perf: Fix forgotten preempt_enable by nested writers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob45b7aec55458f5d966b09c209856c3b87fb92037
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly = 1;
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
68 static atomic64_t perf_event_id;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock);
76 * Architecture provided APIs - weak aliases:
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
80 return NULL;
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
86 void __weak perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
102 static void get_ctx(struct perf_event_context *ctx)
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 static void free_ctx(struct rcu_head *head)
109 struct perf_event_context *ctx;
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
115 static void put_ctx(struct perf_event_context *ctx)
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
126 static void unclone_ctx(struct perf_event_context *ctx)
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
135 * If we inherit events we want to return the parent event id
136 * to userspace.
138 static u64 primary_event_id(struct perf_event *event)
140 u64 id = event->id;
142 if (event->parent)
143 id = event->parent->id;
145 return id;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 struct perf_event_context *ctx;
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
183 rcu_read_unlock();
184 return ctx;
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
194 struct perf_event_context *ctx;
195 unsigned long flags;
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
202 return ctx;
205 static void perf_unpin_context(struct perf_event_context *ctx)
207 unsigned long flags;
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
215 static inline u64 perf_clock(void)
217 return cpu_clock(raw_smp_processor_id());
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context *ctx)
225 u64 now = perf_clock();
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event *event)
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
248 event->total_time_enabled = run_end - event->tstamp_enabled;
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
255 event->total_time_running = run_end - event->tstamp_running;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event *leader)
263 struct perf_event *event;
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
286 struct perf_event *group_leader = event->group_leader;
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
293 if (group_leader == event) {
294 struct list_head *list;
296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
320 static void
321 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
335 update_group_times(event);
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
348 static void
349 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
351 struct perf_event *sibling, *tmp;
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 struct list_head *list;
361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
363 sibling->group_leader = sibling;
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
370 static void
371 event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
394 static void
395 group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
399 struct perf_event *event;
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
404 event_sched_out(group_event, cpuctx, ctx);
407 * Schedule out siblings (if any):
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
417 * Cross CPU call to remove a performance event
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
422 static void __perf_event_remove_from_context(void *info)
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
436 raw_spin_lock(&ctx->lock);
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
441 perf_disable();
443 event_sched_out(event, cpuctx, ctx);
445 list_del_event(event, ctx);
447 if (!ctx->task) {
449 * Allow more per task events with respect to the
450 * reservation:
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
457 perf_enable();
458 raw_spin_unlock(&ctx->lock);
463 * Remove the event from a task's (or a CPU's) list of events.
465 * Must be called with ctx->mutex held.
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
477 static void perf_event_remove_from_context(struct perf_event *event)
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
482 if (!task) {
484 * Per cpu events are removed via an smp call and
485 * the removal is always successful.
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
493 retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
497 raw_spin_lock_irq(&ctx->lock);
499 * If the context is active we need to retry the smp call.
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
502 raw_spin_unlock_irq(&ctx->lock);
503 goto retry;
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
511 if (!list_empty(&event->group_entry))
512 list_del_event(event, ctx);
513 raw_spin_unlock_irq(&ctx->lock);
517 * Cross CPU call to disable a performance event
519 static void __perf_event_disable(void *info)
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
532 raw_spin_lock(&ctx->lock);
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
548 raw_spin_unlock(&ctx->lock);
552 * Disable a event.
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
564 void perf_event_disable(struct perf_event *event)
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
569 if (!task) {
571 * Disable the event on the cpu that it's on
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
581 raw_spin_lock_irq(&ctx->lock);
583 * If the event is still active, we need to retry the cross-call.
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
586 raw_spin_unlock_irq(&ctx->lock);
587 goto retry;
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
599 raw_spin_unlock_irq(&ctx->lock);
602 static int
603 event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
605 struct perf_event_context *ctx)
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
610 event->state = PERF_EVENT_STATE_ACTIVE;
611 event->oncpu = smp_processor_id();
613 * The new state must be visible before we turn it on in the hardware:
615 smp_wmb();
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
632 return 0;
635 static int
636 group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
638 struct perf_event_context *ctx)
640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
643 int ret;
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
652 if (txn)
653 pmu->start_txn(pmu);
655 if (event_sched_in(group_event, cpuctx, ctx))
656 return -EAGAIN;
659 * Schedule in siblings as one group (if any):
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662 if (event_sched_in(event, cpuctx, ctx)) {
663 partial_group = event;
664 goto group_error;
668 if (!txn)
669 return 0;
671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
677 group_error:
678 if (txn)
679 pmu->cancel_txn(pmu);
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
690 event_sched_out(group_event, cpuctx, ctx);
692 return -EAGAIN;
696 * Work out whether we can put this event group on the CPU now.
698 static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
703 * Groups consisting entirely of software events can always go on.
705 if (event->group_flags & PERF_GROUP_SOFTWARE)
706 return 1;
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
711 if (cpuctx->exclusive)
712 return 0;
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
723 return can_add_hw;
726 static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
736 * Cross CPU call to install and enable a performance event
738 * Must be called with ctx->mutex held
740 static void __perf_install_in_context(void *info)
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
746 int err;
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
761 raw_spin_lock(&ctx->lock);
762 ctx->is_active = 1;
763 update_context_time(ctx);
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
769 perf_disable();
771 add_event_to_ctx(event, ctx);
773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
792 err = event_sched_in(event, cpuctx, ctx);
794 if (err) {
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
811 unlock:
812 perf_enable();
814 raw_spin_unlock(&ctx->lock);
818 * Attach a performance event to a context
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
827 * Must be called with ctx->mutex held.
829 static void
830 perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
834 struct task_struct *task = ctx->task;
836 if (!task) {
838 * Per cpu events are installed via an smp call and
839 * the install is always successful.
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
846 retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
850 raw_spin_lock_irq(&ctx->lock);
852 * we need to retry the smp call.
854 if (ctx->is_active && list_empty(&event->group_entry)) {
855 raw_spin_unlock_irq(&ctx->lock);
856 goto retry;
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
866 raw_spin_unlock_irq(&ctx->lock);
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
877 static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
880 struct perf_event *sub;
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
891 * Cross CPU call to enable a performance event
893 static void __perf_event_enable(void *info)
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
911 raw_spin_lock(&ctx->lock);
912 ctx->is_active = 1;
913 update_context_time(ctx);
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
934 err = group_sched_in(event, cpuctx, ctx);
935 else
936 err = event_sched_in(event, cpuctx, ctx);
937 perf_enable();
940 if (err) {
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
953 unlock:
954 raw_spin_unlock(&ctx->lock);
958 * Enable a event.
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
966 void perf_event_enable(struct perf_event *event)
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
971 if (!task) {
973 * Enable the event on the cpu that it's on
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
980 raw_spin_lock_irq(&ctx->lock);
981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
994 retry:
995 raw_spin_unlock_irq(&ctx->lock);
996 task_oncpu_function_call(task, __perf_event_enable, event);
998 raw_spin_lock_irq(&ctx->lock);
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1014 out:
1015 raw_spin_unlock_irq(&ctx->lock);
1018 static int perf_event_refresh(struct perf_event *event, int refresh)
1021 * not supported on inherited events
1023 if (event->attr.inherit)
1024 return -EINVAL;
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1029 return 0;
1032 enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1038 static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
1042 struct perf_event *event;
1044 raw_spin_lock(&ctx->lock);
1045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1050 perf_disable();
1051 if (!ctx->nr_active)
1052 goto out_enable;
1054 if (event_type & EVENT_PINNED)
1055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1058 if (event_type & EVENT_FLEXIBLE)
1059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1062 out_enable:
1063 perf_enable();
1064 out:
1065 raw_spin_unlock(&ctx->lock);
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1079 static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1087 static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1090 u64 value;
1092 if (!event->attr.inherit_stat)
1093 return;
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
1104 event->pmu->read(event);
1105 /* fall-through */
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1111 default:
1112 break;
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1127 * Since we swizzled the values, update the user visible data too.
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1133 #define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1136 static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1139 struct perf_event *event, *next_event;
1141 if (!ctx->nr_stat)
1142 return;
1144 update_context_time(ctx);
1146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1155 __perf_event_sync_stat(event, next_event);
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1166 * We stop each event and update the event value in event->count.
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1173 void perf_event_task_sched_out(struct task_struct *task,
1174 struct task_struct *next)
1176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
1180 int do_switch = 1;
1182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1203 if (context_equiv(ctx, next_ctx)) {
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1214 perf_event_sync_stat(ctx, next_ctx);
1216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
1219 rcu_read_unlock();
1221 if (do_switch) {
1222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1223 cpuctx->task_ctx = NULL;
1227 static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1232 if (!cpuctx->task_ctx)
1233 return;
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1238 ctx_sched_out(ctx, cpuctx, event_type);
1239 cpuctx->task_ctx = NULL;
1243 * Called with IRQs disabled
1245 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1247 task_ctx_sched_out(ctx, EVENT_ALL);
1251 * Called with IRQs disabled
1253 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1259 static void
1260 ctx_pinned_sched_in(struct perf_event_context *ctx,
1261 struct perf_cpu_context *cpuctx)
1263 struct perf_event *event;
1265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
1267 continue;
1268 if (event->cpu != -1 && event->cpu != smp_processor_id())
1269 continue;
1271 if (group_can_go_on(event, cpuctx, 1))
1272 group_sched_in(event, cpuctx, ctx);
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1285 static void
1286 ctx_flexible_sched_in(struct perf_event_context *ctx,
1287 struct perf_cpu_context *cpuctx)
1289 struct perf_event *event;
1290 int can_add_hw = 1;
1292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
1295 continue;
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1300 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 continue;
1303 if (group_can_go_on(event, cpuctx, can_add_hw))
1304 if (group_sched_in(event, cpuctx, ctx))
1305 can_add_hw = 0;
1309 static void
1310 ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1319 ctx->timestamp = perf_clock();
1321 perf_disable();
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1327 if (event_type & EVENT_PINNED)
1328 ctx_pinned_sched_in(ctx, cpuctx);
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
1332 ctx_flexible_sched_in(ctx, cpuctx);
1334 perf_enable();
1335 out:
1336 raw_spin_unlock(&ctx->lock);
1339 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1344 ctx_sched_in(ctx, cpuctx, event_type);
1347 static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1364 * We restore the event value and then enable it.
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1371 void perf_event_task_sched_in(struct task_struct *task)
1373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
1376 if (likely(!ctx))
1377 return;
1379 if (cpuctx->task_ctx == ctx)
1380 return;
1382 perf_disable();
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1395 cpuctx->task_ctx = ctx;
1397 perf_enable();
1400 #define MAX_INTERRUPTS (~0ULL)
1402 static void perf_log_throttle(struct perf_event *event, int enable);
1404 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1431 #define REDUCE_FLS(a, b) \
1432 do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1440 } while (0)
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1468 divisor = nsec * frequency;
1471 return div64_u64(dividend, divisor);
1474 static void perf_event_stop(struct perf_event *event)
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1479 return event->pmu->stop(event);
1482 static int perf_event_start(struct perf_event *event)
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1487 return event->pmu->start(event);
1490 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1496 period = perf_calculate_period(event, nsec, count);
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1501 sample_period = hwc->sample_period + delta;
1503 if (!sample_period)
1504 sample_period = 1;
1506 hwc->sample_period = sample_period;
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
1510 perf_event_stop(event);
1511 atomic64_set(&hwc->period_left, 0);
1512 perf_event_start(event);
1513 perf_enable();
1517 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
1521 u64 interrupts, now;
1522 s64 delta;
1524 raw_spin_lock(&ctx->lock);
1525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1532 hwc = &event->hw;
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1538 * unthrottle events on the tick
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
1542 perf_disable();
1543 event->pmu->unthrottle(event);
1544 perf_enable();
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1550 perf_disable();
1551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
1556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
1558 perf_enable();
1560 raw_spin_unlock(&ctx->lock);
1564 * Round-robin a context's events:
1566 static void rotate_ctx(struct perf_event_context *ctx)
1568 raw_spin_lock(&ctx->lock);
1570 /* Rotate the first entry last of non-pinned groups */
1571 list_rotate_left(&ctx->flexible_groups);
1573 raw_spin_unlock(&ctx->lock);
1576 void perf_event_task_tick(struct task_struct *curr)
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
1580 int rotate = 0;
1582 if (!atomic_read(&nr_events))
1583 return;
1585 cpuctx = &__get_cpu_var(perf_cpu_context);
1586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
1590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
1594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1598 if (!rotate)
1599 return;
1601 perf_disable();
1602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1603 if (ctx)
1604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1611 if (ctx)
1612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1613 perf_enable();
1616 static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1626 __perf_event_mark_enabled(event, ctx);
1628 return 1;
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1635 static void perf_event_enable_on_exec(struct task_struct *task)
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
1641 int ret;
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1648 __perf_event_task_sched_out(ctx);
1650 raw_spin_lock(&ctx->lock);
1652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
1665 * Unclone this context if we enabled any event.
1667 if (enabled)
1668 unclone_ctx(ctx);
1670 raw_spin_unlock(&ctx->lock);
1672 perf_event_task_sched_in(task);
1673 out:
1674 local_irq_restore(flags);
1678 * Cross CPU call to read the hardware event
1680 static void __perf_event_read(void *info)
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1696 raw_spin_lock(&ctx->lock);
1697 update_context_time(ctx);
1698 update_event_times(event);
1699 raw_spin_unlock(&ctx->lock);
1701 event->pmu->read(event);
1704 static u64 perf_event_read(struct perf_event *event)
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1717 raw_spin_lock_irqsave(&ctx->lock, flags);
1718 update_context_time(ctx);
1719 update_event_times(event);
1720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1723 return atomic64_read(&event->count);
1727 * Initialize the perf_event context in a task_struct:
1729 static void
1730 __perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1733 raw_spin_lock_init(&ctx->lock);
1734 mutex_init(&ctx->mutex);
1735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
1737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1742 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1750 if (pid == -1 && cpu != -1) {
1751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1755 if (cpu < 0 || cpu >= nr_cpumask_bits)
1756 return ERR_PTR(-EINVAL);
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1763 if (!cpu_online(cpu))
1764 return ERR_PTR(-ENODEV);
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1770 return ctx;
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1786 * Can't attach events to a dying task.
