drm/nouveau/bios: check that fixed tvdac gpio data is valid before using it
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blobedc3c4af9085362c7227e31babfc19a489bf9cf6
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static int init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 static struct vfsmount *sock_mnt __read_mostly;
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
365 path.mnt = mntget(sock_mnt);
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
385 *f = file;
386 return fd;
389 int sock_map_fd(struct socket *sock, int flags)
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
397 return fd;
399 EXPORT_SYMBOL(sock_map_fd);
401 struct socket *sock_from_file(struct file *file, int *err)
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
406 *err = -ENOTSOCK;
407 return NULL;
409 EXPORT_SYMBOL(sock_from_file);
412 * sockfd_lookup - Go from a file number to its socket slot
413 * @fd: file handle
414 * @err: pointer to an error code return
416 * The file handle passed in is locked and the socket it is bound
417 * too is returned. If an error occurs the err pointer is overwritten
418 * with a negative errno code and NULL is returned. The function checks
419 * for both invalid handles and passing a handle which is not a socket.
421 * On a success the socket object pointer is returned.
424 struct socket *sockfd_lookup(int fd, int *err)
426 struct file *file;
427 struct socket *sock;
429 file = fget(fd);
430 if (!file) {
431 *err = -EBADF;
432 return NULL;
435 sock = sock_from_file(file, err);
436 if (!sock)
437 fput(file);
438 return sock;
440 EXPORT_SYMBOL(sockfd_lookup);
442 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
444 struct file *file;
445 struct socket *sock;
447 *err = -EBADF;
448 file = fget_light(fd, fput_needed);
449 if (file) {
450 sock = sock_from_file(file, err);
451 if (sock)
452 return sock;
453 fput_light(file, *fput_needed);
455 return NULL;
459 * sock_alloc - allocate a socket
461 * Allocate a new inode and socket object. The two are bound together
462 * and initialised. The socket is then returned. If we are out of inodes
463 * NULL is returned.
466 static struct socket *sock_alloc(void)
468 struct inode *inode;
469 struct socket *sock;
471 inode = new_inode_pseudo(sock_mnt->mnt_sb);
472 if (!inode)
473 return NULL;
475 sock = SOCKET_I(inode);
477 kmemcheck_annotate_bitfield(sock, type);
478 inode->i_ino = get_next_ino();
479 inode->i_mode = S_IFSOCK | S_IRWXUGO;
480 inode->i_uid = current_fsuid();
481 inode->i_gid = current_fsgid();
483 this_cpu_add(sockets_in_use, 1);
484 return sock;
488 * In theory you can't get an open on this inode, but /proc provides
489 * a back door. Remember to keep it shut otherwise you'll let the
490 * creepy crawlies in.
493 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
495 return -ENXIO;
498 const struct file_operations bad_sock_fops = {
499 .owner = THIS_MODULE,
500 .open = sock_no_open,
501 .llseek = noop_llseek,
505 * sock_release - close a socket
506 * @sock: socket to close
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
513 void sock_release(struct socket *sock)
515 if (sock->ops) {
516 struct module *owner = sock->ops->owner;
518 sock->ops->release(sock);
519 sock->ops = NULL;
520 module_put(owner);
523 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
524 printk(KERN_ERR "sock_release: fasync list not empty!\n");
526 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
527 return;
529 this_cpu_sub(sockets_in_use, 1);
530 if (!sock->file) {
531 iput(SOCK_INODE(sock));
532 return;
534 sock->file = NULL;
536 EXPORT_SYMBOL(sock_release);
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
540 *tx_flags = 0;
541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 *tx_flags |= SKBTX_HW_TSTAMP;
543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 *tx_flags |= SKBTX_SW_TSTAMP;
545 if (sock_flag(sk, SOCK_WIFI_STATUS))
546 *tx_flags |= SKBTX_WIFI_STATUS;
547 return 0;
549 EXPORT_SYMBOL(sock_tx_timestamp);
551 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
552 struct msghdr *msg, size_t size)
554 struct sock_iocb *si = kiocb_to_siocb(iocb);
556 sock_update_classid(sock->sk);
558 si->sock = sock;
559 si->scm = NULL;
560 si->msg = msg;
561 si->size = size;
563 return sock->ops->sendmsg(iocb, sock, msg, size);
566 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
567 struct msghdr *msg, size_t size)
569 int err = security_socket_sendmsg(sock, msg, size);
571 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
576 struct kiocb iocb;
577 struct sock_iocb siocb;
578 int ret;
580 init_sync_kiocb(&iocb, NULL);
581 iocb.private = &siocb;
582 ret = __sock_sendmsg(&iocb, sock, msg, size);
583 if (-EIOCBQUEUED == ret)
584 ret = wait_on_sync_kiocb(&iocb);
585 return ret;
587 EXPORT_SYMBOL(sock_sendmsg);
589 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
591 struct kiocb iocb;
592 struct sock_iocb siocb;
593 int ret;
595 init_sync_kiocb(&iocb, NULL);
596 iocb.private = &siocb;
597 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
598 if (-EIOCBQUEUED == ret)
599 ret = wait_on_sync_kiocb(&iocb);
600 return ret;
603 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
604 struct kvec *vec, size_t num, size_t size)
606 mm_segment_t oldfs = get_fs();
607 int result;
609 set_fs(KERNEL_DS);
611 * the following is safe, since for compiler definitions of kvec and
612 * iovec are identical, yielding the same in-core layout and alignment
614 msg->msg_iov = (struct iovec *)vec;
615 msg->msg_iovlen = num;
616 result = sock_sendmsg(sock, msg, size);
617 set_fs(oldfs);
618 return result;
620 EXPORT_SYMBOL(kernel_sendmsg);
622 static int ktime2ts(ktime_t kt, struct timespec *ts)
624 if (kt.tv64) {
625 *ts = ktime_to_timespec(kt);
626 return 1;
627 } else {
628 return 0;
633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 struct sk_buff *skb)
638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 struct timespec ts[3];
640 int empty = 1;
641 struct skb_shared_hwtstamps *shhwtstamps =
642 skb_hwtstamps(skb);
644 /* Race occurred between timestamp enabling and packet
645 receiving. Fill in the current time for now. */
646 if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 __net_timestamp(skb);
649 if (need_software_tstamp) {
650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 struct timeval tv;
652 skb_get_timestamp(skb, &tv);
653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 sizeof(tv), &tv);
655 } else {
656 skb_get_timestampns(skb, &ts[0]);
657 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
658 sizeof(ts[0]), &ts[0]);
663 memset(ts, 0, sizeof(ts));
664 if (skb->tstamp.tv64 &&
665 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
666 skb_get_timestampns(skb, ts + 0);
667 empty = 0;
669 if (shhwtstamps) {
670 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
671 ktime2ts(shhwtstamps->syststamp, ts + 1))
672 empty = 0;
673 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
674 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
675 empty = 0;
677 if (!empty)
678 put_cmsg(msg, SOL_SOCKET,
679 SCM_TIMESTAMPING, sizeof(ts), &ts);
681 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
683 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
684 struct sk_buff *skb)
686 int ack;
688 if (!sock_flag(sk, SOCK_WIFI_STATUS))
689 return;
690 if (!skb->wifi_acked_valid)
691 return;
693 ack = skb->wifi_acked;
695 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
697 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
699 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
700 struct sk_buff *skb)
702 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
703 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
704 sizeof(__u32), &skb->dropcount);
707 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
708 struct sk_buff *skb)
710 sock_recv_timestamp(msg, sk, skb);
711 sock_recv_drops(msg, sk, skb);
713 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
715 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
716 struct msghdr *msg, size_t size, int flags)
718 struct sock_iocb *si = kiocb_to_siocb(iocb);
720 sock_update_classid(sock->sk);
722 si->sock = sock;
723 si->scm = NULL;
724 si->msg = msg;
725 si->size = size;
726 si->flags = flags;
728 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
731 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
732 struct msghdr *msg, size_t size, int flags)
734 int err = security_socket_recvmsg(sock, msg, size, flags);
736 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
739 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
740 size_t size, int flags)
742 struct kiocb iocb;
743 struct sock_iocb siocb;
744 int ret;
746 init_sync_kiocb(&iocb, NULL);
747 iocb.private = &siocb;
748 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
749 if (-EIOCBQUEUED == ret)
750 ret = wait_on_sync_kiocb(&iocb);
751 return ret;
753 EXPORT_SYMBOL(sock_recvmsg);
755 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
756 size_t size, int flags)
758 struct kiocb iocb;
759 struct sock_iocb siocb;
760 int ret;
762 init_sync_kiocb(&iocb, NULL);
763 iocb.private = &siocb;
764 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
765 if (-EIOCBQUEUED == ret)
766 ret = wait_on_sync_kiocb(&iocb);
767 return ret;
771 * kernel_recvmsg - Receive a message from a socket (kernel space)
772 * @sock: The socket to receive the message from
773 * @msg: Received message
774 * @vec: Input s/g array for message data
775 * @num: Size of input s/g array
776 * @size: Number of bytes to read
777 * @flags: Message flags (MSG_DONTWAIT, etc...)
779 * On return the msg structure contains the scatter/gather array passed in the
780 * vec argument. The array is modified so that it consists of the unfilled
781 * portion of the original array.
