[PATCH] drivers/net: remove superfluous memset
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / fs_enet / fs_enet-main.c
blob2812b524edae33585a371045a2c037a241f4c6f3
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
45 #include "fs_enet.h"
47 /*************************************************/
49 static char version[] __devinitdata =
50 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
52 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
53 MODULE_DESCRIPTION("Freescale Ethernet Driver");
54 MODULE_LICENSE("GPL");
55 MODULE_VERSION(DRV_MODULE_VERSION);
57 int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58 module_param(fs_enet_debug, int, 0);
59 MODULE_PARM_DESC(fs_enet_debug,
60 "Freescale bitmapped debugging message enable value");
63 static void fs_set_multicast_list(struct net_device *dev)
65 struct fs_enet_private *fep = netdev_priv(dev);
67 (*fep->ops->set_multicast_list)(dev);
70 /* NAPI receive function */
71 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
73 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
74 struct net_device *dev = to_net_dev(fep->dev);
75 const struct fs_platform_info *fpi = fep->fpi;
76 cbd_t *bdp;
77 struct sk_buff *skb, *skbn, *skbt;
78 int received = 0;
79 u16 pkt_len, sc;
80 int curidx;
82 if (!netif_running(dev))
83 return 0;
86 * First, grab all of the stats for the incoming packet.
87 * These get messed up if we get called due to a busy condition.
89 bdp = fep->cur_rx;
91 /* clear RX status bits for napi*/
92 (*fep->ops->napi_clear_rx_event)(dev);
94 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
95 curidx = bdp - fep->rx_bd_base;
98 * Since we have allocated space to hold a complete frame,
99 * the last indicator should be set.
101 if ((sc & BD_ENET_RX_LAST) == 0)
102 printk(KERN_WARNING DRV_MODULE_NAME
103 ": %s rcv is not +last\n",
104 dev->name);
107 * Check for errors.
109 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
110 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
111 fep->stats.rx_errors++;
112 /* Frame too long or too short. */
113 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
114 fep->stats.rx_length_errors++;
115 /* Frame alignment */
116 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
117 fep->stats.rx_frame_errors++;
118 /* CRC Error */
119 if (sc & BD_ENET_RX_CR)
120 fep->stats.rx_crc_errors++;
121 /* FIFO overrun */
122 if (sc & BD_ENET_RX_OV)
123 fep->stats.rx_crc_errors++;
125 skb = fep->rx_skbuff[curidx];
127 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
128 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
129 DMA_FROM_DEVICE);
131 skbn = skb;
133 } else {
134 skb = fep->rx_skbuff[curidx];
136 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
137 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
138 DMA_FROM_DEVICE);
141 * Process the incoming frame.
143 fep->stats.rx_packets++;
144 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
145 fep->stats.rx_bytes += pkt_len + 4;
147 if (pkt_len <= fpi->rx_copybreak) {
148 /* +2 to make IP header L1 cache aligned */
149 skbn = dev_alloc_skb(pkt_len + 2);
150 if (skbn != NULL) {
151 skb_reserve(skbn, 2); /* align IP header */
152 skb_copy_from_linear_data(skb,
153 skbn->data, pkt_len);
154 /* swap */
155 skbt = skb;
156 skb = skbn;
157 skbn = skbt;
159 } else
160 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
162 if (skbn != NULL) {
163 skb_put(skb, pkt_len); /* Make room */
164 skb->protocol = eth_type_trans(skb, dev);
165 received++;
166 netif_receive_skb(skb);
167 } else {
168 printk(KERN_WARNING DRV_MODULE_NAME
169 ": %s Memory squeeze, dropping packet.\n",
170 dev->name);
171 fep->stats.rx_dropped++;
172 skbn = skb;
176 fep->rx_skbuff[curidx] = skbn;
177 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
178 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
179 DMA_FROM_DEVICE));
180 CBDW_DATLEN(bdp, 0);
181 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
184 * Update BD pointer to next entry.