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
1801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1804 if (!ctx) {
1805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1813 * We raced with some other task; use
1814 * the context they set.
1816 kfree(ctx);
1817 goto retry;
1819 get_task_struct(task);
1822 put_task_struct(task);
1823 return ctx;
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1830 static void perf_event_free_filter(struct perf_event *event);
1832 static void free_event_rcu(struct rcu_head *head)
1834 struct perf_event *event;
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
1839 perf_event_free_filter(event);
1840 kfree(event);
1843 static void perf_pending_sync(struct perf_event *event);
1845 static void free_event(struct perf_event *event)
1847 perf_pending_sync(event);
1849 if (!event->parent) {
1850 atomic_dec(&nr_events);
1851 if (event->attr.mmap)
1852 atomic_dec(&nr_mmap_events);
1853 if (event->attr.comm)
1854 atomic_dec(&nr_comm_events);
1855 if (event->attr.task)
1856 atomic_dec(&nr_task_events);
1859 if (event->output) {
1860 fput(event->output->filp);
1861 event->output = NULL;
1864 if (event->destroy)
1865 event->destroy(event);
1867 put_ctx(event->ctx);
1868 call_rcu(&event->rcu_head, free_event_rcu);
1871 int perf_event_release_kernel(struct perf_event *event)
1873 struct perf_event_context *ctx = event->ctx;
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1879 perf_event_disable(event);
1881 WARN_ON_ONCE(ctx->parent_ctx);
1883 * There are two ways this annotation is useful:
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1894 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1895 raw_spin_lock_irq(&ctx->lock);
1896 list_del_event(event, ctx);
1897 perf_destroy_group(event, ctx);
1898 raw_spin_unlock_irq(&ctx->lock);
1899 mutex_unlock(&ctx->mutex);
1901 mutex_lock(&event->owner->perf_event_mutex);
1902 list_del_init(&event->owner_entry);
1903 mutex_unlock(&event->owner->perf_event_mutex);
1904 put_task_struct(event->owner);
1906 free_event(event);
1908 return 0;
1910 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1913 * Called when the last reference to the file is gone.
1915 static int perf_release(struct inode *inode, struct file *file)
1917 struct perf_event *event = file->private_data;
1919 file->private_data = NULL;
1921 return perf_event_release_kernel(event);
1924 static int perf_event_read_size(struct perf_event *event)
1926 int entry = sizeof(u64); /* value */
1927 int size = 0;
1928 int nr = 1;
1930 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931 size += sizeof(u64);
1933 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934 size += sizeof(u64);
1936 if (event->attr.read_format & PERF_FORMAT_ID)
1937 entry += sizeof(u64);
1939 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940 nr += event->group_leader->nr_siblings;
1941 size += sizeof(u64);
1944 size += entry * nr;
1946 return size;
1949 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1951 struct perf_event *child;
1952 u64 total = 0;
1954 *enabled = 0;
1955 *running = 0;
1957 mutex_lock(&event->child_mutex);
1958 total += perf_event_read(event);
1959 *enabled += event->total_time_enabled +
1960 atomic64_read(&event->child_total_time_enabled);
1961 *running += event->total_time_running +
1962 atomic64_read(&event->child_total_time_running);
1964 list_for_each_entry(child, &event->child_list, child_list) {
1965 total += perf_event_read(child);
1966 *enabled += child->total_time_enabled;
1967 *running += child->total_time_running;
1969 mutex_unlock(&event->child_mutex);
1971 return total;
1973 EXPORT_SYMBOL_GPL(perf_event_read_value);
1975 static int perf_event_read_group(struct perf_event *event,
1976 u64 read_format, char __user *buf)
1978 struct perf_event *leader = event->group_leader, *sub;
1979 int n = 0, size = 0, ret = -EFAULT;
1980 struct perf_event_context *ctx = leader->ctx;
1981 u64 values[5];
1982 u64 count, enabled, running;
1984 mutex_lock(&ctx->mutex);
1985 count = perf_event_read_value(leader, &enabled, &running);
1987 values[n++] = 1 + leader->nr_siblings;
1988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
1992 values[n++] = count;
1993 if (read_format & PERF_FORMAT_ID)
1994 values[n++] = primary_event_id(leader);
1996 size = n * sizeof(u64);
1998 if (copy_to_user(buf, values, size))
1999 goto unlock;
2001 ret = size;
2003 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2004 n = 0;
2006 values[n++] = perf_event_read_value(sub, &enabled, &running);
2007 if (read_format & PERF_FORMAT_ID)
2008 values[n++] = primary_event_id(sub);
2010 size = n * sizeof(u64);
2012 if (copy_to_user(buf + ret, values, size)) {
2013 ret = -EFAULT;
2014 goto unlock;
2017 ret += size;
2019 unlock:
2020 mutex_unlock(&ctx->mutex);
2022 return ret;
2025 static int perf_event_read_one(struct perf_event *event,
2026 u64 read_format, char __user *buf)
2028 u64 enabled, running;
2029 u64 values[4];
2030 int n = 0;
2032 values[n++] = perf_event_read_value(event, &enabled, &running);
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034 values[n++] = enabled;
2035 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036 values[n++] = running;
2037 if (read_format & PERF_FORMAT_ID)
2038 values[n++] = primary_event_id(event);
2040 if (copy_to_user(buf, values, n * sizeof(u64)))
2041 return -EFAULT;
2043 return n * sizeof(u64);
2047 * Read the performance event - simple non blocking version for now
2049 static ssize_t
2050 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2052 u64 read_format = event->attr.read_format;
2053 int ret;
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2060 if (event->state == PERF_EVENT_STATE_ERROR)
2061 return 0;
2063 if (count < perf_event_read_size(event))
2064 return -ENOSPC;
2066 WARN_ON_ONCE(event->ctx->parent_ctx);
2067 if (read_format & PERF_FORMAT_GROUP)
2068 ret = perf_event_read_group(event, read_format, buf);
2069 else
2070 ret = perf_event_read_one(event, read_format, buf);
2072 return ret;
2075 static ssize_t
2076 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2078 struct perf_event *event = file->private_data;
2080 return perf_read_hw(event, buf, count);
2083 static unsigned int perf_poll(struct file *file, poll_table *wait)
2085 struct perf_event *event = file->private_data;
2086 struct perf_mmap_data *data;
2087 unsigned int events = POLL_HUP;
2089 rcu_read_lock();
2090 data = rcu_dereference(event->data);
2091 if (data)
2092 events = atomic_xchg(&data->poll, 0);
2093 rcu_read_unlock();
2095 poll_wait(file, &event->waitq, wait);
2097 return events;
2100 static void perf_event_reset(struct perf_event *event)
2102 (void)perf_event_read(event);
2103 atomic64_set(&event->count, 0);
2104 perf_event_update_userpage(event);
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2113 static void perf_event_for_each_child(struct perf_event *event,
2114 void (*func)(struct perf_event *))
2116 struct perf_event *child;
2118 WARN_ON_ONCE(event->ctx->parent_ctx);
2119 mutex_lock(&event->child_mutex);
2120 func(event);
2121 list_for_each_entry(child, &event->child_list, child_list)
2122 func(child);
2123 mutex_unlock(&event->child_mutex);
2126 static void perf_event_for_each(struct perf_event *event,
2127 void (*func)(struct perf_event *))
2129 struct perf_event_context *ctx = event->ctx;
2130 struct perf_event *sibling;
2132 WARN_ON_ONCE(ctx->parent_ctx);
2133 mutex_lock(&ctx->mutex);
2134 event = event->group_leader;
2136 perf_event_for_each_child(event, func);
2137 func(event);
2138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139 perf_event_for_each_child(event, func);
2140 mutex_unlock(&ctx->mutex);
2143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2145 struct perf_event_context *ctx = event->ctx;
2146 unsigned long size;
2147 int ret = 0;
2148 u64 value;
2150 if (!event->attr.sample_period)
2151 return -EINVAL;
2153 size = copy_from_user(&value, arg, sizeof(value));
2154 if (size != sizeof(value))
2155 return -EFAULT;
2157 if (!value)
2158 return -EINVAL;
2160 raw_spin_lock_irq(&ctx->lock);
2161 if (event->attr.freq) {
2162 if (value > sysctl_perf_event_sample_rate) {
2163 ret = -EINVAL;
2164 goto unlock;
2167 event->attr.sample_freq = value;
2168 } else {
2169 event->attr.sample_period = value;
2170 event->hw.sample_period = value;
2172 unlock:
2173 raw_spin_unlock_irq(&ctx->lock);
2175 return ret;
2178 static int perf_event_set_output(struct perf_event *event, int output_fd);
2179 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2181 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2205 return perf_event_set_output(event, arg);
2207 case PERF_EVENT_IOC_SET_FILTER:
2208 return perf_event_set_filter(event, (void __user *)arg);
2210 default:
2211 return -ENOTTY;
2214 if (flags & PERF_IOC_FLAG_GROUP)
2215 perf_event_for_each(event, func);
2216 else
2217 perf_event_for_each_child(event, func);
2219 return 0;
2222 int perf_event_task_enable(void)
2224 struct perf_event *event;
2226 mutex_lock(&current->perf_event_mutex);
2227 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228 perf_event_for_each_child(event, perf_event_enable);
2229 mutex_unlock(&current->perf_event_mutex);
2231 return 0;
2234 int perf_event_task_disable(void)
2236 struct perf_event *event;
2238 mutex_lock(&current->perf_event_mutex);
2239 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240 perf_event_for_each_child(event, perf_event_disable);
2241 mutex_unlock(&current->perf_event_mutex);
2243 return 0;
2246 #ifndef PERF_EVENT_INDEX_OFFSET
2247 # define PERF_EVENT_INDEX_OFFSET 0
2248 #endif
2250 static int perf_event_index(struct perf_event *event)
2252 if (event->state != PERF_EVENT_STATE_ACTIVE)
2253 return 0;
2255 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2263 void perf_event_update_userpage(struct perf_event *event)
2265 struct perf_event_mmap_page *userpg;
2266 struct perf_mmap_data *data;
2268 rcu_read_lock();
2269 data = rcu_dereference(event->data);
2270 if (!data)
2271 goto unlock;
2273 userpg = data->user_page;
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2279 preempt_disable();
2280 ++userpg->lock;
2281 barrier();
2282 userpg->index = perf_event_index(event);
2283 userpg->offset = atomic64_read(&event->count);
2284 if (event->state == PERF_EVENT_STATE_ACTIVE)
2285 userpg->offset -= atomic64_read(&event->hw.prev_count);
2287 userpg->time_enabled = event->total_time_enabled +
2288 atomic64_read(&event->child_total_time_enabled);
2290 userpg->time_running = event->total_time_running +
2291 atomic64_read(&event->child_total_time_running);
2293 barrier();
2294 ++userpg->lock;
2295 preempt_enable();
2296 unlock:
2297 rcu_read_unlock();
2300 static unsigned long perf_data_size(struct perf_mmap_data *data)
2302 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2305 #ifndef CONFIG_PERF_USE_VMALLOC
2308 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2311 static struct page *
2312 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2314 if (pgoff > data->nr_pages)
2315 return NULL;
2317 if (pgoff == 0)
2318 return virt_to_page(data->user_page);
2320 return virt_to_page(data->data_pages[pgoff - 1]);
2323 static void *perf_mmap_alloc_page(int cpu)
2325 struct page *page;
2326 int node;
2328 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2329 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2330 if (!page)
2331 return NULL;
2333 return page_address(page);
2336 static struct perf_mmap_data *
2337 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2339 struct perf_mmap_data *data;
2340 unsigned long size;
2341 int i;
2343 WARN_ON(atomic_read(&event->mmap_count));
2345 size = sizeof(struct perf_mmap_data);
2346 size += nr_pages * sizeof(void *);
2348 data = kzalloc(size, GFP_KERNEL);
2349 if (!data)
2350 goto fail;
2352 data->user_page = perf_mmap_alloc_page(event->cpu);
2353 if (!data->user_page)
2354 goto fail_user_page;
2356 for (i = 0; i < nr_pages; i++) {
2357 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2358 if (!data->data_pages[i])
2359 goto fail_data_pages;
2362 data->data_order = 0;
2363 data->nr_pages = nr_pages;
2365 return data;
2367 fail_data_pages:
2368 for (i--; i >= 0; i--)
2369 free_page((unsigned long)data->data_pages[i]);
2371 free_page((unsigned long)data->user_page);
2373 fail_user_page:
2374 kfree(data);
2376 fail:
2377 return NULL;
2380 static void perf_mmap_free_page(unsigned long addr)
2382 struct page *page = virt_to_page((void *)addr);
2384 page->mapping = NULL;
2385 __free_page(page);
2388 static void perf_mmap_data_free(struct perf_mmap_data *data)
2390 int i;
2392 perf_mmap_free_page((unsigned long)data->user_page);
2393 for (i = 0; i < data->nr_pages; i++)
2394 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2395 kfree(data);
2398 #else
2401 * Back perf_mmap() with vmalloc memory.
2403 * Required for architectures that have d-cache aliasing issues.
