2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
39 * - reservation for superuser
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This make sure that
79 * that the we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list repreasented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) withing the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * stripe value (sbi->s_stripe)
136 * The regular allocator(using the buddy cache) supports few tunables.
138 * /sys/fs/ext4/<partition>/mb_min_to_scan
139 * /sys/fs/ext4/<partition>/mb_max_to_scan
140 * /sys/fs/ext4/<partition>/mb_order2_req
142 * The regular allocator uses buddy scan only if the request len is power of
143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144 * value of s_mb_order2_reqs can be tuned via
145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
146 * stripe size (sbi->s_stripe), we try to search for contiguous block in
147 * stripe size. This should result in better allocation on RAID setups. If
148 * not, we search in the specific group using bitmap for best extents. The
149 * tunable min_to_scan and max_to_scan control the behaviour here.
150 * min_to_scan indicate how long the mballoc __must__ look for a best
151 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 * best extent in the found extents. Searching for the blocks starts with
153 * the group specified as the goal value in allocation context via
154 * ac_g_ex. Each group is first checked based on the criteria whether it
155 * can used for allocation. ext4_mb_good_group explains how the groups are
158 * Both the prealloc space are getting populated as above. So for the first
159 * request we will hit the buddy cache which will result in this prealloc
160 * space getting filled. The prealloc space is then later used for the
161 * subsequent request.
165 * mballoc operates on the following data:
167 * - in-core buddy (actually includes buddy and bitmap)
168 * - preallocation descriptors (PAs)
170 * there are two types of preallocations:
172 * assiged to specific inode and can be used for this inode only.
173 * it describes part of inode's space preallocated to specific
174 * physical blocks. any block from that preallocated can be used
175 * independent. the descriptor just tracks number of blocks left
176 * unused. so, before taking some block from descriptor, one must
177 * make sure corresponded logical block isn't allocated yet. this
178 * also means that freeing any block within descriptor's range
179 * must discard all preallocated blocks.
181 * assigned to specific locality group which does not translate to
182 * permanent set of inodes: inode can join and leave group. space
183 * from this type of preallocation can be used for any inode. thus
184 * it's consumed from the beginning to the end.
186 * relation between them can be expressed as:
187 * in-core buddy = on-disk bitmap + preallocation descriptors
189 * this mean blocks mballoc considers used are:
190 * - allocated blocks (persistent)
191 * - preallocated blocks (non-persistent)
193 * consistency in mballoc world means that at any time a block is either
194 * free or used in ALL structures. notice: "any time" should not be read
195 * literally -- time is discrete and delimited by locks.
197 * to keep it simple, we don't use block numbers, instead we count number of
198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200 * all operations can be expressed as:
201 * - init buddy: buddy = on-disk + PAs
202 * - new PA: buddy += N; PA = N
203 * - use inode PA: on-disk += N; PA -= N
204 * - discard inode PA buddy -= on-disk - PA; PA = 0
205 * - use locality group PA on-disk += N; PA -= N
206 * - discard locality group PA buddy -= PA; PA = 0
207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208 * is used in real operation because we can't know actual used
209 * bits from PA, only from on-disk bitmap
211 * if we follow this strict logic, then all operations above should be atomic.
212 * given some of them can block, we'd have to use something like semaphores
213 * killing performance on high-end SMP hardware. let's try to relax it using
214 * the following knowledge:
215 * 1) if buddy is referenced, it's already initialized
216 * 2) while block is used in buddy and the buddy is referenced,
217 * nobody can re-allocate that block
218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219 * bit set and PA claims same block, it's OK. IOW, one can set bit in
220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
223 * so, now we're building a concurrency table:
226 * blocks for PA are allocated in the buddy, buddy must be referenced
227 * until PA is linked to allocation group to avoid concurrent buddy init
229 * we need to make sure that either on-disk bitmap or PA has uptodate data
230 * given (3) we care that PA-=N operation doesn't interfere with init
232 * the simplest way would be to have buddy initialized by the discard
233 * - use locality group PA
234 * again PA-=N must be serialized with init
235 * - discard locality group PA
236 * the simplest way would be to have buddy initialized by the discard
239 * i_data_sem serializes them
241 * discard process must wait until PA isn't used by another process
242 * - use locality group PA
243 * some mutex should serialize them
244 * - discard locality group PA
245 * discard process must wait until PA isn't used by another process
248 * i_data_sem or another mutex should serializes them
250 * discard process must wait until PA isn't used by another process
251 * - use locality group PA
252 * nothing wrong here -- they're different PAs covering different blocks
253 * - discard locality group PA
254 * discard process must wait until PA isn't used by another process
256 * now we're ready to make few consequences:
257 * - PA is referenced and while it is no discard is possible
258 * - PA is referenced until block isn't marked in on-disk bitmap
259 * - PA changes only after on-disk bitmap
260 * - discard must not compete with init. either init is done before
261 * any discard or they're serialized somehow
262 * - buddy init as sum of on-disk bitmap and PAs is done atomically
264 * a special case when we've used PA to emptiness. no need to modify buddy
265 * in this case, but we should care about concurrent init
270 * Logic in few words:
275 * mark bits in on-disk bitmap
278 * - use preallocation:
279 * find proper PA (per-inode or group)
281 * mark bits in on-disk bitmap
287 * mark bits in on-disk bitmap
290 * - discard preallocations in group:
292 * move them onto local list
293 * load on-disk bitmap
295 * remove PA from object (inode or locality group)
296 * mark free blocks in-core
298 * - discard inode's preallocations:
305 * - bitlock on a group (group)
306 * - object (inode/locality) (object)
317 * - release consumed pa:
322 * - generate in-core bitmap:
326 * - discard all for given object (inode, locality group):
331 * - discard all for given group:
338 static struct kmem_cache
*ext4_pspace_cachep
;
339 static struct kmem_cache
*ext4_ac_cachep
;
340 static struct kmem_cache
*ext4_free_ext_cachep
;
341 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
343 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
345 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
347 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
349 #if BITS_PER_LONG == 64
350 *bit
+= ((unsigned long) addr
& 7UL) << 3;
351 addr
= (void *) ((unsigned long) addr
& ~7UL);
352 #elif BITS_PER_LONG == 32
353 *bit
+= ((unsigned long) addr
& 3UL) << 3;
354 addr
= (void *) ((unsigned long) addr
& ~3UL);
356 #error "how many bits you are?!"
361 static inline int mb_test_bit(int bit
, void *addr
)
364 * ext4_test_bit on architecture like powerpc
365 * needs unsigned long aligned address
367 addr
= mb_correct_addr_and_bit(&bit
, addr
);
368 return ext4_test_bit(bit
, addr
);
371 static inline void mb_set_bit(int bit
, void *addr
)
373 addr
= mb_correct_addr_and_bit(&bit
, addr
);
374 ext4_set_bit(bit
, addr
);
377 static inline void mb_clear_bit(int bit
, void *addr
)
379 addr
= mb_correct_addr_and_bit(&bit
, addr
);
380 ext4_clear_bit(bit
, addr
);
383 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
385 int fix
= 0, ret
, tmpmax
;
386 addr
= mb_correct_addr_and_bit(&fix
, addr
);
390 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
396 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
398 int fix
= 0, ret
, tmpmax
;
399 addr
= mb_correct_addr_and_bit(&fix
, addr
);
403 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
409 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
413 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
416 if (order
> e4b
->bd_blkbits
+ 1) {
421 /* at order 0 we see each particular block */
422 *max
= 1 << (e4b
->bd_blkbits
+ 3);
424 return EXT4_MB_BITMAP(e4b
);
426 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
427 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
433 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
434 int first
, int count
)
437 struct super_block
*sb
= e4b
->bd_sb
;
439 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
441 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
442 for (i
= 0; i
< count
; i
++) {
443 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
444 ext4_fsblk_t blocknr
;
446 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
447 blocknr
+= first
+ i
;
448 ext4_grp_locked_error(sb
, e4b
->bd_group
,
449 __func__
, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode
? inode
->i_ino
: 0, blocknr
,
452 first
+ i
, e4b
->bd_group
);
454 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
458 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
462 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
464 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
465 for (i
= 0; i
< count
; i
++) {
466 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
467 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
471 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
473 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
474 unsigned char *b1
, *b2
;
476 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
477 b2
= (unsigned char *) bitmap
;
478 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
479 if (b1
[i
] != b2
[i
]) {
480 printk(KERN_ERR
"corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
491 static inline void mb_free_blocks_double(struct inode
*inode
,
492 struct ext4_buddy
*e4b
, int first
, int count
)
496 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
497 int first
, int count
)
501 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
507 #ifdef AGGRESSIVE_CHECK
509 #define MB_CHECK_ASSERT(assert) \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
519 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
520 const char *function
, int line
)
522 struct super_block
*sb
= e4b
->bd_sb
;
523 int order
= e4b
->bd_blkbits
+ 1;
530 struct ext4_group_info
*grp
;
533 struct list_head
*cur
;
538 static int mb_check_counter
;
539 if (mb_check_counter
++ % 100 != 0)
544 buddy
= mb_find_buddy(e4b
, order
, &max
);
545 MB_CHECK_ASSERT(buddy
);
546 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
547 MB_CHECK_ASSERT(buddy2
);
548 MB_CHECK_ASSERT(buddy
!= buddy2
);
549 MB_CHECK_ASSERT(max
* 2 == max2
);
552 for (i
= 0; i
< max
; i
++) {
554 if (mb_test_bit(i
, buddy
)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i
<< 1, buddy2
)) {
558 mb_test_bit((i
<<1)+1, buddy2
));
559 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
561 mb_test_bit(i
<< 1, buddy2
));
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
568 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
570 for (j
= 0; j
< (1 << order
); j
++) {
571 k
= (i
* (1 << order
)) + j
;
573 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
577 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
582 buddy
= mb_find_buddy(e4b
, 0, &max
);
583 for (i
= 0; i
< max
; i
++) {
584 if (!mb_test_bit(i
, buddy
)) {
585 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
593 /* check used bits only */
594 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
595 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
597 MB_CHECK_ASSERT(k
< max2
);
598 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
602 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
604 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
605 buddy
= mb_find_buddy(e4b
, 0, &max
);
606 list_for_each(cur
, &grp
->bb_prealloc_list
) {
607 ext4_group_t groupnr
;
608 struct ext4_prealloc_space
*pa
;
609 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
610 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
611 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
612 for (i
= 0; i
< pa
->pa_len
; i
++)
613 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
621 #define mb_check_buddy(e4b)
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
626 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
627 struct ext4_group_info
*grp
)
629 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
633 unsigned short border
;
635 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
637 border
= 2 << sb
->s_blocksize_bits
;
640 /* find how many blocks can be covered since this position */
641 max
= ffs(first
| border
) - 1;
643 /* find how many blocks of power 2 we need to mark */
650 /* mark multiblock chunks only */
651 grp
->bb_counters
[min
]++;
653 mb_clear_bit(first
>> min
,
654 buddy
+ sbi
->s_mb_offsets
[min
]);
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block
*sb
,
663 void *buddy
, void *bitmap
, ext4_group_t group
)
665 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
666 ext4_grpblk_t max
= EXT4_BLOCKS_PER_GROUP(sb
);
671 unsigned fragments
= 0;
672 unsigned long long period
= get_cycles();
674 /* initialize buddy from bitmap which is aggregation
675 * of on-disk bitmap and preallocations */
676 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
677 grp
->bb_first_free
= i
;
681 i
= mb_find_next_bit(bitmap
, max
, i
);
685 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
687 grp
->bb_counters
[0]++;
689 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
691 grp
->bb_fragments
= fragments
;
693 if (free
!= grp
->bb_free
) {
694 ext4_grp_locked_error(sb
, group
, __func__
,
695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 group
, free
, grp
->bb_free
);
698 * If we intent to continue, we consider group descritor
699 * corrupt and update bb_free using bitmap value
704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
706 period
= get_cycles() - period
;
707 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
708 EXT4_SB(sb
)->s_mb_buddies_generated
++;
709 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
710 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
713 /* The buddy information is attached the buddy cache inode
714 * for convenience. The information regarding each group
715 * is loaded via ext4_mb_load_buddy. The information involve
716 * block bitmap and buddy information. The information are
717 * stored in the inode as
720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
723 * one block each for bitmap and buddy information.