186 if ((sc & BD_ENET_RX_WRAP) == 0)
187 bdp++;
188 else
189 bdp = fep->rx_bd_base;
191 (*fep->ops->rx_bd_done)(dev);
193 if (received >= budget)
194 break;
197 fep->cur_rx = bdp;
199 if (received >= budget) {
200 /* done */
201 netif_rx_complete(dev, napi);
202 (*fep->ops->napi_enable_rx)(dev);
204 return received;
207 /* non NAPI receive function */
208 static int fs_enet_rx_non_napi(struct net_device *dev)
210 struct fs_enet_private *fep = netdev_priv(dev);
211 const struct fs_platform_info *fpi = fep->fpi;
212 cbd_t *bdp;
213 struct sk_buff *skb, *skbn, *skbt;
214 int received = 0;
215 u16 pkt_len, sc;
216 int curidx;
218 * First, grab all of the stats for the incoming packet.
219 * These get messed up if we get called due to a busy condition.
221 bdp = fep->cur_rx;
223 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
225 curidx = bdp - fep->rx_bd_base;
228 * Since we have allocated space to hold a complete frame,
229 * the last indicator should be set.
231 if ((sc & BD_ENET_RX_LAST) == 0)
232 printk(KERN_WARNING DRV_MODULE_NAME
233 ": %s rcv is not +last\n",
234 dev->name);
237 * Check for errors.
239 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
240 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
241 fep->stats.rx_errors++;
242 /* Frame too long or too short. */
243 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
244 fep->stats.rx_length_errors++;
245 /* Frame alignment */
246 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
247 fep->stats.rx_frame_errors++;
248 /* CRC Error */
249 if (sc & BD_ENET_RX_CR)
250 fep->stats.rx_crc_errors++;
251 /* FIFO overrun */
252 if (sc & BD_ENET_RX_OV)
253 fep->stats.rx_crc_errors++;
255 skb = fep->rx_skbuff[curidx];
257 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
258 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
259 DMA_FROM_DEVICE);
261 skbn = skb;
263 } else {
265 skb = fep->rx_skbuff[curidx];
267 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269 DMA_FROM_DEVICE);
272 * Process the incoming frame.
274 fep->stats.rx_packets++;
275 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
276 fep->stats.rx_bytes += pkt_len + 4;
278 if (pkt_len <= fpi->rx_copybreak) {
279 /* +2 to make IP header L1 cache aligned */
280 skbn = dev_alloc_skb(pkt_len + 2);
281 if (skbn != NULL) {
282 skb_reserve(skbn, 2); /* align IP header */
283 skb_copy_from_linear_data(skb,
284 skbn->data, pkt_len);
285 /* swap */
286 skbt = skb;
287 skb = skbn;
288 skbn = skbt;
290 } else
291 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
293 if (skbn != NULL) {
294 skb_put(skb, pkt_len); /* Make room */
295 skb->protocol = eth_type_trans(skb, dev);
296 received++;
297 netif_rx(skb);
298 } else {
299 printk(KERN_WARNING DRV_MODULE_NAME
300 ": %s Memory squeeze, dropping packet.\n",
301 dev->name);
302 fep->stats.rx_dropped++;
303 skbn = skb;
307 fep->rx_skbuff[curidx] = skbn;
308 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
309 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
310 DMA_FROM_DEVICE));
311 CBDW_DATLEN(bdp, 0);
312 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
315 * Update BD pointer to next entry.
317 if ((sc & BD_ENET_RX_WRAP) == 0)
318 bdp++;
319 else
320 bdp = fep->rx_bd_base;
322 (*fep->ops->rx_bd_done)(dev);
325 fep->cur_rx = bdp;
327 return 0;
330 static void fs_enet_tx(struct net_device *dev)
332 struct fs_enet_private *fep = netdev_priv(dev);
333 cbd_t *bdp;
334 struct sk_buff *skb;
335 int dirtyidx, do_wake, do_restart;
336 u16 sc;
338 spin_lock(&fep->lock);
339 bdp = fep->dirty_tx;
341 do_wake = do_restart = 0;
342 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
344 dirtyidx = bdp - fep->tx_bd_base;
346 if (fep->tx_free == fep->tx_ring)
347 break;
349 skb = fep->tx_skbuff[dirtyidx];
352 * Check for errors.