2406 static struct page *
2407 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2409 if (pgoff > (1UL << data->data_order))
2410 return NULL;
2412 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2415 static void perf_mmap_unmark_page(void *addr)
2417 struct page *page = vmalloc_to_page(addr);
2419 page->mapping = NULL;
2422 static void perf_mmap_data_free_work(struct work_struct *work)
2424 struct perf_mmap_data *data;
2425 void *base;
2426 int i, nr;
2428 data = container_of(work, struct perf_mmap_data, work);
2429 nr = 1 << data->data_order;
2431 base = data->user_page;
2432 for (i = 0; i < nr + 1; i++)
2433 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2435 vfree(base);
2436 kfree(data);
2439 static void perf_mmap_data_free(struct perf_mmap_data *data)
2441 schedule_work(&data->work);
2444 static struct perf_mmap_data *
2445 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2447 struct perf_mmap_data *data;
2448 unsigned long size;
2449 void *all_buf;
2451 WARN_ON(atomic_read(&event->mmap_count));
2453 size = sizeof(struct perf_mmap_data);
2454 size += sizeof(void *);
2456 data = kzalloc(size, GFP_KERNEL);
2457 if (!data)
2458 goto fail;
2460 INIT_WORK(&data->work, perf_mmap_data_free_work);
2462 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2463 if (!all_buf)
2464 goto fail_all_buf;
2466 data->user_page = all_buf;
2467 data->data_pages[0] = all_buf + PAGE_SIZE;
2468 data->data_order = ilog2(nr_pages);
2469 data->nr_pages = 1;
2471 return data;
2473 fail_all_buf:
2474 kfree(data);
2476 fail:
2477 return NULL;
2480 #endif
2482 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2484 struct perf_event *event = vma->vm_file->private_data;
2485 struct perf_mmap_data *data;
2486 int ret = VM_FAULT_SIGBUS;
2488 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2489 if (vmf->pgoff == 0)
2490 ret = 0;
2491 return ret;
2494 rcu_read_lock();
2495 data = rcu_dereference(event->data);
2496 if (!data)
2497 goto unlock;
2499 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2500 goto unlock;
2502 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2503 if (!vmf->page)
2504 goto unlock;
2506 get_page(vmf->page);
2507 vmf->page->mapping = vma->vm_file->f_mapping;
2508 vmf->page->index = vmf->pgoff;
2510 ret = 0;
2511 unlock:
2512 rcu_read_unlock();
2514 return ret;
2517 static void
2518 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2520 long max_size = perf_data_size(data);
2522 if (event->attr.watermark) {
2523 data->watermark = min_t(long, max_size,
2524 event->attr.wakeup_watermark);
2527 if (!data->watermark)
2528 data->watermark = max_size / 2;
2531 rcu_assign_pointer(event->data, data);
2534 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2536 struct perf_mmap_data *data;
2538 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2539 perf_mmap_data_free(data);
2542 static void perf_mmap_data_release(struct perf_event *event)
2544 struct perf_mmap_data *data = event->data;
2546 WARN_ON(atomic_read(&event->mmap_count));
2548 rcu_assign_pointer(event->data, NULL);
2549 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2552 static void perf_mmap_open(struct vm_area_struct *vma)
2554 struct perf_event *event = vma->vm_file->private_data;
2556 atomic_inc(&event->mmap_count);
2559 static void perf_mmap_close(struct vm_area_struct *vma)
2561 struct perf_event *event = vma->vm_file->private_data;
2563 WARN_ON_ONCE(event->ctx->parent_ctx);
2564 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2565 unsigned long size = perf_data_size(event->data);
2566 struct user_struct *user = current_user();
2568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2569 vma->vm_mm->locked_vm -= event->data->nr_locked;
2570 perf_mmap_data_release(event);
2571 mutex_unlock(&event->mmap_mutex);
2575 static const struct vm_operations_struct perf_mmap_vmops = {
2576 .open = perf_mmap_open,
2577 .close = perf_mmap_close,
2578 .fault = perf_mmap_fault,
2579 .page_mkwrite = perf_mmap_fault,
2582 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2584 struct perf_event *event = file->private_data;
2585 unsigned long user_locked, user_lock_limit;
2586 struct user_struct *user = current_user();
2587 unsigned long locked, lock_limit;
2588 struct perf_mmap_data *data;
2589 unsigned long vma_size;
2590 unsigned long nr_pages;
2591 long user_extra, extra;
2592 int ret = 0;
2595 * Don't allow mmap() of inherited per-task counters. This would
2596 * create a performance issue due to all children writing to the
2597 * same buffer.
2599 if (event->cpu == -1 && event->attr.inherit)
2600 return -EINVAL;
2602 if (!(vma->vm_flags & VM_SHARED))
2603 return -EINVAL;
2605 vma_size = vma->vm_end - vma->vm_start;
2606 nr_pages = (vma_size / PAGE_SIZE) - 1;
2609 * If we have data pages ensure they're a power-of-two number, so we
2610 * can do bitmasks instead of modulo.
2612 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2613 return -EINVAL;
2615 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2616 return -EINVAL;
2618 if (vma->vm_pgoff != 0)
2619 return -EINVAL;
2621 WARN_ON_ONCE(event->ctx->parent_ctx);
2622 mutex_lock(&event->mmap_mutex);
2623 if (event->output) {
2624 ret = -EINVAL;
2625 goto unlock;
2628 if (atomic_inc_not_zero(&event->mmap_count)) {
2629 if (nr_pages != event->data->nr_pages)
2630 ret = -EINVAL;
2631 goto unlock;
2634 user_extra = nr_pages + 1;
2635 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2638 * Increase the limit linearly with more CPUs:
2640 user_lock_limit *= num_online_cpus();
2642 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2644 extra = 0;
2645 if (user_locked > user_lock_limit)
2646 extra = user_locked - user_lock_limit;
2648 lock_limit = rlimit(RLIMIT_MEMLOCK);
2649 lock_limit >>= PAGE_SHIFT;
2650 locked = vma->vm_mm->locked_vm + extra;
2652 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2653 !capable(CAP_IPC_LOCK)) {
2654 ret = -EPERM;
2655 goto unlock;
2658 WARN_ON(event->data);
2660 data = perf_mmap_data_alloc(event, nr_pages);
2661 ret = -ENOMEM;
2662 if (!data)
2663 goto unlock;
2665 ret = 0;
2666 perf_mmap_data_init(event, data);
2668 atomic_set(&event->mmap_count, 1);
2669 atomic_long_add(user_extra, &user->locked_vm);
2670 vma->vm_mm->locked_vm += extra;
2671 event->data->nr_locked = extra;
2672 if (vma->vm_flags & VM_WRITE)
2673 event->data->writable = 1;
2675 unlock:
2676 mutex_unlock(&event->mmap_mutex);
2678 vma->vm_flags |= VM_RESERVED;
2679 vma->vm_ops = &perf_mmap_vmops;
2681 return ret;
2684 static int perf_fasync(int fd, struct file *filp, int on)
2686 struct inode *inode = filp->f_path.dentry->d_inode;
2687 struct perf_event *event = filp->private_data;
2688 int retval;
2690 mutex_lock(&inode->i_mutex);
2691 retval = fasync_helper(fd, filp, on, &event->fasync);
2692 mutex_unlock(&inode->i_mutex);
2694 if (retval < 0)
2695 return retval;
2697 return 0;
2700 static const struct file_operations perf_fops = {
2701 .llseek = no_llseek,
2702 .release = perf_release,
2703 .read = perf_read,
2704 .poll = perf_poll,
2705 .unlocked_ioctl = perf_ioctl,
2706 .compat_ioctl = perf_ioctl,
2707 .mmap = perf_mmap,
2708 .fasync = perf_fasync,
2712 * Perf event wakeup
2714 * If there's data, ensure we set the poll() state and publish everything
2715 * to user-space before waking everybody up.
2718 void perf_event_wakeup(struct perf_event *event)
2720 wake_up_all(&event->waitq);
2722 if (event->pending_kill) {
2723 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2724 event->pending_kill = 0;
2729 * Pending wakeups
2731 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2733 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2734 * single linked list and use cmpxchg() to add entries lockless.
2737 static void perf_pending_event(struct perf_pending_entry *entry)
2739 struct perf_event *event = container_of(entry,
2740 struct perf_event, pending);
2742 if (event->pending_disable) {
2743 event->pending_disable = 0;
2744 __perf_event_disable(event);
2747 if (event->pending_wakeup) {
2748 event->pending_wakeup = 0;
2749 perf_event_wakeup(event);
2753 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2755 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2756 PENDING_TAIL,
2759 static void perf_pending_queue(struct perf_pending_entry *entry,
2760 void (*func)(struct perf_pending_entry *))
2762 struct perf_pending_entry **head;
2764 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2765 return;
2767 entry->func = func;
2769 head = &get_cpu_var(perf_pending_head);
2771 do {
2772 entry->next = *head;
2773 } while (cmpxchg(head, entry->next, entry) != entry->next);
2775 set_perf_event_pending();
2777 put_cpu_var(perf_pending_head);
2780 static int __perf_pending_run(void)
2782 struct perf_pending_entry *list;
2783 int nr = 0;
2785 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2786 while (list != PENDING_TAIL) {
2787 void (*func)(struct perf_pending_entry *);
2788 struct perf_pending_entry *entry = list;
2790 list = list->next;
2792 func = entry->func;
2793 entry->next = NULL;
2795 * Ensure we observe the unqueue before we issue the wakeup,
2796 * so that we won't be waiting forever.
2797 * -- see perf_not_pending().
2799 smp_wmb();
2801 func(entry);
2802 nr++;
2805 return nr;
2808 static inline int perf_not_pending(struct perf_event *event)
2811 * If we flush on whatever cpu we run, there is a chance we don't
2812 * need to wait.
2814 get_cpu();
2815 __perf_pending_run();
2816 put_cpu();
2819 * Ensure we see the proper queue state before going to sleep
2820 * so that we do not miss the wakeup. -- see perf_pending_handle()
2822 smp_rmb();
2823 return event->pending.next == NULL;
2826 static void perf_pending_sync(struct perf_event *event)
2828 wait_event(event->waitq, perf_not_pending(event));
2831 void perf_event_do_pending(void)
2833 __perf_pending_run();
2837 * Callchain support -- arch specific
2840 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2842 return NULL;
2845 __weak
2846 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2852 * We assume there is only KVM supporting the callbacks.
2853 * Later on, we might change it to a list if there is
2854 * another virtualization implementation supporting the callbacks.
2856 struct perf_guest_info_callbacks *perf_guest_cbs;
2858 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2860 perf_guest_cbs = cbs;
2861 return 0;
2863 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2865 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2867 perf_guest_cbs = NULL;
2868 return 0;
2870 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2873 * Output
2875 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2876 unsigned long offset, unsigned long head)
2878 unsigned long mask;
2880 if (!data->writable)
2881 return true;
2883 mask = perf_data_size(data) - 1;
2885 offset = (offset - tail) & mask;
2886 head = (head - tail) & mask;
2888 if ((int)(head - offset) < 0)
2889 return false;
2891 return true;
2894 static void perf_output_wakeup(struct perf_output_handle *handle)
2896 atomic_set(&handle->data->poll, POLL_IN);
2898 if (handle->nmi) {
2899 handle->event->pending_wakeup = 1;
2900 perf_pending_queue(&handle->event->pending,
2901 perf_pending_event);
2902 } else
2903 perf_event_wakeup(handle->event);
2907 * We need to ensure a later event_id doesn't publish a head when a former
2908 * event isn't done writing. However since we need to deal with NMIs we
2909 * cannot fully serialize things.
2911 * We only publish the head (and generate a wakeup) when the outer-most
2912 * event completes.
2914 static void perf_output_get_handle(struct perf_output_handle *handle)
2916 struct perf_mmap_data *data = handle->data;
2918 preempt_disable();
2919 local_inc(&data->nest);
2920 handle->wakeup = local_read(&data->wakeup);
2923 static void perf_output_put_handle(struct perf_output_handle *handle)
2925 struct perf_mmap_data *data = handle->data;
2926 unsigned long head;
2928 again:
2929 head = local_read(&data->head);
2932 * IRQ/NMI can happen here, which means we can miss a head update.
2935 if (!local_dec_and_test(&data->nest))
2936 goto out;
2939 * Publish the known good head. Rely on the full barrier implied
2940 * by atomic_dec_and_test() order the data->head read and this
2941 * write.
2943 data->user_page->data_head = head;
2946 * Now check if we missed an update, rely on the (compiler)
2947 * barrier in atomic_dec_and_test() to re-read data->head.
2949 if (unlikely(head != local_read(&data->head))) {
2950 local_inc(&data->nest);
2951 goto again;
2954 if (handle->wakeup != local_read(&data->wakeup))
2955 perf_output_wakeup(handle);
2957 out:
2958 preempt_enable();
2961 void perf_output_copy(struct perf_output_handle *handle,
2962 const void *buf, unsigned int len)
2964 unsigned int pages_mask;
2965 unsigned long offset;
2966 unsigned int size;
2967 void **pages;
2969 offset = handle->offset;
2970 pages_mask = handle->data->nr_pages - 1;
2971 pages = handle->data->data_pages;
2973 do {
2974 unsigned long page_offset;
2975 unsigned long page_size;
2976 int nr;
2978 nr = (offset >> PAGE_SHIFT) & pages_mask;
2979 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2980 page_offset = offset & (page_size - 1);
2981 size = min_t(unsigned int, page_size - page_offset, len);
2983 memcpy(pages[nr] + page_offset, buf, size);
2985 len -= size;
2986 buf += size;
2987 offset += size;
2988 } while (len);
2990 handle->offset = offset;
2993 * Check we didn't copy past our reservation window, taking the
2994 * possible unsigned int wrap into account.
2996 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2999 int perf_output_begin(struct perf_output_handle *handle,
3000 struct perf_event *event, unsigned int size,
3001 int nmi, int sample)
3003 struct perf_event *output_event;
3004 struct perf_mmap_data *data;
3005 unsigned long tail, offset, head;
3006 int have_lost;
3007 struct {
3008 struct perf_event_header header;
3009 u64 id;
3010 u64 lost;
3011 } lost_event;
3013 rcu_read_lock();
3015 * For inherited events we send all the output towards the parent.
