4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
42 #include <linux/compat.h>
43 #include <linux/syscalls.h>
44 #include <linux/kprobes.h>
45 #include <linux/user_namespace.h>
47 #include <linux/kmsg_dump.h>
49 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
53 #ifndef SET_UNALIGN_CTL
54 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
56 #ifndef GET_UNALIGN_CTL
57 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
60 # define SET_FPEMU_CTL(a,b) (-EINVAL)
63 # define GET_FPEMU_CTL(a,b) (-EINVAL)
66 # define SET_FPEXC_CTL(a,b) (-EINVAL)
69 # define GET_FPEXC_CTL(a,b) (-EINVAL)
72 # define GET_ENDIAN(a,b) (-EINVAL)
75 # define SET_ENDIAN(a,b) (-EINVAL)
78 # define GET_TSC_CTL(a) (-EINVAL)
81 # define SET_TSC_CTL(a) (-EINVAL)
85 * this is where the system-wide overflow UID and GID are defined, for
86 * architectures that now have 32-bit UID/GID but didn't in the past
89 int overflowuid
= DEFAULT_OVERFLOWUID
;
90 int overflowgid
= DEFAULT_OVERFLOWGID
;
93 EXPORT_SYMBOL(overflowuid
);
94 EXPORT_SYMBOL(overflowgid
);
98 * the same as above, but for filesystems which can only store a 16-bit
99 * UID and GID. as such, this is needed on all architectures
102 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
103 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
105 EXPORT_SYMBOL(fs_overflowuid
);
106 EXPORT_SYMBOL(fs_overflowgid
);
109 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114 EXPORT_SYMBOL(cad_pid
);
117 * If set, this is used for preparing the system to power off.
120 void (*pm_power_off_prepare
)(void);
123 * Returns true if current's euid is same as p's uid or euid,
124 * or has CAP_SYS_NICE to p's user_ns.
126 * Called with rcu_read_lock, creds are safe
128 static bool set_one_prio_perm(struct task_struct
*p
)
130 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
132 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
133 (pcred
->uid
== cred
->euid
||
134 pcred
->euid
== cred
->euid
))
136 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
142 * set the priority of a task
143 * - the caller must hold the RCU read lock
145 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
149 if (!set_one_prio_perm(p
)) {
153 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
157 no_nice
= security_task_setnice(p
, niceval
);
164 set_user_nice(p
, niceval
);
169 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
171 struct task_struct
*g
, *p
;
172 struct user_struct
*user
;
173 const struct cred
*cred
= current_cred();
177 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
180 /* normalize: avoid signed division (rounding problems) */
188 read_lock(&tasklist_lock
);
192 p
= find_task_by_vpid(who
);
196 error
= set_one_prio(p
, niceval
, error
);
200 pgrp
= find_vpid(who
);
202 pgrp
= task_pgrp(current
);
203 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
204 error
= set_one_prio(p
, niceval
, error
);
205 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
208 user
= (struct user_struct
*) cred
->user
;
211 else if ((who
!= cred
->uid
) &&
212 !(user
= find_user(who
)))
213 goto out_unlock
; /* No processes for this user */
215 do_each_thread(g
, p
) {
216 if (__task_cred(p
)->uid
== who
)
217 error
= set_one_prio(p
, niceval
, error
);
218 } while_each_thread(g
, p
);
219 if (who
!= cred
->uid
)
220 free_uid(user
); /* For find_user() */
224 read_unlock(&tasklist_lock
);
231 * Ugh. To avoid negative return values, "getpriority()" will
232 * not return the normal nice-value, but a negated value that
233 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
234 * to stay compatible.
236 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
238 struct task_struct
*g
, *p
;
239 struct user_struct
*user
;
240 const struct cred
*cred
= current_cred();
241 long niceval
, retval
= -ESRCH
;
244 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
248 read_lock(&tasklist_lock
);
252 p
= find_task_by_vpid(who
);
256 niceval
= 20 - task_nice(p
);
257 if (niceval
> retval
)
263 pgrp
= find_vpid(who
);
265 pgrp
= task_pgrp(current
);
266 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
267 niceval
= 20 - task_nice(p
);
268 if (niceval
> retval
)
270 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
273 user
= (struct user_struct
*) cred
->user
;
276 else if ((who
!= cred
->uid
) &&
277 !(user
= find_user(who
)))
278 goto out_unlock
; /* No processes for this user */
280 do_each_thread(g
, p
) {
281 if (__task_cred(p
)->uid
== who
) {
282 niceval
= 20 - task_nice(p
);
283 if (niceval
> retval
)
286 } while_each_thread(g
, p
);
287 if (who
!= cred
->uid
)
288 free_uid(user
); /* for find_user() */
292 read_unlock(&tasklist_lock
);
299 * emergency_restart - reboot the system
301 * Without shutting down any hardware or taking any locks
302 * reboot the system. This is called when we know we are in
303 * trouble so this is our best effort to reboot. This is
304 * safe to call in interrupt context.
