters we just extended. For non-sparse writes,
1731 * we know zeros will only be needed in the first and/or last cluster.
1733 if (clusters_to_alloc || extents_to_split ||
1734 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1735 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1736 cluster_of_pages = 1;
1737 else
1738 cluster_of_pages = 0;
1740 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1742 handle = ocfs2_start_trans(osb, credits);
1743 if (IS_ERR(handle)) {
1744 ret = PTR_ERR(handle);
1745 mlog_errno(ret);
1746 goto out;
1749 wc->w_handle = handle;
1751 if (clusters_to_alloc) {
1752 ret = dquot_alloc_space_nodirty(inode,
1753 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1754 if (ret)
1755 goto out_commit;
1758 * We don't want this to fail in ocfs2_write_end(), so do it
1759 * here.
1761 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1762 OCFS2_JOURNAL_ACCESS_WRITE);
1763 if (ret) {
1764 mlog_errno(ret);
1765 goto out_quota;
1769 * Fill our page array first. That way we've grabbed enough so
1770 * that we can zero and flush if we error after adding the
1771 * extent.
1773 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1774 cluster_of_pages, mmap_page);
1775 if (ret) {
1776 mlog_errno(ret);
1777 goto out_quota;
1780 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1781 len);
1782 if (ret) {
1783 mlog_errno(ret);
1784 goto out_quota;
1787 if (data_ac)
1788 ocfs2_free_alloc_context(data_ac);
1789 if (meta_ac)
1790 ocfs2_free_alloc_context(meta_ac);
1792 success:
1793 *pagep = wc->w_target_page;
1794 *fsdata = wc;
1795 return 0;
1796 out_quota:
1797 if (clusters_to_alloc)
1798 dquot_free_space(inode,
1799 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1800 out_commit:
1801 ocfs2_commit_trans(osb, handle);
1803 out:
1804 ocfs2_free_write_ctxt(wc);
1806 if (data_ac)
1807 ocfs2_free_alloc_context(data_ac);
1808 if (meta_ac)
1809 ocfs2_free_alloc_context(meta_ac);
1810 return ret;
1813 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1814 loff_t pos, unsigned len, unsigned flags,
1815 struct page **pagep, void **fsdata)
1817 int ret;
1818 struct buffer_head *di_bh = NULL;
1819 struct inode *inode = mapping->host;
1821 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1822 if (ret) {
1823 mlog_errno(ret);
1824 return ret;
1828 * Take alloc sem here to prevent concurrent lookups. That way
1829 * the mapping, zeroing and tree manipulation within
1830 * ocfs2_write() will be safe against ->readpage(). This
1831 * should also serve to lock out allocation from a shared
1832 * writeable region.
1834 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1836 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1837 fsdata, di_bh, NULL);
1838 if (ret) {
1839 mlog_errno(ret);
1840 goto out_fail;
1843 brelse(di_bh);
1845 return 0;
1847 out_fail:
1848 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1850 brelse(di_bh);
1851 ocfs2_inode_unlock(inode, 1);
1853 return ret;
1856 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1857 unsigned len, unsigned *copied,
1858 struct ocfs2_dinode *di,
1859 struct ocfs2_write_ctxt *wc)
1861 void *kaddr;
1863 if (unlikely(*copied < len)) {
1864 if (!PageUptodate(wc->w_target_page)) {
1865 *copied = 0;
1866 return;
1870 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1871 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1872 kunmap_atomic(kaddr, KM_USER0);
1874 mlog(0, "Data written to inode at offset %llu. "
1875 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1876 (unsigned long long)pos, *copied,
1877 le16_to_cpu(di->id2.i_data.id_count),
1878 le16_to_cpu(di->i_dyn_features));
1881 int ocfs2_write_end_nolock(struct address_space *mapping,
1882 loff_t pos, unsigned len, unsigned copied,
1883 struct page *page, void *fsdata)
1885 int i;
1886 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1887 struct inode *inode = mapping->host;
1888 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1889 struct ocfs2_write_ctxt *wc = fsdata;
1890 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1891 handle_t *handle = wc->w_handle;
1892 struct page *tmppage;
1894 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1895 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1896 goto out_write_size;
1899 if (unlikely(copied < len)) {
1900 if (!PageUptodate(wc->w_target_page))
1901 copied = 0;
1903 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1904 start+len);
1906 flush_dcache_page(wc->w_target_page);
1908 for(i = 0; i < wc->w_num_pages; i++) {
1909 tmppage = wc->w_pages[i];
1911 if (tmppage == wc->w_target_page) {
1912 from = wc->w_target_from;
1913 to = wc->w_target_to;
1915 BUG_ON(from > PAGE_CACHE_SIZE ||
1916 to > PAGE_CACHE_SIZE ||
1917 to < from);
1918 } else {
1920 * Pages adjacent to the target (if any) imply
1921 * a hole-filling write in which case we want
1922 * to flush their entire range.
1924 from = 0;
1925 to = PAGE_CACHE_SIZE;
1928 if (page_has_buffers(tmppage)) {
1929 if (ocfs2_should_order_data(inode))
1930 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1931 block_commit_write(tmppage, from, to);
1935 out_write_size:
1936 pos += copied;
1937 if (pos > inode->i_size) {
1938 i_size_write(inode, pos);
1939 mark_inode_dirty(inode);
1941 inode->i_blocks = ocfs2_inode_sector_count(inode);
1942 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1943 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1944 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1945 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1946 ocfs2_journal_dirty(handle, wc->w_di_bh);
1948 ocfs2_commit_trans(osb, handle);
1950 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1952 ocfs2_free_write_ctxt(wc);
1954 return copied;
1957 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1958 loff_t pos, unsigned len, unsigned copied,
1959 struct page *page, void *fsdata)
1961 int ret;
1962 struct inode *inode = mapping->host;
1964 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1966 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1967 ocfs2_inode_unlock(inode, 1);
1969 return ret;
1972 const struct address_space_operations ocfs2_aops = {
1973 .readpage = ocfs2_readpage,
1974 .readpages = ocfs2_readpages,
1975 .writepage = ocfs2_writepage,
1976 .write_begin = ocfs2_write_begin,
1977 .write_end = ocfs2_write_end,
1978 .bmap = ocfs2_bmap,
1979 .sync_page = block_sync_page,
1980 .direct_IO = ocfs2_direct_IO,
1981 .invalidatepage = ocfs2_invalidatepage,
1982 .releasepage = ocfs2_releasepage,
1983 .migratepage = buffer_migrate_page,
1984 .is_partially_uptodate = block_is_partially_uptodate,
1985 .error_remove_page = generic_error_remove_page,