783 * The returned value is the total number of bytes received, or an error.
785 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
786 struct kvec *vec, size_t num, size_t size, int flags)
788 mm_segment_t oldfs = get_fs();
789 int result;
791 set_fs(KERNEL_DS);
793 * the following is safe, since for compiler definitions of kvec and
794 * iovec are identical, yielding the same in-core layout and alignment
796 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
797 result = sock_recvmsg(sock, msg, size, flags);
798 set_fs(oldfs);
799 return result;
801 EXPORT_SYMBOL(kernel_recvmsg);
803 static void sock_aio_dtor(struct kiocb *iocb)
805 kfree(iocb->private);
808 static ssize_t sock_sendpage(struct file *file, struct page *page,
809 int offset, size_t size, loff_t *ppos, int more)
811 struct socket *sock;
812 int flags;
814 sock = file->private_data;
816 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
817 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
818 flags |= more;
820 return kernel_sendpage(sock, page, offset, size, flags);
823 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
824 struct pipe_inode_info *pipe, size_t len,
825 unsigned int flags)
827 struct socket *sock = file->private_data;
829 if (unlikely(!sock->ops->splice_read))
830 return -EINVAL;
832 sock_update_classid(sock->sk);
834 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
837 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
838 struct sock_iocb *siocb)
840 if (!is_sync_kiocb(iocb)) {
841 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
842 if (!siocb)
843 return NULL;
844 iocb->ki_dtor = sock_aio_dtor;
847 siocb->kiocb = iocb;
848 iocb->private = siocb;
849 return siocb;
852 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
853 struct file *file, const struct iovec *iov,
854 unsigned long nr_segs)
856 struct socket *sock = file->private_data;
857 size_t size = 0;
858 int i;
860 for (i = 0; i < nr_segs; i++)
861 size += iov[i].iov_len;
863 msg->msg_name = NULL;
864 msg->msg_namelen = 0;
865 msg->msg_control = NULL;
866 msg->msg_controllen = 0;
867 msg->msg_iov = (struct iovec *)iov;
868 msg->msg_iovlen = nr_segs;
869 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
874 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
875 unsigned long nr_segs, loff_t pos)
877 struct sock_iocb siocb, *x;
879 if (pos != 0)
880 return -ESPIPE;
882 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
883 return 0;
886 x = alloc_sock_iocb(iocb, &siocb);
887 if (!x)
888 return -ENOMEM;
889 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
892 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
893 struct file *file, const struct iovec *iov,
894 unsigned long nr_segs)
896 struct socket *sock = file->private_data;
897 size_t size = 0;
898 int i;
900 for (i = 0; i < nr_segs; i++)
901 size += iov[i].iov_len;
903 msg->msg_name = NULL;
904 msg->msg_namelen = 0;
905 msg->msg_control = NULL;
906 msg->msg_controllen = 0;
907 msg->msg_iov = (struct iovec *)iov;
908 msg->msg_iovlen = nr_segs;
909 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
910 if (sock->type == SOCK_SEQPACKET)
911 msg->msg_flags |= MSG_EOR;
913 return __sock_sendmsg(iocb, sock, msg, size);
916 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
917 unsigned long nr_segs, loff_t pos)
919 struct sock_iocb siocb, *x;
921 if (pos != 0)
922 return -ESPIPE;
924 x = alloc_sock_iocb(iocb, &siocb);
925 if (!x)
926 return -ENOMEM;
928 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
932 * Atomic setting of ioctl hooks to avoid race
933 * with module unload.
936 static DEFINE_MUTEX(br_ioctl_mutex);
937 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
939 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
941 mutex_lock(&br_ioctl_mutex);
942 br_ioctl_hook = hook;
943 mutex_unlock(&br_ioctl_mutex);
945 EXPORT_SYMBOL(brioctl_set);
947 static DEFINE_MUTEX(vlan_ioctl_mutex);
948 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
950 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
952 mutex_lock(&vlan_ioctl_mutex);
953 vlan_ioctl_hook = hook;
954 mutex_unlock(&vlan_ioctl_mutex);
956 EXPORT_SYMBOL(vlan_ioctl_set);
958 static DEFINE_MUTEX(dlci_ioctl_mutex);
959 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
961 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
963 mutex_lock(&dlci_ioctl_mutex);
964 dlci_ioctl_hook = hook;
965 mutex_unlock(&dlci_ioctl_mutex);
967 EXPORT_SYMBOL(dlci_ioctl_set);
969 static long sock_do_ioctl(struct net *net, struct socket *sock,
970 unsigned int cmd, unsigned long arg)
972 int err;
973 void __user *argp = (void __user *)arg;
975 err = sock->ops->ioctl(sock, cmd, arg);
978 * If this ioctl is unknown try to hand it down
979 * to the NIC driver.
981 if (err == -ENOIOCTLCMD)
982 err = dev_ioctl(net, cmd, argp);
984 return err;
988 * With an ioctl, arg may well be a user mode pointer, but we don't know
989 * what to do with it - that's up to the protocol still.
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
994 struct socket *sock;
995 struct sock *sk;
996 void __user *argp = (void __user *)arg;
997 int pid, err;
998 struct net *net;
1000 sock = file->private_data;
1001 sk = sock->sk;
1002 net = sock_net(sk);
1003 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1004 err = dev_ioctl(net, cmd, argp);
1005 } else
1006 #ifdef CONFIG_WEXT_CORE
1007 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1008 err = dev_ioctl(net, cmd, argp);
1009 } else
1010 #endif
1011 switch (cmd) {
1012 case FIOSETOWN:
1013 case SIOCSPGRP:
1014 err = -EFAULT;
1015 if (get_user(pid, (int __user *)argp))
1016 break;
1017 err = f_setown(sock->file, pid, 1);
1018 break;
1019 case FIOGETOWN:
1020 case SIOCGPGRP:
1021 err = put_user(f_getown(sock->file),
1022 (int __user *)argp);
1023 break;
1024 case SIOCGIFBR:
1025 case SIOCSIFBR:
1026 case SIOCBRADDBR:
1027 case SIOCBRDELBR:
1028 err = -ENOPKG;
1029 if (!br_ioctl_hook)
1030 request_module("bridge");
1032 mutex_lock(&br_ioctl_mutex);
1033 if (br_ioctl_hook)
1034 err = br_ioctl_hook(net, cmd, argp);
1035 mutex_unlock(&br_ioctl_mutex);
1036 break;
1037 case SIOCGIFVLAN:
1038 case SIOCSIFVLAN:
1039 err = -ENOPKG;
1040 if (!vlan_ioctl_hook)
1041 request_module("8021q");
1043 mutex_lock(&vlan_ioctl_mutex);
1044 if (vlan_ioctl_hook)
1045 err = vlan_ioctl_hook(net, argp);
1046 mutex_unlock(&vlan_ioctl_mutex);
1047 break;
1048 case SIOCADDDLCI:
1049 case SIOCDELDLCI:
1050 err = -ENOPKG;
1051 if (!dlci_ioctl_hook)
1052 request_module("dlci");
1054 mutex_lock(&dlci_ioctl_mutex);
1055 if (dlci_ioctl_hook)
1056 err = dlci_ioctl_hook(cmd, argp);
1057 mutex_unlock(&dlci_ioctl_mutex);
1058 break;
1059 default:
1060 err = sock_do_ioctl(net, sock, cmd, arg);
1061 break;
1063 return err;
1066 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068 int err;
1069 struct socket *sock = NULL;
1071 err = security_socket_create(family, type, protocol, 1);
1072 if (err)
1073 goto out;
1075 sock = sock_alloc();
1076 if (!sock) {
1077 err = -ENOMEM;
1078 goto out;
1081 sock->type = type;
1082 err = security_socket_post_create(sock, family, type, protocol, 1);
1083 if (err)
1084 goto out_release;
1086 out:
1087 *res = sock;
1088 return err;
1089 out_release:
1090 sock_release(sock);
1091 sock = NULL;
1092 goto out;
1094 EXPORT_SYMBOL(sock_create_lite);
1096 /* No kernel lock held - perfect */
1097 static unsigned int sock_poll(struct file *file, poll_table *wait)
1099 struct socket *sock;
1102 * We can't return errors to poll, so it's either yes or no.
1104 sock = file->private_data;
1105 return sock->ops->poll(file, sock, wait);
1108 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110 struct socket *sock = file->private_data;
1112 return sock->ops->mmap(file, sock, vma);
1115 static int sock_close(struct inode *inode, struct file *filp)
1118 * It was possible the inode is NULL we were
1119 * closing an unfinished socket.
1122 if (!inode) {
1123 printk(KERN_DEBUG "sock_close: NULL inode\n");
1124 return 0;
1126 sock_release(SOCKET_I(inode));
1127 return 0;
1131 * Update the socket async list
1133 * Fasync_list locking strategy.
1135 * 1. fasync_list is modified only under process context socket lock
1136 * i.e. under semaphore.