306 void emergency_restart(void)
308 kmsg_dump(KMSG_DUMP_EMERG
);
309 machine_emergency_restart();
311 EXPORT_SYMBOL_GPL(emergency_restart
);
313 void kernel_restart_prepare(char *cmd
)
315 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
316 system_state
= SYSTEM_RESTART
;
322 * kernel_restart - reboot the system
323 * @cmd: pointer to buffer containing command to execute for restart
326 * Shutdown everything and perform a clean reboot.
327 * This is not safe to call in interrupt context.
329 void kernel_restart(char *cmd
)
331 kernel_restart_prepare(cmd
);
333 printk(KERN_EMERG
"Restarting system.\n");
335 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
336 kmsg_dump(KMSG_DUMP_RESTART
);
337 machine_restart(cmd
);
339 EXPORT_SYMBOL_GPL(kernel_restart
);
341 static void kernel_shutdown_prepare(enum system_states state
)
343 blocking_notifier_call_chain(&reboot_notifier_list
,
344 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
345 system_state
= state
;
349 * kernel_halt - halt the system
351 * Shutdown everything and perform a clean system halt.
353 void kernel_halt(void)
355 kernel_shutdown_prepare(SYSTEM_HALT
);
357 printk(KERN_EMERG
"System halted.\n");
358 kmsg_dump(KMSG_DUMP_HALT
);
362 EXPORT_SYMBOL_GPL(kernel_halt
);
365 * kernel_power_off - power_off the system
367 * Shutdown everything and perform a clean system power_off.
369 void kernel_power_off(void)
371 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
372 if (pm_power_off_prepare
)
373 pm_power_off_prepare();
374 disable_nonboot_cpus();
376 printk(KERN_EMERG
"Power down.\n");
377 kmsg_dump(KMSG_DUMP_POWEROFF
);
380 EXPORT_SYMBOL_GPL(kernel_power_off
);
382 static DEFINE_MUTEX(reboot_mutex
);
385 * Reboot system call: for obvious reasons only root may call it,
386 * and even root needs to set up some magic numbers in the registers
387 * so that some mistake won't make this reboot the whole machine.
388 * You can also set the meaning of the ctrl-alt-del-key here.
390 * reboot doesn't sync: do that yourself before calling this.
392 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
398 /* We only trust the superuser with rebooting the system. */
399 if (!capable(CAP_SYS_BOOT
))
402 /* For safety, we require "magic" arguments. */
403 if (magic1
!= LINUX_REBOOT_MAGIC1
||
404 (magic2
!= LINUX_REBOOT_MAGIC2
&&
405 magic2
!= LINUX_REBOOT_MAGIC2A
&&
406 magic2
!= LINUX_REBOOT_MAGIC2B
&&
407 magic2
!= LINUX_REBOOT_MAGIC2C
))
410 /* Instead of trying to make the power_off code look like
411 * halt when pm_power_off is not set do it the easy way.
413 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
414 cmd
= LINUX_REBOOT_CMD_HALT
;
416 mutex_lock(&reboot_mutex
);
418 case LINUX_REBOOT_CMD_RESTART
:
419 kernel_restart(NULL
);
422 case LINUX_REBOOT_CMD_CAD_ON
:
426 case LINUX_REBOOT_CMD_CAD_OFF
:
430 case LINUX_REBOOT_CMD_HALT
:
433 panic("cannot halt");
435 case LINUX_REBOOT_CMD_POWER_OFF
:
440 case LINUX_REBOOT_CMD_RESTART2
:
441 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
445 buffer
[sizeof(buffer
) - 1] = '\0';
447 kernel_restart(buffer
);
451 case LINUX_REBOOT_CMD_KEXEC
:
452 ret
= kernel_kexec();
456 #ifdef CONFIG_HIBERNATION
457 case LINUX_REBOOT_CMD_SW_SUSPEND
:
466 mutex_unlock(&reboot_mutex
);
470 static void deferred_cad(struct work_struct
*dummy
)
472 kernel_restart(NULL
);
476 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
477 * As it's called within an interrupt, it may NOT sync: the only choice
478 * is whether to reboot at once, or just ignore the ctrl-alt-del.