724 * So for each group we take up 2 blocks. A page can
725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
726 * So it can have information regarding groups_per_page which
727 * is blocks_per_page/2
730 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
732 ext4_group_t ngroups
;
738 ext4_group_t first_group
;
740 struct super_block
*sb
;
741 struct buffer_head
*bhs
;
742 struct buffer_head
**bh
;
747 mb_debug(1, "init page %lu\n", page
->index
);
749 inode
= page
->mapping
->host
;
751 ngroups
= ext4_get_groups_count(sb
);
752 blocksize
= 1 << inode
->i_blkbits
;
753 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
755 groups_per_page
= blocks_per_page
>> 1;
756 if (groups_per_page
== 0)
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page
> 1) {
762 i
= sizeof(struct buffer_head
*) * groups_per_page
;
763 bh
= kzalloc(i
, GFP_NOFS
);
769 first_group
= page
->index
* blocks_per_page
/ 2;
771 /* read all groups the page covers into the cache */
772 for (i
= 0; i
< groups_per_page
; i
++) {
773 struct ext4_group_desc
*desc
;
775 if (first_group
+ i
>= ngroups
)
779 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
784 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
788 if (bitmap_uptodate(bh
[i
]))
792 if (bitmap_uptodate(bh
[i
])) {
793 unlock_buffer(bh
[i
]);
796 ext4_lock_group(sb
, first_group
+ i
);
797 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
798 ext4_init_block_bitmap(sb
, bh
[i
],
799 first_group
+ i
, desc
);
800 set_bitmap_uptodate(bh
[i
]);
801 set_buffer_uptodate(bh
[i
]);
802 ext4_unlock_group(sb
, first_group
+ i
);
803 unlock_buffer(bh
[i
]);
806 ext4_unlock_group(sb
, first_group
+ i
);
807 if (buffer_uptodate(bh
[i
])) {
809 * if not uninit if bh is uptodate,
810 * bitmap is also uptodate
812 set_bitmap_uptodate(bh
[i
]);
813 unlock_buffer(bh
[i
]);
818 * submit the buffer_head for read. We can
819 * safely mark the bitmap as uptodate now.
820 * We do it here so the bitmap uptodate bit
821 * get set with buffer lock held.
823 set_bitmap_uptodate(bh
[i
]);
824 bh
[i
]->b_end_io
= end_buffer_read_sync
;
825 submit_bh(READ
, bh
[i
]);
826 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
829 /* wait for I/O completion */
830 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
831 wait_on_buffer(bh
[i
]);
834 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
835 if (!buffer_uptodate(bh
[i
]))
839 first_block
= page
->index
* blocks_per_page
;
841 memset(page_address(page
), 0xff, PAGE_CACHE_SIZE
);
842 for (i
= 0; i
< blocks_per_page
; i
++) {
844 struct ext4_group_info
*grinfo
;
846 group
= (first_block
+ i
) >> 1;
847 if (group
>= ngroups
)
851 * data carry information regarding this
852 * particular group in the format specified
856 data
= page_address(page
) + (i
* blocksize
);
857 bitmap
= bh
[group
- first_group
]->b_data
;
860 * We place the buddy block and bitmap block
863 if ((first_block
+ i
) & 1) {
864 /* this is block of buddy */
865 BUG_ON(incore
== NULL
);
866 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 group
, page
->index
, i
* blocksize
);
868 grinfo
= ext4_get_group_info(sb
, group
);
869 grinfo
->bb_fragments
= 0;
870 memset(grinfo
->bb_counters
, 0,
871 sizeof(*grinfo
->bb_counters
) *
872 (sb
->s_blocksize_bits
+2));
874 * incore got set to the group block bitmap below
876 ext4_lock_group(sb
, group
);
877 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
878 ext4_unlock_group(sb
, group
);
881 /* this is block of bitmap */
882 BUG_ON(incore
!= NULL
);
883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 group
, page
->index
, i
* blocksize
);
886 /* see comments in ext4_mb_put_pa() */
887 ext4_lock_group(sb
, group
);
888 memcpy(data
, bitmap
, blocksize
);
890 /* mark all preallocated blks used in in-core bitmap */
891 ext4_mb_generate_from_pa(sb
, data
, group
);
892 ext4_mb_generate_from_freelist(sb
, data
, group
);
893 ext4_unlock_group(sb
, group
);
895 /* set incore so that the buddy information can be
896 * generated using this
901 SetPageUptodate(page
);
905 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
920 int block
, pnum
, poff
;
921 int num_grp_locked
= 0;
922 struct ext4_group_info
*this_grp
;
923 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
924 struct inode
*inode
= sbi
->s_buddy_cache
;
925 struct page
*page
= NULL
, *bitmap_page
= NULL
;
927 mb_debug(1, "init group %u\n", group
);
928 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
929 this_grp
= ext4_get_group_info(sb
, group
);
931 * This ensures that we don't reinit the buddy cache
932 * page which map to the group from which we are already
933 * allocating. If we are looking at the buddy cache we would
934 * have taken a reference using ext4_mb_load_buddy and that
935 * would have taken the alloc_sem lock.
937 num_grp_locked
= ext4_mb_get_buddy_cache_lock(sb
, group
);
938 if (!EXT4_MB_GRP_NEED_INIT(this_grp
)) {
940 * somebody initialized the group
941 * return without doing anything
947 * the buddy cache inode stores the block bitmap
948 * and buddy information in consecutive blocks.
949 * So for each group we need two blocks.
952 pnum
= block
/ blocks_per_page
;
953 poff
= block
% blocks_per_page
;
954 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
956 BUG_ON(page
->mapping
!= inode
->i_mapping
);
957 ret
= ext4_mb_init_cache(page
, NULL
);
964 if (page
== NULL
|| !PageUptodate(page
)) {
968 mark_page_accessed(page
);
970 bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
972 /* init buddy cache */
974 pnum
= block
/ blocks_per_page
;
975 poff
= block
% blocks_per_page
;
976 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
977 if (page
== bitmap_page
) {
979 * If both the bitmap and buddy are in
980 * the same page we don't need to force
985 BUG_ON(page
->mapping
!= inode
->i_mapping
);
986 ret
= ext4_mb_init_cache(page
, bitmap
);
993 if (page
== NULL
|| !PageUptodate(page
)) {
997 mark_page_accessed(page
);
999 ext4_mb_put_buddy_cache_lock(sb
, group
, num_grp_locked
);
1001 page_cache_release(bitmap_page
);
1003 page_cache_release(page
);
1007 static noinline_for_stack
int
1008 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1009 struct ext4_buddy
*e4b
)
1011 int blocks_per_page
;
1017 struct ext4_group_info
*grp
;
1018 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1019 struct inode
*inode
= sbi
->s_buddy_cache
;
1021 mb_debug(1, "load group %u\n", group
);
1023 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1024 grp
= ext4_get_group_info(sb
, group
);
1026 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1027 e4b
->bd_info
= ext4_get_group_info(sb
, group
);
1029 e4b
->bd_group
= group
;
1030 e4b
->bd_buddy_page
= NULL
;
1031 e4b
->bd_bitmap_page
= NULL
;
1032 e4b
->alloc_semp
= &grp
->alloc_sem
;
1034 /* Take the read lock on the group alloc
1035 * sem. This would make sure a parallel
1036 * ext4_mb_init_group happening on other
1037 * groups mapped by the page is blocked
1038 * till we are done with allocation
1041 down_read(e4b
->alloc_semp
);
1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1044 /* we need to check for group need init flag
1045 * with alloc_semp held so that we can be sure
1046 * that new blocks didn't get added to the group
1047 * when we are loading the buddy cache
1049 up_read(e4b
->alloc_semp
);
1051 * we need full data about the group
1052 * to make a good selection
1054 ret
= ext4_mb_init_group(sb
, group
);
1057 goto repeat_load_buddy
;
1061 * the buddy cache inode stores the block bitmap
1062 * and buddy information in consecutive blocks.
1063 * So for each group we need two blocks.
1066 pnum
= block
/ blocks_per_page
;
1067 poff
= block
% blocks_per_page
;
1069 /* we could use find_or_create_page(), but it locks page
1070 * what we'd like to avoid in fast path ... */
1071 page
= find_get_page(inode
->i_mapping
, pnum
);
1072 if (page
== NULL
|| !PageUptodate(page
)) {
1075 * drop the page reference and try
1076 * to get the page with lock. If we
1077 * are not uptodate that implies
1078 * somebody just created the page but
1079 * is yet to initialize the same. So
1080 * wait for it to initialize.
1082 page_cache_release(page
);
1083 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1085 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1086 if (!PageUptodate(page
)) {
1087 ret
= ext4_mb_init_cache(page
, NULL
);
1092 mb_cmp_bitmaps(e4b
, page_address(page
) +
1093 (poff
* sb
->s_blocksize
));
1098 if (page
== NULL
|| !PageUptodate(page
)) {
1102 e4b
->bd_bitmap_page
= page
;
1103 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1104 mark_page_accessed(page
);
1107 pnum
= block
/ blocks_per_page
;
1108 poff
= block
% blocks_per_page
;
1110 page
= find_get_page(inode
->i_mapping
, pnum
);
1111 if (page
== NULL
|| !PageUptodate(page
)) {
1113 page_cache_release(page
);
1114 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1116 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1117 if (!PageUptodate(page
)) {
1118 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1127 if (page
== NULL
|| !PageUptodate(page
)) {
1131 e4b
->bd_buddy_page
= page
;
1132 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1133 mark_page_accessed(page
);
1135 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1136 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1141 if (e4b
->bd_bitmap_page
)
1142 page_cache_release(e4b
->bd_bitmap_page
);
1143 if (e4b
->bd_buddy_page
)
1144 page_cache_release(e4b
->bd_buddy_page
);
1145 e4b
->bd_buddy
= NULL
;
1146 e4b
->bd_bitmap
= NULL
;
1148 /* Done with the buddy cache */
1149 up_read(e4b
->alloc_semp
);
1153 static void ext4_mb_release_desc(struct ext4_buddy
*e4b
)
1155 if (e4b
->bd_bitmap_page
)
1156 page_cache_release(e4b
->bd_bitmap_page
);
1157 if (e4b
->bd_buddy_page
)
1158 page_cache_release(e4b
->bd_buddy_page
);
1159 /* Done with the buddy cache */
1160 if (e4b
->alloc_semp
)
1161 up_read(e4b
->alloc_semp
);
1165 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1170 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1171 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1173 bb
= EXT4_MB_BUDDY(e4b
);
1174 while (order
<= e4b
->bd_blkbits
+ 1) {
1176 if (!mb_test_bit(block
, bb
)) {
1177 /* this block is part of buddy of order 'order' */
1180 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1186 static void mb_clear_bits(void *bm
, int cur
, int len
)
1192 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1193 /* fast path: clear whole word at once */
1194 addr
= bm
+ (cur
>> 3);
1199 mb_clear_bit(cur
, bm
);
1204 static void mb_set_bits(void *bm
, int cur
, int len
)
1210 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1211 /* fast path: set whole word at once */
1212 addr
= bm
+ (cur
>> 3);
1217 mb_set_bit(cur
, bm
);
1222 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1223 int first
, int count
)
1230 struct super_block
*sb
= e4b
->bd_sb
;
1232 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1233 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1234 mb_check_buddy(e4b
);
1235 mb_free_blocks_double(inode
, e4b
, first
, count
);
1237 e4b
->bd_info
->bb_free
+= count
;
1238 if (first
< e4b
->bd_info
->bb_first_free
)
1239 e4b
->bd_info
->bb_first_free
= first
;
1241 /* let's maintain fragments counter */
1243 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1244 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1245 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1247 e4b
->bd_info
->bb_fragments
--;
1248 else if (!block
&& !max
)
1249 e4b
->bd_info
->bb_fragments
++;
1251 /* let's maintain buddy itself */
1252 while (count
-- > 0) {
1256 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1257 ext4_fsblk_t blocknr
;
1259 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1261 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1262 __func__
, "double-free of inode"
1263 " %lu's block %llu(bit %u in group %u)",
1264 inode
? inode
->i_ino
: 0, blocknr
, block
,
1267 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1268 e4b
->bd_info
->bb_counters
[order
]++;
1270 /* start of the buddy */
1271 buddy
= mb_find_buddy(e4b
, order
, &max
);
1275 if (mb_test_bit(block
, buddy
) ||
1276 mb_test_bit(block
+ 1, buddy
))
1279 /* both the buddies are free, try to coalesce them */
1280 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1286 /* for special purposes, we don't set
1287 * free bits in bitmap */
1288 mb_set_bit(block
, buddy
);
1289 mb_set_bit(block
+ 1, buddy
);
1291 e4b
->bd_info
->bb_counters
[order
]--;
1292 e4b
->bd_info
->bb_counters
[order
]--;
1296 e4b
->bd_info
->bb_counters
[order
]++;
1298 mb_clear_bit(block
, buddy2
);
1302 mb_check_buddy(e4b
);
1305 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1306 int needed
, struct ext4_free_extent
*ex
)
1313 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1316 buddy
= mb_find_buddy(e4b
, order
, &max
);
1317 BUG_ON(buddy
== NULL
);
1318 BUG_ON(block
>= max
);
1319 if (mb_test_bit(block
, buddy
)) {
1326 /* FIXME dorp order completely ? */
1327 if (likely(order
== 0)) {
1328 /* find actual order */
1329 order
= mb_find_order_for_block(e4b
, block
);
1330 block
= block
>> order
;
1333 ex
->fe_len
= 1 << order
;
1334 ex
->fe_start
= block
<< order
;
1335 ex
->fe_group
= e4b
->bd_group
;
1337 /* calc difference from given start */
1338 next
= next
- ex
->fe_start
;
1340 ex
->fe_start
+= next
;
1342 while (needed
> ex
->fe_len
&&
1343 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1345 if (block
+ 1 >= max
)
1348 next
= (block
+ 1) * (1 << order
);
1349 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1352 ord
= mb_find_order_for_block(e4b
, next
);
1355 block
= next
>> order
;
1356 ex
->fe_len
+= 1 << order
;
1359 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1363 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1369 int start
= ex
->fe_start
;
1370 int len
= ex
->fe_len
;
1375 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1376 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1377 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1378 mb_check_buddy(e4b
);
1379 mb_mark_used_double(e4b
, start
, len
);
1381 e4b
->bd_info
->bb_free
-= len
;
1382 if (e4b
->bd_info
->bb_first_free
== start
)
1383 e4b
->bd_info
->bb_first_free
+= len
;
1385 /* let's maintain fragments counter */
1387 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1388 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1389 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1391 e4b
->bd_info
->bb_fragments
++;
1392 else if (!mlen
&& !max
)
1393 e4b
->bd_info
->bb_fragments
--;
1395 /* let's maintain buddy itself */
1397 ord
= mb_find_order_for_block(e4b
, start
);
1399 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1400 /* the whole chunk may be allocated at once! */
1402 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1403 BUG_ON((start
>> ord
) >= max
);
1404 mb_set_bit(start
>> ord
, buddy
);
1405 e4b
->bd_info
->bb_counters
[ord
]--;
1412 /* store for history */
1414 ret
= len
| (ord
<< 16);
1416 /* we have to split large buddy */
1418 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1419 mb_set_bit(start
>> ord
, buddy
);
1420 e4b
->bd_info
->bb_counters
[ord
]--;
1423 cur
= (start
>> ord
) & ~1U;
1424 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1425 mb_clear_bit(cur
, buddy
);
1426 mb_clear_bit(cur
+ 1, buddy
);
1427 e4b
->bd_info
->bb_counters
[ord
]++;
1428 e4b
->bd_info
->bb_counters
[ord
]++;
1431 mb_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1432 mb_check_buddy(e4b
);
1438 * Must be called under group lock!