1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 * or under socket lock
1141 static int sock_fasync(int fd, struct file *filp, int on)
1143 struct socket *sock = filp->private_data;
1144 struct sock *sk = sock->sk;
1145 struct socket_wq *wq;
1147 if (sk == NULL)
1148 return -EINVAL;
1150 lock_sock(sk);
1151 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1152 fasync_helper(fd, filp, on, &wq->fasync_list);
1154 if (!wq->fasync_list)
1155 sock_reset_flag(sk, SOCK_FASYNC);
1156 else
1157 sock_set_flag(sk, SOCK_FASYNC);
1159 release_sock(sk);
1160 return 0;
1163 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1165 int sock_wake_async(struct socket *sock, int how, int band)
1167 struct socket_wq *wq;
1169 if (!sock)
1170 return -1;
1171 rcu_read_lock();
1172 wq = rcu_dereference(sock->wq);
1173 if (!wq || !wq->fasync_list) {
1174 rcu_read_unlock();
1175 return -1;
1177 switch (how) {
1178 case SOCK_WAKE_WAITD:
1179 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1180 break;
1181 goto call_kill;
1182 case SOCK_WAKE_SPACE:
1183 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1184 break;
1185 /* fall through */
1186 case SOCK_WAKE_IO:
1187 call_kill:
1188 kill_fasync(&wq->fasync_list, SIGIO, band);
1189 break;
1190 case SOCK_WAKE_URG:
1191 kill_fasync(&wq->fasync_list, SIGURG, band);
1193 rcu_read_unlock();
1194 return 0;
1196 EXPORT_SYMBOL(sock_wake_async);
1198 int __sock_create(struct net *net, int family, int type, int protocol,
1199 struct socket **res, int kern)
1201 int err;
1202 struct socket *sock;
1203 const struct net_proto_family *pf;
1206 * Check protocol is in range
1208 if (family < 0 || family >= NPROTO)
1209 return -EAFNOSUPPORT;
1210 if (type < 0 || type >= SOCK_MAX)
1211 return -EINVAL;
1213 /* Compatibility.
1215 This uglymoron is moved from INET layer to here to avoid
1216 deadlock in module load.
1218 if (family == PF_INET && type == SOCK_PACKET) {
1219 static int warned;
1220 if (!warned) {
1221 warned = 1;
1222 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1223 current->comm);
1225 family = PF_PACKET;
1228 err = security_socket_create(family, type, protocol, kern);
1229 if (err)
1230 return err;
1233 * Allocate the socket and allow the family to set things up. if
1234 * the protocol is 0, the family is instructed to select an appropriate
1235 * default.
1237 sock = sock_alloc();
1238 if (!sock) {
1239 net_warn_ratelimited("socket: no more sockets\n");
1240 return -ENFILE; /* Not exactly a match, but its the
1241 closest posix thing */
1244 sock->type = type;
1246 #ifdef CONFIG_MODULES
1247 /* Attempt to load a protocol module if the find failed.
1249 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1250 * requested real, full-featured networking support upon configuration.
1251 * Otherwise module support will break!
1253 if (rcu_access_pointer(net_families[family]) == NULL)
1254 request_module("net-pf-%d", family);
1255 #endif
1257 rcu_read_lock();
1258 pf = rcu_dereference(net_families[family]);
1259 err = -EAFNOSUPPORT;
1260 if (!pf)
1261 goto out_release;
1264 * We will call the ->create function, that possibly is in a loadable
1265 * module, so we have to bump that loadable module refcnt first.
1267 if (!try_module_get(pf->owner))
1268 goto out_release;
1270 /* Now protected by module ref count */
1271 rcu_read_unlock();
1273 err = pf->create(net, sock, protocol, kern);
1274 if (err < 0)
1275 goto out_module_put;
1278 * Now to bump the refcnt of the [loadable] module that owns this
1279 * socket at sock_release time we decrement its refcnt.
1281 if (!try_module_get(sock->ops->owner))
1282 goto out_module_busy;
1285 * Now that we're done with the ->create function, the [loadable]
1286 * module can have its refcnt decremented
1288 module_put(pf->owner);
1289 err = security_socket_post_create(sock, family, type, protocol, kern);
1290 if (err)
1291 goto out_sock_release;
1292 *res = sock;
1294 return 0;
1296 out_module_busy:
1297 err = -EAFNOSUPPORT;
1298 out_module_put:
1299 sock->ops = NULL;
1300 module_put(pf->owner);
1301 out_sock_release:
1302 sock_release(sock);
1303 return err;
1305 out_release:
1306 rcu_read_unlock();
1307 goto out_sock_release;
1309 EXPORT_SYMBOL(__sock_create);
1311 int sock_create(int family, int type, int protocol, struct socket **res)
1313 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315 EXPORT_SYMBOL(sock_create);
1317 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1319 return __sock_create(&init_net, family, type, protocol, res, 1);
1321 EXPORT_SYMBOL(sock_create_kern);
1323 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325 int retval;
1326 struct socket *sock;
1327 int flags;
1329 /* Check the SOCK_* constants for consistency. */
1330 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1331 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1332 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1333 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335 flags = type & ~SOCK_TYPE_MASK;
1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1337 return -EINVAL;
1338 type &= SOCK_TYPE_MASK;
1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343 retval = sock_create(family, type, protocol, &sock);
1344 if (retval < 0)
1345 goto out;
1347 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1348 if (retval < 0)
1349 goto out_release;
1351 out:
1352 /* It may be already another descriptor 8) Not kernel problem. */
1353 return retval;
1355 out_release:
1356 sock_release(sock);
1357 return retval;
1361 * Create a pair of connected sockets.
1364 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1365 int __user *, usockvec)
1367 struct socket *sock1, *sock2;
1368 int fd1, fd2, err;
1369 struct file *newfile1, *newfile2;
1370 int flags;
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 return -EINVAL;
1375 type &= SOCK_TYPE_MASK;
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1381 * Obtain the first socket and check if the underlying protocol
1382 * supports the socketpair call.
1385 err = sock_create(family, type, protocol, &sock1);
1386 if (err < 0)
1387 goto out;
1389 err = sock_create(family, type, protocol, &sock2);
1390 if (err < 0)
1391 goto out_release_1;
1393 err = sock1->ops->socketpair(sock1, sock2);
1394 if (err < 0)
1395 goto out_release_both;
1397 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1398 if (unlikely(fd1 < 0)) {
1399 err = fd1;
1400 goto out_release_both;
1403 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1404 if (unlikely(fd2 < 0)) {
1405 err = fd2;
1406 fput(newfile1);
1407 put_unused_fd(fd1);
1408 sock_release(sock2);
1409 goto out;
1412 audit_fd_pair(fd1, fd2);
1413 fd_install(fd1, newfile1);
1414 fd_install(fd2, newfile2);
1415 /* fd1 and fd2 may be already another descriptors.
1416 * Not kernel problem.
1419 err = put_user(fd1, &usockvec[0]);
1420 if (!err)
1421 err = put_user(fd2, &usockvec[1]);
1422 if (!err)
1423 return 0;
1425 sys_close(fd2);
1426 sys_close(fd1);
1427 return err;
1429 out_release_both:
1430 sock_release(sock2);
1431 out_release_1:
1432 sock_release(sock1);
1433 out:
1434 return err;
1438 * Bind a name to a socket. Nothing much to do here since it's
1439 * the protocol's responsibility to handle the local address.
1441 * We move the socket address to kernel space before we call
1442 * the protocol layer (having also checked the address is ok).
1445 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447 struct socket *sock;
1448 struct sockaddr_storage address;
1449 int err, fput_needed;
1451 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 if (sock) {
1453 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1454 if (err >= 0) {
1455 err = security_socket_bind(sock,
1456 (struct sockaddr *)&address,
1457 addrlen);
1458 if (!err)
1459 err = sock->ops->bind(sock,
1460 (struct sockaddr *)
1461 &address, addrlen);
1463 fput_light(sock->file, fput_needed);
1465 return err;
1469 * Perform a listen. Basically, we allow the protocol to do anything
1470 * necessary for a listen, and if that works, we mark the socket as
1471 * ready for listening.
1474 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476 struct socket *sock;
1477 int err, fput_needed;
1478 int somaxconn;
1480 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 if (sock) {
1482 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1483 if ((unsigned int)backlog > somaxconn)
1484 backlog = somaxconn;
1486 err = security_socket_listen(sock, backlog);
1487 if (!err)
1488 err = sock->ops->listen(sock, backlog);
1490 fput_light(sock->file, fput_needed);
1492 return err;
1496 * For accept, we attempt to create a new socket, set up the link
1497 * with the client, wake up the client, then return the new
1498 * connected fd. We collect the address of the connector in kernel
1499 * space and move it to user at the very end. This is unclean because
1500 * we open the socket then return an error.
1502 * 1003.1g adds the ability to recvmsg() to query connection pending
1503 * status to recvmsg. We need to add that support in a way thats
1504 * clean when we restucture accept also.
1507 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1508 int __user *, upeer_addrlen, int, flags)
1510 struct socket *sock, *newsock;
1511 struct file *newfile;
1512 int err, len, newfd, fput_needed;
1513 struct sockaddr_storage address;
1515 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1516 return -EINVAL;
1518 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1519 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1522 if (!sock)
1523 goto out;
1525 err = -ENFILE;
1526 newsock = sock_alloc();
1527 if (!newsock)
1528 goto out_put;
1530 newsock->type = sock->type;
1531 newsock->ops = sock->ops;
1534 * We don't need try_module_get here, as the listening socket (sock)
1535 * has the protocol module (sock->ops->owner) held.