480 void ctrl_alt_del(void)
482 static DECLARE_WORK(cad_work
, deferred_cad
);
485 schedule_work(&cad_work
);
487 kill_cad_pid(SIGINT
, 1);
491 * Unprivileged users may change the real gid to the effective gid
492 * or vice versa. (BSD-style)
494 * If you set the real gid at all, or set the effective gid to a value not
495 * equal to the real gid, then the saved gid is set to the new effective gid.
497 * This makes it possible for a setgid program to completely drop its
498 * privileges, which is often a useful assertion to make when you are doing
499 * a security audit over a program.
501 * The general idea is that a program which uses just setregid() will be
502 * 100% compatible with BSD. A program which uses just setgid() will be
503 * 100% compatible with POSIX with saved IDs.
505 * SMP: There are not races, the GIDs are checked only by filesystem
506 * operations (as far as semantic preservation is concerned).
508 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
510 const struct cred
*old
;
514 new = prepare_creds();
517 old
= current_cred();
520 if (rgid
!= (gid_t
) -1) {
521 if (old
->gid
== rgid
||
523 nsown_capable(CAP_SETGID
))
528 if (egid
!= (gid_t
) -1) {
529 if (old
->gid
== egid
||
532 nsown_capable(CAP_SETGID
))
538 if (rgid
!= (gid_t
) -1 ||
539 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
540 new->sgid
= new->egid
;
541 new->fsgid
= new->egid
;
543 return commit_creds(new);
551 * setgid() is implemented like SysV w/ SAVED_IDS
553 * SMP: Same implicit races as above.
555 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
557 const struct cred
*old
;
561 new = prepare_creds();
564 old
= current_cred();
567 if (nsown_capable(CAP_SETGID
))
568 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
569 else if (gid
== old
->gid
|| gid
== old
->sgid
)
570 new->egid
= new->fsgid
= gid
;
574 return commit_creds(new);
582 * change the user struct in a credentials set to match the new UID
584 static int set_user(struct cred
*new)
586 struct user_struct
*new_user
;
588 new_user
= alloc_uid(current_user_ns(), new->uid
);
592 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
593 new_user
!= INIT_USER
) {
599 new->user
= new_user
;
604 * Unprivileged users may change the real uid to the effective uid
605 * or vice versa. (BSD-style)
607 * If you set the real uid at all, or set the effective uid to a value not
608 * equal to the real uid, then the saved uid is set to the new effective uid.
610 * This makes it possible for a setuid program to completely drop its
611 * privileges, which is often a useful assertion to make when you are doing
612 * a security audit over a program.
614 * The general idea is that a program which uses just setreuid() will be
615 * 100% compatible with BSD. A program which uses just setuid() will be
616 * 100% compatible with POSIX with saved IDs.
618 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
620 const struct cred
*old
;
624 new = prepare_creds();
627 old
= current_cred();
630 if (ruid
!= (uid_t
) -1) {
632 if (old
->uid
!= ruid
&&
634 !nsown_capable(CAP_SETUID
))
638 if (euid
!= (uid_t
) -1) {
640 if (old
->uid
!= euid
&&
643 !nsown_capable(CAP_SETUID
))
647 if (new->uid
!= old
->uid
) {
648 retval
= set_user(new);
652 if (ruid
!= (uid_t
) -1 ||
653 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
654 new->suid
= new->euid
;
655 new->fsuid
= new->euid
;
657 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
661 return commit_creds(new);
669 * setuid() is implemented like SysV with SAVED_IDS
671 * Note that SAVED_ID's is deficient in that a setuid root program
672 * like sendmail, for example, cannot set its uid to be a normal
673 * user and then switch back, because if you're root, setuid() sets
674 * the saved uid too. If you don't like this, blame the bright people
675 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
676 * will allow a root program to temporarily drop privileges and be able to
677 * regain them by swapping the real and effective uid.