354 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
355 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
357 if (sc & BD_ENET_TX_HB) /* No heartbeat */
358 fep->stats.tx_heartbeat_errors++;
359 if (sc & BD_ENET_TX_LC) /* Late collision */
360 fep->stats.tx_window_errors++;
361 if (sc & BD_ENET_TX_RL) /* Retrans limit */
362 fep->stats.tx_aborted_errors++;
363 if (sc & BD_ENET_TX_UN) /* Underrun */
364 fep->stats.tx_fifo_errors++;
365 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
366 fep->stats.tx_carrier_errors++;
368 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
369 fep->stats.tx_errors++;
370 do_restart = 1;
372 } else
373 fep->stats.tx_packets++;
375 if (sc & BD_ENET_TX_READY)
376 printk(KERN_WARNING DRV_MODULE_NAME
377 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
378 dev->name);
381 * Deferred means some collisions occurred during transmit,
382 * but we eventually sent the packet OK.
384 if (sc & BD_ENET_TX_DEF)
385 fep->stats.collisions++;
387 /* unmap */
388 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
389 skb->len, DMA_TO_DEVICE);
392 * Free the sk buffer associated with this last transmit.
394 dev_kfree_skb_irq(skb);
395 fep->tx_skbuff[dirtyidx] = NULL;
398 * Update pointer to next buffer descriptor to be transmitted.
400 if ((sc & BD_ENET_TX_WRAP) == 0)
401 bdp++;
402 else
403 bdp = fep->tx_bd_base;
406 * Since we have freed up a buffer, the ring is no longer
407 * full.
409 if (!fep->tx_free++)
410 do_wake = 1;
413 fep->dirty_tx = bdp;
415 if (do_restart)
416 (*fep->ops->tx_restart)(dev);
418 spin_unlock(&fep->lock);
420 if (do_wake)
421 netif_wake_queue(dev);
425 * The interrupt handler.
426 * This is called from the MPC core interrupt.
428 static irqreturn_t
429 fs_enet_interrupt(int irq, void *dev_id)
431 struct net_device *dev = dev_id;
432 struct fs_enet_private *fep;
433 const struct fs_platform_info *fpi;
434 u32 int_events;
435 u32 int_clr_events;
436 int nr, napi_ok;
437 int handled;
439 fep = netdev_priv(dev);
440 fpi = fep->fpi;
442 nr = 0;
443 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
445 nr++;
447 int_clr_events = int_events;
448 if (fpi->use_napi)
449 int_clr_events &= ~fep->ev_napi_rx;
451 (*fep->ops->clear_int_events)(dev, int_clr_events);
453 if (int_events & fep->ev_err)
454 (*fep->ops->ev_error)(dev, int_events);
456 if (int_events & fep->ev_rx) {
457 if (!fpi->use_napi)
458 fs_enet_rx_non_napi(dev);
459 else {
460 napi_ok = napi_schedule_prep(&fep->napi);
462 (*fep->ops->napi_disable_rx)(dev);
463 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
465 /* NOTE: it is possible for FCCs in NAPI mode */
466 /* to submit a spurious interrupt while in poll */
467 if (napi_ok)
468 __netif_rx_schedule(dev, &fep->napi);
472 if (int_events & fep->ev_tx)
473 fs_enet_tx(dev);
476 handled = nr > 0;
477 return IRQ_RETVAL(handled);
480 void fs_init_bds(struct net_device *dev)
482 struct fs_enet_private *fep = netdev_priv(dev);
483 cbd_t *bdp;
484 struct sk_buff *skb;
485 int i;
487 fs_cleanup_bds(dev);
489 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
490 fep->tx_free = fep->tx_ring;
491 fep->cur_rx = fep->rx_bd_base;
494 * Initialize the receive buffer descriptors.
496 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
497 skb = dev_alloc_skb(ENET_RX_FRSIZE);
498 if (skb == NULL) {
499 printk(KERN_WARNING DRV_MODULE_NAME
500 ": %s Memory squeeze, unable to allocate skb\n",
501 dev->name);
502 break;
504 fep->rx_skbuff[i] = skb;
505 CBDW_BUFADDR(bdp,
506 dma_map_single(fep->dev, skb->data,
507 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
508 DMA_FROM_DEVICE));
509 CBDW_DATLEN(bdp, 0); /* zero */
510 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
511 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
514 * if we failed, fillup remainder
516 for (; i < fep->rx_ring; i++, bdp++) {
517 fep->rx_skbuff[i] = NULL;
518 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
522 * ...and the same for transmit.