1537 __module_get(newsock->ops->owner);
1539 newfd = sock_alloc_file(newsock, &newfile, flags);
1540 if (unlikely(newfd < 0)) {
1541 err = newfd;
1542 sock_release(newsock);
1543 goto out_put;
1546 err = security_socket_accept(sock, newsock);
1547 if (err)
1548 goto out_fd;
1550 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1551 if (err < 0)
1552 goto out_fd;
1554 if (upeer_sockaddr) {
1555 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1556 &len, 2) < 0) {
1557 err = -ECONNABORTED;
1558 goto out_fd;
1560 err = move_addr_to_user(&address,
1561 len, upeer_sockaddr, upeer_addrlen);
1562 if (err < 0)
1563 goto out_fd;
1566 /* File flags are not inherited via accept() unlike another OSes. */
1568 fd_install(newfd, newfile);
1569 err = newfd;
1571 out_put:
1572 fput_light(sock->file, fput_needed);
1573 out:
1574 return err;
1575 out_fd:
1576 fput(newfile);
1577 put_unused_fd(newfd);
1578 goto out_put;
1581 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1582 int __user *, upeer_addrlen)
1584 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1588 * Attempt to connect to a socket with the server address. The address
1589 * is in user space so we verify it is OK and move it to kernel space.
1591 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1592 * break bindings
1594 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1595 * other SEQPACKET protocols that take time to connect() as it doesn't
1596 * include the -EINPROGRESS status for such sockets.
1599 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1600 int, addrlen)
1602 struct socket *sock;
1603 struct sockaddr_storage address;
1604 int err, fput_needed;
1606 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1607 if (!sock)
1608 goto out;
1609 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1610 if (err < 0)
1611 goto out_put;
1613 err =
1614 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1615 if (err)
1616 goto out_put;
1618 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1619 sock->file->f_flags);
1620 out_put:
1621 fput_light(sock->file, fput_needed);
1622 out:
1623 return err;
1627 * Get the local address ('name') of a socket object. Move the obtained
1628 * name to user space.
1631 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1632 int __user *, usockaddr_len)
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int len, err, fput_needed;
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (!sock)
1640 goto out;
1642 err = security_socket_getsockname(sock);
1643 if (err)
1644 goto out_put;
1646 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1647 if (err)
1648 goto out_put;
1649 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1651 out_put:
1652 fput_light(sock->file, fput_needed);
1653 out:
1654 return err;
1658 * Get the remote address ('name') of a socket object. Move the obtained
1659 * name to user space.
1662 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1663 int __user *, usockaddr_len)
1665 struct socket *sock;
1666 struct sockaddr_storage address;
1667 int len, err, fput_needed;
1669 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1670 if (sock != NULL) {
1671 err = security_socket_getpeername(sock);
1672 if (err) {
1673 fput_light(sock->file, fput_needed);
1674 return err;
1677 err =
1678 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680 if (!err)
1681 err = move_addr_to_user(&address, len, usockaddr,
1682 usockaddr_len);
1683 fput_light(sock->file, fput_needed);
1685 return err;
1689 * Send a datagram to a given address. We move the address into kernel
1690 * space and check the user space data area is readable before invoking
1691 * the protocol.
1694 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1695 unsigned int, flags, struct sockaddr __user *, addr,
1696 int, addr_len)
1698 struct socket *sock;
1699 struct sockaddr_storage address;
1700 int err;
1701 struct msghdr msg;
1702 struct iovec iov;
1703 int fput_needed;
1705 if (len > INT_MAX)
1706 len = INT_MAX;
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (!sock)
1709 goto out;
1711 iov.iov_base = buff;
1712 iov.iov_len = len;
1713 msg.msg_name = NULL;
1714 msg.msg_iov = &iov;
1715 msg.msg_iovlen = 1;
1716 msg.msg_control = NULL;
1717 msg.msg_controllen = 0;
1718 msg.msg_namelen = 0;
1719 if (addr) {
1720 err = move_addr_to_kernel(addr, addr_len, &address);
1721 if (err < 0)
1722 goto out_put;
1723 msg.msg_name = (struct sockaddr *)&address;
1724 msg.msg_namelen = addr_len;
1726 if (sock->file->f_flags & O_NONBLOCK)
1727 flags |= MSG_DONTWAIT;
1728 msg.msg_flags = flags;
1729 err = sock_sendmsg(sock, &msg, len);
1731 out_put:
1732 fput_light(sock->file, fput_needed);
1733 out:
1734 return err;
1738 * Send a datagram down a socket.
1741 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1742 unsigned int, flags)
1744 return sys_sendto(fd, buff, len, flags, NULL, 0);
1748 * Receive a frame from the socket and optionally record the address of the
1749 * sender. We verify the buffers are writable and if needed move the
1750 * sender address from kernel to user space.
1753 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1754 unsigned int, flags, struct sockaddr __user *, addr,
1755 int __user *, addr_len)
1757 struct socket *sock;
1758 struct iovec iov;
1759 struct msghdr msg;
1760 struct sockaddr_storage address;
1761 int err, err2;
1762 int fput_needed;
1764 if (size > INT_MAX)
1765 size = INT_MAX;
1766 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 if (!sock)
1768 goto out;
1770 msg.msg_control = NULL;
1771 msg.msg_controllen = 0;
1772 msg.msg_iovlen = 1;
1773 msg.msg_iov = &iov;
1774 iov.iov_len = size;
1775 iov.iov_base = ubuf;
1776 msg.msg_name = (struct sockaddr *)&address;
1777 msg.msg_namelen = sizeof(address);
1778 if (sock->file->f_flags & O_NONBLOCK)
1779 flags |= MSG_DONTWAIT;
1780 err = sock_recvmsg(sock, &msg, size, flags);
1782 if (err >= 0 && addr != NULL) {
1783 err2 = move_addr_to_user(&address,
1784 msg.msg_namelen, addr, addr_len);
1785 if (err2 < 0)
1786 err = err2;
1789 fput_light(sock->file, fput_needed);
1790 out:
1791 return err;
1795 * Receive a datagram from a socket.
1798 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1799 unsigned int flags)
1801 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1805 * Set a socket option. Because we don't know the option lengths we have
1806 * to pass the user mode parameter for the protocols to sort out.
1809 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1810 char __user *, optval, int, optlen)
1812 int err, fput_needed;
1813 struct socket *sock;
1815 if (optlen < 0)
1816 return -EINVAL;
1818 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 if (sock != NULL) {
1820 err = security_socket_setsockopt(sock, level, optname);
1821 if (err)
1822 goto out_put;
1824 if (level == SOL_SOCKET)
1825 err =
1826 sock_setsockopt(sock, level, optname, optval,
1827 optlen);
1828 else
1829 err =
1830 sock->ops->setsockopt(sock, level, optname, optval,
1831 optlen);
1832 out_put:
1833 fput_light(sock->file, fput_needed);
1835 return err;
1839 * Get a socket option. Because we don't know the option lengths we have
1840 * to pass a user mode parameter for the protocols to sort out.
1843 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1844 char __user *, optval, int __user *, optlen)
1846 int err, fput_needed;
1847 struct socket *sock;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (sock != NULL) {
1851 err = security_socket_getsockopt(sock, level, optname);
1852 if (err)
1853 goto out_put;
1855 if (level == SOL_SOCKET)
1856 err =
1857 sock_getsockopt(sock, level, optname, optval,
1858 optlen);
1859 else
1860 err =
1861 sock->ops->getsockopt(sock, level, optname, optval,
1862 optlen);
1863 out_put:
1864 fput_light(sock->file, fput_needed);
1866 return err;
1870 * Shutdown a socket.
1873 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875 int err, fput_needed;
1876 struct socket *sock;
1878 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1879 if (sock != NULL) {
1880 err = security_socket_shutdown(sock, how);
1881 if (!err)
1882 err = sock->ops->shutdown(sock, how);
1883 fput_light(sock->file, fput_needed);
1885 return err;
1888 /* A couple of helpful macros for getting the address of the 32/64 bit
1889 * fields which are the same type (int / unsigned) on our platforms.
1891 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1892 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1893 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1895 struct used_address {
1896 struct sockaddr_storage name;
1897 unsigned int name_len;
1900 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1901 struct msghdr *msg_sys, unsigned int flags,
1902 struct used_address *used_address)
1904 struct compat_msghdr __user *msg_compat =
1905 (struct compat_msghdr __user *)msg;
1906 struct sockaddr_storage address;
1907 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1908 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1909 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1910 /* 20 is size of ipv6_pktinfo */
1911 unsigned char *ctl_buf = ctl;
1912 int err, ctl_len, total_len;
1914 err = -EFAULT;
1915 if (MSG_CMSG_COMPAT & flags) {
1916 if (get_compat_msghdr(msg_sys, msg_compat))
1917 return -EFAULT;
1918 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1919 return -EFAULT;
1921 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1922 err = -EMSGSIZE;
1923 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1924 goto out;
1925 err = -ENOMEM;
1926 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1927 GFP_KERNEL);
1928 if (!iov)
1929 goto out;
1932 /* This will also move the address data into kernel space */
1933 if (MSG_CMSG_COMPAT & flags) {
1934 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1935 } else
1936 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1937 if (err < 0)
1938 goto out_freeiov;
1939 total_len = err;
1941 err = -ENOBUFS;
1943 if (msg_sys->msg_controllen > INT_MAX)
1944 goto out_freeiov;
1945 ctl_len = msg_sys->msg_controllen;
1946 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1947 err =
1948 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1949 sizeof(ctl));
1950 if (err)
1951 goto out_freeiov;
1952 ctl_buf = msg_sys->msg_control;
1953 ctl_len = msg_sys->msg_controllen;
1954 } else if (ctl_len) {
1955 if (ctl_len > sizeof(ctl)) {
1956 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1957 if (ctl_buf == NULL)
1958 goto out_freeiov;
1960 err = -EFAULT;
1962 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1963 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1964 * checking falls down on this.