679 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
681 const struct cred
*old
;
685 new = prepare_creds();
688 old
= current_cred();
691 if (nsown_capable(CAP_SETUID
)) {
692 new->suid
= new->uid
= uid
;
693 if (uid
!= old
->uid
) {
694 retval
= set_user(new);
698 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
702 new->fsuid
= new->euid
= uid
;
704 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
708 return commit_creds(new);
717 * This function implements a generic ability to update ruid, euid,
718 * and suid. This allows you to implement the 4.4 compatible seteuid().
720 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
722 const struct cred
*old
;
726 new = prepare_creds();
730 old
= current_cred();
733 if (!nsown_capable(CAP_SETUID
)) {
734 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
735 ruid
!= old
->euid
&& ruid
!= old
->suid
)
737 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
738 euid
!= old
->euid
&& euid
!= old
->suid
)
740 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
741 suid
!= old
->euid
&& suid
!= old
->suid
)
745 if (ruid
!= (uid_t
) -1) {
747 if (ruid
!= old
->uid
) {
748 retval
= set_user(new);
753 if (euid
!= (uid_t
) -1)
755 if (suid
!= (uid_t
) -1)
757 new->fsuid
= new->euid
;
759 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
763 return commit_creds(new);
770 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
772 const struct cred
*cred
= current_cred();
775 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
776 !(retval
= put_user(cred
->euid
, euid
)))
777 retval
= put_user(cred
->suid
, suid
);
783 * Same as above, but for rgid, egid, sgid.
785 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
787 const struct cred
*old
;
791 new = prepare_creds();
794 old
= current_cred();
797 if (!nsown_capable(CAP_SETGID
)) {
798 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
799 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
801 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
802 egid
!= old
->egid
&& egid
!= old
->sgid
)
804 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
805 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
809 if (rgid
!= (gid_t
) -1)
811 if (egid
!= (gid_t
) -1)
813 if (sgid
!= (gid_t
) -1)
815 new->fsgid
= new->egid
;
817 return commit_creds(new);
824 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
826 const struct cred
*cred
= current_cred();
829 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
830 !(retval
= put_user(cred
->egid
, egid
)))
831 retval
= put_user(cred
->sgid
, sgid
);
838 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
839 * is used for "access()" and for the NFS daemon (letting nfsd stay at
840 * whatever uid it wants to). It normally shadows "euid", except when
841 * explicitly set by setfsuid() or for access..
843 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
845 const struct cred
*old
;
849 new = prepare_creds();
851 return current_fsuid();
852 old
= current_cred();
853 old_fsuid
= old
->fsuid
;
855 if (uid
== old
->uid
|| uid
== old
->euid
||
856 uid
== old
->suid
|| uid
== old
->fsuid
||
857 nsown_capable(CAP_SETUID
)) {
858 if (uid
!= old_fsuid
) {
860 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
874 * Samma på svenska..
876 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
878 const struct cred
*old
;
882 new = prepare_creds();
884 return current_fsgid();
885 old
= current_cred();
886 old_fsgid
= old
->fsgid
;
888 if (gid
== old
->gid
|| gid
== old
->egid
||
889 gid
== old
->sgid
|| gid
== old
->fsgid
||
890 nsown_capable(CAP_SETGID
)) {
891 if (gid
!= old_fsgid
) {
905 void do_sys_times(struct tms
*tms
)
907 cputime_t tgutime
, tgstime
, cutime
, cstime
;
909 spin_lock_irq(¤t
->sighand
->siglock
);
910 thread_group_times(current
, &tgutime
, &tgstime
);
911 cutime
= current
->signal
->cutime
;
912 cstime
= current
->signal
->cstime
;
913 spin_unlock_irq(¤t
->sighand
->siglock
);
914 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
915 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
916 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
917 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
920 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
926 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
929 force_successful_syscall_return();
930 return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 * This needs some heavy checking ...
935 * I just haven't the stomach for it. I also don't fully
936 * understand sessions/pgrp etc. Let somebody who does explain it.