524 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
525 fep->tx_skbuff[i] = NULL;
526 CBDW_BUFADDR(bdp, 0);
527 CBDW_DATLEN(bdp, 0);
528 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
532 void fs_cleanup_bds(struct net_device *dev)
534 struct fs_enet_private *fep = netdev_priv(dev);
535 struct sk_buff *skb;
536 cbd_t *bdp;
537 int i;
540 * Reset SKB transmit buffers.
542 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
543 if ((skb = fep->tx_skbuff[i]) == NULL)
544 continue;
546 /* unmap */
547 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
548 skb->len, DMA_TO_DEVICE);
550 fep->tx_skbuff[i] = NULL;
551 dev_kfree_skb(skb);
555 * Reset SKB receive buffers
557 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
558 if ((skb = fep->rx_skbuff[i]) == NULL)
559 continue;
561 /* unmap */
562 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
563 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
564 DMA_FROM_DEVICE);
566 fep->rx_skbuff[i] = NULL;
568 dev_kfree_skb(skb);
572 /**********************************************************************************/
574 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
576 struct fs_enet_private *fep = netdev_priv(dev);
577 cbd_t *bdp;
578 int curidx;
579 u16 sc;
580 unsigned long flags;
582 spin_lock_irqsave(&fep->tx_lock, flags);
585 * Fill in a Tx ring entry
587 bdp = fep->cur_tx;
589 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
590 netif_stop_queue(dev);
591 spin_unlock_irqrestore(&fep->tx_lock, flags);
594 * Ooops. All transmit buffers are full. Bail out.
595 * This should not happen, since the tx queue should be stopped.
597 printk(KERN_WARNING DRV_MODULE_NAME
598 ": %s tx queue full!.\n", dev->name);
599 return NETDEV_TX_BUSY;
602 curidx = bdp - fep->tx_bd_base;
604 * Clear all of the status flags.
606 CBDC_SC(bdp, BD_ENET_TX_STATS);
609 * Save skb pointer.
611 fep->tx_skbuff[curidx] = skb;
613 fep->stats.tx_bytes += skb->len;
616 * Push the data cache so the CPM does not get stale memory data.
618 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
619 skb->data, skb->len, DMA_TO_DEVICE));
620 CBDW_DATLEN(bdp, skb->len);
622 dev->trans_start = jiffies;
625 * If this was the last BD in the ring, start at the beginning again.
627 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
628 fep->cur_tx++;
629 else
630 fep->cur_tx = fep->tx_bd_base;
632 if (!--fep->tx_free)
633 netif_stop_queue(dev);
635 /* Trigger transmission start */
636 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
637 BD_ENET_TX_LAST | BD_ENET_TX_TC;
639 /* note that while FEC does not have this bit
640 * it marks it as available for software use
641 * yay for hw reuse :) */
642 if (skb->len <= 60)
643 sc |= BD_ENET_TX_PAD;
644 CBDS_SC(bdp, sc);
646 (*fep->ops->tx_kickstart)(dev);
648 spin_unlock_irqrestore(&fep->tx_lock, flags);
650 return NETDEV_TX_OK;
653 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
654 irq_handler_t irqf)
656 struct fs_enet_private *fep = netdev_priv(dev);
658 (*fep->ops->pre_request_irq)(dev, irq);
659 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
662 static void fs_free_irq(struct net_device *dev, int irq)
664 struct fs_enet_private *fep = netdev_priv(dev);
666 free_irq(irq, dev);
667 (*fep->ops->post_free_irq)(dev, irq);
670 static void fs_timeout(struct net_device *dev)
672 struct fs_enet_private *fep = netdev_priv(dev);
673 unsigned long flags;
674 int wake = 0;
676 fep->stats.tx_errors++;
678 spin_lock_irqsave(&fep->lock, flags);
680 if (dev->flags & IFF_UP) {
681 phy_stop(fep->phydev);
682 (*fep->ops->stop)(dev);
683 (*fep->ops->restart)(dev);
684 phy_start(fep->phydev);
687 phy_start(fep->phydev);
688 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