1966 if (copy_from_user(ctl_buf,
1967 (void __user __force *)msg_sys->msg_control,
1968 ctl_len))
1969 goto out_freectl;
1970 msg_sys->msg_control = ctl_buf;
1972 msg_sys->msg_flags = flags;
1974 if (sock->file->f_flags & O_NONBLOCK)
1975 msg_sys->msg_flags |= MSG_DONTWAIT;
1977 * If this is sendmmsg() and current destination address is same as
1978 * previously succeeded address, omit asking LSM's decision.
1979 * used_address->name_len is initialized to UINT_MAX so that the first
1980 * destination address never matches.
1982 if (used_address && msg_sys->msg_name &&
1983 used_address->name_len == msg_sys->msg_namelen &&
1984 !memcmp(&used_address->name, msg_sys->msg_name,
1985 used_address->name_len)) {
1986 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1987 goto out_freectl;
1989 err = sock_sendmsg(sock, msg_sys, total_len);
1991 * If this is sendmmsg() and sending to current destination address was
1992 * successful, remember it.
1994 if (used_address && err >= 0) {
1995 used_address->name_len = msg_sys->msg_namelen;
1996 if (msg_sys->msg_name)
1997 memcpy(&used_address->name, msg_sys->msg_name,
1998 used_address->name_len);
2001 out_freectl:
2002 if (ctl_buf != ctl)
2003 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2004 out_freeiov:
2005 if (iov != iovstack)
2006 kfree(iov);
2007 out:
2008 return err;
2012 * BSD sendmsg interface
2015 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2017 int fput_needed, err;
2018 struct msghdr msg_sys;
2019 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021 if (!sock)
2022 goto out;
2024 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026 fput_light(sock->file, fput_needed);
2027 out:
2028 return err;
2032 * Linux sendmmsg interface
2035 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036 unsigned int flags)
2038 int fput_needed, err, datagrams;
2039 struct socket *sock;
2040 struct mmsghdr __user *entry;
2041 struct compat_mmsghdr __user *compat_entry;
2042 struct msghdr msg_sys;
2043 struct used_address used_address;
2045 if (vlen > UIO_MAXIOV)
2046 vlen = UIO_MAXIOV;
2048 datagrams = 0;
2050 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2051 if (!sock)
2052 return err;
2054 used_address.name_len = UINT_MAX;
2055 entry = mmsg;
2056 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2057 err = 0;
2059 while (datagrams < vlen) {
2060 if (MSG_CMSG_COMPAT & flags) {
2061 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2062 &msg_sys, flags, &used_address);
2063 if (err < 0)
2064 break;
2065 err = __put_user(err, &compat_entry->msg_len);
2066 ++compat_entry;
2067 } else {
2068 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2069 &msg_sys, flags, &used_address);
2070 if (err < 0)
2071 break;
2072 err = put_user(err, &entry->msg_len);
2073 ++entry;
2076 if (err)
2077 break;
2078 ++datagrams;
2081 fput_light(sock->file, fput_needed);
2083 /* We only return an error if no datagrams were able to be sent */
2084 if (datagrams != 0)
2085 return datagrams;
2087 return err;
2090 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2091 unsigned int, vlen, unsigned int, flags)
2093 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2096 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2097 struct msghdr *msg_sys, unsigned int flags, int nosec)
2099 struct compat_msghdr __user *msg_compat =
2100 (struct compat_msghdr __user *)msg;
2101 struct iovec iovstack[UIO_FASTIOV];
2102 struct iovec *iov = iovstack;
2103 unsigned long cmsg_ptr;
2104 int err, total_len, len;
2106 /* kernel mode address */
2107 struct sockaddr_storage addr;
2109 /* user mode address pointers */
2110 struct sockaddr __user *uaddr;
2111 int __user *uaddr_len;
2113 if (MSG_CMSG_COMPAT & flags) {
2114 if (get_compat_msghdr(msg_sys, msg_compat))
2115 return -EFAULT;
2116 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2117 return -EFAULT;
2119 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2120 err = -EMSGSIZE;
2121 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2122 goto out;
2123 err = -ENOMEM;
2124 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2125 GFP_KERNEL);
2126 if (!iov)
2127 goto out;
2131 * Save the user-mode address (verify_iovec will change the
2132 * kernel msghdr to use the kernel address space)
2135 uaddr = (__force void __user *)msg_sys->msg_name;
2136 uaddr_len = COMPAT_NAMELEN(msg);
2137 if (MSG_CMSG_COMPAT & flags) {
2138 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2139 } else
2140 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2141 if (err < 0)
2142 goto out_freeiov;
2143 total_len = err;
2145 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2146 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148 if (sock->file->f_flags & O_NONBLOCK)
2149 flags |= MSG_DONTWAIT;
2150 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2151 total_len, flags);
2152 if (err < 0)
2153 goto out_freeiov;
2154 len = err;
2156 if (uaddr != NULL) {
2157 err = move_addr_to_user(&addr,
2158 msg_sys->msg_namelen, uaddr,
2159 uaddr_len);
2160 if (err < 0)
2161 goto out_freeiov;
2163 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2164 COMPAT_FLAGS(msg));
2165 if (err)
2166 goto out_freeiov;
2167 if (MSG_CMSG_COMPAT & flags)
2168 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2169 &msg_compat->msg_controllen);
2170 else
2171 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2172 &msg->msg_controllen);
2173 if (err)
2174 goto out_freeiov;
2175 err = len;
2177 out_freeiov:
2178 if (iov != iovstack)
2179 kfree(iov);
2180 out:
2181 return err;
2185 * BSD recvmsg interface
2188 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2189 unsigned int, flags)
2191 int fput_needed, err;
2192 struct msghdr msg_sys;
2193 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195 if (!sock)
2196 goto out;
2198 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200 fput_light(sock->file, fput_needed);
2201 out:
2202 return err;
2206 * Linux recvmmsg interface
2209 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2210 unsigned int flags, struct timespec *timeout)
2212 int fput_needed, err, datagrams;
2213 struct socket *sock;
2214 struct mmsghdr __user *entry;
2215 struct compat_mmsghdr __user *compat_entry;
2216 struct msghdr msg_sys;
2217 struct timespec end_time;
2219 if (timeout &&
2220 poll_select_set_timeout(&end_time, timeout->tv_sec,
2221 timeout->tv_nsec))
2222 return -EINVAL;
2224 datagrams = 0;
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2230 err = sock_error(sock->sk);
2231 if (err)
2232 goto out_put;
2234 entry = mmsg;
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237 while (datagrams < vlen) {
2239 * No need to ask LSM for more than the first datagram.
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2244 datagrams);
2245 if (err < 0)
2246 break;
2247 err = __put_user(err, &compat_entry->msg_len);
2248 ++compat_entry;
2249 } else {
2250 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2251 &msg_sys, flags & ~MSG_WAITFORONE,
2252 datagrams);
2253 if (err < 0)
2254 break;
2255 err = put_user(err, &entry->msg_len);
2256 ++entry;
2259 if (err)
2260 break;
2261 ++datagrams;
2263 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2264 if (flags & MSG_WAITFORONE)
2265 flags |= MSG_DONTWAIT;
2267 if (timeout) {
2268 ktime_get_ts(timeout);
2269 *timeout = timespec_sub(end_time, *timeout);
2270 if (timeout->tv_sec < 0) {
2271 timeout->tv_sec = timeout->tv_nsec = 0;
2272 break;
2275 /* Timeout, return less than vlen datagrams */
2276 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2277 break;
2280 /* Out of band data, return right away */
2281 if (msg_sys.msg_flags & MSG_OOB)
2282 break;
2285 out_put:
2286 fput_light(sock->file, fput_needed);
2288 if (err == 0)
2289 return datagrams;
2291 if (datagrams != 0) {
2293 * We may return less entries than requested (vlen) if the
2294 * sock is non block and there aren't enough datagrams...
2296 if (err != -EAGAIN) {
2298 * ... or if recvmsg returns an error after we
2299 * received some datagrams, where we record the
2300 * error to return on the next call or if the
2301 * app asks about it using getsockopt(SO_ERROR).
2303 sock->sk->sk_err = -err;
2306 return datagrams;
2309 return err;
2312 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2313 unsigned int, vlen, unsigned int, flags,
2314 struct timespec __user *, timeout)
2316 int datagrams;
2317 struct timespec timeout_sys;
2319 if (!timeout)
2320 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2323 return -EFAULT;
2325 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2327 if (datagrams > 0 &&
2328 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2329 datagrams = -EFAULT;
2331 return datagrams;
2334 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2335 /* Argument list sizes for sys_socketcall */
2336 #define AL(x) ((x) * sizeof(unsigned long))
2337 static const unsigned char nargs[21] = {
2338 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2339 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2340 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2341 AL(4), AL(5), AL(4)
2344 #undef AL
2347 * System call vectors.