1440 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1441 struct ext4_buddy
*e4b
)
1443 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1446 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1447 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1449 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1450 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1451 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1453 /* preallocation can change ac_b_ex, thus we store actually
1454 * allocated blocks for history */
1455 ac
->ac_f_ex
= ac
->ac_b_ex
;
1457 ac
->ac_status
= AC_STATUS_FOUND
;
1458 ac
->ac_tail
= ret
& 0xffff;
1459 ac
->ac_buddy
= ret
>> 16;
1462 * take the page reference. We want the page to be pinned
1463 * so that we don't get a ext4_mb_init_cache_call for this
1464 * group until we update the bitmap. That would mean we
1465 * double allocate blocks. The reference is dropped
1466 * in ext4_mb_release_context
1468 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1469 get_page(ac
->ac_bitmap_page
);
1470 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1471 get_page(ac
->ac_buddy_page
);
1472 /* on allocation we use ac to track the held semaphore */
1473 ac
->alloc_semp
= e4b
->alloc_semp
;
1474 e4b
->alloc_semp
= NULL
;
1475 /* store last allocated for subsequent stream allocation */
1476 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1477 spin_lock(&sbi
->s_md_lock
);
1478 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1479 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1480 spin_unlock(&sbi
->s_md_lock
);
1485 * regular allocator, for general purposes allocation
1488 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1489 struct ext4_buddy
*e4b
,
1492 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1493 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1494 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1495 struct ext4_free_extent ex
;
1498 if (ac
->ac_status
== AC_STATUS_FOUND
)
1501 * We don't want to scan for a whole year
1503 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1504 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1505 ac
->ac_status
= AC_STATUS_BREAK
;
1510 * Haven't found good chunk so far, let's continue
1512 if (bex
->fe_len
< gex
->fe_len
)
1515 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1516 && bex
->fe_group
== e4b
->bd_group
) {
1517 /* recheck chunk's availability - we don't know
1518 * when it was found (within this lock-unlock
1520 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1521 if (max
>= gex
->fe_len
) {
1522 ext4_mb_use_best_found(ac
, e4b
);
1529 * The routine checks whether found extent is good enough. If it is,
1530 * then the extent gets marked used and flag is set to the context
1531 * to stop scanning. Otherwise, the extent is compared with the
1532 * previous found extent and if new one is better, then it's stored
1533 * in the context. Later, the best found extent will be used, if
1534 * mballoc can't find good enough extent.
1536 * FIXME: real allocation policy is to be designed yet!
1538 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1539 struct ext4_free_extent
*ex
,
1540 struct ext4_buddy
*e4b
)
1542 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1543 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1545 BUG_ON(ex
->fe_len
<= 0);
1546 BUG_ON(ex
->fe_len
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1547 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1548 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1553 * The special case - take what you catch first
1555 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1557 ext4_mb_use_best_found(ac
, e4b
);
1562 * Let's check whether the chuck is good enough
1564 if (ex
->fe_len
== gex
->fe_len
) {
1566 ext4_mb_use_best_found(ac
, e4b
);
1571 * If this is first found extent, just store it in the context
1573 if (bex
->fe_len
== 0) {
1579 * If new found extent is better, store it in the context
1581 if (bex
->fe_len
< gex
->fe_len
) {
1582 /* if the request isn't satisfied, any found extent
1583 * larger than previous best one is better */
1584 if (ex
->fe_len
> bex
->fe_len
)
1586 } else if (ex
->fe_len
> gex
->fe_len
) {
1587 /* if the request is satisfied, then we try to find
1588 * an extent that still satisfy the request, but is
1589 * smaller than previous one */
1590 if (ex
->fe_len
< bex
->fe_len
)
1594 ext4_mb_check_limits(ac
, e4b
, 0);
1597 static noinline_for_stack
1598 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1599 struct ext4_buddy
*e4b
)
1601 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1602 ext4_group_t group
= ex
.fe_group
;
1606 BUG_ON(ex
.fe_len
<= 0);
1607 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1611 ext4_lock_group(ac
->ac_sb
, group
);
1612 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1616 ext4_mb_use_best_found(ac
, e4b
);
1619 ext4_unlock_group(ac
->ac_sb
, group
);
1620 ext4_mb_release_desc(e4b
);
1625 static noinline_for_stack
1626 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1627 struct ext4_buddy
*e4b
)
1629 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1632 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1633 struct ext4_free_extent ex
;
1635 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1638 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1642 ext4_lock_group(ac
->ac_sb
, group
);
1643 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1644 ac
->ac_g_ex
.fe_len
, &ex
);
1646 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1649 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1651 /* use do_div to get remainder (would be 64-bit modulo) */
1652 if (do_div(start
, sbi
->s_stripe
) == 0) {
1655 ext4_mb_use_best_found(ac
, e4b
);
1657 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1658 BUG_ON(ex
.fe_len
<= 0);
1659 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1660 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1663 ext4_mb_use_best_found(ac
, e4b
);
1664 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1665 /* Sometimes, caller may want to merge even small
1666 * number of blocks to an existing extent */
1667 BUG_ON(ex
.fe_len
<= 0);
1668 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1669 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1672 ext4_mb_use_best_found(ac
, e4b
);
1674 ext4_unlock_group(ac
->ac_sb
, group
);
1675 ext4_mb_release_desc(e4b
);
1681 * The routine scans buddy structures (not bitmap!) from given order
1682 * to max order and tries to find big enough chunk to satisfy the req
1684 static noinline_for_stack
1685 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1686 struct ext4_buddy
*e4b
)
1688 struct super_block
*sb
= ac
->ac_sb
;
1689 struct ext4_group_info
*grp
= e4b
->bd_info
;
1695 BUG_ON(ac
->ac_2order
<= 0);
1696 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1697 if (grp
->bb_counters
[i
] == 0)
1700 buddy
= mb_find_buddy(e4b
, i
, &max
);
1701 BUG_ON(buddy
== NULL
);
1703 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1708 ac
->ac_b_ex
.fe_len
= 1 << i
;
1709 ac
->ac_b_ex
.fe_start
= k
<< i
;
1710 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1712 ext4_mb_use_best_found(ac
, e4b
);
1714 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1716 if (EXT4_SB(sb
)->s_mb_stats
)
1717 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1724 * The routine scans the group and measures all found extents.
1725 * In order to optimize scanning, caller must pass number of
1726 * free blocks in the group, so the routine can know upper limit.
1728 static noinline_for_stack
1729 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1730 struct ext4_buddy
*e4b
)
1732 struct super_block
*sb
= ac
->ac_sb
;
1733 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1734 struct ext4_free_extent ex
;
1738 free
= e4b
->bd_info
->bb_free
;
1741 i
= e4b
->bd_info
->bb_first_free
;
1743 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1744 i
= mb_find_next_zero_bit(bitmap
,
1745 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1746 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1748 * IF we have corrupt bitmap, we won't find any
1749 * free blocks even though group info says we
1750 * we have free blocks
1752 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1753 __func__
, "%d free blocks as per "
1754 "group info. But bitmap says 0",
1759 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1760 BUG_ON(ex
.fe_len
<= 0);
1761 if (free
< ex
.fe_len
) {
1762 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1763 __func__
, "%d free blocks as per "
1764 "group info. But got %d blocks",
1767 * The number of free blocks differs. This mostly
1768 * indicate that the bitmap is corrupt. So exit
1769 * without claiming the space.
1774 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1780 ext4_mb_check_limits(ac
, e4b
, 1);
1784 * This is a special case for storages like raid5
1785 * we try to find stripe-aligned chunks for stripe-size requests
1786 * XXX should do so at least for multiples of stripe size as well
1788 static noinline_for_stack
1789 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1790 struct ext4_buddy
*e4b
)
1792 struct super_block
*sb
= ac
->ac_sb
;
1793 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1794 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1795 struct ext4_free_extent ex
;
1796 ext4_fsblk_t first_group_block
;
1801 BUG_ON(sbi
->s_stripe
== 0);
1803 /* find first stripe-aligned block in group */
1804 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1806 a
= first_group_block
+ sbi
->s_stripe
- 1;
1807 do_div(a
, sbi
->s_stripe
);
1808 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1810 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1811 if (!mb_test_bit(i
, bitmap
)) {
1812 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1813 if (max
>= sbi
->s_stripe
) {
1816 ext4_mb_use_best_found(ac
, e4b
);
1824 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1825 ext4_group_t group
, int cr
)
1827 unsigned free
, fragments
;
1829 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1830 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1832 BUG_ON(cr
< 0 || cr
>= 4);
1833 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp
));
1835 free
= grp
->bb_free
;
1836 fragments
= grp
->bb_fragments
;
1844 BUG_ON(ac
->ac_2order
== 0);
1846 /* Avoid using the first bg of a flexgroup for data files */
1847 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1848 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1849 ((group
% flex_size
) == 0))
1852 bits
= ac
->ac_sb
->s_blocksize_bits
+ 1;
1853 for (i
= ac
->ac_2order
; i
<= bits
; i
++)
1854 if (grp
->bb_counters
[i
] > 0)
1858 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1862 if (free
>= ac
->ac_g_ex
.fe_len
)
1875 * lock the group_info alloc_sem of all the groups
1876 * belonging to the same buddy cache page. This
1877 * make sure other parallel operation on the buddy
1878 * cache doesn't happen whild holding the buddy cache
1881 int ext4_mb_get_buddy_cache_lock(struct super_block
*sb
, ext4_group_t group
)
1885 int blocks_per_page
;
1886 int groups_per_page
;
1887 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
1888 ext4_group_t first_group
;
1889 struct ext4_group_info
*grp
;
1891 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1893 * the buddy cache inode stores the block bitmap
1894 * and buddy information in consecutive blocks.
1895 * So for each group we need two blocks.
1898 pnum
= block
/ blocks_per_page
;
1899 first_group
= pnum
* blocks_per_page
/ 2;
1901 groups_per_page
= blocks_per_page
>> 1;
1902 if (groups_per_page
== 0)
1903 groups_per_page
= 1;
1904 /* read all groups the page covers into the cache */
1905 for (i
= 0; i
< groups_per_page
; i
++) {
1907 if ((first_group
+ i
) >= ngroups
)
1909 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1910 /* take all groups write allocation
1911 * semaphore. This make sure there is
1912 * no block allocation going on in any
1915 down_write_nested(&grp
->alloc_sem
, i
);
1920 void ext4_mb_put_buddy_cache_lock(struct super_block
*sb
,
1921 ext4_group_t group
, int locked_group
)
1925 int blocks_per_page
;
1926 ext4_group_t first_group
;
1927 struct ext4_group_info
*grp
;
1929 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1931 * the buddy cache inode stores the block bitmap
1932 * and buddy information in consecutive blocks.