689 spin_unlock_irqrestore(&fep->lock, flags);
691 if (wake)
692 netif_wake_queue(dev);
695 /*-----------------------------------------------------------------------------
696 * generic link-change handler - should be sufficient for most cases
697 *-----------------------------------------------------------------------------*/
698 static void generic_adjust_link(struct net_device *dev)
700 struct fs_enet_private *fep = netdev_priv(dev);
701 struct phy_device *phydev = fep->phydev;
702 int new_state = 0;
704 if (phydev->link) {
706 /* adjust to duplex mode */
707 if (phydev->duplex != fep->oldduplex){
708 new_state = 1;
709 fep->oldduplex = phydev->duplex;
712 if (phydev->speed != fep->oldspeed) {
713 new_state = 1;
714 fep->oldspeed = phydev->speed;
717 if (!fep->oldlink) {
718 new_state = 1;
719 fep->oldlink = 1;
720 netif_schedule(dev);
721 netif_carrier_on(dev);
722 netif_start_queue(dev);
725 if (new_state)
726 fep->ops->restart(dev);
728 } else if (fep->oldlink) {
729 new_state = 1;
730 fep->oldlink = 0;
731 fep->oldspeed = 0;
732 fep->oldduplex = -1;
733 netif_carrier_off(dev);
734 netif_stop_queue(dev);
737 if (new_state && netif_msg_link(fep))
738 phy_print_status(phydev);
742 static void fs_adjust_link(struct net_device *dev)
744 struct fs_enet_private *fep = netdev_priv(dev);
745 unsigned long flags;
747 spin_lock_irqsave(&fep->lock, flags);
749 if(fep->ops->adjust_link)
750 fep->ops->adjust_link(dev);
751 else
752 generic_adjust_link(dev);
754 spin_unlock_irqrestore(&fep->lock, flags);
757 static int fs_init_phy(struct net_device *dev)
759 struct fs_enet_private *fep = netdev_priv(dev);
760 struct phy_device *phydev;
762 fep->oldlink = 0;
763 fep->oldspeed = 0;
764 fep->oldduplex = -1;
765 if(fep->fpi->bus_id)
766 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
767 PHY_INTERFACE_MODE_MII);
768 else {
769 printk("No phy bus ID specified in BSP code\n");
770 return -EINVAL;
772 if (IS_ERR(phydev)) {
773 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
774 return PTR_ERR(phydev);
777 fep->phydev = phydev;
779 return 0;
783 static int fs_enet_open(struct net_device *dev)
785 struct fs_enet_private *fep = netdev_priv(dev);
786 int r;
787 int err;
789 napi_enable(&fep->napi);
791 /* Install our interrupt handler. */
792 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
793 if (r != 0) {
794 printk(KERN_ERR DRV_MODULE_NAME
795 ": %s Could not allocate FS_ENET IRQ!", dev->name);
796 napi_disable(&fep->napi);
797 return -EINVAL;
800 err = fs_init_phy(dev);
801 if(err) {
802 napi_disable(&fep->napi);
803 return err;
805 phy_start(fep->phydev);
807 return 0;
810 static int fs_enet_close(struct net_device *dev)
812 struct fs_enet_private *fep = netdev_priv(dev);
813 unsigned long flags;
815 netif_stop_queue(dev);
816 netif_carrier_off(dev);
817 napi_disable(&fep->napi);
818 phy_stop(fep->phydev);
820 spin_lock_irqsave(&fep->lock, flags);
821 (*fep->ops->stop)(dev);
822 spin_unlock_irqrestore(&fep->lock, flags);
824 /* release any irqs */
825 phy_disconnect(fep->phydev);
826 fep->phydev = NULL;
827 fs_free_irq(dev, fep->interrupt);
829 return 0;
832 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
834 struct fs_enet_private *fep = netdev_priv(dev);
835 return &fep->stats;
838 /*************************************************************************/
840 static void fs_get_drvinfo(struct net_device *dev,
841 struct ethtool_drvinfo *info)
843 strcpy(info->driver, DRV_MODULE_NAME);
844 strcpy(info->version, DRV_MODULE_VERSION);
847 static int fs_get_regs_len(struct net_device *dev)
849 struct fs_enet_private *fep = netdev_priv(dev);
851 return (*fep->ops->get_regs_len)(dev);
854 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
855 void *p)