2349 * Argument checking cleaned up. Saved 20% in size.
2350 * This function doesn't need to set the kernel lock because
2351 * it is set by the callees.
2354 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356 unsigned long a[6];
2357 unsigned long a0, a1;
2358 int err;
2359 unsigned int len;
2361 if (call < 1 || call > SYS_SENDMMSG)
2362 return -EINVAL;
2364 len = nargs[call];
2365 if (len > sizeof(a))
2366 return -EINVAL;
2368 /* copy_from_user should be SMP safe. */
2369 if (copy_from_user(a, args, len))
2370 return -EFAULT;
2372 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2374 a0 = a[0];
2375 a1 = a[1];
2377 switch (call) {
2378 case SYS_SOCKET:
2379 err = sys_socket(a0, a1, a[2]);
2380 break;
2381 case SYS_BIND:
2382 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2383 break;
2384 case SYS_CONNECT:
2385 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2386 break;
2387 case SYS_LISTEN:
2388 err = sys_listen(a0, a1);
2389 break;
2390 case SYS_ACCEPT:
2391 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2392 (int __user *)a[2], 0);
2393 break;
2394 case SYS_GETSOCKNAME:
2395 err =
2396 sys_getsockname(a0, (struct sockaddr __user *)a1,
2397 (int __user *)a[2]);
2398 break;
2399 case SYS_GETPEERNAME:
2400 err =
2401 sys_getpeername(a0, (struct sockaddr __user *)a1,
2402 (int __user *)a[2]);
2403 break;
2404 case SYS_SOCKETPAIR:
2405 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2406 break;
2407 case SYS_SEND:
2408 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2409 break;
2410 case SYS_SENDTO:
2411 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2412 (struct sockaddr __user *)a[4], a[5]);
2413 break;
2414 case SYS_RECV:
2415 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2416 break;
2417 case SYS_RECVFROM:
2418 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2419 (struct sockaddr __user *)a[4],
2420 (int __user *)a[5]);
2421 break;
2422 case SYS_SHUTDOWN:
2423 err = sys_shutdown(a0, a1);
2424 break;
2425 case SYS_SETSOCKOPT:
2426 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2427 break;
2428 case SYS_GETSOCKOPT:
2429 err =
2430 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2431 (int __user *)a[4]);
2432 break;
2433 case SYS_SENDMSG:
2434 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2435 break;
2436 case SYS_SENDMMSG:
2437 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2438 break;
2439 case SYS_RECVMSG:
2440 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2441 break;
2442 case SYS_RECVMMSG:
2443 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2444 (struct timespec __user *)a[4]);
2445 break;
2446 case SYS_ACCEPT4:
2447 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2448 (int __user *)a[2], a[3]);
2449 break;
2450 default:
2451 err = -EINVAL;
2452 break;
2454 return err;
2457 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2460 * sock_register - add a socket protocol handler
2461 * @ops: description of protocol
2463 * This function is called by a protocol handler that wants to
2464 * advertise its address family, and have it linked into the
2465 * socket interface. The value ops->family coresponds to the
2466 * socket system call protocol family.
2468 int sock_register(const struct net_proto_family *ops)
2470 int err;
2472 if (ops->family >= NPROTO) {
2473 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2474 NPROTO);
2475 return -ENOBUFS;
2478 spin_lock(&net_family_lock);
2479 if (rcu_dereference_protected(net_families[ops->family],
2480 lockdep_is_held(&net_family_lock)))
2481 err = -EEXIST;
2482 else {
2483 rcu_assign_pointer(net_families[ops->family], ops);
2484 err = 0;
2486 spin_unlock(&net_family_lock);
2488 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2489 return err;
2491 EXPORT_SYMBOL(sock_register);
2494 * sock_unregister - remove a protocol handler
2495 * @family: protocol family to remove
2497 * This function is called by a protocol handler that wants to
2498 * remove its address family, and have it unlinked from the
2499 * new socket creation.
2501 * If protocol handler is a module, then it can use module reference
2502 * counts to protect against new references. If protocol handler is not
2503 * a module then it needs to provide its own protection in
2504 * the ops->create routine.
2506 void sock_unregister(int family)
2508 BUG_ON(family < 0 || family >= NPROTO);
2510 spin_lock(&net_family_lock);
2511 RCU_INIT_POINTER(net_families[family], NULL);
2512 spin_unlock(&net_family_lock);
2514 synchronize_rcu();
2516 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518 EXPORT_SYMBOL(sock_unregister);
2520 static int __init sock_init(void)
2522 int err;
2524 * Initialize the network sysctl infrastructure.
2526 err = net_sysctl_init();
2527 if (err)
2528 goto out;
2531 * Initialize sock SLAB cache.
2534 sk_init();
2537 * Initialize skbuff SLAB cache
2539 skb_init();
2542 * Initialize the protocols module.
2545 init_inodecache();
2547 err = register_filesystem(&sock_fs_type);
2548 if (err)
2549 goto out_fs;
2550 sock_mnt = kern_mount(&sock_fs_type);
2551 if (IS_ERR(sock_mnt)) {
2552 err = PTR_ERR(sock_mnt);
2553 goto out_mount;
2556 /* The real protocol initialization is performed in later initcalls.
2559 #ifdef CONFIG_NETFILTER
2560 netfilter_init();
2561 #endif
2563 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2564 skb_timestamping_init();
2565 #endif
2567 out:
2568 return err;
2570 out_mount:
2571 unregister_filesystem(&sock_fs_type);
2572 out_fs:
2573 goto out;
2576 core_initcall(sock_init); /* early initcall */
2578 #ifdef CONFIG_PROC_FS
2579 void socket_seq_show(struct seq_file *seq)
2581 int cpu;
2582 int counter = 0;
2584 for_each_possible_cpu(cpu)
2585 counter += per_cpu(sockets_in_use, cpu);
2587 /* It can be negative, by the way. 8) */
2588 if (counter < 0)
2589 counter = 0;
2591 seq_printf(seq, "sockets: used %d\n", counter);
2593 #endif /* CONFIG_PROC_FS */
2595 #ifdef CONFIG_COMPAT
2596 static int do_siocgstamp(struct net *net, struct socket *sock,
2597 unsigned int cmd, void __user *up)
2599 mm_segment_t old_fs = get_fs();
2600 struct timeval ktv;
2601 int err;
2603 set_fs(KERNEL_DS);
2604 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2605 set_fs(old_fs);
2606 if (!err)
2607 err = compat_put_timeval(&ktv, up);
2609 return err;
2612 static int do_siocgstampns(struct net *net, struct socket *sock,
2613 unsigned int cmd, void __user *up)
2615 mm_segment_t old_fs = get_fs();
2616 struct timespec kts;
2617 int err;
2619 set_fs(KERNEL_DS);
2620 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2621 set_fs(old_fs);
2622 if (!err)
2623 err = compat_put_timespec(&kts, up);
2625 return err;
2628 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630 struct ifreq __user *uifr;
2631 int err;
2633 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2634 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2635 return -EFAULT;
2637 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2638 if (err)
2639 return err;
2641 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2642 return -EFAULT;
2644 return 0;
2647 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649 struct compat_ifconf ifc32;
2650 struct ifconf ifc;
2651 struct ifconf __user *uifc;
2652 struct compat_ifreq __user *ifr32;
2653 struct ifreq __user *ifr;
2654 unsigned int i, j;
2655 int err;
2657 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2658 return -EFAULT;
2660 memset(&ifc, 0, sizeof(ifc));
2661 if (ifc32.ifcbuf == 0) {
2662 ifc32.ifc_len = 0;
2663 ifc.ifc_len = 0;
2664 ifc.ifc_req = NULL;
2665 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2666 } else {
2667 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2668 sizeof(struct ifreq);
2669 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2670 ifc.ifc_len = len;
2671 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2672 ifr32 = compat_ptr(ifc32.ifcbuf);
2673 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2674 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2675 return -EFAULT;
2676 ifr++;
2677 ifr32++;
2680 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2681 return -EFAULT;
2683 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2684 if (err)
2685 return err;
2687 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2688 return -EFAULT;
2690 ifr = ifc.ifc_req;
2691 ifr32 = compat_ptr(ifc32.ifcbuf);
2692 for (i = 0, j = 0;
2693 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2694 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2695 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2696 return -EFAULT;
2697 ifr32++;
2698 ifr++;
2701 if (ifc32.ifcbuf == 0) {
2702 /* Translate from 64-bit structure multiple to
2703 * a 32-bit one.
2705 i = ifc.ifc_len;
2706 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2707 ifc32.ifc_len = i;
2708 } else {
2709 ifc32.ifc_len = i;
2711 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2712 return -EFAULT;
2714 return 0;
2717 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2720 bool convert_in = false, convert_out = false;
2721 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2722 struct ethtool_rxnfc __user *rxnfc;
2723 struct ifreq __user *ifr;
2724 u32 rule_cnt = 0, actual_rule_cnt;
2725 u32 ethcmd;
2726 u32 data;
2727 int ret;
2729 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2730 return -EFAULT;
2732 compat_rxnfc = compat_ptr(data);
2734 if (get_user(ethcmd, &compat_rxnfc->cmd))
2735 return -EFAULT;
2737 /* Most ethtool structures are defined without padding.