1933 * So for each group we need two blocks.
1936 pnum
= block
/ blocks_per_page
;
1937 first_group
= pnum
* blocks_per_page
/ 2;
1938 /* release locks on all the groups */
1939 for (i
= 0; i
< locked_group
; i
++) {
1941 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1942 /* take all groups write allocation
1943 * semaphore. This make sure there is
1944 * no block allocation going on in any
1947 up_write(&grp
->alloc_sem
);
1952 static noinline_for_stack
int
1953 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1955 ext4_group_t ngroups
, group
, i
;
1959 struct ext4_sb_info
*sbi
;
1960 struct super_block
*sb
;
1961 struct ext4_buddy e4b
;
1965 ngroups
= ext4_get_groups_count(sb
);
1966 /* non-extent files are limited to low blocks/groups */
1967 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
))
1968 ngroups
= sbi
->s_blockfile_groups
;
1970 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1972 /* first, try the goal */
1973 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1974 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1977 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1981 * ac->ac2_order is set only if the fe_len is a power of 2
1982 * if ac2_order is set we also set criteria to 0 so that we
1983 * try exact allocation using buddy.
1985 i
= fls(ac
->ac_g_ex
.fe_len
);
1988 * We search using buddy data only if the order of the request
1989 * is greater than equal to the sbi_s_mb_order2_reqs
1990 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1992 if (i
>= sbi
->s_mb_order2_reqs
) {
1994 * This should tell if fe_len is exactly power of 2
1996 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
1997 ac
->ac_2order
= i
- 1;
2000 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2002 /* if stream allocation is enabled, use global goal */
2003 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2004 /* TBD: may be hot point */
2005 spin_lock(&sbi
->s_md_lock
);
2006 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2007 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2008 spin_unlock(&sbi
->s_md_lock
);
2011 /* Let's just scan groups to find more-less suitable blocks */
2012 cr
= ac
->ac_2order
? 0 : 1;
2014 * cr == 0 try to get exact allocation,
2015 * cr == 3 try to get anything
2018 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2019 ac
->ac_criteria
= cr
;
2021 * searching for the right group start
2022 * from the goal value specified
2024 group
= ac
->ac_g_ex
.fe_group
;
2026 for (i
= 0; i
< ngroups
; group
++, i
++) {
2027 struct ext4_group_info
*grp
;
2028 struct ext4_group_desc
*desc
;
2030 if (group
== ngroups
)
2033 /* quick check to skip empty groups */
2034 grp
= ext4_get_group_info(sb
, group
);
2035 if (grp
->bb_free
== 0)
2038 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2042 ext4_lock_group(sb
, group
);
2043 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2044 /* someone did allocation from this group */
2045 ext4_unlock_group(sb
, group
);
2046 ext4_mb_release_desc(&e4b
);
2050 ac
->ac_groups_scanned
++;
2051 desc
= ext4_get_group_desc(sb
, group
, NULL
);
2053 ext4_mb_simple_scan_group(ac
, &e4b
);
2055 ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
)
2056 ext4_mb_scan_aligned(ac
, &e4b
);
2058 ext4_mb_complex_scan_group(ac
, &e4b
);
2060 ext4_unlock_group(sb
, group
);
2061 ext4_mb_release_desc(&e4b
);
2063 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2068 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2069 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2071 * We've been searching too long. Let's try to allocate
2072 * the best chunk we've found so far
2075 ext4_mb_try_best_found(ac
, &e4b
);
2076 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2078 * Someone more lucky has already allocated it.
2079 * The only thing we can do is just take first
2081 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2083 ac
->ac_b_ex
.fe_group
= 0;
2084 ac
->ac_b_ex
.fe_start
= 0;
2085 ac
->ac_b_ex
.fe_len
= 0;
2086 ac
->ac_status
= AC_STATUS_CONTINUE
;
2087 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2089 atomic_inc(&sbi
->s_mb_lost_chunks
);
2097 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2099 struct super_block
*sb
= seq
->private;
2102 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2105 return (void *) ((unsigned long) group
);
2108 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2110 struct super_block
*sb
= seq
->private;
2114 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2117 return (void *) ((unsigned long) group
);
2120 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2122 struct super_block
*sb
= seq
->private;
2123 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2126 struct ext4_buddy e4b
;
2128 struct ext4_group_info info
;
2129 ext4_grpblk_t counters
[16];
2134 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2135 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2136 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2137 "group", "free", "frags", "first",
2138 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2139 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2141 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2142 sizeof(struct ext4_group_info
);
2143 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2145 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2148 ext4_lock_group(sb
, group
);
2149 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2150 ext4_unlock_group(sb
, group
);
2151 ext4_mb_release_desc(&e4b
);
2153 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2154 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2155 for (i
= 0; i
<= 13; i
++)
2156 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2157 sg
.info
.bb_counters
[i
] : 0);
2158 seq_printf(seq
, " ]\n");
2163 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2167 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2168 .start
= ext4_mb_seq_groups_start
,
2169 .next
= ext4_mb_seq_groups_next
,
2170 .stop
= ext4_mb_seq_groups_stop
,
2171 .show
= ext4_mb_seq_groups_show
,
2174 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2176 struct super_block
*sb
= PDE(inode
)->data
;
2179 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2181 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2188 static const struct file_operations ext4_mb_seq_groups_fops
= {
2189 .owner
= THIS_MODULE
,
2190 .open
= ext4_mb_seq_groups_open
,
2192 .llseek
= seq_lseek
,
2193 .release
= seq_release
,
2197 /* Create and initialize ext4_group_info data for the given group. */
2198 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2199 struct ext4_group_desc
*desc
)
2203 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2204 struct ext4_group_info
**meta_group_info
;
2207 * First check if this group is the first of a reserved block.
2208 * If it's true, we have to allocate a new table of pointers
2209 * to ext4_group_info structures
2211 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2212 metalen
= sizeof(*meta_group_info
) <<
2213 EXT4_DESC_PER_BLOCK_BITS(sb
);
2214 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2215 if (meta_group_info
== NULL
) {
2216 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2218 goto exit_meta_group_info
;
2220 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2225 * calculate needed size. if change bb_counters size,
2226 * don't forget about ext4_mb_generate_buddy()
2228 len
= offsetof(typeof(**meta_group_info
),
2229 bb_counters
[sb
->s_blocksize_bits
+ 2]);
2232 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2233 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2235 meta_group_info
[i
] = kzalloc(len
, GFP_KERNEL
);
2236 if (meta_group_info
[i
] == NULL
) {
2237 printk(KERN_ERR
"EXT4-fs: can't allocate buddy mem\n");
2238 goto exit_group_info
;
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2241 &(meta_group_info
[i
]->bb_state
));
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2247 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2248 meta_group_info
[i
]->bb_free
=
2249 ext4_free_blocks_after_init(sb
, group
, desc
);
2251 meta_group_info
[i
]->bb_free
=
2252 ext4_free_blks_count(sb
, desc
);
2255 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2256 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2257 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2261 struct buffer_head
*bh
;
2262 meta_group_info
[i
]->bb_bitmap
=
2263 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2264 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2265 bh
= ext4_read_block_bitmap(sb
, group
);
2267 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2276 /* If a meta_group_info table has been allocated, release it now */
2277 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0)
2278 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2279 exit_meta_group_info
:
2281 } /* ext4_mb_add_groupinfo */
2283 static int ext4_mb_init_backend(struct super_block
*sb
)
2285 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2287 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2288 struct ext4_super_block
*es
= sbi
->s_es
;
2289 int num_meta_group_infos
;
2290 int num_meta_group_infos_max
;
2292 struct ext4_group_desc
*desc
;
2294 /* This is the number of blocks used by GDT */
2295 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2296 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2299 * This is the total number of blocks used by GDT including
2300 * the number of reserved blocks for GDT.
2301 * The s_group_info array is allocated with this value
2302 * to allow a clean online resize without a complex
2303 * manipulation of pointer.
2304 * The drawback is the unused memory when no resize
2305 * occurs but it's very low in terms of pages
2306 * (see comments below)
2307 * Need to handle this properly when META_BG resizing is allowed
2309 num_meta_group_infos_max
= num_meta_group_infos
+
2310 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2313 * array_size is the size of s_group_info array. We round it
2314 * to the next power of two because this approximation is done
2315 * internally by kmalloc so we can have some more memory
2316 * for free here (e.g. may be used for META_BG resize).
2319 while (array_size
< sizeof(*sbi
->s_group_info
) *
2320 num_meta_group_infos_max
)
2321 array_size
= array_size
<< 1;
2322 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2323 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2324 * So a two level scheme suffices for now. */
2325 sbi
->s_group_info
= kmalloc(array_size
, GFP_KERNEL
);
2326 if (sbi
->s_group_info
== NULL
) {
2327 printk(KERN_ERR
"EXT4-fs: can't allocate buddy meta group\n");
2330 sbi
->s_buddy_cache
= new_inode(sb
);
2331 if (sbi
->s_buddy_cache
== NULL
) {
2332 printk(KERN_ERR
"EXT4-fs: can't get new inode\n");
2335 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2336 for (i
= 0; i
< ngroups
; i
++) {
2337 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2340 "EXT4-fs: can't read descriptor %u\n", i
);
2343 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2351 kfree(ext4_get_group_info(sb
, i
));
2352 i
= num_meta_group_infos
;
2354 kfree(sbi
->s_group_info
[i
]);
2355 iput(sbi
->s_buddy_cache
);
2357 kfree(sbi
->s_group_info
);
2361 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2363 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2369 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2371 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2372 if (sbi
->s_mb_offsets
== NULL
) {
2376 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2377 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2378 if (sbi
->s_mb_maxs
== NULL
) {
2379 kfree(sbi
->s_mb_offsets
);
2383 /* order 0 is regular bitmap */
2384 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2385 sbi
->s_mb_offsets
[0] = 0;
2389 max
= sb
->s_blocksize
<< 2;
2391 sbi
->s_mb_offsets
[i
] = offset
;
2392 sbi
->s_mb_maxs
[i
] = max
;
2393 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2396 } while (i
<= sb
->s_blocksize_bits
+ 1);
2398 /* init file for buddy data */
2399 ret
= ext4_mb_init_backend(sb
);
2401 kfree(sbi
->s_mb_offsets
);
2402 kfree(sbi
->s_mb_maxs
);
2406 spin_lock_init(&sbi
->s_md_lock
);
2407 spin_lock_init(&sbi
->s_bal_lock
);
2409 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2410 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2411 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2412 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2413 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2414 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2416 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2417 if (sbi
->s_locality_groups
== NULL
) {
2418 kfree(sbi
->s_mb_offsets
);
2419 kfree(sbi
->s_mb_maxs
);
2422 for_each_possible_cpu(i
) {
2423 struct ext4_locality_group
*lg
;
2424 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2425 mutex_init(&lg
->lg_mutex
);
2426 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2427 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2428 spin_lock_init(&lg
->lg_prealloc_lock
);
2432 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2433 &ext4_mb_seq_groups_fops
, sb
);
2436 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2440 /* need to called with the ext4 group lock held */
2441 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2443 struct ext4_prealloc_space
*pa
;
2444 struct list_head
*cur
, *tmp
;
2447 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2448 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2449 list_del(&pa
->pa_group_list
);
2451 kmem_cache_free(ext4_pspace_cachep
, pa
);
2454 mb_debug(1, "mballoc: %u PAs left\n", count
);
2458 int ext4_mb_release(struct super_block
*sb
)
2460 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2462 int num_meta_group_infos
;
2463 struct ext4_group_info
*grinfo
;
2464 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2466 if (sbi
->s_group_info
) {
2467 for (i
= 0; i
< ngroups
; i
++) {
2468 grinfo
= ext4_get_group_info(sb
, i
);
2470 kfree(grinfo
->bb_bitmap
);
2472 ext4_lock_group(sb
, i
);
2473 ext4_mb_cleanup_pa(grinfo
);
2474 ext4_unlock_group(sb
, i
);
2477 num_meta_group_infos
= (ngroups
+
2478 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2479 EXT4_DESC_PER_BLOCK_BITS(sb
);
2480 for (i
= 0; i
< num_meta_group_infos
; i
++)
2481 kfree(sbi
->s_group_info
[i
]);
2482 kfree(sbi
->s_group_info
);
2484 kfree(sbi
->s_mb_offsets
);
2485 kfree(sbi
->s_mb_maxs
);
2486 if (sbi
->s_buddy_cache
)
2487 iput(sbi
->s_buddy_cache
);
2488 if (sbi
->s_mb_stats
) {
2490 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2491 atomic_read(&sbi
->s_bal_allocated
),
2492 atomic_read(&sbi
->s_bal_reqs
),
2493 atomic_read(&sbi
->s_bal_success
));
2495 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2496 "%u 2^N hits, %u breaks, %u lost\n",
2497 atomic_read(&sbi
->s_bal_ex_scanned
),
2498 atomic_read(&sbi
->s_bal_goals
),
2499 atomic_read(&sbi
->s_bal_2orders
),
2500 atomic_read(&sbi
->s_bal_breaks
),
2501 atomic_read(&sbi
->s_mb_lost_chunks
));
2503 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2504 sbi
->s_mb_buddies_generated
++,
2505 sbi
->s_mb_generation_time
);
2507 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2508 atomic_read(&sbi
->s_mb_preallocated
),
2509 atomic_read(&sbi
->s_mb_discarded
));
2512 free_percpu(sbi
->s_locality_groups
);
2514 remove_proc_entry("mb_groups", sbi
->s_proc
);
2520 * This function is called by the jbd2 layer once the commit has finished,
2521 * so we know we can free the blocks that were released with that commit.