3017 if (event->parent)
3018 event = event->parent;
3020 output_event = rcu_dereference(event->output);
3021 if (output_event)
3022 event = output_event;
3024 data = rcu_dereference(event->data);
3025 if (!data)
3026 goto out;
3028 handle->data = data;
3029 handle->event = event;
3030 handle->nmi = nmi;
3031 handle->sample = sample;
3033 if (!data->nr_pages)
3034 goto out;
3036 have_lost = local_read(&data->lost);
3037 if (have_lost)
3038 size += sizeof(lost_event);
3040 perf_output_get_handle(handle);
3042 do {
3044 * Userspace could choose to issue a mb() before updating the
3045 * tail pointer. So that all reads will be completed before the
3046 * write is issued.
3048 tail = ACCESS_ONCE(data->user_page->data_tail);
3049 smp_rmb();
3050 offset = head = local_read(&data->head);
3051 head += size;
3052 if (unlikely(!perf_output_space(data, tail, offset, head)))
3053 goto fail;
3054 } while (local_cmpxchg(&data->head, offset, head) != offset);
3056 handle->offset = offset;
3057 handle->head = head;
3059 if (head - tail > data->watermark)
3060 local_inc(&data->wakeup);
3062 if (have_lost) {
3063 lost_event.header.type = PERF_RECORD_LOST;
3064 lost_event.header.misc = 0;
3065 lost_event.header.size = sizeof(lost_event);
3066 lost_event.id = event->id;
3067 lost_event.lost = local_xchg(&data->lost, 0);
3069 perf_output_put(handle, lost_event);
3072 return 0;
3074 fail:
3075 local_inc(&data->lost);
3076 perf_output_put_handle(handle);
3077 out:
3078 rcu_read_unlock();
3080 return -ENOSPC;
3083 void perf_output_end(struct perf_output_handle *handle)
3085 struct perf_event *event = handle->event;
3086 struct perf_mmap_data *data = handle->data;
3088 int wakeup_events = event->attr.wakeup_events;
3090 if (handle->sample && wakeup_events) {
3091 int events = local_inc_return(&data->events);
3092 if (events >= wakeup_events) {
3093 local_sub(wakeup_events, &data->events);
3094 local_inc(&data->wakeup);
3098 perf_output_put_handle(handle);
3099 rcu_read_unlock();
3102 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3105 * only top level events have the pid namespace they were created in
3107 if (event->parent)
3108 event = event->parent;
3110 return task_tgid_nr_ns(p, event->ns);
3113 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3116 * only top level events have the pid namespace they were created in
3118 if (event->parent)
3119 event = event->parent;
3121 return task_pid_nr_ns(p, event->ns);
3124 static void perf_output_read_one(struct perf_output_handle *handle,
3125 struct perf_event *event)
3127 u64 read_format = event->attr.read_format;
3128 u64 values[4];
3129 int n = 0;
3131 values[n++] = atomic64_read(&event->count);
3132 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3133 values[n++] = event->total_time_enabled +
3134 atomic64_read(&event->child_total_time_enabled);
3136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3137 values[n++] = event->total_time_running +
3138 atomic64_read(&event->child_total_time_running);
3140 if (read_format & PERF_FORMAT_ID)
3141 values[n++] = primary_event_id(event);
3143 perf_output_copy(handle, values, n * sizeof(u64));
3147 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3149 static void perf_output_read_group(struct perf_output_handle *handle,
3150 struct perf_event *event)
3152 struct perf_event *leader = event->group_leader, *sub;
3153 u64 read_format = event->attr.read_format;
3154 u64 values[5];
3155 int n = 0;
3157 values[n++] = 1 + leader->nr_siblings;
3159 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3160 values[n++] = leader->total_time_enabled;
3162 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3163 values[n++] = leader->total_time_running;
3165 if (leader != event)
3166 leader->pmu->read(leader);
3168 values[n++] = atomic64_read(&leader->count);
3169 if (read_format & PERF_FORMAT_ID)
3170 values[n++] = primary_event_id(leader);
3172 perf_output_copy(handle, values, n * sizeof(u64));
3174 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3175 n = 0;
3177 if (sub != event)
3178 sub->pmu->read(sub);
3180 values[n++] = atomic64_read(&sub->count);
3181 if (read_format & PERF_FORMAT_ID)
3182 values[n++] = primary_event_id(sub);
3184 perf_output_copy(handle, values, n * sizeof(u64));
3188 static void perf_output_read(struct perf_output_handle *handle,
3189 struct perf_event *event)
3191 if (event->attr.read_format & PERF_FORMAT_GROUP)
3192 perf_output_read_group(handle, event);
3193 else
3194 perf_output_read_one(handle, event);
3197 void perf_output_sample(struct perf_output_handle *handle,
3198 struct perf_event_header *header,
3199 struct perf_sample_data *data,
3200 struct perf_event *event)
3202 u64 sample_type = data->type;
3204 perf_output_put(handle, *header);
3206 if (sample_type & PERF_SAMPLE_IP)
3207 perf_output_put(handle, data->ip);
3209 if (sample_type & PERF_SAMPLE_TID)
3210 perf_output_put(handle, data->tid_entry);
3212 if (sample_type & PERF_SAMPLE_TIME)
3213 perf_output_put(handle, data->time);
3215 if (sample_type & PERF_SAMPLE_ADDR)
3216 perf_output_put(handle, data->addr);
3218 if (sample_type & PERF_SAMPLE_ID)
3219 perf_output_put(handle, data->id);
3221 if (sample_type & PERF_SAMPLE_STREAM_ID)
3222 perf_output_put(handle, data->stream_id);
3224 if (sample_type & PERF_SAMPLE_CPU)
3225 perf_output_put(handle, data->cpu_entry);
3227 if (sample_type & PERF_SAMPLE_PERIOD)
3228 perf_output_put(handle, data->period);
3230 if (sample_type & PERF_SAMPLE_READ)
3231 perf_output_read(handle, event);
3233 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3234 if (data->callchain) {
3235 int size = 1;
3237 if (data->callchain)
3238 size += data->callchain->nr;
3240 size *= sizeof(u64);
3242 perf_output_copy(handle, data->callchain, size);
3243 } else {
3244 u64 nr = 0;
3245 perf_output_put(handle, nr);
3249 if (sample_type & PERF_SAMPLE_RAW) {
3250 if (data->raw) {
3251 perf_output_put(handle, data->raw->size);
3252 perf_output_copy(handle, data->raw->data,
3253 data->raw->size);
3254 } else {
3255 struct {
3256 u32 size;
3257 u32 data;
3258 } raw = {
3259 .size = sizeof(u32),
3260 .data = 0,
3262 perf_output_put(handle, raw);
3267 void perf_prepare_sample(struct perf_event_header *header,
3268 struct perf_sample_data *data,
3269 struct perf_event *event,
3270 struct pt_regs *regs)
3272 u64 sample_type = event->attr.sample_type;
3274 data->type = sample_type;
3276 header->type = PERF_RECORD_SAMPLE;
3277 header->size = sizeof(*header);
3279 header->misc = 0;
3280 header->misc |= perf_misc_flags(regs);
3282 if (sample_type & PERF_SAMPLE_IP) {
3283 data->ip = perf_instruction_pointer(regs);
3285 header->size += sizeof(data->ip);
3288 if (sample_type & PERF_SAMPLE_TID) {
3289 /* namespace issues */
3290 data->tid_entry.pid = perf_event_pid(event, current);
3291 data->tid_entry.tid = perf_event_tid(event, current);
3293 header->size += sizeof(data->tid_entry);
3296 if (sample_type & PERF_SAMPLE_TIME) {
3297 data->time = perf_clock();
3299 header->size += sizeof(data->time);
3302 if (sample_type & PERF_SAMPLE_ADDR)
3303 header->size += sizeof(data->addr);
3305 if (sample_type & PERF_SAMPLE_ID) {
3306 data->id = primary_event_id(event);
3308 header->size += sizeof(data->id);
3311 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3312 data->stream_id = event->id;
3314 header->size += sizeof(data->stream_id);
3317 if (sample_type & PERF_SAMPLE_CPU) {
3318 data->cpu_entry.cpu = raw_smp_processor_id();
3319 data->cpu_entry.reserved = 0;
3321 header->size += sizeof(data->cpu_entry);
3324 if (sample_type & PERF_SAMPLE_PERIOD)
3325 header->size += sizeof(data->period);
3327 if (sample_type & PERF_SAMPLE_READ)
3328 header->size += perf_event_read_size(event);
3330 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3331 int size = 1;
3333 data->callchain = perf_callchain(regs);
3335 if (data->callchain)
3336 size += data->callchain->nr;
3338 header->size += size * sizeof(u64);
3341 if (sample_type & PERF_SAMPLE_RAW) {
3342 int size = sizeof(u32);
3344 if (data->raw)
3345 size += data->raw->size;
3346 else
3347 size += sizeof(u32);
3349 WARN_ON_ONCE(size & (sizeof(u64)-1));
3350 header->size += size;
3354 static void perf_event_output(struct perf_event *event, int nmi,
3355 struct perf_sample_data *data,
3356 struct pt_regs *regs)
3358 struct perf_output_handle handle;
3359 struct perf_event_header header;
3361 perf_prepare_sample(&header, data, event, regs);
3363 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3364 return;
3366 perf_output_sample(&handle, &header, data, event);
3368 perf_output_end(&handle);
3372 * read event_id
3375 struct perf_read_event {
3376 struct perf_event_header header;
3378 u32 pid;
3379 u32 tid;
3382 static void
3383 perf_event_read_event(struct perf_event *event,
3384 struct task_struct *task)
3386 struct perf_output_handle handle;
3387 struct perf_read_event read_event = {
3388 .header = {
3389 .type = PERF_RECORD_READ,
3390 .misc = 0,
3391 .size = sizeof(read_event) + perf_event_read_size(event),
3393 .pid = perf_event_pid(event, task),
3394 .tid = perf_event_tid(event, task),
3396 int ret;
3398 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3399 if (ret)
3400 return;
3402 perf_output_put(&handle, read_event);
3403 perf_output_read(&handle, event);
3405 perf_output_end(&handle);
3409 * task tracking -- fork/exit
3411 * enabled by: attr.comm | attr.mmap | attr.task
3414 struct perf_task_event {
3415 struct task_struct *task;
3416 struct perf_event_context *task_ctx;
3418 struct {
3419 struct perf_event_header header;
3421 u32 pid;
3422 u32 ppid;
3423 u32 tid;
3424 u32 ptid;
3425 u64 time;
3426 } event_id;
3429 static void perf_event_task_output(struct perf_event *event,
3430 struct perf_task_event *task_event)
3432 struct perf_output_handle handle;
3433 struct task_struct *task = task_event->task;
3434 int size, ret;
3436 size = task_event->event_id.header.size;
3437 ret = perf_output_begin(&handle, event, size, 0, 0);
3439 if (ret)
3440 return;
3442 task_event->event_id.pid = perf_event_pid(event, task);
3443 task_event->event_id.ppid = perf_event_pid(event, current);
3445 task_event->event_id.tid = perf_event_tid(event, task);
3446 task_event->event_id.ptid = perf_event_tid(event, current);
3448 perf_output_put(&handle, task_event->event_id);
3450 perf_output_end(&handle);
3453 static int perf_event_task_match(struct perf_event *event)
3455 if (event->state < PERF_EVENT_STATE_INACTIVE)
3456 return 0;
3458 if (event->cpu != -1 && event->cpu != smp_processor_id())
3459 return 0;
3461 if (event->attr.comm || event->attr.mmap || event->attr.task)
3462 return 1;
3464 return 0;
3467 static void perf_event_task_ctx(struct perf_event_context *ctx,
3468 struct perf_task_event *task_event)
3470 struct perf_event *event;
3472 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3473 if (perf_event_task_match(event))
3474 perf_event_task_output(event, task_event);
3478 static void perf_event_task_event(struct perf_task_event *task_event)
3480 struct perf_cpu_context *cpuctx;
3481 struct perf_event_context *ctx = task_event->task_ctx;
3483 rcu_read_lock();
3484 cpuctx = &get_cpu_var(perf_cpu_context);
3485 perf_event_task_ctx(&cpuctx->ctx, task_event);
3486 if (!ctx)
3487 ctx = rcu_dereference(current->perf_event_ctxp);
3488 if (ctx)
3489 perf_event_task_ctx(ctx, task_event);
3490 put_cpu_var(perf_cpu_context);
3491 rcu_read_unlock();
3494 static void perf_event_task(struct task_struct *task,
3495 struct perf_event_context *task_ctx,
3496 int new)
3498 struct perf_task_event task_event;
3500 if (!atomic_read(&nr_comm_events) &&
3501 !atomic_read(&nr_mmap_events) &&
3502 !atomic_read(&nr_task_events))
3503 return;
3505 task_event = (struct perf_task_event){
3506 .task = task,
3507 .task_ctx = task_ctx,
3508 .event_id = {
3509 .header = {
3510 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3511 .misc = 0,
3512 .size = sizeof(task_event.event_id),
3514 /* .pid */
3515 /* .ppid */
3516 /* .tid */
3517 /* .ptid */
3518 .time = perf_clock(),
3522 perf_event_task_event(&task_event);
3525 void perf_event_fork(struct task_struct *task)
3527 perf_event_task(task, NULL, 1);
3531 * comm tracking
3534 struct perf_comm_event {
3535 struct task_struct *task;
3536 char *comm;
3537 int comm_size;
3539 struct {
3540 struct perf_event_header header;
3542 u32 pid;
3543 u32 tid;
3544 } event_id;
3547 static void perf_event_comm_output(struct perf_event *event,
3548 struct perf_comm_event *comm_event)