2738 * Unfortunately struct ethtool_rxnfc is an exception.
2740 switch (ethcmd) {
2741 default:
2742 break;
2743 case ETHTOOL_GRXCLSRLALL:
2744 /* Buffer size is variable */
2745 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2746 return -EFAULT;
2747 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2748 return -ENOMEM;
2749 buf_size += rule_cnt * sizeof(u32);
2750 /* fall through */
2751 case ETHTOOL_GRXRINGS:
2752 case ETHTOOL_GRXCLSRLCNT:
2753 case ETHTOOL_GRXCLSRULE:
2754 case ETHTOOL_SRXCLSRLINS:
2755 convert_out = true;
2756 /* fall through */
2757 case ETHTOOL_SRXCLSRLDEL:
2758 buf_size += sizeof(struct ethtool_rxnfc);
2759 convert_in = true;
2760 break;
2763 ifr = compat_alloc_user_space(buf_size);
2764 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2767 return -EFAULT;
2769 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2770 &ifr->ifr_ifru.ifru_data))
2771 return -EFAULT;
2773 if (convert_in) {
2774 /* We expect there to be holes between fs.m_ext and
2775 * fs.ring_cookie and at the end of fs, but nowhere else.
2777 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2778 sizeof(compat_rxnfc->fs.m_ext) !=
2779 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2780 sizeof(rxnfc->fs.m_ext));
2781 BUILD_BUG_ON(
2782 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2783 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2784 offsetof(struct ethtool_rxnfc, fs.location) -
2785 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787 if (copy_in_user(rxnfc, compat_rxnfc,
2788 (void *)(&rxnfc->fs.m_ext + 1) -
2789 (void *)rxnfc) ||
2790 copy_in_user(&rxnfc->fs.ring_cookie,
2791 &compat_rxnfc->fs.ring_cookie,
2792 (void *)(&rxnfc->fs.location + 1) -
2793 (void *)&rxnfc->fs.ring_cookie) ||
2794 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2795 sizeof(rxnfc->rule_cnt)))
2796 return -EFAULT;
2799 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2800 if (ret)
2801 return ret;
2803 if (convert_out) {
2804 if (copy_in_user(compat_rxnfc, rxnfc,
2805 (const void *)(&rxnfc->fs.m_ext + 1) -
2806 (const void *)rxnfc) ||
2807 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2808 &rxnfc->fs.ring_cookie,
2809 (const void *)(&rxnfc->fs.location + 1) -
2810 (const void *)&rxnfc->fs.ring_cookie) ||
2811 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2812 sizeof(rxnfc->rule_cnt)))
2813 return -EFAULT;
2815 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2816 /* As an optimisation, we only copy the actual
2817 * number of rules that the underlying
2818 * function returned. Since Mallory might
2819 * change the rule count in user memory, we
2820 * check that it is less than the rule count
2821 * originally given (as the user buffer size),
2822 * which has been range-checked.
2824 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2825 return -EFAULT;
2826 if (actual_rule_cnt < rule_cnt)
2827 rule_cnt = actual_rule_cnt;
2828 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2829 &rxnfc->rule_locs[0],
2830 rule_cnt * sizeof(u32)))
2831 return -EFAULT;
2835 return 0;
2838 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840 void __user *uptr;
2841 compat_uptr_t uptr32;
2842 struct ifreq __user *uifr;
2844 uifr = compat_alloc_user_space(sizeof(*uifr));
2845 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2846 return -EFAULT;
2848 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2849 return -EFAULT;
2851 uptr = compat_ptr(uptr32);
2853 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2854 return -EFAULT;
2856 return dev_ioctl(net, SIOCWANDEV, uifr);
2859 static int bond_ioctl(struct net *net, unsigned int cmd,
2860 struct compat_ifreq __user *ifr32)
2862 struct ifreq kifr;
2863 struct ifreq __user *uifr;
2864 mm_segment_t old_fs;
2865 int err;
2866 u32 data;
2867 void __user *datap;
2869 switch (cmd) {
2870 case SIOCBONDENSLAVE:
2871 case SIOCBONDRELEASE:
2872 case SIOCBONDSETHWADDR:
2873 case SIOCBONDCHANGEACTIVE:
2874 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2875 return -EFAULT;
2877 old_fs = get_fs();
2878 set_fs(KERNEL_DS);
2879 err = dev_ioctl(net, cmd,
2880 (struct ifreq __user __force *) &kifr);
2881 set_fs(old_fs);
2883 return err;
2884 case SIOCBONDSLAVEINFOQUERY:
2885 case SIOCBONDINFOQUERY:
2886 uifr = compat_alloc_user_space(sizeof(*uifr));
2887 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2888 return -EFAULT;
2890 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2891 return -EFAULT;
2893 datap = compat_ptr(data);
2894 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2895 return -EFAULT;
2897 return dev_ioctl(net, cmd, uifr);
2898 default:
2899 return -ENOIOCTLCMD;
2903 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2904 struct compat_ifreq __user *u_ifreq32)
2906 struct ifreq __user *u_ifreq64;
2907 char tmp_buf[IFNAMSIZ];
2908 void __user *data64;
2909 u32 data32;
2911 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2912 IFNAMSIZ))
2913 return -EFAULT;
2914 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2915 return -EFAULT;
2916 data64 = compat_ptr(data32);
2918 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2920 /* Don't check these user accesses, just let that get trapped
2921 * in the ioctl handler instead.
2923 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2924 IFNAMSIZ))
2925 return -EFAULT;
2926 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2927 return -EFAULT;
2929 return dev_ioctl(net, cmd, u_ifreq64);
2932 static int dev_ifsioc(struct net *net, struct socket *sock,
2933 unsigned int cmd, struct compat_ifreq __user *uifr32)
2935 struct ifreq __user *uifr;
2936 int err;
2938 uifr = compat_alloc_user_space(sizeof(*uifr));
2939 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2940 return -EFAULT;
2942 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2944 if (!err) {
2945 switch (cmd) {
2946 case SIOCGIFFLAGS:
2947 case SIOCGIFMETRIC:
2948 case SIOCGIFMTU:
2949 case SIOCGIFMEM:
2950 case SIOCGIFHWADDR:
2951 case SIOCGIFINDEX:
2952 case SIOCGIFADDR:
2953 case SIOCGIFBRDADDR:
2954 case SIOCGIFDSTADDR:
2955 case SIOCGIFNETMASK:
2956 case SIOCGIFPFLAGS:
2957 case SIOCGIFTXQLEN:
2958 case SIOCGMIIPHY:
2959 case SIOCGMIIREG:
2960 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2961 err = -EFAULT;
2962 break;
2965 return err;
2968 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2969 struct compat_ifreq __user *uifr32)
2971 struct ifreq ifr;
2972 struct compat_ifmap __user *uifmap32;
2973 mm_segment_t old_fs;
2974 int err;
2976 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2977 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2978 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2979 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2980 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2981 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2982 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2983 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2984 if (err)
2985 return -EFAULT;
2987 old_fs = get_fs();
2988 set_fs(KERNEL_DS);
2989 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2990 set_fs(old_fs);
2992 if (cmd == SIOCGIFMAP && !err) {
2993 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2994 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2995 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2996 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2997 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2998 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2999 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3000 if (err)
3001 err = -EFAULT;
3003 return err;
3006 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3008 void __user *uptr;
3009 compat_uptr_t uptr32;
3010 struct ifreq __user *uifr;
3012 uifr = compat_alloc_user_space(sizeof(*uifr));
3013 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3014 return -EFAULT;
3016 if (get_user(uptr32, &uifr32->ifr_data))
3017 return -EFAULT;
3019 uptr = compat_ptr(uptr32);
3021 if (put_user(uptr, &uifr->ifr_data))
3022 return -EFAULT;
3024 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3027 struct rtentry32 {
3028 u32 rt_pad1;
3029 struct sockaddr rt_dst; /* target address */
3030 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3031 struct sockaddr rt_genmask; /* target network mask (IP) */
3032 unsigned short rt_flags;
3033 short rt_pad2;
3034 u32 rt_pad3;
3035 unsigned char rt_tos;
3036 unsigned char rt_class;
3037 short rt_pad4;
3038 short rt_metric; /* +1 for binary compatibility! */
3039 /* char * */ u32 rt_dev; /* forcing the device at add */
3040 u32 rt_mtu; /* per route MTU/Window */
3041 u32 rt_window; /* Window clamping */