2523 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2525 struct super_block
*sb
= journal
->j_private
;
2526 struct ext4_buddy e4b
;
2527 struct ext4_group_info
*db
;
2528 int err
, count
= 0, count2
= 0;
2529 struct ext4_free_data
*entry
;
2530 struct list_head
*l
, *ltmp
;
2532 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2533 entry
= list_entry(l
, struct ext4_free_data
, list
);
2535 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2536 entry
->count
, entry
->group
, entry
);
2538 if (test_opt(sb
, DISCARD
)) {
2539 ext4_fsblk_t discard_block
;
2541 discard_block
= entry
->start_blk
+
2542 ext4_group_first_block_no(sb
, entry
->group
);
2543 trace_ext4_discard_blocks(sb
,
2544 (unsigned long long)discard_block
,
2546 sb_issue_discard(sb
, discard_block
, entry
->count
);
2549 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2550 /* we expect to find existing buddy because it's pinned */
2554 /* there are blocks to put in buddy to make them really free */
2555 count
+= entry
->count
;
2557 ext4_lock_group(sb
, entry
->group
);
2558 /* Take it out of per group rb tree */
2559 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2560 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2562 if (!db
->bb_free_root
.rb_node
) {
2563 /* No more items in the per group rb tree
2564 * balance refcounts from ext4_mb_free_metadata()
2566 page_cache_release(e4b
.bd_buddy_page
);
2567 page_cache_release(e4b
.bd_bitmap_page
);
2569 ext4_unlock_group(sb
, entry
->group
);
2570 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2571 ext4_mb_release_desc(&e4b
);
2574 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2577 #ifdef CONFIG_EXT4_DEBUG
2578 u8 mb_enable_debug __read_mostly
;
2580 static struct dentry
*debugfs_dir
;
2581 static struct dentry
*debugfs_debug
;
2583 static void __init
ext4_create_debugfs_entry(void)
2585 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2587 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2593 static void ext4_remove_debugfs_entry(void)
2595 debugfs_remove(debugfs_debug
);
2596 debugfs_remove(debugfs_dir
);
2601 static void __init
ext4_create_debugfs_entry(void)
2605 static void ext4_remove_debugfs_entry(void)
2611 int __init
init_ext4_mballoc(void)
2613 ext4_pspace_cachep
=
2614 kmem_cache_create("ext4_prealloc_space",
2615 sizeof(struct ext4_prealloc_space
),
2616 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2617 if (ext4_pspace_cachep
== NULL
)
2621 kmem_cache_create("ext4_alloc_context",
2622 sizeof(struct ext4_allocation_context
),
2623 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2624 if (ext4_ac_cachep
== NULL
) {
2625 kmem_cache_destroy(ext4_pspace_cachep
);
2629 ext4_free_ext_cachep
=
2630 kmem_cache_create("ext4_free_block_extents",
2631 sizeof(struct ext4_free_data
),
2632 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2633 if (ext4_free_ext_cachep
== NULL
) {
2634 kmem_cache_destroy(ext4_pspace_cachep
);
2635 kmem_cache_destroy(ext4_ac_cachep
);
2638 ext4_create_debugfs_entry();
2642 void exit_ext4_mballoc(void)
2645 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2646 * before destroying the slab cache.
2649 kmem_cache_destroy(ext4_pspace_cachep
);
2650 kmem_cache_destroy(ext4_ac_cachep
);
2651 kmem_cache_destroy(ext4_free_ext_cachep
);
2652 ext4_remove_debugfs_entry();
2657 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2658 * Returns 0 if success or error code
2660 static noinline_for_stack
int
2661 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2662 handle_t
*handle
, unsigned int reserv_blks
)
2664 struct buffer_head
*bitmap_bh
= NULL
;
2665 struct ext4_super_block
*es
;
2666 struct ext4_group_desc
*gdp
;
2667 struct buffer_head
*gdp_bh
;
2668 struct ext4_sb_info
*sbi
;
2669 struct super_block
*sb
;
2673 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2674 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2682 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2686 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2691 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2695 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2696 ext4_free_blks_count(sb
, gdp
));
2698 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2702 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2704 len
= ac
->ac_b_ex
.fe_len
;
2705 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2706 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2707 "fs metadata\n", block
, block
+len
);
2708 /* File system mounted not to panic on error
2709 * Fix the bitmap and repeat the block allocation
2710 * We leak some of the blocks here.
2712 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2713 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2714 ac
->ac_b_ex
.fe_len
);
2715 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2716 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2722 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2723 #ifdef AGGRESSIVE_CHECK
2726 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2727 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2728 bitmap_bh
->b_data
));
2732 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,ac
->ac_b_ex
.fe_len
);
2733 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2734 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2735 ext4_free_blks_set(sb
, gdp
,
2736 ext4_free_blocks_after_init(sb
,
2737 ac
->ac_b_ex
.fe_group
, gdp
));
2739 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2740 ext4_free_blks_set(sb
, gdp
, len
);
2741 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2743 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2744 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
2746 * Now reduce the dirty block count also. Should not go negative
2748 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2749 /* release all the reserved blocks if non delalloc */
2750 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
2752 if (sbi
->s_log_groups_per_flex
) {
2753 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2754 ac
->ac_b_ex
.fe_group
);
2755 atomic_sub(ac
->ac_b_ex
.fe_len
,
2756 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
2759 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2762 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2771 * here we normalize request for locality group
2772 * Group request are normalized to s_strip size if we set the same via mount
2773 * option. If not we set it to s_mb_group_prealloc which can be configured via
2774 * /sys/fs/ext4/<partition>/mb_group_prealloc
2776 * XXX: should we try to preallocate more than the group has now?
2778 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2780 struct super_block
*sb
= ac
->ac_sb
;
2781 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2784 if (EXT4_SB(sb
)->s_stripe
)
2785 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_stripe
;
2787 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2788 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2789 current
->pid
, ac
->ac_g_ex
.fe_len
);
2793 * Normalization means making request better in terms of
2794 * size and alignment
2796 static noinline_for_stack
void
2797 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2798 struct ext4_allocation_request
*ar
)
2802 loff_t size
, orig_size
, start_off
;
2803 ext4_lblk_t start
, orig_start
;
2804 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2805 struct ext4_prealloc_space
*pa
;
2807 /* do normalize only data requests, metadata requests
2808 do not need preallocation */
2809 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2812 /* sometime caller may want exact blocks */
2813 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2816 /* caller may indicate that preallocation isn't
2817 * required (it's a tail, for example) */
2818 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2821 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2822 ext4_mb_normalize_group_request(ac
);
2826 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2828 /* first, let's learn actual file size
2829 * given current request is allocated */
2830 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
2831 size
= size
<< bsbits
;
2832 if (size
< i_size_read(ac
->ac_inode
))
2833 size
= i_size_read(ac
->ac_inode
);
2835 /* max size of free chunks */
2838 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2839 (req <= (size) || max <= (chunk_size))
2841 /* first, try to predict filesize */
2842 /* XXX: should this table be tunable? */
2844 if (size
<= 16 * 1024) {
2846 } else if (size
<= 32 * 1024) {
2848 } else if (size
<= 64 * 1024) {
2850 } else if (size
<= 128 * 1024) {
2852 } else if (size
<= 256 * 1024) {
2854 } else if (size
<= 512 * 1024) {
2856 } else if (size
<= 1024 * 1024) {
2858 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2859 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2860 (21 - bsbits
)) << 21;
2861 size
= 2 * 1024 * 1024;
2862 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2863 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2864 (22 - bsbits
)) << 22;
2865 size
= 4 * 1024 * 1024;
2866 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2867 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2868 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2869 (23 - bsbits
)) << 23;
2870 size
= 8 * 1024 * 1024;
2872 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2873 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2875 orig_size
= size
= size
>> bsbits
;
2876 orig_start
= start
= start_off
>> bsbits
;
2878 /* don't cover already allocated blocks in selected range */
2879 if (ar
->pleft
&& start
<= ar
->lleft
) {
2880 size
-= ar
->lleft
+ 1 - start
;
2881 start
= ar
->lleft
+ 1;
2883 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2884 size
-= start
+ size
- ar
->lright
;
2888 /* check we don't cross already preallocated blocks */
2890 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2895 spin_lock(&pa
->pa_lock
);
2896 if (pa
->pa_deleted
) {
2897 spin_unlock(&pa
->pa_lock
);
2901 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2903 /* PA must not overlap original request */
2904 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2905 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2907 /* skip PAs this normalized request doesn't overlap with */
2908 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2909 spin_unlock(&pa
->pa_lock
);
2912 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
2914 /* adjust start or end to be adjacent to this pa */
2915 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
2916 BUG_ON(pa_end
< start
);
2918 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
2919 BUG_ON(pa
->pa_lstart
> end
);
2920 end
= pa
->pa_lstart
;
2922 spin_unlock(&pa
->pa_lock
);
2927 /* XXX: extra loop to check we really don't overlap preallocations */
2929 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2931 spin_lock(&pa
->pa_lock
);
2932 if (pa
->pa_deleted
== 0) {
2933 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2934 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
2936 spin_unlock(&pa
->pa_lock
);
2940 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2941 start
> ac
->ac_o_ex
.fe_logical
) {
2942 printk(KERN_ERR
"start %lu, size %lu, fe_logical %lu\n",
2943 (unsigned long) start
, (unsigned long) size
,
2944 (unsigned long) ac
->ac_o_ex
.fe_logical
);
2946 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2947 start
> ac
->ac_o_ex
.fe_logical
);
2948 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
2950 /* now prepare goal request */
2952 /* XXX: is it better to align blocks WRT to logical
2953 * placement or satisfy big request as is */
2954 ac
->ac_g_ex
.fe_logical
= start
;
2955 ac
->ac_g_ex
.fe_len
= size
;
2957 /* define goal start in order to merge */
2958 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
2959 /* merge to the right */
2960 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
2961 &ac
->ac_f_ex
.fe_group
,
2962 &ac
->ac_f_ex
.fe_start
);
2963 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2965 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
2966 /* merge to the left */
2967 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
2968 &ac
->ac_f_ex
.fe_group
,
2969 &ac
->ac_f_ex
.fe_start
);
2970 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2973 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
2974 (unsigned) orig_size
, (unsigned) start
);
2977 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
2979 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2981 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
2982 atomic_inc(&sbi
->s_bal_reqs
);
2983 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
2984 if (ac
->ac_o_ex
.fe_len
>= ac
->ac_g_ex
.fe_len
)
2985 atomic_inc(&sbi
->s_bal_success
);
2986 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
2987 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
2988 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
2989 atomic_inc(&sbi
->s_bal_goals
);
2990 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
2991 atomic_inc(&sbi
->s_bal_breaks
);
2994 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
2995 trace_ext4_mballoc_alloc(ac
);
2997 trace_ext4_mballoc_prealloc(ac
);
3001 * Called on failure; free up any blocks from the inode PA for this
3002 * context. We don't need this for MB_GROUP_PA because we only change
3003 * pa_free in ext4_mb_release_context(), but on failure, we've already
3004 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3006 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3008 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3011 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3012 len
= ac
->ac_b_ex
.fe_len
;
3019 * use blocks preallocated to inode
3021 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3022 struct ext4_prealloc_space
*pa
)
3028 /* found preallocated blocks, use them */
3029 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3030 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3032 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3033 &ac
->ac_b_ex
.fe_start
);
3034 ac
->ac_b_ex
.fe_len
= len
;
3035 ac
->ac_status
= AC_STATUS_FOUND
;
3038 BUG_ON(start
< pa
->pa_pstart
);
3039 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3040 BUG_ON(pa
->pa_free
< len
);
3043 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3047 * use blocks preallocated to locality group
3049 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3050 struct ext4_prealloc_space
*pa
)
3052 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3054 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3055 &ac
->ac_b_ex
.fe_group
,
3056 &ac
->ac_b_ex
.fe_start
);
3057 ac
->ac_b_ex
.fe_len
= len
;
3058 ac
->ac_status
= AC_STATUS_FOUND
;
3061 /* we don't correct pa_pstart or pa_plen here to avoid
3062 * possible race when the group is being loaded concurrently
3063 * instead we correct pa later, after blocks are marked
3064 * in on-disk bitmap -- see ext4_mb_release_context()
3065 * Other CPUs are prevented from allocating from this pa by lg_mutex
3067 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3071 * Return the prealloc space that have minimal distance
3072 * from the goal block. @cpa is the prealloc
3073 * space that is having currently known minimal distance
3074 * from the goal block.