3550 struct perf_output_handle handle;
3551 int size = comm_event->event_id.header.size;
3552 int ret = perf_output_begin(&handle, event, size, 0, 0);
3554 if (ret)
3555 return;
3557 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3558 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3560 perf_output_put(&handle, comm_event->event_id);
3561 perf_output_copy(&handle, comm_event->comm,
3562 comm_event->comm_size);
3563 perf_output_end(&handle);
3566 static int perf_event_comm_match(struct perf_event *event)
3568 if (event->state < PERF_EVENT_STATE_INACTIVE)
3569 return 0;
3571 if (event->cpu != -1 && event->cpu != smp_processor_id())
3572 return 0;
3574 if (event->attr.comm)
3575 return 1;
3577 return 0;
3580 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3581 struct perf_comm_event *comm_event)
3583 struct perf_event *event;
3585 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3586 if (perf_event_comm_match(event))
3587 perf_event_comm_output(event, comm_event);
3591 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3593 struct perf_cpu_context *cpuctx;
3594 struct perf_event_context *ctx;
3595 unsigned int size;
3596 char comm[TASK_COMM_LEN];
3598 memset(comm, 0, sizeof(comm));
3599 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3600 size = ALIGN(strlen(comm)+1, sizeof(u64));
3602 comm_event->comm = comm;
3603 comm_event->comm_size = size;
3605 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3607 rcu_read_lock();
3608 cpuctx = &get_cpu_var(perf_cpu_context);
3609 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3610 ctx = rcu_dereference(current->perf_event_ctxp);
3611 if (ctx)
3612 perf_event_comm_ctx(ctx, comm_event);
3613 put_cpu_var(perf_cpu_context);
3614 rcu_read_unlock();
3617 void perf_event_comm(struct task_struct *task)
3619 struct perf_comm_event comm_event;
3621 if (task->perf_event_ctxp)
3622 perf_event_enable_on_exec(task);
3624 if (!atomic_read(&nr_comm_events))
3625 return;
3627 comm_event = (struct perf_comm_event){
3628 .task = task,
3629 /* .comm */
3630 /* .comm_size */
3631 .event_id = {
3632 .header = {
3633 .type = PERF_RECORD_COMM,
3634 .misc = 0,
3635 /* .size */
3637 /* .pid */
3638 /* .tid */
3642 perf_event_comm_event(&comm_event);
3646 * mmap tracking
3649 struct perf_mmap_event {
3650 struct vm_area_struct *vma;
3652 const char *file_name;
3653 int file_size;
3655 struct {
3656 struct perf_event_header header;
3658 u32 pid;
3659 u32 tid;
3660 u64 start;
3661 u64 len;
3662 u64 pgoff;
3663 } event_id;
3666 static void perf_event_mmap_output(struct perf_event *event,
3667 struct perf_mmap_event *mmap_event)
3669 struct perf_output_handle handle;
3670 int size = mmap_event->event_id.header.size;
3671 int ret = perf_output_begin(&handle, event, size, 0, 0);
3673 if (ret)
3674 return;
3676 mmap_event->event_id.pid = perf_event_pid(event, current);
3677 mmap_event->event_id.tid = perf_event_tid(event, current);
3679 perf_output_put(&handle, mmap_event->event_id);
3680 perf_output_copy(&handle, mmap_event->file_name,
3681 mmap_event->file_size);
3682 perf_output_end(&handle);
3685 static int perf_event_mmap_match(struct perf_event *event,
3686 struct perf_mmap_event *mmap_event)
3688 if (event->state < PERF_EVENT_STATE_INACTIVE)
3689 return 0;
3691 if (event->cpu != -1 && event->cpu != smp_processor_id())
3692 return 0;
3694 if (event->attr.mmap)
3695 return 1;
3697 return 0;
3700 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3701 struct perf_mmap_event *mmap_event)
3703 struct perf_event *event;
3705 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3706 if (perf_event_mmap_match(event, mmap_event))
3707 perf_event_mmap_output(event, mmap_event);
3711 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3713 struct perf_cpu_context *cpuctx;
3714 struct perf_event_context *ctx;
3715 struct vm_area_struct *vma = mmap_event->vma;
3716 struct file *file = vma->vm_file;
3717 unsigned int size;
3718 char tmp[16];
3719 char *buf = NULL;
3720 const char *name;
3722 memset(tmp, 0, sizeof(tmp));
3724 if (file) {
3726 * d_path works from the end of the buffer backwards, so we
3727 * need to add enough zero bytes after the string to handle
3728 * the 64bit alignment we do later.
3730 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3731 if (!buf) {
3732 name = strncpy(tmp, "//enomem", sizeof(tmp));
3733 goto got_name;
3735 name = d_path(&file->f_path, buf, PATH_MAX);
3736 if (IS_ERR(name)) {
3737 name = strncpy(tmp, "//toolong", sizeof(tmp));
3738 goto got_name;
3740 } else {
3741 if (arch_vma_name(mmap_event->vma)) {
3742 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3743 sizeof(tmp));
3744 goto got_name;
3747 if (!vma->vm_mm) {
3748 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3749 goto got_name;
3752 name = strncpy(tmp, "//anon", sizeof(tmp));
3753 goto got_name;
3756 got_name:
3757 size = ALIGN(strlen(name)+1, sizeof(u64));
3759 mmap_event->file_name = name;
3760 mmap_event->file_size = size;
3762 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3764 rcu_read_lock();
3765 cpuctx = &get_cpu_var(perf_cpu_context);
3766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3767 ctx = rcu_dereference(current->perf_event_ctxp);
3768 if (ctx)
3769 perf_event_mmap_ctx(ctx, mmap_event);
3770 put_cpu_var(perf_cpu_context);
3771 rcu_read_unlock();
3773 kfree(buf);
3776 void __perf_event_mmap(struct vm_area_struct *vma)
3778 struct perf_mmap_event mmap_event;
3780 if (!atomic_read(&nr_mmap_events))
3781 return;
3783 mmap_event = (struct perf_mmap_event){
3784 .vma = vma,
3785 /* .file_name */
3786 /* .file_size */
3787 .event_id = {
3788 .header = {
3789 .type = PERF_RECORD_MMAP,
3790 .misc = PERF_RECORD_MISC_USER,
3791 /* .size */
3793 /* .pid */
3794 /* .tid */
3795 .start = vma->vm_start,
3796 .len = vma->vm_end - vma->vm_start,
3797 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3801 perf_event_mmap_event(&mmap_event);
3805 * IRQ throttle logging
3808 static void perf_log_throttle(struct perf_event *event, int enable)
3810 struct perf_output_handle handle;
3811 int ret;
3813 struct {
3814 struct perf_event_header header;
3815 u64 time;
3816 u64 id;
3817 u64 stream_id;
3818 } throttle_event = {
3819 .header = {
3820 .type = PERF_RECORD_THROTTLE,
3821 .misc = 0,
3822 .size = sizeof(throttle_event),
3824 .time = perf_clock(),
3825 .id = primary_event_id(event),
3826 .stream_id = event->id,
3829 if (enable)
3830 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3832 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3833 if (ret)
3834 return;
3836 perf_output_put(&handle, throttle_event);
3837 perf_output_end(&handle);
3841 * Generic event overflow handling, sampling.
3844 static int __perf_event_overflow(struct perf_event *event, int nmi,
3845 int throttle, struct perf_sample_data *data,
3846 struct pt_regs *regs)
3848 int events = atomic_read(&event->event_limit);
3849 struct hw_perf_event *hwc = &event->hw;
3850 int ret = 0;
3852 throttle = (throttle && event->pmu->unthrottle != NULL);
3854 if (!throttle) {
3855 hwc->interrupts++;
3856 } else {
3857 if (hwc->interrupts != MAX_INTERRUPTS) {
3858 hwc->interrupts++;
3859 if (HZ * hwc->interrupts >
3860 (u64)sysctl_perf_event_sample_rate) {
3861 hwc->interrupts = MAX_INTERRUPTS;
3862 perf_log_throttle(event, 0);
3863 ret = 1;
3865 } else {
3867 * Keep re-disabling events even though on the previous
3868 * pass we disabled it - just in case we raced with a
3869 * sched-in and the event got enabled again:
3871 ret = 1;
3875 if (event->attr.freq) {
3876 u64 now = perf_clock();
3877 s64 delta = now - hwc->freq_time_stamp;
3879 hwc->freq_time_stamp = now;
3881 if (delta > 0 && delta < 2*TICK_NSEC)
3882 perf_adjust_period(event, delta, hwc->last_period);
3886 * XXX event_limit might not quite work as expected on inherited
3887 * events
3890 event->pending_kill = POLL_IN;
3891 if (events && atomic_dec_and_test(&event->event_limit)) {
3892 ret = 1;
3893 event->pending_kill = POLL_HUP;
3894 if (nmi) {
3895 event->pending_disable = 1;
3896 perf_pending_queue(&event->pending,
3897 perf_pending_event);
3898 } else
3899 perf_event_disable(event);
3902 if (event->overflow_handler)
3903 event->overflow_handler(event, nmi, data, regs);
3904 else
3905 perf_event_output(event, nmi, data, regs);
3907 return ret;
3910 int perf_event_overflow(struct perf_event *event, int nmi,
3911 struct perf_sample_data *data,
3912 struct pt_regs *regs)
3914 return __perf_event_overflow(event, nmi, 1, data, regs);
3918 * Generic software event infrastructure
3922 * We directly increment event->count and keep a second value in
3923 * event->hw.period_left to count intervals. This period event
3924 * is kept in the range [-sample_period, 0] so that we can use the
3925 * sign as trigger.
3928 static u64 perf_swevent_set_period(struct perf_event *event)
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 period = hwc->last_period;
3932 u64 nr, offset;
3933 s64 old, val;
3935 hwc->last_period = hwc->sample_period;
3937 again:
3938 old = val = atomic64_read(&hwc->period_left);
3939 if (val < 0)
3940 return 0;
3942 nr = div64_u64(period + val, period);
3943 offset = nr * period;
3944 val -= offset;
3945 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3946 goto again;
3948 return nr;
3951 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3952 int nmi, struct perf_sample_data *data,
3953 struct pt_regs *regs)
3955 struct hw_perf_event *hwc = &event->hw;
3956 int throttle = 0;
3958 data->period = event->hw.last_period;
3959 if (!overflow)
3960 overflow = perf_swevent_set_period(event);
3962 if (hwc->interrupts == MAX_INTERRUPTS)
3963 return;
3965 for (; overflow; overflow--) {
3966 if (__perf_event_overflow(event, nmi, throttle,
3967 data, regs)) {
3969 * We inhibit the overflow from happening when
3970 * hwc->interrupts == MAX_INTERRUPTS.
3972 break;
3974 throttle = 1;
3978 static void perf_swevent_unthrottle(struct perf_event *event)
3981 * Nothing to do, we already reset hwc->interrupts.
3985 static void perf_swevent_add(struct perf_event *event, u64 nr,
3986 int nmi, struct perf_sample_data *data,
3987 struct pt_regs *regs)
3989 struct hw_perf_event *hwc = &event->hw;
3991 atomic64_add(nr, &event->count);
3993 if (!regs)
3994 return;
3996 if (!hwc->sample_period)
3997 return;
3999 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4000 return perf_swevent_overflow(event, 1, nmi, data, regs);
4002 if (atomic64_add_negative(nr, &hwc->period_left))
4003 return;
4005 perf_swevent_overflow(event, 0, nmi, data, regs);
4008 static int perf_tp_event_match(struct perf_event *event,
4009 struct perf_sample_data *data);
4011 static int perf_exclude_event(struct perf_event *event,
4012 struct pt_regs *regs)
4014 if (regs) {
4015 if (event->attr.exclude_user && user_mode(regs))
4016 return 1;
4018 if (event->attr.exclude_kernel && !user_mode(regs))
4019 return 1;
4022 return 0;
4025 static int perf_swevent_match(struct perf_event *event,
4026 enum perf_type_id type,
4027 u32 event_id,
4028 struct perf_sample_data *data,
4029 struct pt_regs *regs)
4031 if (event->attr.type != type)
4032 return 0;
4034 if (event->attr.config != event_id)
4035 return 0;
4037 if (perf_exclude_event(event, regs))
4038 return 0;
4040 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4041 !perf_tp_event_match(event, data))
4042 return 0;
4044 return 1;
4047 static inline u64 swevent_hash(u64 type, u32 event_id)
4049 u64 val = event_id | (type << 32);
4051 return hash_64(val, SWEVENT_HLIST_BITS);
4054 static inline struct hlist_head *
4055 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4057 u64 hash = swevent_hash(type, event_id);
4059 return &hlist->heads[hash];
4062 /* For the read side: events when they trigger */
4063 static inline struct hlist_head *
4064 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4066 struct swevent_hlist *hlist;
4068 hlist = rcu_dereference(ctx->swevent_hlist);
4069 if (!hlist)
4070 return NULL;
4072 return __find_swevent_head(hlist, type, event_id);
4075 /* For the event head insertion and removal in the hlist */
4076 static inline struct hlist_head *
4077 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4079 struct swevent_hlist *hlist;
4080 u32 event_id = event->attr.config;
4081 u64 type = event->attr.type;
4084 * Event scheduling is always serialized against hlist allocation
4085 * and release. Which makes the protected version suitable here.
4086 * The context lock guarantees that.