938 * OK, I think I have the protection semantics right.... this is really
939 * only important on a multi-user system anyway, to make sure one user
940 * can't send a signal to a process owned by another. -TYT, 12/12/91
942 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
947 struct task_struct
*p
;
948 struct task_struct
*group_leader
= current
->group_leader
;
953 pid
= task_pid_vnr(group_leader
);
960 /* From this point forward we keep holding onto the tasklist lock
961 * so that our parent does not change from under us. -DaveM
963 write_lock_irq(&tasklist_lock
);
966 p
= find_task_by_vpid(pid
);
971 if (!thread_group_leader(p
))
974 if (same_thread_group(p
->real_parent
, group_leader
)) {
976 if (task_session(p
) != task_session(group_leader
))
983 if (p
!= group_leader
)
988 if (p
->signal
->leader
)
993 struct task_struct
*g
;
995 pgrp
= find_vpid(pgid
);
996 g
= pid_task(pgrp
, PIDTYPE_PGID
);
997 if (!g
|| task_session(g
) != task_session(group_leader
))
1001 err
= security_task_setpgid(p
, pgid
);
1005 if (task_pgrp(p
) != pgrp
)
1006 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1010 /* All paths lead to here, thus we are safe. -DaveM */
1011 write_unlock_irq(&tasklist_lock
);
1016 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1018 struct task_struct
*p
;
1024 grp
= task_pgrp(current
);
1027 p
= find_task_by_vpid(pid
);
1034 retval
= security_task_getpgid(p
);
1038 retval
= pid_vnr(grp
);
1044 #ifdef __ARCH_WANT_SYS_GETPGRP
1046 SYSCALL_DEFINE0(getpgrp
)
1048 return sys_getpgid(0);
1053 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1055 struct task_struct
*p
;
1061 sid
= task_session(current
);
1064 p
= find_task_by_vpid(pid
);
1067 sid
= task_session(p
);
1071 retval
= security_task_getsid(p
);
1075 retval
= pid_vnr(sid
);
1081 SYSCALL_DEFINE0(setsid
)
1083 struct task_struct
*group_leader
= current
->group_leader
;
1084 struct pid
*sid
= task_pid(group_leader
);
1085 pid_t session
= pid_vnr(sid
);
1088 write_lock_irq(&tasklist_lock
);
1089 /* Fail if I am already a session leader */
1090 if (group_leader
->signal
->leader
)
1093 /* Fail if a process group id already exists that equals the
1094 * proposed session id.
1096 if (pid_task(sid
, PIDTYPE_PGID
))
1099 group_leader
->signal
->leader
= 1;
1100 __set_special_pids(sid
);
1102 proc_clear_tty(group_leader
);
1106 write_unlock_irq(&tasklist_lock
);
1108 proc_sid_connector(group_leader
);
1109 sched_autogroup_create_attach(group_leader
);
1114 DECLARE_RWSEM(uts_sem
);
1116 #ifdef COMPAT_UTS_MACHINE
1117 #define override_architecture(name) \
1118 (personality(current->personality) == PER_LINUX32 && \
1119 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1120 sizeof(COMPAT_UTS_MACHINE)))
1122 #define override_architecture(name) 0
1125 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1129 down_read(&uts_sem
);
1130 if (copy_to_user(name
, utsname(), sizeof *name
))
1134 if (!errno
&& override_architecture(name
))
1139 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1143 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1150 down_read(&uts_sem
);
1151 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1155 if (!error
&& override_architecture(name
))
1160 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1166 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1169 down_read(&uts_sem
);
1170 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1172 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1173 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1175 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1176 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1178 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1179 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1181 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1182 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1184 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1187 if (!error
&& override_architecture(name
))
1189 return error
? -EFAULT
: 0;
1193 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1196 char tmp
[__NEW_UTS_LEN
];
1198 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1201 if (len
< 0 || len
> __NEW_UTS_LEN
)
1203 down_write(&uts_sem
);
1205 if (!copy_from_user(tmp
, name
, len
)) {
1206 struct new_utsname
*u
= utsname();
1208 memcpy(u
->nodename
, tmp
, len
);
1209 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1216 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1218 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1221 struct new_utsname
*u
;
1225 down_read(&uts_sem
);
1227 i
= 1 + strlen(u
->nodename
);
1231 if (copy_to_user(name
, u
->nodename
, i
))
1240 * Only setdomainname; getdomainname can be implemented by calling
1243 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1246 char tmp
[__NEW_UTS_LEN
];
1248 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1250 if (len
< 0 || len
> __NEW_UTS_LEN
)
1253 down_write(&uts_sem
);
1255 if (!copy_from_user(tmp
, name
, len
)) {
1256 struct new_utsname
*u
= utsname();
1258 memcpy(u
->domainname
, tmp
, len
);
1259 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1266 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1268 struct rlimit value
;
1271 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1273 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1278 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1281 * Back compatibility for getrlimit. Needed for some apps.