3076 static struct ext4_prealloc_space
*
3077 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3078 struct ext4_prealloc_space
*pa
,
3079 struct ext4_prealloc_space
*cpa
)
3081 ext4_fsblk_t cur_distance
, new_distance
;
3084 atomic_inc(&pa
->pa_count
);
3087 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3088 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3090 if (cur_distance
< new_distance
)
3093 /* drop the previous reference */
3094 atomic_dec(&cpa
->pa_count
);
3095 atomic_inc(&pa
->pa_count
);
3100 * search goal blocks in preallocated space
3102 static noinline_for_stack
int
3103 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3106 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3107 struct ext4_locality_group
*lg
;
3108 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3109 ext4_fsblk_t goal_block
;
3111 /* only data can be preallocated */
3112 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3115 /* first, try per-file preallocation */
3117 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3119 /* all fields in this condition don't change,
3120 * so we can skip locking for them */
3121 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3122 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3125 /* non-extent files can't have physical blocks past 2^32 */
3126 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
3127 pa
->pa_pstart
+ pa
->pa_len
> EXT4_MAX_BLOCK_FILE_PHYS
)
3130 /* found preallocated blocks, use them */
3131 spin_lock(&pa
->pa_lock
);
3132 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3133 atomic_inc(&pa
->pa_count
);
3134 ext4_mb_use_inode_pa(ac
, pa
);
3135 spin_unlock(&pa
->pa_lock
);
3136 ac
->ac_criteria
= 10;
3140 spin_unlock(&pa
->pa_lock
);
3144 /* can we use group allocation? */
3145 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3148 /* inode may have no locality group for some reason */
3152 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3153 if (order
> PREALLOC_TB_SIZE
- 1)
3154 /* The max size of hash table is PREALLOC_TB_SIZE */
3155 order
= PREALLOC_TB_SIZE
- 1;
3157 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3159 * search for the prealloc space that is having
3160 * minimal distance from the goal block.
3162 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3164 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3166 spin_lock(&pa
->pa_lock
);
3167 if (pa
->pa_deleted
== 0 &&
3168 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3170 cpa
= ext4_mb_check_group_pa(goal_block
,
3173 spin_unlock(&pa
->pa_lock
);
3178 ext4_mb_use_group_pa(ac
, cpa
);
3179 ac
->ac_criteria
= 20;
3186 * the function goes through all block freed in the group
3187 * but not yet committed and marks them used in in-core bitmap.
3188 * buddy must be generated from this bitmap
3189 * Need to be called with the ext4 group lock held
3191 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3195 struct ext4_group_info
*grp
;
3196 struct ext4_free_data
*entry
;
3198 grp
= ext4_get_group_info(sb
, group
);
3199 n
= rb_first(&(grp
->bb_free_root
));
3202 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3203 mb_set_bits(bitmap
, entry
->start_blk
, entry
->count
);
3210 * the function goes through all preallocation in this group and marks them
3211 * used in in-core bitmap. buddy must be generated from this bitmap
3212 * Need to be called with ext4 group lock held
3214 static noinline_for_stack
3215 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3218 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3219 struct ext4_prealloc_space
*pa
;
3220 struct list_head
*cur
;
3221 ext4_group_t groupnr
;
3222 ext4_grpblk_t start
;
3223 int preallocated
= 0;
3227 /* all form of preallocation discards first load group,
3228 * so the only competing code is preallocation use.
3229 * we don't need any locking here
3230 * notice we do NOT ignore preallocations with pa_deleted
3231 * otherwise we could leave used blocks available for
3232 * allocation in buddy when concurrent ext4_mb_put_pa()
3233 * is dropping preallocation
3235 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3236 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3237 spin_lock(&pa
->pa_lock
);
3238 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3241 spin_unlock(&pa
->pa_lock
);
3242 if (unlikely(len
== 0))
3244 BUG_ON(groupnr
!= group
);
3245 mb_set_bits(bitmap
, start
, len
);
3246 preallocated
+= len
;
3249 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3252 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3254 struct ext4_prealloc_space
*pa
;
3255 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3256 kmem_cache_free(ext4_pspace_cachep
, pa
);
3260 * drops a reference to preallocated space descriptor
3261 * if this was the last reference and the space is consumed
3263 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3264 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3267 ext4_fsblk_t grp_blk
;
3269 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3272 /* in this short window concurrent discard can set pa_deleted */
3273 spin_lock(&pa
->pa_lock
);
3274 if (pa
->pa_deleted
== 1) {
3275 spin_unlock(&pa
->pa_lock
);
3280 spin_unlock(&pa
->pa_lock
);
3282 grp_blk
= pa
->pa_pstart
;
3284 * If doing group-based preallocation, pa_pstart may be in the
3285 * next group when pa is used up
3287 if (pa
->pa_type
== MB_GROUP_PA
)
3290 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3295 * P1 (buddy init) P2 (regular allocation)
3296 * find block B in PA
3297 * copy on-disk bitmap to buddy
3298 * mark B in on-disk bitmap
3299 * drop PA from group
3300 * mark all PAs in buddy
3302 * thus, P1 initializes buddy with B available. to prevent this
3303 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3306 ext4_lock_group(sb
, grp
);
3307 list_del(&pa
->pa_group_list
);
3308 ext4_unlock_group(sb
, grp
);
3310 spin_lock(pa
->pa_obj_lock
);
3311 list_del_rcu(&pa
->pa_inode_list
);
3312 spin_unlock(pa
->pa_obj_lock
);
3314 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3318 * creates new preallocated space for given inode
3320 static noinline_for_stack
int
3321 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3323 struct super_block
*sb
= ac
->ac_sb
;
3324 struct ext4_prealloc_space
*pa
;
3325 struct ext4_group_info
*grp
;
3326 struct ext4_inode_info
*ei
;
3328 /* preallocate only when found space is larger then requested */
3329 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3330 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3331 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3333 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3337 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3343 /* we can't allocate as much as normalizer wants.
3344 * so, found space must get proper lstart
3345 * to cover original request */
3346 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3347 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3349 /* we're limited by original request in that
3350 * logical block must be covered any way
3351 * winl is window we can move our chunk within */
3352 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3354 /* also, we should cover whole original request */
3355 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3357 /* the smallest one defines real window */
3358 win
= min(winl
, wins
);
3360 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3361 if (offs
&& offs
< win
)
3364 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3365 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3366 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3369 /* preallocation can change ac_b_ex, thus we store actually
3370 * allocated blocks for history */
3371 ac
->ac_f_ex
= ac
->ac_b_ex
;
3373 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3374 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3375 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3376 pa
->pa_free
= pa
->pa_len
;
3377 atomic_set(&pa
->pa_count
, 1);
3378 spin_lock_init(&pa
->pa_lock
);
3379 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3380 INIT_LIST_HEAD(&pa
->pa_group_list
);
3382 pa
->pa_type
= MB_INODE_PA
;
3384 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3385 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3386 trace_ext4_mb_new_inode_pa(ac
, pa
);
3388 ext4_mb_use_inode_pa(ac
, pa
);
3389 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3391 ei
= EXT4_I(ac
->ac_inode
);
3392 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3394 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3395 pa
->pa_inode
= ac
->ac_inode
;
3397 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3398 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3399 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3401 spin_lock(pa
->pa_obj_lock
);
3402 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3403 spin_unlock(pa
->pa_obj_lock
);
3409 * creates new preallocated space for locality group inodes belongs to
3411 static noinline_for_stack
int
3412 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3414 struct super_block
*sb
= ac
->ac_sb
;
3415 struct ext4_locality_group
*lg
;
3416 struct ext4_prealloc_space
*pa
;
3417 struct ext4_group_info
*grp
;
3419 /* preallocate only when found space is larger then requested */
3420 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3421 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3422 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3424 BUG_ON(ext4_pspace_cachep
== NULL
);
3425 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3429 /* preallocation can change ac_b_ex, thus we store actually
3430 * allocated blocks for history */
3431 ac
->ac_f_ex
= ac
->ac_b_ex
;
3433 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3434 pa
->pa_lstart
= pa
->pa_pstart
;
3435 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3436 pa
->pa_free
= pa
->pa_len
;
3437 atomic_set(&pa
->pa_count
, 1);
3438 spin_lock_init(&pa
->pa_lock
);
3439 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3440 INIT_LIST_HEAD(&pa
->pa_group_list
);
3442 pa
->pa_type
= MB_GROUP_PA
;
3444 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3445 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3446 trace_ext4_mb_new_group_pa(ac
, pa
);
3448 ext4_mb_use_group_pa(ac
, pa
);
3449 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3451 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3455 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3456 pa
->pa_inode
= NULL
;
3458 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3459 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3460 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3463 * We will later add the new pa to the right bucket
3464 * after updating the pa_free in ext4_mb_release_context
3469 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3473 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3474 err
= ext4_mb_new_group_pa(ac
);
3476 err
= ext4_mb_new_inode_pa(ac
);
3481 * finds all unused blocks in on-disk bitmap, frees them in
3482 * in-core bitmap and buddy.
3483 * @pa must be unlinked from inode and group lists, so that
3484 * nobody else can find/use it.
3485 * the caller MUST hold group/inode locks.
3486 * TODO: optimize the case when there are no in-core structures yet
3488 static noinline_for_stack
int
3489 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3490 struct ext4_prealloc_space
*pa
,
3491 struct ext4_allocation_context
*ac
)
3493 struct super_block
*sb
= e4b
->bd_sb
;
3494 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3499 unsigned long long grp_blk_start
;
3504 BUG_ON(pa
->pa_deleted
== 0);
3505 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3506 grp_blk_start
= pa
->pa_pstart
- bit
;
3507 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3508 end
= bit
+ pa
->pa_len
;
3512 ac
->ac_inode
= pa
->pa_inode
;
3516 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3519 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3520 start
= ext4_group_first_block_no(sb
, group
) + bit
;
3521 mb_debug(1, " free preallocated %u/%u in group %u\n",
3522 (unsigned) start
, (unsigned) next
- bit
,
3527 ac
->ac_b_ex
.fe_group
= group
;
3528 ac
->ac_b_ex
.fe_start
= bit
;
3529 ac
->ac_b_ex
.fe_len
= next
- bit
;
3530 ac
->ac_b_ex
.fe_logical
= 0;
3531 trace_ext4_mballoc_discard(ac
);
3534 trace_ext4_mb_release_inode_pa(ac
, pa
, grp_blk_start
+ bit
,
3536 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3539 if (free
!= pa
->pa_free
) {
3540 printk(KERN_CRIT
"pa %p: logic %lu, phys. %lu, len %lu\n",
3541 pa
, (unsigned long) pa
->pa_lstart
,
3542 (unsigned long) pa
->pa_pstart
,
3543 (unsigned long) pa
->pa_len
);
3544 ext4_grp_locked_error(sb
, group
,
3545 __func__
, "free %u, pa_free %u",
3548 * pa is already deleted so we use the value obtained
3549 * from the bitmap and continue.
3552 atomic_add(free
, &sbi
->s_mb_discarded
);
3557 static noinline_for_stack
int
3558 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3559 struct ext4_prealloc_space
*pa
,
3560 struct ext4_allocation_context
*ac
)
3562 struct super_block
*sb
= e4b
->bd_sb
;
3566 trace_ext4_mb_release_group_pa(ac
, pa
);
3567 BUG_ON(pa
->pa_deleted
== 0);
3568 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3569 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3570 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3571 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3575 ac
->ac_inode
= NULL
;
3576 ac
->ac_b_ex
.fe_group
= group
;
3577 ac
->ac_b_ex
.fe_start
= bit
;
3578 ac
->ac_b_ex
.fe_len
= pa
->pa_len
;
3579 ac
->ac_b_ex
.fe_logical
= 0;
3580 trace_ext4_mballoc_discard(ac
);
3587 * releases all preallocations in given group
3589 * first, we need to decide discard policy:
3590 * - when do we discard
3592 * - how many do we discard
3593 * 1) how many requested
3595 static noinline_for_stack
int
3596 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3597 ext4_group_t group
, int needed
)
3599 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3600 struct buffer_head
*bitmap_bh
= NULL
;
3601 struct ext4_prealloc_space
*pa
, *tmp
;
3602 struct ext4_allocation_context
*ac
;
3603 struct list_head list
;
3604 struct ext4_buddy e4b
;
3609 mb_debug(1, "discard preallocation for group %u\n", group
);
3611 if (list_empty(&grp
->bb_prealloc_list
))
3614 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3615 if (bitmap_bh
== NULL
) {
3616 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3620 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3622 ext4_error(sb
, "Error loading buddy information for %u", group
);
3628 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3630 INIT_LIST_HEAD(&list
);
3631 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3635 ext4_lock_group(sb
, group
);
3636 list_for_each_entry_safe(pa
, tmp
,
3637 &grp
->bb_prealloc_list
, pa_group_list
) {
3638 spin_lock(&pa
->pa_lock
);
3639 if (atomic_read(&pa
->pa_count
)) {
3640 spin_unlock(&pa
->pa_lock
);
3644 if (pa
->pa_deleted
) {
3645 spin_unlock(&pa
->pa_lock
);
3649 /* seems this one can be freed ... */
3652 /* we can trust pa_free ... */
3653 free
+= pa
->pa_free
;
3655 spin_unlock(&pa
->pa_lock
);
3657 list_del(&pa
->pa_group_list
);
3658 list_add(&pa
->u
.pa_tmp_list
, &list
);
3661 /* if we still need more blocks and some PAs were used, try again */
3662 if (free
< needed
&& busy
) {
3664 ext4_unlock_group(sb
, group
);
3666 * Yield the CPU here so that we don't get soft lockup
3667 * in non preempt case.