4088 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4089 lockdep_is_held(&event->ctx->lock));
4090 if (!hlist)
4091 return NULL;
4093 return __find_swevent_head(hlist, type, event_id);
4096 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4097 u64 nr, int nmi,
4098 struct perf_sample_data *data,
4099 struct pt_regs *regs)
4101 struct perf_cpu_context *cpuctx;
4102 struct perf_event *event;
4103 struct hlist_node *node;
4104 struct hlist_head *head;
4106 cpuctx = &__get_cpu_var(perf_cpu_context);
4108 rcu_read_lock();
4110 head = find_swevent_head_rcu(cpuctx, type, event_id);
4112 if (!head)
4113 goto end;
4115 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4116 if (perf_swevent_match(event, type, event_id, data, regs))
4117 perf_swevent_add(event, nr, nmi, data, regs);
4119 end:
4120 rcu_read_unlock();
4123 int perf_swevent_get_recursion_context(void)
4125 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4126 int rctx;
4128 if (in_nmi())
4129 rctx = 3;
4130 else if (in_irq())
4131 rctx = 2;
4132 else if (in_softirq())
4133 rctx = 1;
4134 else
4135 rctx = 0;
4137 if (cpuctx->recursion[rctx]) {
4138 put_cpu_var(perf_cpu_context);
4139 return -1;
4142 cpuctx->recursion[rctx]++;
4143 barrier();
4145 return rctx;
4147 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4149 void perf_swevent_put_recursion_context(int rctx)
4151 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4152 barrier();
4153 cpuctx->recursion[rctx]--;
4154 put_cpu_var(perf_cpu_context);
4156 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4159 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4160 struct pt_regs *regs, u64 addr)
4162 struct perf_sample_data data;
4163 int rctx;
4165 rctx = perf_swevent_get_recursion_context();
4166 if (rctx < 0)
4167 return;
4169 perf_sample_data_init(&data, addr);
4171 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4173 perf_swevent_put_recursion_context(rctx);
4176 static void perf_swevent_read(struct perf_event *event)
4180 static int perf_swevent_enable(struct perf_event *event)
4182 struct hw_perf_event *hwc = &event->hw;
4183 struct perf_cpu_context *cpuctx;
4184 struct hlist_head *head;
4186 cpuctx = &__get_cpu_var(perf_cpu_context);
4188 if (hwc->sample_period) {
4189 hwc->last_period = hwc->sample_period;
4190 perf_swevent_set_period(event);
4193 head = find_swevent_head(cpuctx, event);
4194 if (WARN_ON_ONCE(!head))
4195 return -EINVAL;
4197 hlist_add_head_rcu(&event->hlist_entry, head);
4199 return 0;
4202 static void perf_swevent_disable(struct perf_event *event)
4204 hlist_del_rcu(&event->hlist_entry);
4207 static const struct pmu perf_ops_generic = {
4208 .enable = perf_swevent_enable,
4209 .disable = perf_swevent_disable,
4210 .read = perf_swevent_read,
4211 .unthrottle = perf_swevent_unthrottle,
4215 * hrtimer based swevent callback
4218 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4220 enum hrtimer_restart ret = HRTIMER_RESTART;
4221 struct perf_sample_data data;
4222 struct pt_regs *regs;
4223 struct perf_event *event;
4224 u64 period;
4226 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4227 event->pmu->read(event);
4229 perf_sample_data_init(&data, 0);
4230 data.period = event->hw.last_period;
4231 regs = get_irq_regs();
4233 if (regs && !perf_exclude_event(event, regs)) {
4234 if (!(event->attr.exclude_idle && current->pid == 0))
4235 if (perf_event_overflow(event, 0, &data, regs))
4236 ret = HRTIMER_NORESTART;
4239 period = max_t(u64, 10000, event->hw.sample_period);
4240 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4242 return ret;
4245 static void perf_swevent_start_hrtimer(struct perf_event *event)
4247 struct hw_perf_event *hwc = &event->hw;
4249 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4250 hwc->hrtimer.function = perf_swevent_hrtimer;
4251 if (hwc->sample_period) {
4252 u64 period;
4254 if (hwc->remaining) {
4255 if (hwc->remaining < 0)
4256 period = 10000;
4257 else
4258 period = hwc->remaining;
4259 hwc->remaining = 0;
4260 } else {
4261 period = max_t(u64, 10000, hwc->sample_period);
4263 __hrtimer_start_range_ns(&hwc->hrtimer,
4264 ns_to_ktime(period), 0,
4265 HRTIMER_MODE_REL, 0);
4269 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4271 struct hw_perf_event *hwc = &event->hw;
4273 if (hwc->sample_period) {
4274 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4275 hwc->remaining = ktime_to_ns(remaining);
4277 hrtimer_cancel(&hwc->hrtimer);
4282 * Software event: cpu wall time clock
4285 static void cpu_clock_perf_event_update(struct perf_event *event)
4287 int cpu = raw_smp_processor_id();
4288 s64 prev;
4289 u64 now;
4291 now = cpu_clock(cpu);
4292 prev = atomic64_xchg(&event->hw.prev_count, now);
4293 atomic64_add(now - prev, &event->count);
4296 static int cpu_clock_perf_event_enable(struct perf_event *event)
4298 struct hw_perf_event *hwc = &event->hw;
4299 int cpu = raw_smp_processor_id();
4301 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4302 perf_swevent_start_hrtimer(event);
4304 return 0;
4307 static void cpu_clock_perf_event_disable(struct perf_event *event)
4309 perf_swevent_cancel_hrtimer(event);
4310 cpu_clock_perf_event_update(event);
4313 static void cpu_clock_perf_event_read(struct perf_event *event)
4315 cpu_clock_perf_event_update(event);
4318 static const struct pmu perf_ops_cpu_clock = {
4319 .enable = cpu_clock_perf_event_enable,
4320 .disable = cpu_clock_perf_event_disable,
4321 .read = cpu_clock_perf_event_read,
4325 * Software event: task time clock
4328 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4330 u64 prev;
4331 s64 delta;
4333 prev = atomic64_xchg(&event->hw.prev_count, now);
4334 delta = now - prev;
4335 atomic64_add(delta, &event->count);
4338 static int task_clock_perf_event_enable(struct perf_event *event)
4340 struct hw_perf_event *hwc = &event->hw;
4341 u64 now;
4343 now = event->ctx->time;
4345 atomic64_set(&hwc->prev_count, now);
4347 perf_swevent_start_hrtimer(event);
4349 return 0;
4352 static void task_clock_perf_event_disable(struct perf_event *event)
4354 perf_swevent_cancel_hrtimer(event);
4355 task_clock_perf_event_update(event, event->ctx->time);
4359 static void task_clock_perf_event_read(struct perf_event *event)
4361 u64 time;
4363 if (!in_nmi()) {
4364 update_context_time(event->ctx);
4365 time = event->ctx->time;
4366 } else {
4367 u64 now = perf_clock();
4368 u64 delta = now - event->ctx->timestamp;
4369 time = event->ctx->time + delta;
4372 task_clock_perf_event_update(event, time);
4375 static const struct pmu perf_ops_task_clock = {
4376 .enable = task_clock_perf_event_enable,
4377 .disable = task_clock_perf_event_disable,
4378 .read = task_clock_perf_event_read,
4381 /* Deref the hlist from the update side */
4382 static inline struct swevent_hlist *
4383 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4385 return rcu_dereference_protected(cpuctx->swevent_hlist,
4386 lockdep_is_held(&cpuctx->hlist_mutex));
4389 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4391 struct swevent_hlist *hlist;
4393 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4394 kfree(hlist);
4397 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4399 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4401 if (!hlist)
4402 return;
4404 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4405 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4408 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4410 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4412 mutex_lock(&cpuctx->hlist_mutex);
4414 if (!--cpuctx->hlist_refcount)
4415 swevent_hlist_release(cpuctx);
4417 mutex_unlock(&cpuctx->hlist_mutex);
4420 static void swevent_hlist_put(struct perf_event *event)
4422 int cpu;
4424 if (event->cpu != -1) {
4425 swevent_hlist_put_cpu(event, event->cpu);
4426 return;
4429 for_each_possible_cpu(cpu)
4430 swevent_hlist_put_cpu(event, cpu);
4433 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4435 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4436 int err = 0;
4438 mutex_lock(&cpuctx->hlist_mutex);
4440 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4441 struct swevent_hlist *hlist;
4443 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4444 if (!hlist) {
4445 err = -ENOMEM;
4446 goto exit;
4448 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4450 cpuctx->hlist_refcount++;
4451 exit:
4452 mutex_unlock(&cpuctx->hlist_mutex);
4454 return err;
4457 static int swevent_hlist_get(struct perf_event *event)
4459 int err;
4460 int cpu, failed_cpu;
4462 if (event->cpu != -1)
4463 return swevent_hlist_get_cpu(event, event->cpu);
4465 get_online_cpus();
4466 for_each_possible_cpu(cpu) {
4467 err = swevent_hlist_get_cpu(event, cpu);
4468 if (err) {
4469 failed_cpu = cpu;
4470 goto fail;
4473 put_online_cpus();
4475 return 0;
4476 fail:
4477 for_each_possible_cpu(cpu) {
4478 if (cpu == failed_cpu)
4479 break;
4480 swevent_hlist_put_cpu(event, cpu);
4483 put_online_cpus();
4484 return err;
4487 #ifdef CONFIG_EVENT_TRACING
4489 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4490 int entry_size, struct pt_regs *regs, void *event)
4492 const int type = PERF_TYPE_TRACEPOINT;
4493 struct perf_sample_data data;
4494 struct perf_raw_record raw = {
4495 .size = entry_size,
4496 .data = record,
4499 perf_sample_data_init(&data, addr);
4500 data.raw = &raw;
4502 if (!event) {
4503 do_perf_sw_event(type, event_id, count, 1, &data, regs);
4504 return;
4507 if (perf_swevent_match(event, type, event_id, &data, regs))
4508 perf_swevent_add(event, count, 1, &data, regs);
4510 EXPORT_SYMBOL_GPL(perf_tp_event);
4512 static int perf_tp_event_match(struct perf_event *event,
4513 struct perf_sample_data *data)
4515 void *record = data->raw->data;
4517 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4518 return 1;
4519 return 0;
4522 static void tp_perf_event_destroy(struct perf_event *event)
4524 perf_trace_disable(event->attr.config);
4525 swevent_hlist_put(event);
4528 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4530 int err;
4533 * Raw tracepoint data is a severe data leak, only allow root to
4534 * have these.
4536 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4537 perf_paranoid_tracepoint_raw() &&
4538 !capable(CAP_SYS_ADMIN))
4539 return ERR_PTR(-EPERM);
4541 if (perf_trace_enable(event->attr.config, event))
4542 return NULL;
4544 event->destroy = tp_perf_event_destroy;
4545 err = swevent_hlist_get(event);
4546 if (err) {
4547 perf_trace_disable(event->attr.config);
4548 return ERR_PTR(err);
4551 return &perf_ops_generic;
4554 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4556 char *filter_str;
4557 int ret;
4559 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4560 return -EINVAL;
4562 filter_str = strndup_user(arg, PAGE_SIZE);
4563 if (IS_ERR(filter_str))
4564 return PTR_ERR(filter_str);
4566 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4568 kfree(filter_str);
4569 return ret;
4572 static void perf_event_free_filter(struct perf_event *event)
4574 ftrace_profile_free_filter(event);
4577 #else
4579 static int perf_tp_event_match(struct perf_event *event,
4580 struct perf_sample_data *data)
4582 return 1;
4585 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4587 return NULL;
4590 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4592 return -ENOENT;
4595 static void perf_event_free_filter(struct perf_event *event)
4599 #endif /* CONFIG_EVENT_TRACING */
4601 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4602 static void bp_perf_event_destroy(struct perf_event *event)
4604 release_bp_slot(event);
4607 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4609 int err;
4611 err = register_perf_hw_breakpoint(bp);
4612 if (err)
4613 return ERR_PTR(err);
4615 bp->destroy = bp_perf_event_destroy;
4617 return &perf_ops_bp;
4620 void perf_bp_event(struct perf_event *bp, void *data)
4622 struct perf_sample_data sample;
4623 struct pt_regs *regs = data;
4625 perf_sample_data_init(&sample, bp->attr.bp_addr);
4627 if (!perf_exclude_event(bp, regs))
4628 perf_swevent_add(bp, 1, 1, &sample, regs);
4630 #else
4631 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4633 return NULL;
4636 void perf_bp_event(struct perf_event *bp, void *regs)
4639 #endif
4641 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4643 static void sw_perf_event_destroy(struct perf_event *event)
4645 u64 event_id = event->attr.config;
4647 WARN_ON(event->parent);
4649 atomic_dec(&perf_swevent_enabled[event_id]);
4650 swevent_hlist_put(event);
4653 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4655 const struct pmu *pmu = NULL;
4656 u64 event_id = event->attr.config;
4659 * Software events (currently) can't in general distinguish
4660 * between user, kernel and hypervisor events.
4661 * However, context switches and cpu migrations are considered
4662 * to be kernel events, and page faults are never hypervisor
4663 * events.
4665 switch (event_id) {
4666 case PERF_COUNT_SW_CPU_CLOCK:
4667 pmu = &perf_ops_cpu_clock;
4669 break;
4670 case PERF_COUNT_SW_TASK_CLOCK:
4672 * If the user instantiates this as a per-cpu event,
4673 * use the cpu_clock event instead.