857 struct fs_enet_private *fep = netdev_priv(dev);
858 unsigned long flags;
859 int r, len;
861 len = regs->len;
863 spin_lock_irqsave(&fep->lock, flags);
864 r = (*fep->ops->get_regs)(dev, p, &len);
865 spin_unlock_irqrestore(&fep->lock, flags);
867 if (r == 0)
868 regs->version = 0;
871 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
873 struct fs_enet_private *fep = netdev_priv(dev);
874 return phy_ethtool_gset(fep->phydev, cmd);
877 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
879 struct fs_enet_private *fep = netdev_priv(dev);
880 phy_ethtool_sset(fep->phydev, cmd);
881 return 0;
884 static int fs_nway_reset(struct net_device *dev)
886 return 0;
889 static u32 fs_get_msglevel(struct net_device *dev)
891 struct fs_enet_private *fep = netdev_priv(dev);
892 return fep->msg_enable;
895 static void fs_set_msglevel(struct net_device *dev, u32 value)
897 struct fs_enet_private *fep = netdev_priv(dev);
898 fep->msg_enable = value;
901 static const struct ethtool_ops fs_ethtool_ops = {
902 .get_drvinfo = fs_get_drvinfo,
903 .get_regs_len = fs_get_regs_len,
904 .get_settings = fs_get_settings,
905 .set_settings = fs_set_settings,
906 .nway_reset = fs_nway_reset,
907 .get_link = ethtool_op_get_link,
908 .get_msglevel = fs_get_msglevel,
909 .set_msglevel = fs_set_msglevel,
910 .get_tx_csum = ethtool_op_get_tx_csum,
911 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
912 .get_sg = ethtool_op_get_sg,
913 .set_sg = ethtool_op_set_sg,
914 .get_regs = fs_get_regs,
917 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
919 struct fs_enet_private *fep = netdev_priv(dev);
920 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
921 unsigned long flags;
922 int rc;
924 if (!netif_running(dev))
925 return -EINVAL;
927 spin_lock_irqsave(&fep->lock, flags);
928 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
929 spin_unlock_irqrestore(&fep->lock, flags);
930 return rc;
933 extern int fs_mii_connect(struct net_device *dev);
934 extern void fs_mii_disconnect(struct net_device *dev);
936 static struct net_device *fs_init_instance(struct device *dev,
937 struct fs_platform_info *fpi)
939 struct net_device *ndev = NULL;
940 struct fs_enet_private *fep = NULL;
941 int privsize, i, r, err = 0, registered = 0;
943 fpi->fs_no = fs_get_id(fpi);
944 /* guard */
945 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
946 return ERR_PTR(-EINVAL);
948 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
949 (fpi->rx_ring + fpi->tx_ring));
951 ndev = alloc_etherdev(privsize);
952 if (!ndev) {
953 err = -ENOMEM;
954 goto err;
956 SET_MODULE_OWNER(ndev);
958 fep = netdev_priv(ndev);
960 fep->dev = dev;
961 dev_set_drvdata(dev, ndev);
962 fep->fpi = fpi;
963 if (fpi->init_ioports)
964 fpi->init_ioports((struct fs_platform_info *)fpi);
966 #ifdef CONFIG_FS_ENET_HAS_FEC
967 if (fs_get_fec_index(fpi->fs_no) >= 0)
968 fep->ops = &fs_fec_ops;
969 #endif
971 #ifdef CONFIG_FS_ENET_HAS_SCC
972 if (fs_get_scc_index(fpi->fs_no) >=0 )
973 fep->ops = &fs_scc_ops;
974 #endif
976 #ifdef CONFIG_FS_ENET_HAS_FCC
977 if (fs_get_fcc_index(fpi->fs_no) >= 0)
978 fep->ops = &fs_fcc_ops;
979 #endif
981 if (fep->ops == NULL) {
982 printk(KERN_ERR DRV_MODULE_NAME
983 ": %s No matching ops found (%d).\n",
984 ndev->name, fpi->fs_no);
985 err = -EINVAL;
986 goto err;
989 r = (*fep->ops->setup_data)(ndev);
990 if (r != 0) {
991 printk(KERN_ERR DRV_MODULE_NAME
992 ": %s setup_data failed\n",
993 ndev->name);
994 err = r;
995 goto err;
998 /* point rx_skbuff, tx_skbuff */
999 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1000 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1002 /* init locks */
1003 spin_lock_init(&fep->lock);
1004 spin_lock_init(&fep->tx_lock);
1007 * Set the Ethernet address.