1284 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1285 struct rlimit __user
*, rlim
)
1288 if (resource
>= RLIM_NLIMITS
)
1291 task_lock(current
->group_leader
);
1292 x
= current
->signal
->rlim
[resource
];
1293 task_unlock(current
->group_leader
);
1294 if (x
.rlim_cur
> 0x7FFFFFFF)
1295 x
.rlim_cur
= 0x7FFFFFFF;
1296 if (x
.rlim_max
> 0x7FFFFFFF)
1297 x
.rlim_max
= 0x7FFFFFFF;
1298 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1303 static inline bool rlim64_is_infinity(__u64 rlim64
)
1305 #if BITS_PER_LONG < 64
1306 return rlim64
>= ULONG_MAX
;
1308 return rlim64
== RLIM64_INFINITY
;
1312 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1314 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1315 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1317 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1318 if (rlim
->rlim_max
== RLIM_INFINITY
)
1319 rlim64
->rlim_max
= RLIM64_INFINITY
;
1321 rlim64
->rlim_max
= rlim
->rlim_max
;
1324 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1326 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1327 rlim
->rlim_cur
= RLIM_INFINITY
;
1329 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1330 if (rlim64_is_infinity(rlim64
->rlim_max
))
1331 rlim
->rlim_max
= RLIM_INFINITY
;
1333 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1336 /* make sure you are allowed to change @tsk limits before calling this */
1337 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1338 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1340 struct rlimit
*rlim
;
1343 if (resource
>= RLIM_NLIMITS
)
1346 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1348 if (resource
== RLIMIT_NOFILE
&&
1349 new_rlim
->rlim_max
> sysctl_nr_open
)
1353 /* protect tsk->signal and tsk->sighand from disappearing */
1354 read_lock(&tasklist_lock
);
1355 if (!tsk
->sighand
) {
1360 rlim
= tsk
->signal
->rlim
+ resource
;
1361 task_lock(tsk
->group_leader
);
1363 /* Keep the capable check against init_user_ns until
1364 cgroups can contain all limits */
1365 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1366 !capable(CAP_SYS_RESOURCE
))
1369 retval
= security_task_setrlimit(tsk
->group_leader
,
1370 resource
, new_rlim
);
1371 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1373 * The caller is asking for an immediate RLIMIT_CPU
1374 * expiry. But we use the zero value to mean "it was
1375 * never set". So let's cheat and make it one second
1378 new_rlim
->rlim_cur
= 1;
1387 task_unlock(tsk
->group_leader
);
1390 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1391 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1392 * very long-standing error, and fixing it now risks breakage of
1393 * applications, so we live with it
1395 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1396 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1397 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1399 read_unlock(&tasklist_lock
);
1403 /* rcu lock must be held */
1404 static int check_prlimit_permission(struct task_struct
*task
)
1406 const struct cred
*cred
= current_cred(), *tcred
;
1408 if (current
== task
)
1411 tcred
= __task_cred(task
);
1412 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1413 (cred
->uid
== tcred
->euid
&&
1414 cred
->uid
== tcred
->suid
&&
1415 cred
->uid
== tcred
->uid
&&
1416 cred
->gid
== tcred
->egid
&&
1417 cred
->gid
== tcred
->sgid
&&
1418 cred
->gid
== tcred
->gid
))
1420 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1426 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1427 const struct rlimit64 __user
*, new_rlim
,
1428 struct rlimit64 __user
*, old_rlim
)
1430 struct rlimit64 old64
, new64
;
1431 struct rlimit old
, new;
1432 struct task_struct
*tsk
;
1436 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1438 rlim64_to_rlim(&new64
, &new);
1442 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1447 ret
= check_prlimit_permission(tsk
);
1452 get_task_struct(tsk
);
1455 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1456 old_rlim
? &old
: NULL
);
1458 if (!ret
&& old_rlim
) {
1459 rlim_to_rlim64(&old
, &old64
);
1460 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1464 put_task_struct(tsk
);
1468 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1470 struct rlimit new_rlim
;
1472 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1474 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1478 * It would make sense to put struct rusage in the task_struct,
1479 * except that would make the task_struct be *really big*. After
1480 * task_struct gets moved into malloc'ed memory, it would
1481 * make sense to do this. It will make moving the rest of the information
1482 * a lot simpler! (Which we're not doing right now because we're not
1483 * measuring them yet).