3042 unsigned short rt_irtt; /* Initial RTT */
3045 struct in6_rtmsg32 {
3046 struct in6_addr rtmsg_dst;
3047 struct in6_addr rtmsg_src;
3048 struct in6_addr rtmsg_gateway;
3049 u32 rtmsg_type;
3050 u16 rtmsg_dst_len;
3051 u16 rtmsg_src_len;
3052 u32 rtmsg_metric;
3053 u32 rtmsg_info;
3054 u32 rtmsg_flags;
3055 s32 rtmsg_ifindex;
3058 static int routing_ioctl(struct net *net, struct socket *sock,
3059 unsigned int cmd, void __user *argp)
3061 int ret;
3062 void *r = NULL;
3063 struct in6_rtmsg r6;
3064 struct rtentry r4;
3065 char devname[16];
3066 u32 rtdev;
3067 mm_segment_t old_fs = get_fs();
3069 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3070 struct in6_rtmsg32 __user *ur6 = argp;
3071 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3072 3 * sizeof(struct in6_addr));
3073 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3074 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3075 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3076 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3077 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3078 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3079 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081 r = (void *) &r6;
3082 } else { /* ipv4 */
3083 struct rtentry32 __user *ur4 = argp;
3084 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3085 3 * sizeof(struct sockaddr));
3086 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3087 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3088 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3089 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3090 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3091 ret |= __get_user(rtdev, &(ur4->rt_dev));
3092 if (rtdev) {
3093 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3094 r4.rt_dev = (char __user __force *)devname;
3095 devname[15] = 0;
3096 } else
3097 r4.rt_dev = NULL;
3099 r = (void *) &r4;
3102 if (ret) {
3103 ret = -EFAULT;
3104 goto out;
3107 set_fs(KERNEL_DS);
3108 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109 set_fs(old_fs);
3111 out:
3112 return ret;
3115 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3116 * for some operations; this forces use of the newer bridge-utils that
3117 * use compatible ioctls
3119 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121 compat_ulong_t tmp;
3123 if (get_user(tmp, argp))
3124 return -EFAULT;
3125 if (tmp == BRCTL_GET_VERSION)
3126 return BRCTL_VERSION + 1;
3127 return -EINVAL;
3130 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3131 unsigned int cmd, unsigned long arg)
3133 void __user *argp = compat_ptr(arg);
3134 struct sock *sk = sock->sk;
3135 struct net *net = sock_net(sk);
3137 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3138 return siocdevprivate_ioctl(net, cmd, argp);
3140 switch (cmd) {
3141 case SIOCSIFBR:
3142 case SIOCGIFBR:
3143 return old_bridge_ioctl(argp);
3144 case SIOCGIFNAME:
3145 return dev_ifname32(net, argp);
3146 case SIOCGIFCONF:
3147 return dev_ifconf(net, argp);
3148 case SIOCETHTOOL:
3149 return ethtool_ioctl(net, argp);
3150 case SIOCWANDEV:
3151 return compat_siocwandev(net, argp);
3152 case SIOCGIFMAP:
3153 case SIOCSIFMAP:
3154 return compat_sioc_ifmap(net, cmd, argp);
3155 case SIOCBONDENSLAVE:
3156 case SIOCBONDRELEASE:
3157 case SIOCBONDSETHWADDR:
3158 case SIOCBONDSLAVEINFOQUERY:
3159 case SIOCBONDINFOQUERY:
3160 case SIOCBONDCHANGEACTIVE:
3161 return bond_ioctl(net, cmd, argp);
3162 case SIOCADDRT:
3163 case SIOCDELRT:
3164 return routing_ioctl(net, sock, cmd, argp);
3165 case SIOCGSTAMP:
3166 return do_siocgstamp(net, sock, cmd, argp);
3167 case SIOCGSTAMPNS:
3168 return do_siocgstampns(net, sock, cmd, argp);
3169 case SIOCSHWTSTAMP:
3170 return compat_siocshwtstamp(net, argp);
3172 case FIOSETOWN:
3173 case SIOCSPGRP:
3174 case FIOGETOWN:
3175 case SIOCGPGRP:
3176 case SIOCBRADDBR:
3177 case SIOCBRDELBR:
3178 case SIOCGIFVLAN:
3179 case SIOCSIFVLAN:
3180 case SIOCADDDLCI:
3181 case SIOCDELDLCI:
3182 return sock_ioctl(file, cmd, arg);
3184 case SIOCGIFFLAGS:
3185 case SIOCSIFFLAGS:
3186 case SIOCGIFMETRIC:
3187 case SIOCSIFMETRIC:
3188 case SIOCGIFMTU:
3189 case SIOCSIFMTU:
3190 case SIOCGIFMEM:
3191 case SIOCSIFMEM:
3192 case SIOCGIFHWADDR:
3193 case SIOCSIFHWADDR:
3194 case SIOCADDMULTI:
3195 case SIOCDELMULTI:
3196 case SIOCGIFINDEX:
3197 case SIOCGIFADDR:
3198 case SIOCSIFADDR:
3199 case SIOCSIFHWBROADCAST:
3200 case SIOCDIFADDR:
3201 case SIOCGIFBRDADDR:
3202 case SIOCSIFBRDADDR:
3203 case SIOCGIFDSTADDR:
3204 case SIOCSIFDSTADDR:
3205 case SIOCGIFNETMASK:
3206 case SIOCSIFNETMASK:
3207 case SIOCSIFPFLAGS:
3208 case SIOCGIFPFLAGS:
3209 case SIOCGIFTXQLEN:
3210 case SIOCSIFTXQLEN:
3211 case SIOCBRADDIF:
3212 case SIOCBRDELIF:
3213 case SIOCSIFNAME:
3214 case SIOCGMIIPHY:
3215 case SIOCGMIIREG:
3216 case SIOCSMIIREG:
3217 return dev_ifsioc(net, sock, cmd, argp);
3219 case SIOCSARP:
3220 case SIOCGARP:
3221 case SIOCDARP:
3222 case SIOCATMARK:
3223 return sock_do_ioctl(net, sock, cmd, arg);
3226 return -ENOIOCTLCMD;
3229 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3230 unsigned long arg)
3232 struct socket *sock = file->private_data;
3233 int ret = -ENOIOCTLCMD;
3234 struct sock *sk;
3235 struct net *net;
3237 sk = sock->sk;
3238 net = sock_net(sk);
3240 if (sock->ops->compat_ioctl)
3241 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243 if (ret == -ENOIOCTLCMD &&
3244 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3245 ret = compat_wext_handle_ioctl(net, cmd, arg);
3247 if (ret == -ENOIOCTLCMD)
3248 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250 return ret;
3252 #endif
3254 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256 return sock->ops->bind(sock, addr, addrlen);
3258 EXPORT_SYMBOL(kernel_bind);
3260 int kernel_listen(struct socket *sock, int backlog)
3262 return sock->ops->listen(sock, backlog);
3264 EXPORT_SYMBOL(kernel_listen);
3266 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268 struct sock *sk = sock->sk;
3269 int err;
3271 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3272 newsock);
3273 if (err < 0)
3274 goto done;
3276 err = sock->ops->accept(sock, *newsock, flags);
3277 if (err < 0) {
3278 sock_release(*newsock);
3279 *newsock = NULL;
3280 goto done;
3283 (*newsock)->ops = sock->ops;
3284 __module_get((*newsock)->ops->owner);
3286 done:
3287 return err;
3289 EXPORT_SYMBOL(kernel_accept);
3291 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3292 int flags)
3294 return sock->ops->connect(sock, addr, addrlen, flags);
3296 EXPORT_SYMBOL(kernel_connect);
3298 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3299 int *addrlen)
3301 return sock->ops->getname(sock, addr, addrlen, 0);
3303 EXPORT_SYMBOL(kernel_getsockname);
3305 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3306 int *addrlen)
3308 return sock->ops->getname(sock, addr, addrlen, 1);
3310 EXPORT_SYMBOL(kernel_getpeername);
3312 int kernel_getsockopt(struct socket *sock, int level, int optname,
3313 char *optval, int *optlen)
3315 mm_segment_t oldfs = get_fs();
3316 char __user *uoptval;
3317 int __user *uoptlen;
3318 int err;
3320 uoptval = (char __user __force *) optval;
3321 uoptlen = (int __user __force *) optlen;
3323 set_fs(KERNEL_DS);
3324 if (level == SOL_SOCKET)
3325 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3326 else
3327 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3328 uoptlen);
3329 set_fs(oldfs);
3330 return err;
3332 EXPORT_SYMBOL(kernel_getsockopt);
3334 int kernel_setsockopt(struct socket *sock, int level, int optname,
3335 char *optval, unsigned int optlen)
3337 mm_segment_t oldfs = get_fs();
3338 char __user *uoptval;
3339 int err;
3341 uoptval = (char __user __force *) optval;
3343 set_fs(KERNEL_DS);
3344 if (level == SOL_SOCKET)
3345 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3346 else
3347 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3348 optlen);
3349 set_fs(oldfs);
3350 return err;
3352 EXPORT_SYMBOL(kernel_setsockopt);
3354 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3355 size_t size, int flags)
3357 sock_update_classid(sock->sk);
3359 if (sock->ops->sendpage)
3360 return sock->ops->sendpage(sock, page, offset, size, flags);
3362 return sock_no_sendpage(sock, page, offset, size, flags);
3364 EXPORT_SYMBOL(kernel_sendpage);
3366 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3368 mm_segment_t oldfs = get_fs();
3369 int err;
3371 set_fs(KERNEL_DS);
3372 err = sock->ops->ioctl(sock, cmd, arg);
3373 set_fs(oldfs);
3375 return err;
3377 EXPORT_SYMBOL(kernel_sock_ioctl);
3379 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381 return sock->ops->shutdown(sock, how);
3383 EXPORT_SYMBOL(kernel_sock_shutdown);