3673 /* found anything to free? */
3674 if (list_empty(&list
)) {
3679 /* now free all selected PAs */
3680 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3682 /* remove from object (inode or locality group) */
3683 spin_lock(pa
->pa_obj_lock
);
3684 list_del_rcu(&pa
->pa_inode_list
);
3685 spin_unlock(pa
->pa_obj_lock
);
3687 if (pa
->pa_type
== MB_GROUP_PA
)
3688 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
3690 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3692 list_del(&pa
->u
.pa_tmp_list
);
3693 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3697 ext4_unlock_group(sb
, group
);
3699 kmem_cache_free(ext4_ac_cachep
, ac
);
3700 ext4_mb_release_desc(&e4b
);
3706 * releases all non-used preallocated blocks for given inode
3708 * It's important to discard preallocations under i_data_sem
3709 * We don't want another block to be served from the prealloc
3710 * space when we are discarding the inode prealloc space.
3712 * FIXME!! Make sure it is valid at all the call sites
3714 void ext4_discard_preallocations(struct inode
*inode
)
3716 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3717 struct super_block
*sb
= inode
->i_sb
;
3718 struct buffer_head
*bitmap_bh
= NULL
;
3719 struct ext4_prealloc_space
*pa
, *tmp
;
3720 struct ext4_allocation_context
*ac
;
3721 ext4_group_t group
= 0;
3722 struct list_head list
;
3723 struct ext4_buddy e4b
;
3726 if (!S_ISREG(inode
->i_mode
)) {
3727 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3731 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3732 trace_ext4_discard_preallocations(inode
);
3734 INIT_LIST_HEAD(&list
);
3736 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3739 ac
->ac_inode
= inode
;
3742 /* first, collect all pa's in the inode */
3743 spin_lock(&ei
->i_prealloc_lock
);
3744 while (!list_empty(&ei
->i_prealloc_list
)) {
3745 pa
= list_entry(ei
->i_prealloc_list
.next
,
3746 struct ext4_prealloc_space
, pa_inode_list
);
3747 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3748 spin_lock(&pa
->pa_lock
);
3749 if (atomic_read(&pa
->pa_count
)) {
3750 /* this shouldn't happen often - nobody should
3751 * use preallocation while we're discarding it */
3752 spin_unlock(&pa
->pa_lock
);
3753 spin_unlock(&ei
->i_prealloc_lock
);
3754 printk(KERN_ERR
"uh-oh! used pa while discarding\n");
3756 schedule_timeout_uninterruptible(HZ
);
3760 if (pa
->pa_deleted
== 0) {
3762 spin_unlock(&pa
->pa_lock
);
3763 list_del_rcu(&pa
->pa_inode_list
);
3764 list_add(&pa
->u
.pa_tmp_list
, &list
);
3768 /* someone is deleting pa right now */
3769 spin_unlock(&pa
->pa_lock
);
3770 spin_unlock(&ei
->i_prealloc_lock
);
3772 /* we have to wait here because pa_deleted
3773 * doesn't mean pa is already unlinked from
3774 * the list. as we might be called from
3775 * ->clear_inode() the inode will get freed
3776 * and concurrent thread which is unlinking
3777 * pa from inode's list may access already
3778 * freed memory, bad-bad-bad */
3780 /* XXX: if this happens too often, we can
3781 * add a flag to force wait only in case
3782 * of ->clear_inode(), but not in case of
3783 * regular truncate */
3784 schedule_timeout_uninterruptible(HZ
);
3787 spin_unlock(&ei
->i_prealloc_lock
);
3789 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3790 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3791 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3793 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3795 ext4_error(sb
, "Error loading buddy information for %u",
3800 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3801 if (bitmap_bh
== NULL
) {
3802 ext4_error(sb
, "Error reading block bitmap for %u",
3804 ext4_mb_release_desc(&e4b
);
3808 ext4_lock_group(sb
, group
);
3809 list_del(&pa
->pa_group_list
);
3810 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3811 ext4_unlock_group(sb
, group
);
3813 ext4_mb_release_desc(&e4b
);
3816 list_del(&pa
->u
.pa_tmp_list
);
3817 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3820 kmem_cache_free(ext4_ac_cachep
, ac
);
3824 * finds all preallocated spaces and return blocks being freed to them
3825 * if preallocated space becomes full (no block is used from the space)
3826 * then the function frees space in buddy
3827 * XXX: at the moment, truncate (which is the only way to free blocks)
3828 * discards all preallocations
3830 static void ext4_mb_return_to_preallocation(struct inode
*inode
,
3831 struct ext4_buddy
*e4b
,
3832 sector_t block
, int count
)
3834 BUG_ON(!list_empty(&EXT4_I(inode
)->i_prealloc_list
));
3836 #ifdef CONFIG_EXT4_DEBUG
3837 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3839 struct super_block
*sb
= ac
->ac_sb
;
3840 ext4_group_t ngroups
, i
;
3842 printk(KERN_ERR
"EXT4-fs: Can't allocate:"
3843 " Allocation context details:\n");
3844 printk(KERN_ERR
"EXT4-fs: status %d flags %d\n",
3845 ac
->ac_status
, ac
->ac_flags
);
3846 printk(KERN_ERR
"EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3847 "best %lu/%lu/%lu@%lu cr %d\n",
3848 (unsigned long)ac
->ac_o_ex
.fe_group
,
3849 (unsigned long)ac
->ac_o_ex
.fe_start
,
3850 (unsigned long)ac
->ac_o_ex
.fe_len
,
3851 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3852 (unsigned long)ac
->ac_g_ex
.fe_group
,
3853 (unsigned long)ac
->ac_g_ex
.fe_start
,
3854 (unsigned long)ac
->ac_g_ex
.fe_len
,
3855 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3856 (unsigned long)ac
->ac_b_ex
.fe_group
,
3857 (unsigned long)ac
->ac_b_ex
.fe_start
,
3858 (unsigned long)ac
->ac_b_ex
.fe_len
,
3859 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3860 (int)ac
->ac_criteria
);
3861 printk(KERN_ERR
"EXT4-fs: %lu scanned, %d found\n", ac
->ac_ex_scanned
,
3863 printk(KERN_ERR
"EXT4-fs: groups: \n");
3864 ngroups
= ext4_get_groups_count(sb
);
3865 for (i
= 0; i
< ngroups
; i
++) {
3866 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3867 struct ext4_prealloc_space
*pa
;
3868 ext4_grpblk_t start
;
3869 struct list_head
*cur
;
3870 ext4_lock_group(sb
, i
);
3871 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3872 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3874 spin_lock(&pa
->pa_lock
);
3875 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3877 spin_unlock(&pa
->pa_lock
);
3878 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3881 ext4_unlock_group(sb
, i
);
3883 if (grp
->bb_free
== 0)
3885 printk(KERN_ERR
"%u: %d/%d \n",
3886 i
, grp
->bb_free
, grp
->bb_fragments
);
3888 printk(KERN_ERR
"\n");
3891 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3898 * We use locality group preallocation for small size file. The size of the
3899 * file is determined by the current size or the resulting size after
3900 * allocation which ever is larger
3902 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3904 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3906 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3907 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3910 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3913 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3916 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3917 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3920 if ((size
== isize
) &&
3921 !ext4_fs_is_busy(sbi
) &&
3922 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3923 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3927 /* don't use group allocation for large files */
3928 size
= max(size
, isize
);
3929 if (size
> sbi
->s_mb_stream_request
) {
3930 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3934 BUG_ON(ac
->ac_lg
!= NULL
);
3936 * locality group prealloc space are per cpu. The reason for having
3937 * per cpu locality group is to reduce the contention between block
3938 * request from multiple CPUs.
3940 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
3942 /* we're going to use group allocation */
3943 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
3945 /* serialize all allocations in the group */
3946 mutex_lock(&ac
->ac_lg
->lg_mutex
);
3949 static noinline_for_stack
int
3950 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
3951 struct ext4_allocation_request
*ar
)
3953 struct super_block
*sb
= ar
->inode
->i_sb
;
3954 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3955 struct ext4_super_block
*es
= sbi
->s_es
;
3959 ext4_grpblk_t block
;
3961 /* we can't allocate > group size */
3964 /* just a dirty hack to filter too big requests */
3965 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
3966 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
3968 /* start searching from the goal */
3970 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
3971 goal
>= ext4_blocks_count(es
))
3972 goal
= le32_to_cpu(es
->s_first_data_block
);
3973 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
3975 /* set up allocation goals */
3976 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
3977 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
3978 ac
->ac_status
= AC_STATUS_CONTINUE
;
3980 ac
->ac_inode
= ar
->inode
;
3981 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
3982 ac
->ac_o_ex
.fe_group
= group
;
3983 ac
->ac_o_ex
.fe_start
= block
;
3984 ac
->ac_o_ex
.fe_len
= len
;
3985 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
3986 ac
->ac_g_ex
.fe_group
= group
;
3987 ac
->ac_g_ex
.fe_start
= block
;
3988 ac
->ac_g_ex
.fe_len
= len
;
3989 ac
->ac_flags
= ar
->flags
;
3991 /* we have to define context: we'll we work with a file or
3992 * locality group. this is a policy, actually */
3993 ext4_mb_group_or_file(ac
);
3995 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
3996 "left: %u/%u, right %u/%u to %swritable\n",
3997 (unsigned) ar
->len
, (unsigned) ar
->logical
,
3998 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
3999 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4000 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4001 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4006 static noinline_for_stack
void
4007 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4008 struct ext4_locality_group
*lg
,
4009 int order
, int total_entries
)
4011 ext4_group_t group
= 0;
4012 struct ext4_buddy e4b
;
4013 struct list_head discard_list
;
4014 struct ext4_prealloc_space
*pa
, *tmp
;
4015 struct ext4_allocation_context
*ac
;
4017 mb_debug(1, "discard locality group preallocation\n");
4019 INIT_LIST_HEAD(&discard_list
);
4020 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4024 spin_lock(&lg
->lg_prealloc_lock
);
4025 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4027 spin_lock(&pa
->pa_lock
);
4028 if (atomic_read(&pa
->pa_count
)) {
4030 * This is the pa that we just used
4031 * for block allocation. So don't
4034 spin_unlock(&pa
->pa_lock
);
4037 if (pa
->pa_deleted
) {
4038 spin_unlock(&pa
->pa_lock
);
4041 /* only lg prealloc space */
4042 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4044 /* seems this one can be freed ... */
4046 spin_unlock(&pa
->pa_lock
);
4048 list_del_rcu(&pa
->pa_inode_list
);
4049 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4052 if (total_entries
<= 5) {
4054 * we want to keep only 5 entries
4055 * allowing it to grow to 8. This
4056 * mak sure we don't call discard
4057 * soon for this list.
4062 spin_unlock(&lg
->lg_prealloc_lock
);
4064 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4066 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4067 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4068 ext4_error(sb
, "Error loading buddy information for %u",
4072 ext4_lock_group(sb
, group
);
4073 list_del(&pa
->pa_group_list
);
4074 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4075 ext4_unlock_group(sb
, group
);
4077 ext4_mb_release_desc(&e4b
);
4078 list_del(&pa
->u
.pa_tmp_list
);
4079 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4082 kmem_cache_free(ext4_ac_cachep
, ac
);
4086 * We have incremented pa_count. So it cannot be freed at this
4087 * point. Also we hold lg_mutex. So no parallel allocation is
4088 * possible from this lg. That means pa_free cannot be updated.
4090 * A parallel ext4_mb_discard_group_preallocations is possible.
4091 * which can cause the lg_prealloc_list to be updated.