1009 for (i = 0; i < 6; i++)
1010 ndev->dev_addr[i] = fpi->macaddr[i];
1012 r = (*fep->ops->allocate_bd)(ndev);
1014 if (fep->ring_base == NULL) {
1015 printk(KERN_ERR DRV_MODULE_NAME
1016 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1017 err = r;
1018 goto err;
1022 * Set receive and transmit descriptor base.
1024 fep->rx_bd_base = fep->ring_base;
1025 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1027 /* initialize ring size variables */
1028 fep->tx_ring = fpi->tx_ring;
1029 fep->rx_ring = fpi->rx_ring;
1032 * The FEC Ethernet specific entries in the device structure.
1034 ndev->open = fs_enet_open;
1035 ndev->hard_start_xmit = fs_enet_start_xmit;
1036 ndev->tx_timeout = fs_timeout;
1037 ndev->watchdog_timeo = 2 * HZ;
1038 ndev->stop = fs_enet_close;
1039 ndev->get_stats = fs_enet_get_stats;
1040 ndev->set_multicast_list = fs_set_multicast_list;
1041 netif_napi_add(ndev, &fep->napi,
1042 fs_enet_rx_napi, fpi->napi_weight);
1044 ndev->ethtool_ops = &fs_ethtool_ops;
1045 ndev->do_ioctl = fs_ioctl;
1047 init_timer(&fep->phy_timer_list);
1049 netif_carrier_off(ndev);
1051 err = register_netdev(ndev);
1052 if (err != 0) {
1053 printk(KERN_ERR DRV_MODULE_NAME
1054 ": %s register_netdev failed.\n", ndev->name);
1055 goto err;
1057 registered = 1;
1060 return ndev;
1062 err:
1063 if (ndev != NULL) {
1065 if (registered)
1066 unregister_netdev(ndev);
1068 if (fep != NULL) {
1069 (*fep->ops->free_bd)(ndev);
1070 (*fep->ops->cleanup_data)(ndev);
1073 free_netdev(ndev);
1076 dev_set_drvdata(dev, NULL);
1078 return ERR_PTR(err);
1081 static int fs_cleanup_instance(struct net_device *ndev)
1083 struct fs_enet_private *fep;
1084 const struct fs_platform_info *fpi;
1085 struct device *dev;
1087 if (ndev == NULL)
1088 return -EINVAL;
1090 fep = netdev_priv(ndev);
1091 if (fep == NULL)
1092 return -EINVAL;
1094 fpi = fep->fpi;
1096 unregister_netdev(ndev);
1098 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1099 fep->ring_base, fep->ring_mem_addr);
1101 /* reset it */
1102 (*fep->ops->cleanup_data)(ndev);
1104 dev = fep->dev;
1105 if (dev != NULL) {
1106 dev_set_drvdata(dev, NULL);
1107 fep->dev = NULL;
1110 free_netdev(ndev);
1112 return 0;
1115 /**************************************************************************************/
1117 /* handy pointer to the immap */
1118 void *fs_enet_immap = NULL;
1120 static int setup_immap(void)
1122 phys_addr_t paddr = 0;
1123 unsigned long size = 0;
1125 #ifdef CONFIG_CPM1
1126 paddr = IMAP_ADDR;
1127 size = 0x10000; /* map 64K */
1128 #endif
1130 #ifdef CONFIG_CPM2
1131 paddr = CPM_MAP_ADDR;
1132 size = 0x40000; /* map 256 K */
1133 #endif
1134 fs_enet_immap = ioremap(paddr, size);
1135 if (fs_enet_immap == NULL)
1136 return -EBADF; /* XXX ahem; maybe just BUG_ON? */
1138 return 0;
1141 static void cleanup_immap(void)