4675 if (event->ctx->task)
4676 pmu = &perf_ops_task_clock;
4677 else
4678 pmu = &perf_ops_cpu_clock;
4680 break;
4681 case PERF_COUNT_SW_PAGE_FAULTS:
4682 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4683 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4684 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4685 case PERF_COUNT_SW_CPU_MIGRATIONS:
4686 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4687 case PERF_COUNT_SW_EMULATION_FAULTS:
4688 if (!event->parent) {
4689 int err;
4691 err = swevent_hlist_get(event);
4692 if (err)
4693 return ERR_PTR(err);
4695 atomic_inc(&perf_swevent_enabled[event_id]);
4696 event->destroy = sw_perf_event_destroy;
4698 pmu = &perf_ops_generic;
4699 break;
4702 return pmu;
4706 * Allocate and initialize a event structure
4708 static struct perf_event *
4709 perf_event_alloc(struct perf_event_attr *attr,
4710 int cpu,
4711 struct perf_event_context *ctx,
4712 struct perf_event *group_leader,
4713 struct perf_event *parent_event,
4714 perf_overflow_handler_t overflow_handler,
4715 gfp_t gfpflags)
4717 const struct pmu *pmu;
4718 struct perf_event *event;
4719 struct hw_perf_event *hwc;
4720 long err;
4722 event = kzalloc(sizeof(*event), gfpflags);
4723 if (!event)
4724 return ERR_PTR(-ENOMEM);
4727 * Single events are their own group leaders, with an
4728 * empty sibling list:
4730 if (!group_leader)
4731 group_leader = event;
4733 mutex_init(&event->child_mutex);
4734 INIT_LIST_HEAD(&event->child_list);
4736 INIT_LIST_HEAD(&event->group_entry);
4737 INIT_LIST_HEAD(&event->event_entry);
4738 INIT_LIST_HEAD(&event->sibling_list);
4739 init_waitqueue_head(&event->waitq);
4741 mutex_init(&event->mmap_mutex);
4743 event->cpu = cpu;
4744 event->attr = *attr;
4745 event->group_leader = group_leader;
4746 event->pmu = NULL;
4747 event->ctx = ctx;
4748 event->oncpu = -1;
4750 event->parent = parent_event;
4752 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4753 event->id = atomic64_inc_return(&perf_event_id);
4755 event->state = PERF_EVENT_STATE_INACTIVE;
4757 if (!overflow_handler && parent_event)
4758 overflow_handler = parent_event->overflow_handler;
4760 event->overflow_handler = overflow_handler;
4762 if (attr->disabled)
4763 event->state = PERF_EVENT_STATE_OFF;
4765 pmu = NULL;
4767 hwc = &event->hw;
4768 hwc->sample_period = attr->sample_period;
4769 if (attr->freq && attr->sample_freq)
4770 hwc->sample_period = 1;
4771 hwc->last_period = hwc->sample_period;
4773 atomic64_set(&hwc->period_left, hwc->sample_period);
4776 * we currently do not support PERF_FORMAT_GROUP on inherited events
4778 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4779 goto done;
4781 switch (attr->type) {
4782 case PERF_TYPE_RAW:
4783 case PERF_TYPE_HARDWARE:
4784 case PERF_TYPE_HW_CACHE:
4785 pmu = hw_perf_event_init(event);
4786 break;
4788 case PERF_TYPE_SOFTWARE:
4789 pmu = sw_perf_event_init(event);
4790 break;
4792 case PERF_TYPE_TRACEPOINT:
4793 pmu = tp_perf_event_init(event);
4794 break;
4796 case PERF_TYPE_BREAKPOINT:
4797 pmu = bp_perf_event_init(event);
4798 break;
4801 default:
4802 break;
4804 done:
4805 err = 0;
4806 if (!pmu)
4807 err = -EINVAL;
4808 else if (IS_ERR(pmu))
4809 err = PTR_ERR(pmu);
4811 if (err) {
4812 if (event->ns)
4813 put_pid_ns(event->ns);
4814 kfree(event);
4815 return ERR_PTR(err);
4818 event->pmu = pmu;
4820 if (!event->parent) {
4821 atomic_inc(&nr_events);
4822 if (event->attr.mmap)
4823 atomic_inc(&nr_mmap_events);
4824 if (event->attr.comm)
4825 atomic_inc(&nr_comm_events);
4826 if (event->attr.task)
4827 atomic_inc(&nr_task_events);
4830 return event;
4833 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4834 struct perf_event_attr *attr)
4836 u32 size;
4837 int ret;
4839 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4840 return -EFAULT;
4843 * zero the full structure, so that a short copy will be nice.
4845 memset(attr, 0, sizeof(*attr));
4847 ret = get_user(size, &uattr->size);
4848 if (ret)
4849 return ret;
4851 if (size > PAGE_SIZE) /* silly large */
4852 goto err_size;
4854 if (!size) /* abi compat */
4855 size = PERF_ATTR_SIZE_VER0;
4857 if (size < PERF_ATTR_SIZE_VER0)
4858 goto err_size;
4861 * If we're handed a bigger struct than we know of,
4862 * ensure all the unknown bits are 0 - i.e. new
4863 * user-space does not rely on any kernel feature
4864 * extensions we dont know about yet.
4866 if (size > sizeof(*attr)) {
4867 unsigned char __user *addr;
4868 unsigned char __user *end;
4869 unsigned char val;
4871 addr = (void __user *)uattr + sizeof(*attr);
4872 end = (void __user *)uattr + size;
4874 for (; addr < end; addr++) {
4875 ret = get_user(val, addr);
4876 if (ret)
4877 return ret;
4878 if (val)
4879 goto err_size;
4881 size = sizeof(*attr);
4884 ret = copy_from_user(attr, uattr, size);
4885 if (ret)
4886 return -EFAULT;
4889 * If the type exists, the corresponding creation will verify
4890 * the attr->config.
4892 if (attr->type >= PERF_TYPE_MAX)
4893 return -EINVAL;
4895 if (attr->__reserved_1)
4896 return -EINVAL;
4898 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4899 return -EINVAL;
4901 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4902 return -EINVAL;
4904 out:
4905 return ret;
4907 err_size:
4908 put_user(sizeof(*attr), &uattr->size);
4909 ret = -E2BIG;
4910 goto out;
4913 static int perf_event_set_output(struct perf_event *event, int output_fd)
4915 struct perf_event *output_event = NULL;
4916 struct file *output_file = NULL;
4917 struct perf_event *old_output;
4918 int fput_needed = 0;
4919 int ret = -EINVAL;
4921 if (!output_fd)
4922 goto set;
4924 output_file = fget_light(output_fd, &fput_needed);
4925 if (!output_file)
4926 return -EBADF;
4928 if (output_file->f_op != &perf_fops)
4929 goto out;
4931 output_event = output_file->private_data;
4933 /* Don't chain output fds */
4934 if (output_event->output)
4935 goto out;
4937 /* Don't set an output fd when we already have an output channel */
4938 if (event->data)
4939 goto out;
4941 atomic_long_inc(&output_file->f_count);
4943 set:
4944 mutex_lock(&event->mmap_mutex);
4945 old_output = event->output;
4946 rcu_assign_pointer(event->output, output_event);
4947 mutex_unlock(&event->mmap_mutex);
4949 if (old_output) {
4951 * we need to make sure no existing perf_output_*()
4952 * is still referencing this event.
4954 synchronize_rcu();
4955 fput(old_output->filp);
4958 ret = 0;
4959 out:
4960 fput_light(output_file, fput_needed);
4961 return ret;
4965 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4967 * @attr_uptr: event_id type attributes for monitoring/sampling
4968 * @pid: target pid
4969 * @cpu: target cpu
4970 * @group_fd: group leader event fd
4972 SYSCALL_DEFINE5(perf_event_open,
4973 struct perf_event_attr __user *, attr_uptr,
4974 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4976 struct perf_event *event, *group_leader;
4977 struct perf_event_attr attr;
4978 struct perf_event_context *ctx;
4979 struct file *event_file = NULL;
4980 struct file *group_file = NULL;
4981 int fput_needed = 0;
4982 int fput_needed2 = 0;
4983 int err;
4985 /* for future expandability... */
4986 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4987 return -EINVAL;
4989 err = perf_copy_attr(attr_uptr, &attr);
4990 if (err)
4991 return err;
4993 if (!attr.exclude_kernel) {
4994 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4995 return -EACCES;
4998 if (attr.freq) {
4999 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5000 return -EINVAL;
5004 * Get the target context (task or percpu):
5006 ctx = find_get_context(pid, cpu);
5007 if (IS_ERR(ctx))
5008 return PTR_ERR(ctx);
5011 * Look up the group leader (we will attach this event to it):
5013 group_leader = NULL;
5014 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5015 err = -EINVAL;
5016 group_file = fget_light(group_fd, &fput_needed);
5017 if (!group_file)
5018 goto err_put_context;
5019 if (group_file->f_op != &perf_fops)
5020 goto err_put_context;
5022 group_leader = group_file->private_data;
5024 * Do not allow a recursive hierarchy (this new sibling
5025 * becoming part of another group-sibling):
5027 if (group_leader->group_leader != group_leader)
5028 goto err_put_context;
5030 * Do not allow to attach to a group in a different
5031 * task or CPU context:
5033 if (group_leader->ctx != ctx)
5034 goto err_put_context;
5036 * Only a group leader can be exclusive or pinned
5038 if (attr.exclusive || attr.pinned)
5039 goto err_put_context;
5042 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5043 NULL, NULL, GFP_KERNEL);
5044 err = PTR_ERR(event);
5045 if (IS_ERR(event))
5046 goto err_put_context;
5048 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5049 if (err < 0)
5050 goto err_free_put_context;
5052 event_file = fget_light(err, &fput_needed2);
5053 if (!event_file)
5054 goto err_free_put_context;
5056 if (flags & PERF_FLAG_FD_OUTPUT) {
5057 err = perf_event_set_output(event, group_fd);
5058 if (err)
5059 goto err_fput_free_put_context;
5062 event->filp = event_file;
5063 WARN_ON_ONCE(ctx->parent_ctx);
5064 mutex_lock(&ctx->mutex);
5065 perf_install_in_context(ctx, event, cpu);
5066 ++ctx->generation;
5067 mutex_unlock(&ctx->mutex);
5069 event->owner = current;
5070 get_task_struct(current);
5071 mutex_lock(&current->perf_event_mutex);
5072 list_add_tail(&event->owner_entry, &current->perf_event_list);
5073 mutex_unlock(&current->perf_event_mutex);
5075 err_fput_free_put_context:
5076 fput_light(event_file, fput_needed2);
5078 err_free_put_context:
5079 if (err < 0)
5080 free_event(event);
5082 err_put_context:
5083 if (err < 0)
5084 put_ctx(ctx);
5086 fput_light(group_file, fput_needed);
5088 return err;
5092 * perf_event_create_kernel_counter
5094 * @attr: attributes of the counter to create
5095 * @cpu: cpu in which the counter is bound
5096 * @pid: task to profile
5098 struct perf_event *
5099 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5100 pid_t pid,
5101 perf_overflow_handler_t overflow_handler)
5103 struct perf_event *event;
5104 struct perf_event_context *ctx;
5105 int err;
5108 * Get the target context (task or percpu):
5111 ctx = find_get_context(pid, cpu);
5112 if (IS_ERR(ctx)) {
5113 err = PTR_ERR(ctx);
5114 goto err_exit;
5117 event = perf_event_alloc(attr, cpu, ctx, NULL,
5118 NULL, overflow_handler, GFP_KERNEL);
5119 if (IS_ERR(event)) {
5120 err = PTR_ERR(event);
5121 goto err_put_context;
5124 event->filp = NULL;
5125 WARN_ON_ONCE(ctx->parent_ctx);
5126 mutex_lock(&ctx->mutex);
5127 perf_install_in_context(ctx, event, cpu);
5128 ++ctx->generation;
5129 mutex_unlock(&ctx->mutex);
5131 event->owner = current;
5132 get_task_struct(current);
5133 mutex_lock(&current->perf_event_mutex);
5134 list_add_tail(&event->owner_entry, &current->perf_event_list);
5135 mutex_unlock(&current->perf_event_mutex);
5137 return event;
5139 err_put_context:
5140 put_ctx(ctx);
5141 err_exit:
5142 return ERR_PTR(err);
5144 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5147 * inherit a event from parent task to child task:
5149 static struct perf_event *
5150 inherit_event(struct perf_event *parent_event,
5151 struct task_struct *parent,
5152 struct perf_event_context *parent_ctx,
5153 struct task_struct *child,
5154 struct perf_event *group_leader,
5155 struct perf_event_context *child_ctx)
5157 struct perf_event *child_event;
5160 * Instead of creating recursive hierarchies of events,
5161 * we link inherited events back to the original parent,
5162 * which has a filp for sure, which we use as the reference
5163 * count:
5165 if (parent_event->parent)
5166 parent_event = parent_event->parent;
5168 child_event = perf_event_alloc(&parent_event->attr,
5169 parent_event->cpu, child_ctx,
5170 group_leader, parent_event,
5171 NULL, GFP_KERNEL);
5172 if (IS_ERR(child_event))
5173 return child_event;
5174 get_ctx(child_ctx);
5177 * Make the child state follow the state of the parent event,
5178 * not its attr.disabled bit. We hold the parent's mutex,
5179 * so we won't race with perf_event_{en, dis}able_family.
5181 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5182 child_event->state = PERF_EVENT_STATE_INACTIVE;
5183 else
5184 child_event->state = PERF_EVENT_STATE_OFF;
5186 if (parent_event->attr.freq) {
5187 u64 sample_period = parent_event->hw.sample_period;
5188 struct hw_perf_event *hwc = &child_event->hw;
5190 hwc->sample_period = sample_period;
5191 hwc->last_period = sample_period;
5193 atomic64_set(&hwc->period_left, sample_period);
5196 child_event->overflow_handler = parent_event->overflow_handler;
5199 * Link it up in the child's context:
5201 add_event_to_ctx(child_event, child_ctx);
5204 * Get a reference to the parent filp - we will fput it
5205 * when the child event exits. This is safe to do because
5206 * we are in the parent and we know that the filp still
5207 * exists and has a nonzero count:
5209 atomic_long_inc(&parent_event->filp->f_count);
5212 * Link this into the parent event's child list
5214 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5215 mutex_lock(&parent_event->child_mutex);
5216 list_add_tail(&child_event->child_list, &parent_event->child_list);
5217 mutex_unlock(&parent_event->child_mutex);
5219 return child_event;
5222 static int inherit_group(struct perf_event *parent_event,
5223 struct task_struct *parent,
5224 struct perf_event_context *parent_ctx,
5225 struct task_struct *child,
5226 struct perf_event_context *child_ctx)
5228 struct perf_event *leader;
5229 struct perf_event *sub;
5230 struct perf_event *child_ctr;
5232 leader = inherit_event(parent_event, parent, parent_ctx,
5233 child, NULL, child_ctx);
5234 if (IS_ERR(leader))
5235 return PTR_ERR(leader);
5236 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5237 child_ctr = inherit_event(sub, parent, parent_ctx,
5238 child, leader, child_ctx);
5239 if (IS_ERR(child_ctr))
5240 return PTR_ERR(child_ctr);
5242 return 0;
5245 static void sync_child_event(struct perf_event *child_event,
5246 struct task_struct *child)
5248 struct perf_event *parent_event = child_event->parent;
5249 u64 child_val;
5251 if (child_event->attr.inherit_stat)
5252 perf_event_read_event(child_event, child);
5254 child_val = atomic64_read(&child_event->count);
5257 * Add back the child's count to the parent's count:
5259 atomic64_add(child_val, &parent_event->count);
5260 atomic64_add(child_event->total_time_enabled,
5261 &parent_event->child_total_time_enabled);
5262 atomic64_add(child_event->total_time_running,
5263 &parent_event->child_total_time_running);
5266 * Remove this event from the parent's list
5268 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5269 mutex_lock(&parent_event->child_mutex);
5270 list_del_init(&child_event->child_list);
5271 mutex_unlock(&parent_event->child_mutex);
5274 * Release the parent event, if this was the last
5275 * reference to it.