4094 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4096 int order
, added
= 0, lg_prealloc_count
= 1;
4097 struct super_block
*sb
= ac
->ac_sb
;
4098 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4099 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4101 order
= fls(pa
->pa_free
) - 1;
4102 if (order
> PREALLOC_TB_SIZE
- 1)
4103 /* The max size of hash table is PREALLOC_TB_SIZE */
4104 order
= PREALLOC_TB_SIZE
- 1;
4105 /* Add the prealloc space to lg */
4107 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4109 spin_lock(&tmp_pa
->pa_lock
);
4110 if (tmp_pa
->pa_deleted
) {
4111 spin_unlock(&tmp_pa
->pa_lock
);
4114 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4115 /* Add to the tail of the previous entry */
4116 list_add_tail_rcu(&pa
->pa_inode_list
,
4117 &tmp_pa
->pa_inode_list
);
4120 * we want to count the total
4121 * number of entries in the list
4124 spin_unlock(&tmp_pa
->pa_lock
);
4125 lg_prealloc_count
++;
4128 list_add_tail_rcu(&pa
->pa_inode_list
,
4129 &lg
->lg_prealloc_list
[order
]);
4132 /* Now trim the list to be not more than 8 elements */
4133 if (lg_prealloc_count
> 8) {
4134 ext4_mb_discard_lg_preallocations(sb
, lg
,
4135 order
, lg_prealloc_count
);
4142 * release all resource we used in allocation
4144 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4146 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4148 if (pa
->pa_type
== MB_GROUP_PA
) {
4149 /* see comment in ext4_mb_use_group_pa() */
4150 spin_lock(&pa
->pa_lock
);
4151 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4152 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4153 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4154 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4155 spin_unlock(&pa
->pa_lock
);
4159 up_read(ac
->alloc_semp
);
4162 * We want to add the pa to the right bucket.
4163 * Remove it from the list and while adding
4164 * make sure the list to which we are adding
4165 * doesn't grow big. We need to release
4166 * alloc_semp before calling ext4_mb_add_n_trim()
4168 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4169 spin_lock(pa
->pa_obj_lock
);
4170 list_del_rcu(&pa
->pa_inode_list
);
4171 spin_unlock(pa
->pa_obj_lock
);
4172 ext4_mb_add_n_trim(ac
);
4174 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4176 if (ac
->ac_bitmap_page
)
4177 page_cache_release(ac
->ac_bitmap_page
);
4178 if (ac
->ac_buddy_page
)
4179 page_cache_release(ac
->ac_buddy_page
);
4180 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4181 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4182 ext4_mb_collect_stats(ac
);
4186 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4188 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4192 trace_ext4_mb_discard_preallocations(sb
, needed
);
4193 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4194 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4203 * Main entry point into mballoc to allocate blocks
4204 * it tries to use preallocation first, then falls back
4205 * to usual allocation
4207 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4208 struct ext4_allocation_request
*ar
, int *errp
)
4211 struct ext4_allocation_context
*ac
= NULL
;
4212 struct ext4_sb_info
*sbi
;
4213 struct super_block
*sb
;
4214 ext4_fsblk_t block
= 0;
4215 unsigned int inquota
= 0;
4216 unsigned int reserv_blks
= 0;
4218 sb
= ar
->inode
->i_sb
;
4221 trace_ext4_request_blocks(ar
);
4224 * For delayed allocation, we could skip the ENOSPC and
4225 * EDQUOT check, as blocks and quotas have been already
4226 * reserved when data being copied into pagecache.
4228 if (EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4229 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4231 /* Without delayed allocation we need to verify
4232 * there is enough free blocks to do block allocation
4233 * and verify allocation doesn't exceed the quota limits.
4235 while (ar
->len
&& ext4_claim_free_blocks(sbi
, ar
->len
)) {
4236 /* let others to free the space */
4238 ar
->len
= ar
->len
>> 1;
4244 reserv_blks
= ar
->len
;
4245 while (ar
->len
&& dquot_alloc_block(ar
->inode
, ar
->len
)) {
4246 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4256 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4263 *errp
= ext4_mb_initialize_context(ac
, ar
);
4269 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4270 if (!ext4_mb_use_preallocated(ac
)) {
4271 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4272 ext4_mb_normalize_request(ac
, ar
);
4274 /* allocate space in core */
4275 ext4_mb_regular_allocator(ac
);
4277 /* as we've just preallocated more space than
4278 * user requested orinally, we store allocated
4279 * space in a special descriptor */
4280 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4281 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4282 ext4_mb_new_preallocation(ac
);
4284 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4285 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4286 if (*errp
== -EAGAIN
) {
4288 * drop the reference that we took
4289 * in ext4_mb_use_best_found
4291 ext4_mb_release_context(ac
);
4292 ac
->ac_b_ex
.fe_group
= 0;
4293 ac
->ac_b_ex
.fe_start
= 0;
4294 ac
->ac_b_ex
.fe_len
= 0;
4295 ac
->ac_status
= AC_STATUS_CONTINUE
;
4298 ext4_discard_allocated_blocks(ac
);
4299 ac
->ac_b_ex
.fe_len
= 0;
4301 ext4_mb_show_ac(ac
);
4303 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4304 ar
->len
= ac
->ac_b_ex
.fe_len
;
4307 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4311 ac
->ac_b_ex
.fe_len
= 0;
4313 ext4_mb_show_ac(ac
);
4316 ext4_mb_release_context(ac
);
4319 kmem_cache_free(ext4_ac_cachep
, ac
);
4321 if (inquota
&& ar
->len
< inquota
)
4322 dquot_free_block(ar
->inode
, inquota
- ar
->len
);
4325 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4326 /* release all the reserved blocks if non delalloc */
4327 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4331 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4337 * We can merge two free data extents only if the physical blocks
4338 * are contiguous, AND the extents were freed by the same transaction,
4339 * AND the blocks are associated with the same group.
4341 static int can_merge(struct ext4_free_data
*entry1
,
4342 struct ext4_free_data
*entry2
)
4344 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4345 (entry1
->group
== entry2
->group
) &&
4346 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4351 static noinline_for_stack
int
4352 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4353 struct ext4_free_data
*new_entry
)
4355 ext4_grpblk_t block
;
4356 struct ext4_free_data
*entry
;
4357 struct ext4_group_info
*db
= e4b
->bd_info
;
4358 struct super_block
*sb
= e4b
->bd_sb
;
4359 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4360 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4361 struct rb_node
*parent
= NULL
, *new_node
;
4363 BUG_ON(!ext4_handle_valid(handle
));
4364 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4365 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4367 new_node
= &new_entry
->node
;
4368 block
= new_entry
->start_blk
;
4371 /* first free block exent. We need to
4372 protect buddy cache from being freed,
4373 * otherwise we'll refresh it from
4374 * on-disk bitmap and lose not-yet-available
4376 page_cache_get(e4b
->bd_buddy_page
);
4377 page_cache_get(e4b
->bd_bitmap_page
);
4381 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4382 if (block
< entry
->start_blk
)
4384 else if (block
>= (entry
->start_blk
+ entry
->count
))
4385 n
= &(*n
)->rb_right
;
4387 ext4_grp_locked_error(sb
, e4b
->bd_group
, __func__
,
4388 "Double free of blocks %d (%d %d)",
4389 block
, entry
->start_blk
, entry
->count
);
4394 rb_link_node(new_node
, parent
, n
);
4395 rb_insert_color(new_node
, &db
->bb_free_root
);
4397 /* Now try to see the extent can be merged to left and right */
4398 node
= rb_prev(new_node
);
4400 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4401 if (can_merge(entry
, new_entry
)) {
4402 new_entry
->start_blk
= entry
->start_blk
;
4403 new_entry
->count
+= entry
->count
;
4404 rb_erase(node
, &(db
->bb_free_root
));
4405 spin_lock(&sbi
->s_md_lock
);
4406 list_del(&entry
->list
);
4407 spin_unlock(&sbi
->s_md_lock
);
4408 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4412 node
= rb_next(new_node
);
4414 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4415 if (can_merge(new_entry
, entry
)) {
4416 new_entry
->count
+= entry
->count
;
4417 rb_erase(node
, &(db
->bb_free_root
));
4418 spin_lock(&sbi
->s_md_lock
);
4419 list_del(&entry
->list
);
4420 spin_unlock(&sbi
->s_md_lock
);
4421 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4424 /* Add the extent to transaction's private list */
4425 spin_lock(&sbi
->s_md_lock
);
4426 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4427 spin_unlock(&sbi
->s_md_lock
);
4432 * ext4_free_blocks() -- Free given blocks and update quota
4433 * @handle: handle for this transaction
4435 * @block: start physical block to free
4436 * @count: number of blocks to count
4437 * @metadata: Are these metadata blocks
4439 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4440 struct buffer_head
*bh
, ext4_fsblk_t block
,
4441 unsigned long count
, int flags
)
4443 struct buffer_head
*bitmap_bh
= NULL
;
4444 struct super_block
*sb
= inode
->i_sb
;
4445 struct ext4_allocation_context
*ac
= NULL
;
4446 struct ext4_group_desc
*gdp
;
4447 struct ext4_super_block
*es
;
4448 unsigned long freed
= 0;
4449 unsigned int overflow
;
4451 struct buffer_head
*gd_bh
;
4452 ext4_group_t block_group
;
4453 struct ext4_sb_info
*sbi
;
4454 struct ext4_buddy e4b
;
4460 BUG_ON(block
!= bh
->b_blocknr
);
4462 block
= bh
->b_blocknr
;
4466 es
= EXT4_SB(sb
)->s_es
;
4467 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4468 !ext4_data_block_valid(sbi
, block
, count
)) {
4469 ext4_error(sb
, "Freeing blocks not in datazone - "
4470 "block = %llu, count = %lu", block
, count
);
4474 ext4_debug("freeing block %llu\n", block
);
4475 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4477 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4478 struct buffer_head
*tbh
= bh
;
4481 BUG_ON(bh
&& (count
> 1));
4483 for (i
= 0; i
< count
; i
++) {
4485 tbh
= sb_find_get_block(inode
->i_sb
,
4487 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4488 inode
, tbh
, block
+ i
);
4493 * We need to make sure we don't reuse the freed block until
4494 * after the transaction is committed, which we can do by
4495 * treating the block as metadata, below. We make an
4496 * exception if the inode is to be written in writeback mode
4497 * since writeback mode has weak data consistency guarantees.
4499 if (!ext4_should_writeback_data(inode
))
4500 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4502 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4504 ac
->ac_inode
= inode
;
4510 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4513 * Check to see if we are freeing blocks across a group
4516 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4517 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4520 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4525 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4531 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4532 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4533 in_range(block
, ext4_inode_table(sb
, gdp
),
4534 EXT4_SB(sb
)->s_itb_per_group
) ||
4535 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4536 EXT4_SB(sb
)->s_itb_per_group
)) {
4538 ext4_error(sb
, "Freeing blocks in system zone - "
4539 "Block = %llu, count = %lu", block
, count
);
4540 /* err = 0. ext4_std_error should be a no op */
4544 BUFFER_TRACE(bitmap_bh
, "getting write access");
4545 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4550 * We are about to modify some metadata. Call the journal APIs
4551 * to unshare ->b_data if a currently-committing transaction is
4554 BUFFER_TRACE(gd_bh
, "get_write_access");
4555 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4558 #ifdef AGGRESSIVE_CHECK
4561 for (i
= 0; i
< count
; i
++)
4562 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4566 ac
->ac_b_ex
.fe_group
= block_group
;
4567 ac
->ac_b_ex
.fe_start
= bit
;
4568 ac
->ac_b_ex
.fe_len
= count
;
4569 trace_ext4_mballoc_free(ac
);
4572 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4576 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4577 struct ext4_free_data
*new_entry
;
4579 * blocks being freed are metadata. these blocks shouldn't
4580 * be used until this transaction is committed
4582 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4583 new_entry
->start_blk
= bit
;
4584 new_entry
->group
= block_group
;
4585 new_entry
->count
= count
;
4586 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4588 ext4_lock_group(sb
, block_group
);
4589 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4590 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4592 /* need to update group_info->bb_free and bitmap
4593 * with group lock held. generate_buddy look at
4594 * them with group lock_held
4596 ext4_lock_group(sb
, block_group
);
4597 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4598 mb_free_blocks(inode
, &e4b
, bit
, count
);
4599 ext4_mb_return_to_preallocation(inode
, &e4b
, block
, count
);
4602 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4603 ext4_free_blks_set(sb
, gdp
, ret
);
4604 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4605 ext4_unlock_group(sb
, block_group
);
4606 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4608 if (sbi
->s_log_groups_per_flex
) {
4609 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4610 atomic_add(count
, &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4613 ext4_mb_release_desc(&e4b
);
4617 /* We dirtied the bitmap block */
4618 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4619 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4621 /* And the group descriptor block */
4622 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4623 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4627 if (overflow
&& !err
) {
4636 dquot_free_block(inode
, freed
);
4638 ext4_std_error(sb
, err
);
4640 kmem_cache_free(ext4_ac_cachep
, ac
);