1143 if (fs_enet_immap != NULL) {
1144 iounmap(fs_enet_immap);
1145 fs_enet_immap = NULL;
1149 /**************************************************************************************/
1151 static int __devinit fs_enet_probe(struct device *dev)
1153 struct net_device *ndev;
1155 /* no fixup - no device */
1156 if (dev->platform_data == NULL) {
1157 printk(KERN_INFO "fs_enet: "
1158 "probe called with no platform data; "
1159 "remove unused devices\n");
1160 return -ENODEV;
1163 ndev = fs_init_instance(dev, dev->platform_data);
1164 if (IS_ERR(ndev))
1165 return PTR_ERR(ndev);
1166 return 0;
1169 static int fs_enet_remove(struct device *dev)
1171 return fs_cleanup_instance(dev_get_drvdata(dev));
1174 static struct device_driver fs_enet_fec_driver = {
1175 .name = "fsl-cpm-fec",
1176 .bus = &platform_bus_type,
1177 .probe = fs_enet_probe,
1178 .remove = fs_enet_remove,
1179 #ifdef CONFIG_PM
1180 /* .suspend = fs_enet_suspend, TODO */
1181 /* .resume = fs_enet_resume, TODO */
1182 #endif
1185 static struct device_driver fs_enet_scc_driver = {
1186 .name = "fsl-cpm-scc",
1187 .bus = &platform_bus_type,
1188 .probe = fs_enet_probe,
1189 .remove = fs_enet_remove,
1190 #ifdef CONFIG_PM
1191 /* .suspend = fs_enet_suspend, TODO */
1192 /* .resume = fs_enet_resume, TODO */
1193 #endif
1196 static struct device_driver fs_enet_fcc_driver = {
1197 .name = "fsl-cpm-fcc",
1198 .bus = &platform_bus_type,
1199 .probe = fs_enet_probe,
1200 .remove = fs_enet_remove,
1201 #ifdef CONFIG_PM
1202 /* .suspend = fs_enet_suspend, TODO */
1203 /* .resume = fs_enet_resume, TODO */
1204 #endif
1207 static int __init fs_init(void)
1209 int r;
1211 printk(KERN_INFO
1212 "%s", version);
1214 r = setup_immap();
1215 if (r != 0)
1216 return r;
1218 #ifdef CONFIG_FS_ENET_HAS_FCC
1219 /* let's insert mii stuff */
1220 r = fs_enet_mdio_bb_init();
1222 if (r != 0) {
1223 printk(KERN_ERR DRV_MODULE_NAME
1224 "BB PHY init failed.\n");
1225 return r;
1227 r = driver_register(&fs_enet_fcc_driver);
1228 if (r != 0)
1229 goto err;
1230 #endif
1232 #ifdef CONFIG_FS_ENET_HAS_FEC
1233 r = fs_enet_mdio_fec_init();
1234 if (r != 0) {
1235 printk(KERN_ERR DRV_MODULE_NAME
1236 "FEC PHY init failed.\n");
1237 return r;
1240 r = driver_register(&fs_enet_fec_driver);
1241 if (r != 0)
1242 goto err;
1243 #endif
1245 #ifdef CONFIG_FS_ENET_HAS_SCC
1246 r = driver_register(&fs_enet_scc_driver);
1247 if (r != 0)
1248 goto err;
1249 #endif
1251 return 0;
1252 err:
1253 cleanup_immap();
1254 return r;
1258 static void __exit fs_cleanup(void)
1260 driver_unregister(&fs_enet_fec_driver);
1261 driver_unregister(&fs_enet_fcc_driver);
1262 driver_unregister(&fs_enet_scc_driver);
1263 cleanup_immap();
1266 /**************************************************************************************/
1268 module_init(fs_init);
1269 module_exit(fs_cleanup);