1485 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1486 * races with threads incrementing their own counters. But since word
1487 * reads are atomic, we either get new values or old values and we don't
1488 * care which for the sums. We always take the siglock to protect reading
1489 * the c* fields from p->signal from races with exit.c updating those
1490 * fields when reaping, so a sample either gets all the additions of a
1491 * given child after it's reaped, or none so this sample is before reaping.
1494 * We need to take the siglock for CHILDEREN, SELF and BOTH
1495 * for the cases current multithreaded, non-current single threaded
1496 * non-current multithreaded. Thread traversal is now safe with
1498 * Strictly speaking, we donot need to take the siglock if we are current and
1499 * single threaded, as no one else can take our signal_struct away, no one
1500 * else can reap the children to update signal->c* counters, and no one else
1501 * can race with the signal-> fields. If we do not take any lock, the
1502 * signal-> fields could be read out of order while another thread was just
1503 * exiting. So we should place a read memory barrier when we avoid the lock.
1504 * On the writer side, write memory barrier is implied in __exit_signal
1505 * as __exit_signal releases the siglock spinlock after updating the signal->
1506 * fields. But we don't do this yet to keep things simple.
1510 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1512 r
->ru_nvcsw
+= t
->nvcsw
;
1513 r
->ru_nivcsw
+= t
->nivcsw
;
1514 r
->ru_minflt
+= t
->min_flt
;
1515 r
->ru_majflt
+= t
->maj_flt
;
1516 r
->ru_inblock
+= task_io_get_inblock(t
);
1517 r
->ru_oublock
+= task_io_get_oublock(t
);
1520 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1522 struct task_struct
*t
;
1523 unsigned long flags
;
1524 cputime_t tgutime
, tgstime
, utime
, stime
;
1525 unsigned long maxrss
= 0;
1527 memset((char *) r
, 0, sizeof *r
);
1528 utime
= stime
= cputime_zero
;
1530 if (who
== RUSAGE_THREAD
) {
1531 task_times(current
, &utime
, &stime
);
1532 accumulate_thread_rusage(p
, r
);
1533 maxrss
= p
->signal
->maxrss
;
1537 if (!lock_task_sighand(p
, &flags
))
1542 case RUSAGE_CHILDREN
:
1543 utime
= p
->signal
->cutime
;
1544 stime
= p
->signal
->cstime
;
1545 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1546 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1547 r
->ru_minflt
= p
->signal
->cmin_flt
;
1548 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1549 r
->ru_inblock
= p
->signal
->cinblock
;
1550 r
->ru_oublock
= p
->signal
->coublock
;
1551 maxrss
= p
->signal
->cmaxrss
;
1553 if (who
== RUSAGE_CHILDREN
)
1557 thread_group_times(p
, &tgutime
, &tgstime
);
1558 utime
= cputime_add(utime
, tgutime
);
1559 stime
= cputime_add(stime
, tgstime
);
1560 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1561 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1562 r
->ru_minflt
+= p
->signal
->min_flt
;
1563 r
->ru_majflt
+= p
->signal
->maj_flt
;
1564 r
->ru_inblock
+= p
->signal
->inblock
;
1565 r
->ru_oublock
+= p
->signal
->oublock
;
1566 if (maxrss
< p
->signal
->maxrss
)
1567 maxrss
= p
->signal
->maxrss
;
1570 accumulate_thread_rusage(t
, r
);
1578 unlock_task_sighand(p
, &flags
);
1581 cputime_to_timeval(utime
, &r
->ru_utime
);
1582 cputime_to_timeval(stime
, &r
->ru_stime
);
1584 if (who
!= RUSAGE_CHILDREN
) {
1585 struct mm_struct
*mm
= get_task_mm(p
);
1587 setmax_mm_hiwater_rss(&maxrss
, mm
);
1591 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1594 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1597 k_getrusage(p
, who
, &r
);
1598 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1601 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1603 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1604 who
!= RUSAGE_THREAD
)
1606 return getrusage(current
, who
, ru
);
1609 SYSCALL_DEFINE1(umask
, int, mask
)