5277 fput(parent_event->filp);
5280 static void
5281 __perf_event_exit_task(struct perf_event *child_event,
5282 struct perf_event_context *child_ctx,
5283 struct task_struct *child)
5285 struct perf_event *parent_event;
5287 perf_event_remove_from_context(child_event);
5289 parent_event = child_event->parent;
5291 * It can happen that parent exits first, and has events
5292 * that are still around due to the child reference. These
5293 * events need to be zapped - but otherwise linger.
5295 if (parent_event) {
5296 sync_child_event(child_event, child);
5297 free_event(child_event);
5302 * When a child task exits, feed back event values to parent events.
5304 void perf_event_exit_task(struct task_struct *child)
5306 struct perf_event *child_event, *tmp;
5307 struct perf_event_context *child_ctx;
5308 unsigned long flags;
5310 if (likely(!child->perf_event_ctxp)) {
5311 perf_event_task(child, NULL, 0);
5312 return;
5315 local_irq_save(flags);
5317 * We can't reschedule here because interrupts are disabled,
5318 * and either child is current or it is a task that can't be
5319 * scheduled, so we are now safe from rescheduling changing
5320 * our context.
5322 child_ctx = child->perf_event_ctxp;
5323 __perf_event_task_sched_out(child_ctx);
5326 * Take the context lock here so that if find_get_context is
5327 * reading child->perf_event_ctxp, we wait until it has
5328 * incremented the context's refcount before we do put_ctx below.
5330 raw_spin_lock(&child_ctx->lock);
5331 child->perf_event_ctxp = NULL;
5333 * If this context is a clone; unclone it so it can't get
5334 * swapped to another process while we're removing all
5335 * the events from it.
5337 unclone_ctx(child_ctx);
5338 update_context_time(child_ctx);
5339 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5342 * Report the task dead after unscheduling the events so that we
5343 * won't get any samples after PERF_RECORD_EXIT. We can however still
5344 * get a few PERF_RECORD_READ events.
5346 perf_event_task(child, child_ctx, 0);
5349 * We can recurse on the same lock type through:
5351 * __perf_event_exit_task()
5352 * sync_child_event()
5353 * fput(parent_event->filp)
5354 * perf_release()
5355 * mutex_lock(&ctx->mutex)
5357 * But since its the parent context it won't be the same instance.
5359 mutex_lock(&child_ctx->mutex);
5361 again:
5362 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5363 group_entry)
5364 __perf_event_exit_task(child_event, child_ctx, child);
5366 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5367 group_entry)
5368 __perf_event_exit_task(child_event, child_ctx, child);
5371 * If the last event was a group event, it will have appended all
5372 * its siblings to the list, but we obtained 'tmp' before that which
5373 * will still point to the list head terminating the iteration.
5375 if (!list_empty(&child_ctx->pinned_groups) ||
5376 !list_empty(&child_ctx->flexible_groups))
5377 goto again;
5379 mutex_unlock(&child_ctx->mutex);
5381 put_ctx(child_ctx);
5384 static void perf_free_event(struct perf_event *event,
5385 struct perf_event_context *ctx)
5387 struct perf_event *parent = event->parent;
5389 if (WARN_ON_ONCE(!parent))
5390 return;
5392 mutex_lock(&parent->child_mutex);
5393 list_del_init(&event->child_list);
5394 mutex_unlock(&parent->child_mutex);
5396 fput(parent->filp);
5398 list_del_event(event, ctx);
5399 free_event(event);
5403 * free an unexposed, unused context as created by inheritance by
5404 * init_task below, used by fork() in case of fail.
5406 void perf_event_free_task(struct task_struct *task)
5408 struct perf_event_context *ctx = task->perf_event_ctxp;
5409 struct perf_event *event, *tmp;
5411 if (!ctx)
5412 return;
5414 mutex_lock(&ctx->mutex);
5415 again:
5416 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5417 perf_free_event(event, ctx);
5419 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5420 group_entry)
5421 perf_free_event(event, ctx);
5423 if (!list_empty(&ctx->pinned_groups) ||
5424 !list_empty(&ctx->flexible_groups))
5425 goto again;
5427 mutex_unlock(&ctx->mutex);
5429 put_ctx(ctx);
5432 static int
5433 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5434 struct perf_event_context *parent_ctx,
5435 struct task_struct *child,
5436 int *inherited_all)
5438 int ret;
5439 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5441 if (!event->attr.inherit) {
5442 *inherited_all = 0;
5443 return 0;
5446 if (!child_ctx) {
5448 * This is executed from the parent task context, so
5449 * inherit events that have been marked for cloning.
5450 * First allocate and initialize a context for the
5451 * child.
5454 child_ctx = kzalloc(sizeof(struct perf_event_context),
5455 GFP_KERNEL);
5456 if (!child_ctx)
5457 return -ENOMEM;
5459 __perf_event_init_context(child_ctx, child);
5460 child->perf_event_ctxp = child_ctx;
5461 get_task_struct(child);
5464 ret = inherit_group(event, parent, parent_ctx,
5465 child, child_ctx);
5467 if (ret)
5468 *inherited_all = 0;
5470 return ret;
5475 * Initialize the perf_event context in task_struct
5477 int perf_event_init_task(struct task_struct *child)
5479 struct perf_event_context *child_ctx, *parent_ctx;
5480 struct perf_event_context *cloned_ctx;
5481 struct perf_event *event;
5482 struct task_struct *parent = current;
5483 int inherited_all = 1;
5484 int ret = 0;
5486 child->perf_event_ctxp = NULL;
5488 mutex_init(&child->perf_event_mutex);
5489 INIT_LIST_HEAD(&child->perf_event_list);
5491 if (likely(!parent->perf_event_ctxp))
5492 return 0;
5495 * If the parent's context is a clone, pin it so it won't get
5496 * swapped under us.
5498 parent_ctx = perf_pin_task_context(parent);
5501 * No need to check if parent_ctx != NULL here; since we saw
5502 * it non-NULL earlier, the only reason for it to become NULL
5503 * is if we exit, and since we're currently in the middle of
5504 * a fork we can't be exiting at the same time.
5508 * Lock the parent list. No need to lock the child - not PID
5509 * hashed yet and not running, so nobody can access it.
5511 mutex_lock(&parent_ctx->mutex);
5514 * We dont have to disable NMIs - we are only looking at
5515 * the list, not manipulating it:
5517 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5518 ret = inherit_task_group(event, parent, parent_ctx, child,
5519 &inherited_all);
5520 if (ret)
5521 break;
5524 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5525 ret = inherit_task_group(event, parent, parent_ctx, child,
5526 &inherited_all);
5527 if (ret)
5528 break;
5531 child_ctx = child->perf_event_ctxp;
5533 if (child_ctx && inherited_all) {
5535 * Mark the child context as a clone of the parent
5536 * context, or of whatever the parent is a clone of.
5537 * Note that if the parent is a clone, it could get
5538 * uncloned at any point, but that doesn't matter
5539 * because the list of events and the generation
5540 * count can't have changed since we took the mutex.
5542 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5543 if (cloned_ctx) {
5544 child_ctx->parent_ctx = cloned_ctx;
5545 child_ctx->parent_gen = parent_ctx->parent_gen;
5546 } else {
5547 child_ctx->parent_ctx = parent_ctx;
5548 child_ctx->parent_gen = parent_ctx->generation;
5550 get_ctx(child_ctx->parent_ctx);
5553 mutex_unlock(&parent_ctx->mutex);
5555 perf_unpin_context(parent_ctx);
5557 return ret;
5560 static void __init perf_event_init_all_cpus(void)
5562 int cpu;
5563 struct perf_cpu_context *cpuctx;
5565 for_each_possible_cpu(cpu) {
5566 cpuctx = &per_cpu(perf_cpu_context, cpu);
5567 mutex_init(&cpuctx->hlist_mutex);
5568 __perf_event_init_context(&cpuctx->ctx, NULL);
5572 static void __cpuinit perf_event_init_cpu(int cpu)
5574 struct perf_cpu_context *cpuctx;
5576 cpuctx = &per_cpu(perf_cpu_context, cpu);
5578 spin_lock(&perf_resource_lock);
5579 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5580 spin_unlock(&perf_resource_lock);
5582 mutex_lock(&cpuctx->hlist_mutex);
5583 if (cpuctx->hlist_refcount > 0) {
5584 struct swevent_hlist *hlist;
5586 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5587 WARN_ON_ONCE(!hlist);
5588 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5590 mutex_unlock(&cpuctx->hlist_mutex);
5593 #ifdef CONFIG_HOTPLUG_CPU
5594 static void __perf_event_exit_cpu(void *info)
5596 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5597 struct perf_event_context *ctx = &cpuctx->ctx;
5598 struct perf_event *event, *tmp;
5600 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5601 __perf_event_remove_from_context(event);
5602 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5603 __perf_event_remove_from_context(event);
5605 static void perf_event_exit_cpu(int cpu)
5607 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5608 struct perf_event_context *ctx = &cpuctx->ctx;
5610 mutex_lock(&cpuctx->hlist_mutex);
5611 swevent_hlist_release(cpuctx);
5612 mutex_unlock(&cpuctx->hlist_mutex);
5614 mutex_lock(&ctx->mutex);
5615 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5616 mutex_unlock(&ctx->mutex);
5618 #else
5619 static inline void perf_event_exit_cpu(int cpu) { }
5620 #endif
5622 static int __cpuinit
5623 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5625 unsigned int cpu = (long)hcpu;
5627 switch (action) {
5629 case CPU_UP_PREPARE:
5630 case CPU_UP_PREPARE_FROZEN:
5631 perf_event_init_cpu(cpu);
5632 break;
5634 case CPU_DOWN_PREPARE:
5635 case CPU_DOWN_PREPARE_FROZEN:
5636 perf_event_exit_cpu(cpu);
5637 break;
5639 default:
5640 break;
5643 return NOTIFY_OK;
5647 * This has to have a higher priority than migration_notifier in sched.c.
5649 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5650 .notifier_call = perf_cpu_notify,
5651 .priority = 20,
5654 void __init perf_event_init(void)
5656 perf_event_init_all_cpus();
5657 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5658 (void *)(long)smp_processor_id());
5659 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5660 (void *)(long)smp_processor_id());
5661 register_cpu_notifier(&perf_cpu_nb);
5664 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5665 struct sysdev_class_attribute *attr,
5666 char *buf)
5668 return sprintf(buf, "%d\n", perf_reserved_percpu);
5671 static ssize_t
5672 perf_set_reserve_percpu(struct sysdev_class *class,
5673 struct sysdev_class_attribute *attr,
5674 const char *buf,
5675 size_t count)
5677 struct perf_cpu_context *cpuctx;
5678 unsigned long val;
5679 int err, cpu, mpt;
5681 err = strict_strtoul(buf, 10, &val);
5682 if (err)
5683 return err;
5684 if (val > perf_max_events)
5685 return -EINVAL;
5687 spin_lock(&perf_resource_lock);
5688 perf_reserved_percpu = val;
5689 for_each_online_cpu(cpu) {
5690 cpuctx = &per_cpu(perf_cpu_context, cpu);
5691 raw_spin_lock_irq(&cpuctx->ctx.lock);
5692 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5693 perf_max_events - perf_reserved_percpu);
5694 cpuctx->max_pertask = mpt;
5695 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5697 spin_unlock(&perf_resource_lock);
5699 return count;
5702 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5703 struct sysdev_class_attribute *attr,
5704 char *buf)
5706 return sprintf(buf, "%d\n", perf_overcommit);
5709 static ssize_t
5710 perf_set_overcommit(struct sysdev_class *class,
5711 struct sysdev_class_attribute *attr,
5712 const char *buf, size_t count)
5714 unsigned long val;
5715 int err;
5717 err = strict_strtoul(buf, 10, &val);
5718 if (err)
5719 return err;
5720 if (val > 1)
5721 return -EINVAL;
5723 spin_lock(&perf_resource_lock);
5724 perf_overcommit = val;
5725 spin_unlock(&perf_resource_lock);
5727 return count;
5730 static SYSDEV_CLASS_ATTR(
5731 reserve_percpu,
5732 0644,
5733 perf_show_reserve_percpu,
5734 perf_set_reserve_percpu
5737 static SYSDEV_CLASS_ATTR(
5738 overcommit,
5739 0644,
5740 perf_show_overcommit,
5741 perf_set_overcommit
5744 static struct attribute *perfclass_attrs[] = {
5745 &attr_reserve_percpu.attr,
5746 &attr_overcommit.attr,
5747 NULL
5750 static struct attribute_group perfclass_attr_group = {
5751 .attrs = perfclass_attrs,
5752 .name = "perf_events",
5755 static int __init perf_event_sysfs_init(void)
5757 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5758 &perfclass_attr_group);
5760 device_initcall(perf_event_sysfs_init);