1611 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1615 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1616 unsigned long, arg4
, unsigned long, arg5
)
1618 struct task_struct
*me
= current
;
1619 unsigned char comm
[sizeof(me
->comm
)];
1622 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1623 if (error
!= -ENOSYS
)
1628 case PR_SET_PDEATHSIG
:
1629 if (!valid_signal(arg2
)) {
1633 me
->pdeath_signal
= arg2
;
1636 case PR_GET_PDEATHSIG
:
1637 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1639 case PR_GET_DUMPABLE
:
1640 error
= get_dumpable(me
->mm
);
1642 case PR_SET_DUMPABLE
:
1643 if (arg2
< 0 || arg2
> 1) {
1647 set_dumpable(me
->mm
, arg2
);
1651 case PR_SET_UNALIGN
:
1652 error
= SET_UNALIGN_CTL(me
, arg2
);
1654 case PR_GET_UNALIGN
:
1655 error
= GET_UNALIGN_CTL(me
, arg2
);
1658 error
= SET_FPEMU_CTL(me
, arg2
);
1661 error
= GET_FPEMU_CTL(me
, arg2
);
1664 error
= SET_FPEXC_CTL(me
, arg2
);
1667 error
= GET_FPEXC_CTL(me
, arg2
);
1670 error
= PR_TIMING_STATISTICAL
;
1673 if (arg2
!= PR_TIMING_STATISTICAL
)
1680 comm
[sizeof(me
->comm
)-1] = 0;
1681 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1682 sizeof(me
->comm
) - 1) < 0)
1684 set_task_comm(me
, comm
);
1687 get_task_comm(comm
, me
);
1688 if (copy_to_user((char __user
*)arg2
, comm
,
1693 error
= GET_ENDIAN(me
, arg2
);
1696 error
= SET_ENDIAN(me
, arg2
);
1699 case PR_GET_SECCOMP
:
1700 error
= prctl_get_seccomp();
1702 case PR_SET_SECCOMP
:
1703 error
= prctl_set_seccomp(arg2
);
1706 error
= GET_TSC_CTL(arg2
);
1709 error
= SET_TSC_CTL(arg2
);
1711 case PR_TASK_PERF_EVENTS_DISABLE
:
1712 error
= perf_event_task_disable();
1714 case PR_TASK_PERF_EVENTS_ENABLE
:
1715 error
= perf_event_task_enable();
1717 case PR_GET_TIMERSLACK
:
1718 error
= current
->timer_slack_ns
;
1720 case PR_SET_TIMERSLACK
:
1722 current
->timer_slack_ns
=
1723 current
->default_timer_slack_ns
;
1725 current
->timer_slack_ns
= arg2
;
1732 case PR_MCE_KILL_CLEAR
:
1735 current
->flags
&= ~PF_MCE_PROCESS
;
1737 case PR_MCE_KILL_SET
:
1738 current
->flags
|= PF_MCE_PROCESS
;
1739 if (arg3
== PR_MCE_KILL_EARLY
)
1740 current
->flags
|= PF_MCE_EARLY
;
1741 else if (arg3
== PR_MCE_KILL_LATE
)
1742 current
->flags
&= ~PF_MCE_EARLY
;
1743 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1745 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1754 case PR_MCE_KILL_GET
:
1755 if (arg2
| arg3
| arg4
| arg5
)
1757 if (current
->flags
& PF_MCE_PROCESS
)
1758 error
= (current
->flags
& PF_MCE_EARLY
) ?
1759 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1761 error
= PR_MCE_KILL_DEFAULT
;
1770 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1771 struct getcpu_cache __user
*, unused
)
1774 int cpu
= raw_smp_processor_id();
1776 err
|= put_user(cpu
, cpup
);
1778 err
|= put_user(cpu_to_node(cpu
), nodep
);
1779 return err
? -EFAULT
: 0;
1782 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1784 static void argv_cleanup(struct subprocess_info
*info
)
1786 argv_free(info
->argv
);
1790 * orderly_poweroff - Trigger an orderly system poweroff
1791 * @force: force poweroff if command execution fails
1793 * This may be called from any context to trigger a system shutdown.
1794 * If the orderly shutdown fails, it will force an immediate shutdown.
1796 int orderly_poweroff(bool force
)
1799 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1800 static char *envp
[] = {
1802 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1806 struct subprocess_info
*info
;
1809 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1810 __func__
, poweroff_cmd
);
1814 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1820 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1822 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1826 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1827 "forcing the issue\n");
1829 /* I guess this should try to kick off some daemon to
1830 sync and poweroff asap. Or not even bother syncing
1831 if we're doing an emergency shutdown? */
1838 EXPORT_SYMBOL_GPL(orderly_poweroff
);